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1   |   INTRODUCTION

Cornelia de Lange syndrome (CdLS) presents with 
a highly variable clinical phenotype. Features range 
from mild to severe developmental delay and physical 
abnormalities including craniofacial and limb malfor-
mations (Kline et al., 2018). The diverse nature of this 

phenotype can partly be attributed to inter- and intra-
genic variability (Mannini et al., 2013). Pathogenic vari-
ants have been identified predominantly in five genes: 
NIPBL, RAD21, SMC1A, SMC3 and HDAC8, account-
ing for approximately 70% of reported CdLS cases. It is 
not clear if this molecular profile can be expected in all 
population groups because the literature is dominated 
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Abstract
Background: Cornelia de Lange Syndrome (CdLS) presents with a variable 
multi-systemic phenotype and pathogenic variants have been identified in five 
main genes. This condition has been understudied in African populations with 
little phenotypic and molecular information available.
Methods and Results: We present a cohort of 14 patients with clinical fea-
tures suggestive of CdLS. Clinical phenotyping was carried out and cases were 
classified according to the international consensus criteria. According to this 
criteria, nine patients had classical CdLS, one had non-classical CdLS and 
four presented with a phenotype that suggested molecular testing for CdLS. 
Each patient underwent mutation profiling using a targeted next generation 
sequencing panel of 18 genes comprising known and suspected CdLS causal 
genes. Of the 14 patients tested, pathogenic and likely pathogenic variants were 
identified in nine: eight variants in the NIPBL gene and one in the STAG1 gene.
Conclusions: We present the first molecular data for a cohort of South African 
patients with CdLS. Eight of the nine variants identified were in the NIPBL gene, 
the most commonly involved gene in cases of CdLS. This is also the first report of 
a patient of African ancestry presenting with STAG1-related CdLS.
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by genotype and phenotype information from North 
American and European population groups. More re-
cently, mutations have also been identified in BRD4, 
STAG1, KMT2A, SETD5, HDAC2, MAU2, ZMYND11, 
MED13L, PHIP, EP300 and ANKRD11 (Aoi et al., 2019; 
Cucco et al., 2020; Olley et al., 2018; Parenti et al., 2020; 
Wagner et al., 2019). These are said to cause either CdLS 
or a CdLS-like phenotype. Additionally, a number of 
differential diagnoses exist for CdLS, which could ac-
count for the patients without an identified mutation. 
Although cases of these conditions can be clinically 
distinguished from classic cases of CdLS, a wide phe-
notypic spectrum exists, which make milder or atypical 
cases of CdLS more difficult to differentiate from other 
conditions.

The mutations identified in these genes have predomi-
nantly been small (<50 bp) variants, including frameshift, 
nonsense or splice site mutations, which are predicted 
to lead to truncated proteins or a loss of gene function 
(Mannini et  al.,  2013). Upon carrying out a phenotype–
genotype correlation study Mannini et  al.  (2013), con-
cluded that truncating mutations in NIPBL result in a more 
severe phenotype, while missense and in-frame deletions 
in NIPBL and SMC1A/SMC3 result in a milder form of 
the disease. Interestingly, pathogenic missense mutations 
and in-frame deletions in the HEAT domain of the NIPBL 
protein result in a severe phenotype, suggesting that gene, 
mutation type and protein domain are all important in 
phenotype determination (Mannini et al., 2013).

To date, no molecular studies have been carried out 
on South African patients suspected to have CdLS, and 
only a few clinical case reports have previously been pub-
lished on patients with African ancestry (Begeman & 
Duggan, 1976; Cicoria, 1974; Dowsett et al., 2019; Ptacek 
et al., 1963). Here, we report the phenotype and first mo-
lecular findings for a South African cohort of patients 
with CdLS or CdLS-like phenotype.

2   |   PHENOTYPIC FINDINGS

The cohort for the study comprised 14 patients presenting 
with clinical features suggestive of a CdLS or a CdLS-like 
clinical phenotype. Patients were recruited from genetic 
clinics that were held in Johannesburg and Pretoria, 
Gauteng, South Africa. Patients were eligible to participate 
if they had been assessed by a medical geneticist who de-
termined their clinical phenotype to be suggestive of CdLS.

Each patient underwent additional clinical phenotyp-
ing at the time of recruitment using a clinical tick sheet; the 
main clinical findings and scoring according to the interna-
tional criteria are described in the table found in Table S1. 
Based on these criteria, 9/14 patients would be classified 

as class 1: having classical CdLS (patients 1, 3, 5, 7, 8, 9, 
10, 12 and 14); 1/14 would be classified as class 2: having a 
non-classical form of CdLS (patient 11) and 4/14 patients 
would be classified as class 3: indicate evidence for molec-
ular testing for CdLS (patients 2, 4, 6, 13). In some of these, 
in particular those classified as class 3, the score may have 
been due to insufficient clinical information having been 
recorded at recruitment. The most common phenotypic 
features in this cohort were long/curly eyelashes (14/14), 
microcephaly and synophrys (13/14), short stature (12/14), 
postnatal growth retardation, depressed nasal bridge and 
hirsutism (11/14). Consent for photographs was obtained 
from three of the 14 patients in this cohort (Figure 1).

3   |   MOLECULAR FINDINGS

The 14 patients underwent mutation screening by means of 
a targeted gene panel. The genes included in this panel con-
sisted of known causal genes, suspected causal genes and 
genes accounting for some common differential diagnoses 
(NIPBL, RAD21, SMC1A, SMC3, HDAC8, PDS5A, PDS5B, 
SCC4, STAG1, AFF4, ANKRD11, ESCO2, KMT2A, TAF1, 
TAF6, SETD5, SMARCB1 and ARID1B). DNA was isolated 
from a peripheral blood sample. Library preparation was 
carried out using the Agilent SureSelect system, and se-
quencing was carried out on an Illumina MiSeq platform.

Pathogenetic or likely pathogenic variants were identi-
fied in nine of the 14 patients (Table 1) resulting in a yield 
of 64%. Eight of these were identified in the NIPBL gene 
and one was identified in the STAG1 gene. Six variants 
were classified as pathogenic and three were classified 
as likely pathogenic according to the ACMG/AMP guide-
lines (Richards et al., 2015).

4   |   DISCUSSION

Four small deletions were identified within the NIPBL 
gene in the present cohort, all predicted to cause a prema-
ture termination that should lead to a loss of gene function 
(patients 1, 3, 10 and 11). Three of these patients presented 
with classical CdLS while one (patient 11) presented with 
non-classical CdLS according to the guidelines established 
by Kline et al. (2018). The NIPBL c.2479_2480delAG vari-
ant, identified in patient 3, occurred in exon 10, one of the 
largest exons in the NIPBL gene. This variant was previ-
ously reported as pathogenic on the ClinVar database 
(ClinVar ID: 96336). The duplication identified in patient 
13 (NIPBL c.7831dupA, p.Arg612LysfsTer20) results in a 
truncation in the NIPBL protein sequence similar to the 
small deletions, and this patient was classified as having a 
class 3 phenotype indicative of molecular testing according 
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to the international guidelines (Kline et al., 2018). An es-
sential splice site pathogenic variant was identified in pa-
tient 9 (NIPBL c.6955–2 A>C). The patient presented with 
a classical CdLS phenotype.

Two missense variants were identified within the co-
hort, in patient 4 (NIPBL c.3932G>A, p.Cys1311Tyr) and 
14 (NIPBL c.5465A>G, p.Asp1822Gly), and both were 
classified as likely pathogenic. The described phenotype 
of patient 4 is not classical but does score as a class 3 ac-
cording to the international guidelines (Kline et al., 2018). 
This is in accordance with multiple genotype–phenotype 
studies that conclude that missense mutations correlate to 
a milder CdLS phenotype (Mannini et al., 2013). Another 
missense variant that occurs within the same amino acid 
residue (NIPBL c.3931T>C, p.Cys1311Arg) as this vari-
ant observed in patient 4 has previously been classified as 
pathogenic (Tonkin et al., 2004). The patient reported by 
Tonkin et al. (2004) also presented with a mild CdLS phe-
notype similar to patient 4 in the present cohort.

The missense variant identified in patient 14 (NIPBL 
c.5465A>G, p.Asp1822Gly) falls within the HEAT domain 
of the NIPBL protein, which is usually associated with a 
more severe phenotype (Mannini et al., 2013). This agrees 
with the classical/class 1 phenotype observed in this patient. 
This variant has been identified previously and was reported 
as likely pathogenic on ClinVar (ClinVar ID: 159152).

A nonsense variant in the STAG1 gene (STAG1 
c.17T>G, p.Leu6Ter) was observed in patient 6. This is the 

first report of a STAG1 mutation in an African patient to 
date. Patient 6 was clinically diagnosed with CdLS and pre-
sented with a non-classical phenotype of CdLS. According 
to the findings described by Lehalle et al. (2017) and Yuan 
et  al.  (2019) patients with mutations in the STAG1 gene 
present with an overlapping phenotype with CdLS but 
without the characteristic craniofacial features. Some of the 
overlapping features between patient 6 and other patients 
with a STAG1 mutation include: intellectual disability, fail-
ure to thrive, low set and dysmorphic ears, clinodactyly, 
high nasal bridge, long curly eyelashes, hirsutism, deep set 
eyes and a depressed/broad nasal bridge. On review, the 
patient does not appear to have the broad nasal tip, down-
turned corners of the mouth, long and smooth philtrum, 
or the narrow vermillion border typical of CdLS. This is an 
emerging neurodevelopmental syndrome and it is unclear 
at this point whether STAG1 mutations will fall within the 
spectrum of genes implicated in CdLS or whether they will 
be classified as a new cohesinopathy.

The genetic cause of ~30% of the patients with a clin-
ical diagnosis of CdLS remains unknown after mutation 
screening in the NIPBL, SMC1A, HDAC8, RAD21 and 
SMC3 genes (Braunholz et al., 2015). We identified (likely) 
pathogenic variants in 9 out of the 14 patients screened, 
which corresponds to a detection rate of 64%. Five of the 
patients who had a pathogenic variant identified were 
classified as class 1, one was classified as class 2 and three 
were classified as class 3.

F I G U R E  1   Images showing the phenotype of a subset of patients who tested positive for a NIPBL disease-causing mutation. Images 
a-d depicts the facial features of patients 1 (a); 9 (b, c) and 14 (d) with microcephaly, synophrys, depressed nasal bridge and long smooth 
philtrum being present in each. Images e–g depict the limb reduction defects in patients 1 (e) and 14 (f) showing a duplicated hallux and  
(g) brachdactyly and proximally inserted thumbs.
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A limitation of this study was that copy number vari-
ant analysis was not performed. By including this type of 
test, the diagnostic yield may increase. Although the gene 
panel approach was appropriate for this cohort, exome- 
and genome level investigations are still warranted owing 
to the number of cases without a causative mutation in 
one of the known genes. This could potentially reveal 
other genes involved in CdLS and other disorders with 
CdLS-like features in African cohorts.

5   |   CONCLUSION

This is the largest African cohort to undergo molecular 
studies for CdLS to date. The data collected from this 
study are not only in agreement with the literature already 
published on CdLS but will also add valuable African dys-
morphology data to better direct testing for this condition 
in future (Hurst & Robin, 2020).

Our study has produced a baseline mutation profile of 
CdLS in South African patients, with mutations in NIPBL 
the most common, as elsewhere. An accurate, timely mo-
lecular diagnosis has a profound impact on the patient and 
their family which extends beyond improved clinical man-
agement (Joseph et al., 2016). This is particularly relevant in 
the South African State healthcare system where the diag-
nostic odyssey for rare disease patients is exacerbated by a 
significant lack of resources and access to specialist clinical 
care. A genetics-first approach could address this issue and 
improve diagnostic services for patients with CdLS pheno-
types in Africa (Arnett et al., 2021). This is also the first case 
of a STAG1-related cohesinopathy in a patient of African an-
cestry and may indicate that mutations in other genes less 
commonly implicated in CdLS and its related phenotypes 
may be identified in the future within African populations.
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