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Abstract

If a known distribution on a real line is given, it can be wrapped on the circumference

of a unit circle. This research entails the study of a univariate skew-normal distribu-

tion where the skew-normal distribution is generalised for the case of bimodality. Both

the skew-normal and flexible generalised skew-normal distributions are wrapped onto

a unit circle, consequently referred to as a wrapped skew-normal and a wrapped flexi-

ble generalised skew-normal distribution respectively. For each of these distributions a

simulation study is conducted, where the performance of maximum likelihood estima-

tion is evaluated. Skew scale mixtures of normal distributions with the wrapped version

of these distributions are proposed and graphical representations are provided. These

distributions are also compared in an application to wind direction data.
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Chapter 1

Introduction

1.1 Motivation

Circular data can be described by data related to directions, which include a variety

of research fields, such as: earth sciences, biology, medicine and psychology. Several

statistical models have been proposed for analysing circular data by means of wrapping

the distribution around a unit circle. The term wrapping refers to taking data on a

real line and wrapping it around a unit circle. The most popular and frequently used

distribution is the normal distribution, which is known for its simplicity. It is therefore

of interest to consider the wrapped normal (WN) distribution along with distributions

that can incorporate skewness and bimodality, such as the wrapped skew-normal (WSN)

by Pewsey [25] and the wrapped flexible generalised skew-normal (WFGSN) distribution

by Hernández-Sánchez and Scarpa [12]. Data applied in practice are often asymmetric

and bimodal which also motivates the study of the WSN and WFGSN distribution.

The scale mixtures of normal (SMN) distributions present a group of heavy tailed distri-

butions that are frequently used as a statistical procedure for symmetrical data. However,

since theory and application provide a large amount of directional data that are skewed

with heavy tails, it motivates the study of the skew scale mixtures of normal (SSMN)

distributions as well as the wrapped version of these distributions. It is therefore impor-

tant to consider the characteristics of each of the mentioned distributions to compare

how well these models will perform not only in theory, but also in application.

1
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Chapter 1. Introduction 2

1.2 Literature review

Mardia and Jupp [19] defined circular data and proposed models and statistical method-

ology for analysing circular data, such as wrapped distributions in general as well as the

WN distribution. The characteristic function (CF) of a circular random variable is also

defined. Azzalini [3] introduced the skew-normal (SN) which includes the standard nor-

mal distribution as a special case. He also defined the skewing methodology used to skew

existing symmetric probability distribution functions. Pewsey [25] proposed the WSN

for circular data where centred parameterisation of the distribution is introduced as well

as the relationship between the parameters and the direct ones. Methods of moments

estimation is also considered. A flexible class of skew-symmetric distributions have been

proposed by Ma and Genton [18], where these distributions can capture skewness and

bimodality. The probability distribution function (PDF) has the form of a product of

the skewing mechanism as well as the PDF of a symmetric distribution. They also dis-

cussed and illustrated the flexible generalised skew-normal (FGSN) distribution as an

example of a distribution that has shape flexibility and multimodality. The WFGSN

distribution is then proposed by Hernández-Sánchez and Scarpa [12] where the param-

eters of the proposed model are estimated by maximum likelihood estimation (MLE).

They also concluded that the WFGSN distribution outperforms the WSN distribution.

Da Silva Ferreira et al. [8] defined the SMN distributions as well as the SSMN distribu-

tions. They also discussed the skew-Student-t normal (StN), the skew-slash (SSL) and

the skew-contaminated normal (SCN) distribution. Several probabilistic and inferential

properties for these distributions are also defined.
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Chapter 1. Introduction 3

1.3 Objectives

The aim of this study is to:

• Review and revisit the concept of circular data discussed by Mardia and Jupp [19].

• Understand the term wrapping by investigating the WN distribution.

• Investigate Azzalini’s SN distribution [3].

• Investigate the WSN distribution proposed by Pewsey [25].

• Compare the method of MLE and trigonometric moments with a simulation study.

• Understand the FGSN distribution by Ma and Genton [18] as well as the WFGSN

distribution.

• Investigate examples of SSMN distributions by Da Silva Ferreira et al. [8] and

consider the proposed wrapped versions thereof.

• Apply these wrapped distributions to a data set for comparison purposes.
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Chapter 1. Introduction 4

1.4 Outline of study

• In Chapter 2 a wrapped distribution is revisited and the WN distribution is also

discussed. The SN distribution with a stochastic representation is revisited as well

as the direct parameterisation as a basis for estimation is discussed. The WSN

distribution is revisited where the CF with the trigonometric moments are also

investigated with a Monte Carlo approximation for the trigonometric moments. A

simulation study is conducted to compare MLE and the method of trigonometric

moments.

• In Chapter 3 the FGSN distribution is revisited and the WFGSN distribution with

examples are presented. The method of MLE is discussed and a simulation study

is conducted. These distributions are fitted to a data set for comparison purposes.

• In Chapter 4 the SMN distributions are revisited as well as the SSMN distribu-

tions. Examples of the SSMN distributions are provided, such as the StN, SSL

and the SCN distributions. Lastly, the wrapped versions of these distributions are

compared to the WN, WSN and WFGSN distributions to investigate if a better fit

can be obtained for the data set.

The above outline is summarised in Figure 1.1.
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Chapter 1. Introduction 5

Figure 1.1: Outline of study.

• Chapter 5 concludes the study.

• Appendix A contains a list of additional results and definitions referenced in this
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Chapter 1. Introduction 6

study.

• Appendix B contains code used in this study.

• Appendix C contains a list of acronyms and symbols used throughout the study

as well as an index.
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Chapter 2

The skew-normal and wrapped

skew-normal distributions

In Section 2.1, the PDF of a wrapped distribution is defined and the WN distribution is

also discussed. The SN distribution with a stochastic representation is defined in Section

2.2. In Section 2.3 the direct parameterisation as a basis for estimation is discussed

where in Section 2.4 the estimation of the centred parameterisation is investigated. The

WSN distribution is defined with representations of different parameter values in Section

2.5. The CF with the trigonometric moments are also investigated with a Monte Carlo

approximation for the trigonometric moments. In Section 2.6, the method of MLE and

the method of trigonometric moments are discussed where a simulation study is then

conducted to compare the two methods of estimation. The above outline is summarised

in Figure 2.1.

7
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Chapter 2. The skew-normal and wrapped skew-normal distributions 8

Figure 2.1: Outline of Chapter 2.
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Chapter 2. The skew-normal and wrapped skew-normal distributions 9

2.1 Background

The term wrapping refers to taking data on a real line and wrapping it around a unit

circle. This type of data can be referred to as circular data [19]. Circular data can also

be described by data related to directions, which include a variety of research fields,

such as: earth sciences, biology, medicine and psychology [19]. If X is a linear random

variable, with a PDF g(·), then the corresponding ‘wrapped‘ circular version of X can

be defined as

θ = X(mod2π).

The random variable θ has the following PDF

f(θ) =
∞∑

k=−∞

g(θ + 2π(k)), (2.1)

obtained by ‘wrapping‘ g around the unit circle [17]. The distribution function of θ can

also be defined as

F (θ) =
∞∑

k=−∞

[g(θ + 2π(k))− g(2π(k))], k = 0,±1,±2,±3, ...,

where probability is accumulated over all the overlapping points x = θ, θ ± 2θ, θ ± 4θ...,

using the above approach [15].

2.1.1 Wrapped normal (WN) distribution

One of the most frequently used distributions is the normal distribution which is known

for its simplicity and the fact that it forms a basis for various statistical techniques.

Examples include measurement errors in scientific experiments, scores on various tests

and numerous economic measures and indicators [9]. Therefore, by wrapping the normal

distribution, X ∼ N(µ, σ2), around the unit circle a WN distribution θ ∼ WN(µ, ρ) is

obtained, where

ρ = exp(
−σ2

2
),
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i.e.

σ2 = −2 log ρ.

If X ∼ N(µ, σ2) then the PDF of the normal distribution is defined as:

g(x;µ, σ2) =
1

σ
√

2π
exp(
−(x− µ)2

2σ2
), −∞ < x <∞.

The PDF of θ = X(mod2π), i.e. the PDF of the WN distribution is

φ(θ;µ, σ2) =
∞∑

k=−∞

g(θ + 2π(k)) =
1

σ
√

2π

∞∑
k=−∞

exp(
−(θ − µ+ 2π(k))2

2σ2
). (2.2)

The CF of X is

ψ(t) = E[exp(itX)]

= exp(iµt− t2σ2

2
). (2.3)

It then follows from Theorem 10, Appendix A.2 and Definition 8, Appendix A.1 that

the CF of a circular random variable Θ = X(mod2π) is

ψ(p) = exp(iµp− p2σ2

2
), p = 0,±1,±2, ...,

so that

E(exp(ipΘ)) = exp(−p
2σ2

2
) exp(iµp)

= αp + iβp

where the cosine moment is defined as

αp = exp(−p
2σ2

2
) cos(pµ), (2.4)

and the sine moment

βp = exp(−p
2σ2

2
) sin(pµ), (2.5)

in which µ refers to the mean direction (mod2π), ρ refers to the mean resultant length

(the length of the average of random vectors on the unit circle - see Definition 6,

Appendix A.1) and σ refers to the standard deviation of the unwrapped normal

distribution [19].
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2.2 The skew-normal (SN) distribution

Suppose a random variable X has a standard SN distribution with a skewness parameter

λ where X ∼ SN(λ) [3, 25]. Under this framework, the PDF is as follows

g(x;λ) = 2φ(x)Φ(λ(x)), −∞ < x <∞,−∞ < λ <∞. (2.6)

The SN distribution, introduced by Azzalini [3], includes the standard normal distri-

bution as a special case. The skewing methodology used to skew existing symmetric

probability distribution functions can be defined as follows

f(x) = 2f0(x)G(w(x)), (2.7)

where f(x) is the PDF for any odd function w, where w(x) = λx and f0 = φ. This PDF

holds for any symmetric PDF f0 and distribution function G [3, 12]. 2G0(w(x)) can be

referred to as the skewing mechanism [3]. The class can also be generalised by including

ξ and ω2 as the location and scale parameters [12, 25]. Hence, if X ∼ SN(λ) then

Y = ξ + ωX, (2.8)

is a univariate SN distribution with the following PDF [3, 25]:

f(y; ξ, ω2, λ) =
2

ω
φ(
y − ξ
ω

)Φ(λ(
y − ξ
ω

)), (2.9)

where −∞ < y <∞,−∞ < λ <∞,−∞ < ξ <∞, ω2 ∈ R+. ξ, ω2 and λ can be referred

to as the direct parameters and denote the distribution of Y as SN(ξ, ω2, λ) [3, 25].

Figure 2.2 shows an overlay of the SN PDF in Equation 2.6 with ξ = 0, ω2 = 1 and

combinations of λ.
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Figure 2.2: An overlay of the SN PDF (2.6) with ξ = 0, ω2 = 1 and combinations of λ.

2.2.1 Stochastic representation of the SN distribution

Following the approach of Azzalini [3] and Mastrantonio et al. [20], a stochastic represen-

tation is revisited that is useful for generating random numbers from a SN(ξ, ω2, λ) distri-

bution. This provides a method to generate random numbers from the Y ∼ SN(ξ, ω2, λ)

with PDF (2.9).

Mastrantonio et al. [20] define U and W as two independent standard normal

variables, where ω2 ∈ R+ and −∞ < λ <∞, then

Y = ξ +
ωλ√

1 + λ2
|U |+ ω√

1 + λ2
W − ωλ

√
2√

π(1 + λ2)
. (2.10)
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The PDF of Y is defined as follows:

f(y; ξ, ω2, λ) =
2

ω
φ
(y − ξ + ωλ

√
2√

π(1+λ2)

ω

)
Φ
(
λ
(y − ξ + ωλ

√
2√

π(1+λ2)

ω

))
,

where the mean and variance of Y are given as ξ and ω2λ2/(1+λ2)(1−2/π)+ω2/(1+λ2)

respectively [20].

Software is already available to generate normal distributed random variables, therefore

Section 2.2.1 provides a representation to easily generate random numbers from a SN

distribution.

2.2.2 Visualisation of the SN sampling scheme in Section 2.2.1
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(c) SN(-4).
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Figure 2.3: Histograms of random samples of size 10000 taken from SN densities with an

overlay of the corresponding theoretical PDF (2.6), for ξ = 0, ω2 = 1 and different combinations

of λ.
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Figure 2.3 represent histograms of random samples taken from Y ∼ SN(ξ, ω2, λ) using

the stochastic representation in Equation 2.10 with an overlay of the corresponding

theoretical PDF (2.6).

2.3 Direct parameterisation as a basis for estimation

In this section, a short overview of MLE as a method of estimation is presented, where

the PDF (2.9) in Section 2.2 is used to obtain the likelihood function. The Fisher

information matrix is also presented which form part of the asymptotic theory of MLE.

2.3.1 Maximum likelihood estimation (MLE)

In order to use maximum likelihood (ML) as a method of estimation, let y1, ..., yn be a

random sample of size n from SN(ξ, ω2, λ) (2.9). The likelihood function of the param-

eters of the SN(ξ, ω2, λ) distribution is given by

`(ξ, ω2, λ) = (
2

ω
)n

n∏
i=1

φ(
yi − ξ
ω

)Φ(λ(
yi − ξ
ω

)). (2.11)

Fisher information matrix

Azzalini [3] gives the Fisher information matrix for the direct parameterisation, generated

by the linear transformation represented in Section 2.2, where

Y = ξ + ωX,

for ω > 0. The Fisher information for the parameters (ξ, ω2, λ) is as follows, where

X ∼ SN(λ)

Iλ =


(1+λ2a0)

ω2

E(X) 1+2λ2

1+λ2
+λ2a1

ω2

b

(1+λ2)3/2
−λa1

ω

E(X) 1+2λ2

1+λ2
+λ2a1

ω2

(2+λ2a2)
ω2

−λa2
ω

b

(1+λ2)3/2
−λa1

ω
−λa2
ω

a2


where

ak = ak(λ) = E(Xk(
φ(λX)

Φ(λX)
)2), k = 0, 1, 2.
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The above matrix becomes singular as λ → 0. Therefore, in order to attempt the

maximisation of the log-likelihood function from Equation 2.11 for this parameterisation

using numerical techniques, no unique solution exists and the results could be highly

misleading [24].

Thus, the findings for MLE, according to Azzalini [3] and Pewsey [24], shows that the

direct parameterisation cannot be used as a general basis for estimation.

2.4 Estimation for the centred parameterisation

It is possible to parameterise the SN distribution by using the mean, variance and skew-

ness index by means of centred parameterisation [3]. Centred parameterisation can also

overcome some estimation problems in certain scenarios, which is caused by direct pa-

rameterisation [3]. Azzalini [3] introduces the centred parameterisation with parameters,

µ, σ and γ1 where Pewsey [26] then defines a skew-normal random variable YC as

YC = µ+
σ(X − E(X))√

var(X)
, −∞ < µ <∞, σ > 0,

where X ∼ SN(λ), E(YC) = µ and V ar(YC) = σ2 [3, 24]. The subscript ”C” refers to

the centred parameterisation. Since E(YC) = µ, this parameterisation is not parameter

redundant for the normal case [24]. The parameter γ1, denotes the coefficient of skewness

of X, therefore also that of YC . The distribution of YC can therefore be denoted as

SNC(µ, σ2, γ1) [3].

According to Pewsey [26], the direct parameters can also be written in terms of the

centred parameters, where

ξ = µ− cγ1

1
3σ,

ω = σ

√
1 + c2γ1

2
3 ,

λ =
cγ1

1
3√

2
π

+ c2( 2
π
− 1)γ1

2
3

, (2.12)

and c = (2/(4− π))
1
3 . Using the relations (2.12) in Equation 2.9, the PDF of YC is

given by
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f(y;µ, σ2, γ1) =
2

σ

√
1 + c2γ1

2
3

φ
[y − µ+ cγ1

1
3σ

σ

√
1 + c2γ1

2
3

]

× Φ
[ cγ1

1
3√

2
π

+ c2( 2
π
− 1)γ1

2
3

(y − µ+ cγ1
1
3σ

σ

√
1 + c2γ1

2
3

)]
=

2

σ

√
1 + c2γ1

2
3

φ[
1√

1 + c2γ1
2
3

{(y − µ
σ

) + cγ1

1
3}]

× Φ[
cγ1

1
3√

2
π

+ c2( 2
π
− 1)γ1

2
3 (1 + c2γ1

2
3 )
{(y − µ

σ
) + cγ1

1
3}]. (2.13)

2.4.1 Maximum likelihood estimation (MLE)

From Equation 2.13 the log-likelihood function for a random sample y1, ..., yn, of size n,

from YC ∼ SNC(µ, σ2, γ1), is given by

`(µ, σ2, γ1) = n log 2− n log σ − n

2
log(1 + c2γ1

2
3 ) +

n∑
i=1

log[φ[
1√

1 + c2γ1
2
3

{(yi − µ
σ

) + cγ1

1
3}]]

× Φ[
cγ1

1
3√

2
π

+ c2( 2
π
− 1)γ1

2
3 (1 + c2γ1

2
3 )
{(yi − µ

σ
) + cγ1

1
3}], (2.14)

where −∞ < µ < ∞ and −0.99527 < γ1 < 0.99527 [26]. In order to maximise the

log-likelihood function in Equation 2.14, numerical optimisation techniques should be

used. Pewsey [26] recommend the simplex algorithm of Nelder and Mead [21].

2.5 Wrapped skew-normal (WSN) distribution

In order to use the SN distribution, Y ∼ SN(ξ, ω2, λ) for circular data, Pewsey [25]

wrapped Y onto a unit circle where a circular random variable can be defined as Θ =

Y (mod2π), which has the following PDF

f(θ; ξ, ω2, λ) =
2

ω

∞∑
r=−∞

φ(
θ + 2πr − ξ

ω
)Φ(λ(

θ + 2πr − ξ
ω

)), (2.15)
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for 0 ≤ θ ≤ 2π [25]. The WSN distribution can therefore be denoted as Θ∼WSN(ξ, ω2, λ)

[25].

Figure 2.4 shows the shape of the PDF given in Equation 2.15 for ξ = 0, ω = 1 and

various combinations of λ. The command ‘curve.circular‘ in the R package ‘circular‘ [1]

was used to create the circular plots.
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Figure 2.4: Examples of the WSN PDF, given in Equation 2.15, with ξ = 0, ω = 1 and various

combinations of λ.
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2.5.1 The characteristic function (CF) and trigonometric mo-

ments

In this section the CF of Θ ∼ WSN(ξ, ω2, λ), by Pewsey [25] is derived, but firstly the

focus is on the CF of Y where Y ∼ SN(ξ, ω2, λ).

Theorem 1 The CF of the SN distribution, ψY (t) where Y ∼ SN(ξ, ω2, λ), by Azzalini

[4] is given by:

(1) ψY (t) = 2 exp(iξt− ω2t2/2)Φ(iδωt). (2.16)

Alternatively, the CF of the SN distribution by Pewsey [25], is given by:

(2) ψY (t) = exp(iξt− ω2t2/2){1 + iτ(δωt)}, (2.17)

where δ = λ/
√

1 + λ2 and

τ(y) =

∫ y

0

√
2/π exp(u2/2)du, y > 0,

and τ(−y) = −τ(y).

Proof. (1) From Azzalini [4] (see Theorem 9, Appendix A.2) and X ∼ SN(0, 1, λ)

(Equation 2.6 and 2.8), it follows that

ψY (t) = MY (it)

= E[exp(itY )]

= E[exp(iξt+ iωxt)]

=

∫
R

exp(iξt+ iωxt)2φ(x)Φ(λx)dx

= 2 exp(iξt)

∫
R

exp(iωxt)
1√
2π

exp(−1

2
x2)Φ(λx)dx.
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Note that (x− iωt)2 = x2 − 2iωxt− ω2t2 ⇒ x2 − 2iωxt = (x− iωt)2 + ω2t2.

Therefore,

ψY (t) = 2 exp(iξt)

∫
R

1√
2π

exp
(
− 1

2
(x2 − 2iωxt)

)
Φ(λx)dx

= 2 exp(iξt)

∫
R

1√
2π

exp
(
− 1

2
((x− iωt)2 + ω2t2)

)
Φ(λx)dx

= 2 exp(iξt− ω2t2/2)

∫
R

1√
2π

exp
(
− 1

2
(x− iωt)2

)
Φ(λx)dx

= 2 exp(iξt− ω2t2/2)

∫
R
φ(x− iωt)Φ(λx)dx(1)

= 2 exp(iξt− ω2t2/2)Φ
( λωt√

1 + λ2

)
= 2 exp(iξt− ω2t2/2)Φ(δωt)

≡MY (it), (2.18)

where δ = λ/
√

1 + λ2.

(1) Applying Theorem 9, Appendix A.2.

Proof. (2) Applying Definition 10, Appendix A.1 it follows that

MY (it) = 2 exp(iξt− ω2t2/2)Φ(δωt)

= 2 exp(iξt− ω2t2/2)
(1

2
+

∫ δωt

0

φ(x)dx
)
, t ∈ R.

By applying Azzalini [4], let γ be the line segment linking 0 and δωti, namely, γ consists

of points x = xi where x takes values from 0 to δωt. Then, the CF is given by

ψY (t) = MY (it)

= 2 exp(iξt− ω2t2/2)
(1

2
+

∫ δωt

0

φ(x)dx
)

= exp(iξt− ω2t2/2)
(

1 + 2i

∫ δωt

0

1√
2π

exp(
x2

2
)dx
)(1)

= ψY (t)

= exp(iξt− ω2t2/2){1 + iτ(δωt)}. (2.19)

(1) Applying Theorem 8, Appendix A.2.
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�

Similar for the WSN distribution, the CF by Pewsey [25] is derived in the following

theorem.

Theorem 2 The CF of Θ ∼ WSN(ξ, ω2, λ), ψp, is given by

ψp = E[exp(ipΘ)] = ψY (p) = exp(iξp− ω2p2/2){1 + iτ(δωp)},

for p = 0, 1, ... .

Proof. Let Θ = Y (mod2π), then from Theorem 1 it follows that the CF of Θ is given

by:

ψp = E[exp(ipΘ)]

≡ ψY (p)(1)

= exp(iξp− ω2p2/2){1 + iτ(δωp)}, (2.20)

for p = 0, 1, 2, ....

(1) Applying Theorem 10, Appendix A.2.

�

The cosine and sine moments, defined by Pewsey [25] as αp and βp, are derived in the

following theorem.

Theorem 3 The cosine and sine moments, αp and βp, for Θ ∼ WSN(ξ, ω2, λ) are given

by

(i) αp ≡ E[cos pΘ] = exp(−ω2p2/2)(cos pξ − τ(δωp) sin pξ),

(ii) βp ≡ E[sin pΘ] = exp(−ω2p2/2)(sin pξ + τ(δωp)cospξ).

Proof. (i) From Equation 2.20 and Definition 2, Appendix A.1, it follows that
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ψ(p) = exp(iξp)
{

exp(−ω2p2/2) + i exp(−ω2p2/2)τ(δωp)
}

= (cos pξ + i sin pξ)
{

exp(−ω2p2/2) + i exp(−ω2p2/2)τ(δωp)
}

= exp(−ω2p2/2) cos pξ + i exp(−ω2p2/2)τ(δωp)cospξ + i exp(−ω2p2/2) sin pξ

− exp(−ω2p2/2)τ(δωp) sin pξ. (2.21)

Therefore, it follows from Definition 8, Appendix A.1, that the cosine moment is

αp = E[cos pΘ]

= exp(−ω2p2/2) cos pξ − exp(−ω2p2/2)τ(δωp) sin pξ

= exp(−ω2p2/2)(cos pξ − τ(δωp) sin pξ). (2.22)

(ii) Similarly, from Equation 2.21 and Definition 8, Appendix A.1, the sine moment is

given by

βp = E[sin pΘ]

= i exp(−ω2p2/2) sin pξ + i exp(−ω2p2/2)τ(δωp)cospξ

= exp(−ω2p2/2)(sin pξ + τ(δωp)cospξ). (2.23)

�

Using these trigonometric moments, an alternative representation for the PDF of Θ is

derived.

Theorem 4 An alternative representation for the PDF of Θ ∼ WSN(ξ, ω2, λ) is given

by

f(θ; ξ, ω2, λ) =
1

2π
[1+2

∞∑
p=1

exp(−ω2p2/2){cos p(θ−ξ)+τ(δωp) sin p(θ−ξ)}], 0 ≤ θ ≤ 2π.
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Proof.

f(θ; ξ, ω2, λ) =
∞∑

k=−∞

g(θ + 2πk)(1)

=
1

2π

∞∑
p=−∞

ψp exp(−ipθ)(2)

=
1

2π

[
1 + 2

∞∑
p=1

(αp cos pθ + βp sin pθ)
](2)

=
1

2π

[
1 + 2

∞∑
p=1

exp(−ω2p2/2){(cos pξ − τ(δωp) sin pξ) cos pθ

+ (sin pξ + τ(δωp) cos pξ) sin pθ}
](3)

=
1

2π

[
1 + 2

∞∑
p=1

exp(−ω2p2/2){cos pθ cos pξ − τ(δωp) cos pθ sin pξ

+ sin pθ sin pξ + τ(δωp) sin pθ cos pξ}
]

=
1

2π

[
1 + 2

∞∑
p=1

exp(−ω2p2/2){cos(pθ − pξ) + τ(δωp) sin(pθ − pξ)}
](4)

=
1

2π

[
1 + 2

∞∑
p=1

exp(−ω2p2/2){cos p(θ − ξ) + τ(δωp) sin p(θ − ξ)}
]
. (2.24)

(1) Applying Equation 2.1;

(2) Applying Definition 9, Appendix A.1;

(3) Applying Equation 2.22 and 2.23;

(4) Applying Definition 3, Appendix A.1.
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2.5.2 A Monte Carlo approximation for the trigonometric mo-

ments

With the transformation θ = Y (mod2π), implying 0 ≤ θ ≤ 2π, where Y is defined

in Equation 2.10, a random variable with support on the unit circle is obtained [20].

The inline variable can then be expressed as Y = θ + 2πK, where K assumes values in

Y = {0,±1,±2, ...}. Then, the PDF of θ is defined by using Equation 2.15

f(θ; ξ, ω2, λ) =
∑
k∈Y

2

ω
φ
(θ + 2πk − ξ + ωλ

√
2√

π(1+λ2)

ω

)
Φ
(
λ
(θ + 2πk − ξ + ωλ

√
2√

π(1+λ2)

ω

))
.

(2.25)

According to Mastrantonio et al. [20], an accurate approximation can be obtained by

truncating the sum. Also, let K be a random variable, the PDF inside the sum in

Equation 2.25, is the joint PDF of (θ,K), which is marginalised over K to obtain the

PDF of the circular variable [20].

In order to obtain an approximation for the trigonometric moments, the cosine and sine

moments for the WSN distribution are described in the following corollaries where the

derivation follows similarly as before.

Corollary 1 The cosine moment for Θ ∼ WSN(ξ, ω2, λ), is given by

αp = E[cos pΘ|Ψ]

= exp(−ω2p2/2)(cos pξ∗ − τ(
λωp√
1 + λ2

) sin pξ∗), (2.26)

where ξ is substituted with ξ∗ = ξ − ωλ
√

2√
π(1+λ2)

in Equation 2.22 and Ψ denotes the vector

of parameters (ξ, ω2, λ).

Corollary 2 The sine moment for Θ ∼ WSN(ξ, ω2, λ), is given by

βp = E[sin pΘ|Ψ]

= exp(−ω2p2/2)(sin pξ∗ + τ(
λωp√
1 + λ2

) cos pξ∗), (2.27)

where ξ is substituted with ξ∗ = ξ − ωλ
√

2√
π(1+λ2)

in Equation 2.23 and Ψ denotes the vector

of parameters (ξ, ω2, λ).
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In order to compute τ(·), Mastrantonio et al. [20] suggest the use of Monte Carlo

approximation for αp and βp, which is defined as α̂p and β̂p, since τ(.) is not available

in closed form.

Corollary 3 The Monte Carlo approximation for the cosine and sine moments, α̂p and

β̂p, are given by

α̂p ≈
exp(− ω2

1+λ2
p2/2)

N

N∑
n=1

cos(p(ξ +
ωλ√

1 + λ2
|U | − ωλ

√
2√

π(1 + λ2)
)),

β̂p ≈
exp(− ω2

1+λ2
p2/2)

N

N∑
n=1

sin(p(ξ +
ωλ√

1 + λ2
|U | − ωλ

√
2√

π(1 + λ2)
)).

Proof. From Equation 2.10, it follows that

Y |U ∼ N
(
ξ +

ωλ√
1 + λ2

|U | − ωλ
√

2√
π(1 + λ2)

,
ω2

1 + λ2

)
, (2.28)

and therefore,

Θ|U ∼ WN
(
ξ +

ωλ√
1 + λ2

|U | − ωλ
√

2√
π(1 + λ2)

,
ω2

1 + λ2

)
, (2.29)

where the skewness parameter, λ, is then equal to 0.

To obtain the Monte Carlo approximation, let {Un}Nn=1 be a set of N samples from the

distribution of U [20]. The cosine moment is defined by applying Definition 5, Appendix

A.1,

αp = E[cos pΘ]

= EUEΘ|U [cos pΘ|U ],

since the cosine moment of Θ|U is EΘ|U [cos pΘ|U ], then a Monte Carlo approximation

of αp, using Equation 2.4 and 2.29, is

α̂p ≈
exp(− ω2

1+λ2
p2/2)

N

N∑
n=1

cos
(
p
(
ξ +

ωλ√
1 + λ2

|U | − ωλ
√

2√
π(1 + λ2)

))
.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. The skew-normal and wrapped skew-normal distributions 25

Similarly, by applying Definition 5, Appendix A.1, the sine moments can be written as

βp = E[sin pΘ]

= EUEΘ|U [sin pΘ|U ],

since the sine moment of Θ|U is EΘ|U [sinpΘ|U ], then a Monte Carlo approximation of

βp, using Equation 2.5 and 2.29, is

β̂p ≈
exp(− ω2

1+λ2
p2/2)

N

N∑
n=1

sin
(
p
(
ξ +

ωλ√
1 + λ2

|U | − ωλ
√

2√
π(1 + λ2)

))
.

�

The approximation for the circular mean and concentration [20] follows from Definition

11, Appendix A.1,

ˆ̃ξ = arctan(
α̂1

β̂1

),

ˆ̃c =

√
α̂2

1 + β̂2
1 .

2.6 Estimation for the centred parameterisation

The implication for the use of MLE for the WSN distribution is exactly the same as

those given for the linear case [25]. The problems caused by the direct parameterisation

can be avoided by using the centred parameterisation of Azzalini [3] for the MLE, but

for the wrapped distributions there exist no equivalent standardisation to that used for

the linear case [25]. However, Pewsey [25] continued by using the same logic as before

of the centred parameterisation, by denoting parameters that reflect the mean, variance

and skewness of the WSN distribution. By wrapping YC onto the unit circle, the circular

random variable is denoted as ΘC with centred parameters µ, σ2 and γ1 [26]. Then, by

using the relations (2.12) in Equation 2.15, the PDF of ΘC ∼ WSNC(µ, σ2, γ1) is given
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by

f(θ;µ, σ, γ1) =
2

σ

√
1 + c2γ1

2
3

∞∑
r=−∞

φ{ 1√
1 + c2γ1

2
3

((
θ + 2πr − µ

σ
) + cγ1

1
3 )}

× Φ[
cγ1

1
3√

2
π

+ c2( 2
π
− 1)γ1

2
3 (1 + c2γ1

2
3 )

((
θ + 2πr − µ

σ
) + cγ1

1
3 )]. (2.30)

where 0 ≤ θ ≤ 2π. According to Pewsey [26], there are some important limiting cases

of ΘC ∼ WSNC(µ, σ2, γ1). As ω → 0(σ → 0), ΘC degenerates to a point. Also, as

ω →∞(σ →∞), the limiting distribution is the circular uniform [26]. Many procedures

are available for identifying a point distribution, which are discussed in Mardia and Jupp

[19].

2.6.1 Method of trigonometric moments

By pursuing the same logic as the centred parameterisation, let ΘC ∼ WSNC(µ, σ2, γ1).

According to Pewsey [25], the moment estimates are generally excellent starting values for

MLE where numerical optimisation procedures are required [25]. The moment estimators

of the parameters µ, σ2, γ1 [25] are

θ̄ =

tan−1( b1
a1

), if a1 ≥ 0

π + tan−1( b1
a1

), otherwise
(2.31)

R̄ =
√
a2

1 + b2
1, (2.32)

and

b̄2 =
1

n

n∑
i=1

sin 2(θi − θ̄), (2.33)

respectively, where θ1, ..., θn represent a random sample of size n from the WSN distri-

bution [25]. Also, tan−1(θ) ∈ [−π/2, π/2], and

a1 =
1

n

n∑
i=1

cos θi,

b1 =
1

n

n∑
i=1

sin θi, (2.34)
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represent the first-order sample trigonometric moments. The parameters (µ, σ2, γ1) can

be referred to as the circular parameterisation of the WSN distribution [25].

It can also be written in terms of the direct parameters, by using Equation 2.22 and

2.23,

µ = tan−1
(β1

α1

)
= tan−1

(sin ξ + τ(δω) cos ξ

cos ξ − τ(δω) sin ξ

)
, (2.35)

σ =
√
α2

1 + β2
1

=

√(
(exp(−ω2/2)(cos ξ − τ(δω) sin ξ)

)2
+
(
(exp(−ω2/2)(sin ξ + τ(δω) cos ξ)

)2

= exp(−ω2/2)
√

cos2 ξ + τ 2(δω) sin2 ξ + sin2 ξ + τ 2(δω) cos2 ξ

= exp(−ω2/2)
√

1 + τ 2(δω) sin2 ξ + τ 2(δω) cos2 ξ
(1)

= exp(−ω2/2)
√

1 + τ 2(δω)[sin2 ξ + cos2 ξ]

= exp(−ω2/2)
√

1 + τ 2(δω). (2.36)

(1) Applying Definition 4, Appendix A.1.

By using the following identity defined by Pewsey [25],

γ1σ
2 = β2(α2

1 − β2
1)− 2α1β1α2,

with Equation 2.22 and 2.23, the following is obtained

γ1σ
2 = γ1(exp(−ω2/2)

√
1 + τ 2(δω))2

= exp(−2ω2)(sin 2ξ + τ(2δω) cos 2ξ)
(

(exp(−ω2/2)(cos ξ − τ(δω) sin ξ)2

− (exp(−ω2/2)(sin ξ + τ(δω) cos ξ)2
)
− 2(exp(−ω2/2)(cos ξ − τ(δω) sin ξ))

× (exp(−ω2/2)(sin ξ + τ(δω) cos ξ))(exp(−ω2/2)(cos 2ξ − τ(2δω) sin 2ξ))

= exp(−2ω2)(sin 2ξ + τ(2δω) cos 2ξ)(1− τ 2(δω))− 2(exp(−ω2/2)(cos ξ − τ(δω) sin ξ))

× (exp(−ω2/2)(sin ξ + τ(δω) cos ξ))(exp(−2ω2)(cos 2ξ − τ(2δω) sin 2ξ))

= exp(−ω6/2)[τ(2δω)(1− τ 2(δω))− 2τ(δω)].
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Therefore, γ1 is equal to

γ1 =
exp(−ω6/2)[τ(2δω)(1− τ 2(δω))− 2τ(δω)]

(1 + τ 2(δω))
, (2.37)

where, as before, δ = λ/
√

1 + λ2. The values of the direct parameters can be obtained

from the circular ones, by solving numerically for δω in

γ1

σ4
=
τ(2δω){1− τ 2(δω)} − 2τ(δω)

{1 + τ 2(δω)}3
. (2.38)

The value of ω can then be obtained using

ω = [−2 log σ + log{1 + τ 2(δω)}]
1
2 , (2.39)

and hence that of δ, where λ can then be determined by

λ =
√
δ2/1− δ2.

The value of ξ is then the solution to

ξ = tan−1{tanµ− τ(δω)}/{1 + τ(δω) tanµ}, (2.40)

which satisfies Equation 2.35.

2.6.2 Maximum likelihood estimation (MLE)

From Equation 2.30 the log-likelihood function for a random sample, θ = (θ1, ..., θn), of

size n, WSNC(µ, σ2, γ1) is given by

`(µ, σ2, γ1) = n log 2− n log σ − n

2
log(1 + c2γ1

2
3 )

+
n∑
i=1

log
∞∑

r=−∞

φ{ 1√
1 + c2γ1

2
3

((
θi + 2πr − µ

σ
) + cγ1

1
3 )}

× Φ[
cγ1

1
3√

2
π

+ c2( 2
π
− 1)γ1

2
3 (1 + c2γ1

2
3 )

((
θi + 2πr − µ

σ
) + cγ1

1
3 )]. (2.41)

In order to maximise the log-likelihood function (Equation 2.41), numerical optimisation

techniques should be used. Pewsey [26] recommend the simplex algorithm of Nelder and

Mead [21].
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2.6.3 Simulation study

Method of trigonometric moments

In order to evaluate the performance of the method of trigonometric moments in Sec-

tion 2.6.1, a simulation study is conducted. 1000 samples are simulated from the

WSNC(0, 1, 0.7) and WSNC(0, 1, 0.95) distribution, using the function ‘rwsn‘ in the

R package ‘NPCirc‘ [23]. The simulated samples are plotted in Figure 2.5.
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(a) WSNC(0, 1, 0.7).
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(b) WSNC(0, 1, 0.95).

Figure 2.5: Random samples of size 1000 (red dots on the circle) taken from a WSN distri-

bution with µ = 0, σ2 = 1 and different values for γ1.

The moment estimators of the parameters (µ, σ2, γ1) can then be calculated by using

the simulated values within Equation 2.31, 2.32,2.33 and then solving Equation 2.38,

2.39, 2.40. By repeating the process 1000 times, an average can be calculated for each

estimator. The results are shown in table 2.1 and 2.2, along with the bias, standard

error and the quantile of the true value.
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Table 2.1: The trigonometric moment estimators for a WSNC(0, 1, 0.7).

µ σ2 γ1

True value 0 1 0.7

Average value 0.08521464 1.00414198 0.94410201

Bias 0.085214644 0.004141982 0.244102014

Standard error 0.39307827 0.08108349 0.33985937

Quantile 0% -0.4190053 0.8115167 0.1051646

Quantile 25% -0.1683635 0.9438349 0.6920084

Quantile 50% -0.0584025 1.0025875 0.9400457

Quantile 75% 0.1194406 1.0611042 1.1803698

Quantile 100% 1.2620864 1.2410292 2.2126766

Quantile of true value 0.594 0.490 0.259

The empirical cumulative distribution function (ECDF) plot and the empirical

probability distribution function (EPDF) for (µ, σ2, γ1) are shown in the following

figures:
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(b) EPDF for µ.

Figure 2.6: The ECDF plot and the EPDF of µ.
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(a) ECDF for σ2.
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Figure 2.7: The ECDF plot and the EPDF of σ2.
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(a) ECDF for γ1.
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Figure 2.8: The ECDF plot and the EPDF of γ1.
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Table 2.2: The trigonometric moment estimators for a WSNC(0, 1, 0.95).

µ σ2 γ1

True value 0 1 0.95

Average value 0.03281717 0.97515607 1.12888254

Bias 0.03281717 -0.02484393 0.17888254

Standard error 0.2508611 0.0735756 0.3380342

Quantile 0% -0.29755379 0.7673261 0.1167697

Quantile 25% -0.09736302 0.9291077 0.9181349

Quantile 50% -0.02727389 0.9788485 1.1460320

Quantile 75% 0.06145809 1.0266570 1.3362168

Quantile 100% 1.12528785 1.1722558 2.1300459

Quantile of true value 0.593 0.615 0.275

The ECDF plot and the EPDF for (µ, σ2, γ1) are shown in the following figures:
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(b) EPDF for µ.

Figure 2.9: The ECDF plot and the EPDF of µ.
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Figure 2.10: The ECDF plot and the EPDF of σ2.
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(a) ECDF for γ1.
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Figure 2.11: The ECDF plot and the EPDF of γ1.

In figures 2.6-2.11 the following are observed:

• The ECDF for µ in Figure 2.9a reaches a point of convergence much sooner than

Figure 2.6a.

• The EPDF for µ is skewed to the right, while the EPDF for σ2 and γ1 appears to

be more symmetric.

From table 2.1 and 2.2 the following are observed:
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• The average value obtained for µ and σ2 is close to the true value of the parameters.

The average value obtained for γ1 is not close to the true value.

• The bias for µ and σ2 is close to zero but not the bias for γ1.

• The bias and the standard error for each parameter are reduced by using the Monte

Carlo approximation method discussed in Section 2.5.2.

• The quantile of the true value shows that the true value of the parameters lie within

a 95% confidence interval.
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Maximum likelihood estimation (MLE)

In order to evaluate the performance of MLE, in Section 2.6.2, a simulation study is con-

ducted. Samples are simulated by using the trigonometric moment estimators as starting

values since the moment estimators are generally excellent starting values for MLE [25].

Therefore, samples are simulated from the WSNC(0.08521464, 1.00414198, 0.94410201)

and WSNC(0.03281717, 0.97515607, 1.12888254) distribution, where the starting param-

eter values are the estimators from the trigonometric moments in Section 2.6.3. For each

combination 1000 samples are simulated using the function ‘rwsn‘ in the R package

‘NPCirc‘ [23]. The simulated samples are plotted in Figure 2.12.
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(a) WSNC(0.0852, 1.0041, 0.9441).
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(b) WSNC(0.0328, 0.9752, 1.1289).

Figure 2.12: Random samples of size 1000 (red dots on the circle) taken from wrapped

skew-normal distributions.

The ML estimators of the parameters (µ, σ2, γ1) are calculated by using the simulated

values within the log-likelihood function (Equation 2.41). The log-likelihood function can

then be maximised by using the Nelder and Mead optimisation technique. By repeating

the process 1000 times, an average can be calculated for each estimator. The results are

shown in tables 2.3 and 2.4, along with the bias, standard error and the quantile of the

true value.
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Table 2.3: The ML estimators for a WSNC(0.08521464, 1.00414198, 0.94410201).

µ σ2 γ1

True value 0.08521464 1.00414198 0.94410201

Average value -0.03304795 1.03870157 1.32160501

Bias -0.11826259 0.03455959 0.37750300

Standard error 0.09341199 0.05939078 0.25975270

Quantile 0% -0.22853825 0.7744576 0.01350392

Quantile 25% -0.09303704 1.0043852 1.17627420

Quantile 50% -0.04555383 1.0422544 1.33554936

Quantile 75% 0.01158395 1.0780974 1.49455458

Quantile 100% 0.60939905 1.1900363 2.00767593

Quantile of true value 0.914 0.249 0.072

The ECDF plot and the EPDF for (µ, σ2, γ1) are shown in the following figures:
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(a) ECDF for µ.
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(b) EPDF for µ.

Figure 2.13: The ECDF plot and the EPDF of µ.
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(a) ECDF for σ2.
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(b) EPDF for σ2.

Figure 2.14: The ECDF plot and the EPDF of σ2.
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(a) ECDF for γ1.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

1.
2

N = 1000   Bandwidth = 0.07128

P
D

F

(b) EPDF for γ1.

Figure 2.15: The ECDF plot and the EPDF of γ1.
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Table 2.4: The ML estimators for a WSNC(0.03281717, 0.97515607, 1.12888254).

µ σ2 γ1

True value 0.03281717 0.97515607 1.12888254

Average value -0.06428091 1.00027645 1.42510848

Bias -0.09709808 0.02512038 0.29622594

Standard error 0.07697082 0.05316165 0.25182062

Quantile 0% -0.24251558 0.7527145 0.100584

Quantile 25% -0.11599322 0.9668246 1.275585

Quantile 50% -0.07233008 1.0036101 1.436166

Quantile 75% -0.02384610 1.0352295 1.583849

Quantile 100% 0.52871804 1.1301242 2.084326

Quantile of true value 0.910 0.297 0.112

The ECDF plot and the EPDF for (µ, σ2, γ1) are shown in the following figures:
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(a) ECDF for µ.
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(b) EPDF for µ.

Figure 2.16: The ECDF plot and the EPDF of µ.
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(a) ECDF for σ2.
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(b) EPDF for σ2.

Figure 2.17: The ECDF plot and the EPDF of σ2.
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(a) ECDF for γ1.
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(b) EPDF for γ1.

Figure 2.18: The ECDF plot and the EPDF of γ1.

In figures 2.13-2.18 the following are observed:

• The ECDF for µ in Figure 2.13a and 2.16a reach a point of convergence much

sooner than the ECDF for σ2 and γ1.

• The EPDF for µ is skewed to the right, while the EPDF for σ2 and γ1 are skewed

to the left.

From table 2.3 and 2.4 the following are observed:
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• The average value obtained for µ and σ2 is close to the true value of the parameters.

The average value obtained for γ1 is not close to the true value.

• The bias for µ and σ2 is close to zero but not the bias for γ1.

• The standard error for each parameter is a bit lower than those obtained in Table

2.1 and 2.2, which suggests that MLE give slightly more accurate results than the

method of trigonometric moments.

• The quantile of the true value shows that the true value of the parameters lie within

a 95% confidence interval.

2.7 Summary

In this chapter, the PDF of a wrapped distribution and a WN distribution were revisited.

The SN distribution with a stochastic representation was also investigated in order to

generate random numbers and visualisations thereof. The direct parameterisation as a

basis for estimation was discussed with the estimation of the centred parameterisation.

The WSN distribution was revisited with representations of different parameter values,

where the CF and trigonometric moments were also investigated. A Monte Carlo approx-

imation for the trigonometric moments, proposed by Mastrantonio et al. [20], was also

provided. Finally, MLE and the method of trigonometric moments were investigated,

where a simulation study consisting of two examples for each method was conducted

for the purpose of comparison. The simulation study suggested that MLE gave slightly

more accurate results than the method of trigonometric moments, which was observed

by the lower standard error for each parameter. The bias and the standard error of the

trigonometric moments can be reduced by using the Monte Carlo approximation method.

In the following chapter the flexible generalised skew-normal (FGSN) distribution and

the wrapped flexible generalised skew-normal (WFGSN) distribution are revisited. The

method of MLE for the parameters of the FGSN distribution and the WFGSN distri-

bution are then discussed. The WN, WSN and WFGSN distribution are also compared

with a real data set as an application.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3

The flexible generalised and

wrapped flexible generalised

skew-normal distributions

In Chapter 2 the SN and the WSN distribution were discussed. In Chapter 3 the focus

will firstly be on the FGSN distribution where the transformation from Chapter 2 will be

applied to obtain the WFGSN distribution. In Section 3.1 the PDF of the FGSN distri-

bution is revisited and proven that it has at most two modes. A stochastic representation

of the FGSN distribution is also presented. The method of MLE for the parameters of

the FGSN distribution is discussed. In Section 3.2 the WFGSN distribution with exam-

ples is presented. The method of MLE for the parameters of the WFGSN distribution is

discussed and a simulation study is conducted. The WN, WSN and WFGSN distribu-

tion are also compared with a real data set as an application in Section 3.3. The above

outline is summarised in Figure 3.1.

41
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Figure 3.1: Outline of Chapter 3.
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3.1 The flexible generalised skew-normal (FGSN) dis-

tribution

In this Section, using the same notation as in Section 2.2, Equation 2.7, it follows from

Azzalini and Capitanio [5], Ma and Genton [18] and Wang et al. [27] that by setting

w(y) = λ(y)+β(y)3, the FGSN distribution is obtained. The PDF of the random variable

Y ∼ FGSN(ξ, ω2, λ, β) [12] is defined as

f(y; ξ, ω, λ, β) =
2

ω
φ(
y − ξ
ω

)Φ(λ(
y − ξ
ω

) + β(
y − ξ
ω

)3). (3.1)

Figure 3.2 shows an overlay of the FGSN PDF in Equation 3.1 with ξ = 0, ω2 = 1 and

combinations of λ and β. This figure can be compared to Figure 2.2 in Section 2.2,

where it can be observed that when β = 0 then Y ∼ SN(λ). If β 6= 0 then the PDF in

Equation 3.1 shows bimodality as illustrated in Figure 3.2.
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Figure 3.2: An overlay of the FGSN PDF (3.1) with ξ = 0, ω2 = 1 and combinations of λ and

β.

It can therefore also be proven that Equation 3.1 has at most two modes [12].

Theorem 5 The class of the FGSN distributions with PDF defined in Equation 3.1 has

at most two modes.

Proof. Without loss of generality, let ξ = 0, ω2 = 1 and assume β > 0 then it is only

necessary to prove that,

ψ(y) = 2φ(y)Φ(λy + βy3),

has at most two modes [18], which can be proven by contradiction. If ψ(y) has more

than two modes, then ψ
′
(y) has at least five zeros. In the following proof from Ma and

Genton [18], it will be shown that this cannot be the case. Therefore,

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3. The flexible generalised and wrapped flexible generalised skew-normal
distributions 45

ψ
′
(y) =

d

dy
[2φ(y)Φ(λy + βy3)]

=
d

dy

[ 2√
2π

exp(−1

2
y2)Φ(λy + βy3)

]
=
[ d
dy

( 2√
2π

exp(−1

2
y2)
)]

Φ(λy + βy3) +
2√
2π

exp(−1

2
y2)

d

dy

(
Φ(λy + βy3)

)
=
( 2√

2π
(−y) exp(−1

2
y2)Φ(λy + βy3)

)
+
(

2φ(y)Φ(λy + βy3)(λ+ 3βy2)
)

= −2yφ(y)Φ(λy + βy3) + 2φ(y)Φ(λy + βy3)(λ+ 3βy2)

= 2φ(y)
[
(λ+ 3βy2)Φ(λy + βy3)− yΦ(λy + βy3)

]
,

where the following three cases need to be considered:

(i) Case 1 (λ = 0)

Let

ψ
′
(y) = 2φ(y)(3βy2Φ(βy3)− yΦ(βy3))

= 2yφ(y)(3βyΦ(βy3)− Φ(βy3)

= 2yφ(y)η(y),

where

η(y) = 3βyΦ(βy3)− Φ(βy3),

then it can be verified that

η
′
(y) = −3βy(βy33βy2φ(βy3)) + 3βφ(βy3)− φ(βy3)3βy2.

Let x = y2 then,

η
′
(y) = −3βy(βy33βxφ(βy3)) + 3βφ(βy3)− φ(βy3)3βx

= 3βφ(βy3)[−3βyβy3x+ 1− x]

= 3βφ(βy3)[−3β2y4x+ 1− x]

= 3βφ(βy3)[−3β2x2x+ 1− x]

= 3βφ(βy3)[1− x− 3β2x3]

= 3βφ(βy3)η1(x),
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where η1(x) = 1 − x − 3β2x3. As η1(x) is a decreasing function on x ≥ 0, η
′
(y) has at

most two zeros. Therefore, η(y) has at most three zeros, hence ψ
′
(y) has at most four

zeros.

(ii) Case 2 (λ > 0)

Notice that ψ
′
(y) > 0 for y ≤ 0. For

γ1(y) =
ψ

′
(y)

2yφ(y)
=

Φ(λy + βy3)(λ+ 3βy2)

y
− Φ(λy + βy3),

the derivative can be obtained as follows:

note that,

d

dy
Φ(λy + βy3) = φ(λy + βy3)

d

dy
(λy + βy3)

= φ(λy + βy3)(λ+ 3βy2),

then for the first component of γ1(y), let

d

dy

Φ(λy + βy3)(λ+ 3βy2)

y
=
[
y
d

dy
[Φ(λy + βy3)(λ+ 3βy2)]

− Φ(λy + βy3)(λ+ 3βy2)
d

dy
y
]
/(y2)

=
[
yφ(λy + βy3)(λ+ 3βy2)

− Φ(λy + βy3)(λ+ 3βy2)
]
/(y2).

Now let x = λ+ 3βy2, then

d

dy

Φ(λy + βy3)(λ+ 3βy2)

y
=
[
yφ(λy + βy3)x− Φ(λy + βy3)x

]
/(y2),

then for the second component of γ1(y) let x = λ+ 3βy2, then

d

dy
Φ(λy + βy3) = φ(λy + βy3)x.
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By joining the two components the following is obtained

γ
′

1(y) =
yφ(λy + βy3)x− Φ(λy + βy3)x

y2
− φ(λy + βy3)x

=
yφ(λy + βy3)x− Φ(λy + βy3)x− xy2φ(λy + βy3)

y2

=
xyφ(λy + βy3)[1− y]− Φ(λy + βy3)x

y2
,

where

x = λ+ 3βy2 > 0.

Which means that γ
′
1(y) has at most two positive zeros, so ψ

′
(y) has at most three

positive zeros [18].

(iii) Case 3 (λ < 0)

Notice that ψ
′
(y) < 0 for

y ∈ [0,
√
−λ/(3β)],

and ψ
′
(y) > 0 for

y ∈ (−∞,−
√
−λ/(3β))].

So it is only necessary to look for solutions

y ∈ (
√
−λ/(3β),∞),

and

y ∈ (−
√
−λ/(3β), 0).

Let

x = λ+ 3βy2.

Then, there is a one-to-one mapping between the y in the above range and

x ∈ (λ,∞).

Let γ1(y) have the same expression as in Case 2, then γ
′
1(y) has at most three zeros,

therefore ψ
′
(y) has at most four zeros [18].

�
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3.1.1 Stochastic representation of the flexible generalised skew-

normal (FGSN) distribution

Elal-Olivero et al. [10] proposed a stochastic representation of the FGSN distribution

that provide a method that is useful for simulation from a FGSN(ξ, ω2, λ, β) with PDF

defined in Equation 3.1. Let X and W be standard normal independent random variables

then

Y =

X, if W < w(Y ),

−X, if W ≥ w(Y ).
(3.2)

When w(y) = λ(y) + β(y)3 the simulated values of the FGSN distribution, Equation 3.1

by Ma and Genton [18], is obtained [10].

An example from Wang et al. [27] is provided in Theorem 12, Appendix A.2.

3.1.2 Maximum likelihood estimation (MLE)

Parameter estimation for the FGSN distribution can be performed by the ML method.

For the FGSN distribution, there is no closed forms available for centred parameterisation

[12]. From Equation 3.1 the log-likelihood function for a sample of size n, y1, ..., yn, from

Y ∼ FGSN(ξ, ω2, λ, β) is given by

`(ξ, ω2, λ, β) = n log 2− n logω

+
n∑
i=1

log(φ(
yi − ξ
ω

)Φ(λ(
yi − ξ
ω

) + β(
yi − ξ
ω

)3)). (3.3)

In order to maximise the log-likelihood function (Equation 3.3), numerical optimisation

techniques should again be used, such as the simplex algorithm of Nelder and Mead

[12, 21].
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3.2 Wrapped flexible generalised skew-normal (WFGSN)

distribution

By wrapping the FGSN distribution in Equation 3.1 onto the unit circle, the following

PDF is obtained where Θ = Y (mod2π) [12]:

f(θ; ξ, ω2, λ, β) =
2

ω

∞∑
r=−∞

φ(
θ + 2π(r)− ξ

ω
)Φ(λ(

θ + 2π(r)− ξ
ω

) + β(
θ + 2π(r)− ξ

ω
)3),

(3.4)

for 0 ≤ θ ≤ 2π, −∞ < ξ < ∞, ω2 ∈ R+, −∞ < λ < ∞ and −∞ < β < ∞, which

is denoted by Θ ∼ WFGSN(ξ, ω2, λ, β). Centred or circular parameterisation are not

explicitly available for this distribution, since circular moments of the WFGSN are not

available in closed form [12].

Figure 3.3 shows the shape of the PDF given in Equation 3.4 for ξ = 0, ω2 = 1 and

various choices of λ and β, as well as a comparison to the WSN PDF in Figure 2.4.

When β 6= 0 then the PDF in Equation 3.4 shows bimodality as illustrated in Figure

3.3. The command ‘curve.circular‘ in the R package ‘circular‘ [1] was used to create the

circular plots.
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Figure 3.3: Examples of the WFGSN PDF, given in Equation 3.4, with ξ = 0, ω2 = 1 and

various combinations of λ and β, as well as a comparison to the WSN PDF illustrated in Figure

2.4, which are shown with the dotted line.

3.2.1 Maximum likelihood estimation (MLE)

From Equation 3.4, the log-likelihood function for a sample of size n, θ = (θ1, ..., θn),

from Θ ∼ WFGSN(ξ, ω2, λ, β) is given by

`(θ; ξ, ω2, λ, β) = n log 2− n logω

+
n∑
i=1

log(
∞∑

r=−∞

φ(
θi + 2πr − ξ

ω
)Φ(λ(

θi + 2πr − ξ
ω

) + β(
θi + 2πr − ξ

ω
)3)).

(3.5)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3. The flexible generalised and wrapped flexible generalised skew-normal
distributions 51

In order to maximise the log-likelihood function (Equation 3.5), numerical optimisation

techniques should again be used, such as the simplex algorithm of Nelder and Mead

[12, 21].

3.2.2 Simulation study

In this section, only MLE is considered, since centred parameterisations are not explicitly

available for the WFGSN distribution [12]. Circular moments of the WFGSN distribution

exist, but are not available in closed form, therefore it is not possible to use the method

of trigonometric moments for the WFGSN distribution, in comparison to Section 2.6.3.

Maximum likelihood estimation (MLE)

In order to evaluate the performance of MLE in Section 3.2.1, a simulation study is con-

ducted. 100 samples are simulated from theWFGSN(0, 1,−1, 2) andWFGSN(0, 1, 1,−2)

distributions by using the stochastic representation of the FGSN distribution in Section

3.1.1, by Elal-Olivero et al. [10], and applying the transformation Θ = Y (mod2π). The

simulated samples are plotted in Figure 3.4.
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(b) WFGSN(0, 1, 1,−2).

Figure 3.4: Random samples of size 100 (green dots on the circle) taken from a WFGSN

distribution with ξ = 0, ω2 = 1 and different values for λ and β.
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The MLE of the parameters (ξ, ω2, λ, β) can then be calculated by using the simulated

values within the log-likelihood function (Equation 3.5) where the function can then be

maximised by the ‘BFGS‘ optimisation technique, which is a quasi-Newton method (also

known as a variable metric algorithm) by Wright et al. [28]. The ‘BFGS‘ optimisation

technique improved the results, therefore the Nelder and Mead optimisation technique

was not used. By repeating the process, 100 times, an average can be calculated for each

estimator. The results are shown in tables 3.1 and 3.2, along with the bias, standard

error and the quantile of the true value.

Table 3.1: The ML estimators for a WFGSN(0, 1,−1, 2).

ξ ω2 λ β

True value 0 1 -1 2

Average value 0.001637939 1.008215490 -1.294772629 3.246210323

Bias 0.001637939 0.008215490 -0.294772629 1.246210323

Standard error 0.10824371 0.09053715 0.76698341 5.64933119

Quantile 0% -0.475565221 0.7484135 -4.4114704 0.6171127

Quantile 25% -0.056706795 0.9449470 -1.8367378 1.6119667

Quantile 50% 0.003272851 1.0079604 -1.2010460 2.2187159

Quantile 75% 0.057608409 1.0663819 -0.9177207 3.3151885

Quantile 100% 0.258690904 1.3823947 0.6865652 55.3855385

Quantile of true value 0.47 0.47 0.66 0.43

The ECDF plot and the EPDF for (ξ, ω2, λ, β) are shown in the following figures:
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Figure 3.5: The ECDF plot and the EPDF for ξ.
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Figure 3.6: The ECDF plot and the EPDF for ω2.
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Figure 3.7: The ECDF plot and the EPDF for λ.
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Figure 3.8: The ECDF plot and the EPDF for β.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3. The flexible generalised and wrapped flexible generalised skew-normal
distributions 55

Table 3.2: The ML estimators for a WFGSN(0, 1, 1,−2).

ξ ω2 λ β

True value 0 1 1 -2

Average value 0.008136449 1.012756408 1.214558936 -2.542347359

Bias 0.008136449 0.012756408 0.214558936 -0.542347359

Standard error 0.10778681 0.08606779 0.80880253 1.28404575

Quantile 0% -0.26639751 0.7343827 -4.3027661 -7.8674828

Quantile 25% -0.05353107 0.9576679 0.8616042 -2.8948024

Quantile 50% 0.01028177 1.0126085 1.2017762 -2.3064475

Quantile 75% 0.06029766 1.0670326 1.6866325 -1.6299923

Quantile 100% 0.59253459 1.3364711 2.5678761 -0.6322154

Quantile of true value 0.44 0.47 0.36 0.64

The ECDF plot and the EPDF for (ξ, ω2, λ, β) are shown in the following figures:
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Figure 3.9: The ECDF plot and the EPDF for ξ.
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Figure 3.10: The ECDF plot and the EPDF for ω2.
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Figure 3.11: The ECDF plot and the EPDF for λ.
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Figure 3.12: The ECDF plot and the EPDF for β.

In figures 3.5-3.12 the following are observed:

• The ECDF for ξ in Figure 3.9a reach a point of convergence much sooner than

Figure 3.5a.

• The ECDF for λ in Figure 3.11a only starts increasing from 0 onwards compared

to Figure 3.7a.

• The EPDF for ξ is symmetric around 0.

• The EPDF for λ and β in Figure 3.7b,3.11b and 3.12b are all skewed to the left

but the EPDF of β in Figure 3.8b is skewed to the right.

From table 3.1 and 3.2 the following are observed:

• The average value obtained for each estimate is relatively close to the true value

of the parameters.

• The bias for each parameter might improve when increasing the sample size.

• The standard error for each parameter is close to zero except for β, but the value

of the standard error for β improved in table 3.2.
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• The quantile of the true value shows that the true value of the parameters lie within

a 95% confidence interval.

3.3 Application

The dataset used for this application consists of a random sample of 1000 hourly ob-

servations of wind direction in the Atlantic coast of Galicia (NW-Spain). The wind

direction data is only during the winter season (November to February) from 2003 un-

til 2012 with a total of 19488 hourly observations. The data is registered by a buoy

located at longitude -9.21E and latitude 43.500N in the Atlantic Ocean. This dataset

‘speed.wind‘, analysed in Oliveira et al. [22], is from the R package ‘NPCirc‘ [23]. Figure

3.13 represents a map of the Galicia area and the location of the buoy.

Figure 3.13: A map of the Galicia area and the location of the buoy shown in red.

Figure 3.14 illustrates a raw circular data plot and rose diagram for the Galicia wind

direction data where the command ‘rose.diag‘ in the R package ‘NPCirc‘ [23] was used

to create the rose diagram.
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Figure 3.14: Raw circular data plot and rose diagram for the Galicia wind direction data.

The rose diagram in Figure 3.14 reveals that the distribution contains at least one skewed

mode. The goal is to compare the WN (Equation 2.2), WSN (Equation 2.15) and

WFGSN (Equation 3.4) distributions for the Galicia wind direction data. Estimates

of the parameters are obtained using MLE. Several different starting points were used

to implement an optimisation algorithm in order to avoid local maxima [12]. A small

number of local maxima is obtained when starting from many different points, where the

one corresponding to the maximum value of the likelihood function is selected. Table

3.3 represents the parameter estimates and the standard errors for the parameters of the

WN, WSN and WFGSN distributions.
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Table 3.3: Estimates and standard errors (in parenthesis) for the parameters of the WN,

WSN and WFGSN distributions fitted to the Galicia wind direction data.

Distribution ξ ω2 λ β

WN -1.895 2.296 - -

(0.231) (0.048) - -

WSN -0.952 2.000 -1.000 -

(0.053) (0.113) (0.294) -

WFGSN 1.104 2.500 3.480 -15.000

(0.060) (0.035) (0.182) (2.114)

Figure 3.15 illustrates a raw circular data plot and rose diagram of the Galicia wind

direction data together with the WN, WSN and WFGSN PDF fitted by MLE.
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Figure 3.15: Raw circular data plot and rose diagram for the Galicia wind direction data

together with the WN, WSN and WFGSN PDF fitted by MLE.

Table 3.4 shows the maximised log-likelihood (`max) and Akaike information criterion

(AIC)/Bayesian information criterion (BIC) values for the WN, WSN and WFGSN

distributions fitted to the Galicia wind direction data. The AIC is calculated as
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−2(`max − p) and the BIC is calculated as −2`max + log(n)p where p is the number of

parameters estimated and n the sample size [12].

Table 3.4: Maximised log-likelihood (`max) and AIC/BIC values for the WN, WSN and

WFGSN distributions fitted to the Galicia wind direction data where the minimum AIC/BIC

value is identified using bold type.

Distribution `max AIC BIC

WN -1803.424 3602.849 3593.069

WSN -1842.98 3679.96 3665.285

WFGSN -1867.77 3727.54 3707.973

The comparison based on the AIC/BIC value has identified that the WN distribution

fit the Galicia wind direction data best. However, from Figure 3.15 it seems that the

WFGSN distribution describe the shape of the observed distribution relatively well.

3.4 Summary

In this chapter, the PDF of the FGSN distribution was revisited with representations

of different parameter values, and proved that it has at most two modes. A stochastic

representation of the FGSN distribution was presented. MLE was also investigated as

a method of parameter estimation. The PDF of the WFGSN distribution was revisited

with representations of different parameter values. A simulation study was also con-

ducted using MLE. The WN, WSN and WFGSN distributions were also compared with

wind direction data as an application. A comparison based on the AIC/BIC has identi-

fied the WN distribution to fit the Galicia wind direction data best. It is anticipated that

the WSN and WFGSN distribution will provide a better fit to circular data that contains

a higher level of skewness and bimodality. In the following chapter, examples of skew

scale mixtures of normal (SSMN) distributions are provided such as the skew-Student-t

normal (StN) distribution, the skew-slash (SSL) distribution and the skew-contaminated

normal (SCN) distribution. The wrapped versions of each distribution will be used to

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3. The flexible generalised and wrapped flexible generalised skew-normal
distributions 62

investigate if a better fit can be obtained for the Galicia wind direction data discussed

in Section 3.3.
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Chapter 4

Skew scale and wrapped skew scale

mixtures of normal distributions

In Chapter 3 the WSN and WFGSN distributions were discussed, here the focus will be

the skew scale and wrapped skew scale mixtures of normal (WSSMN) distributions. In

Section 4.1, the PDF of the scale mixtures of normal (SMN) distributions is revisited

as well as the SSMN distributions. In Section 4.2 examples of the SSMN distributions

are provided, such as the StN, SSL and SCN distributions. The PDF and the CF

of these distributions are revisited where the wrapped version of each distribution is

defined. Graphical representations of the PDF and the wrapped PDF of these distribu-

tions are provided. In Section 4.3, the wrapped skew-Student-t normal (WStN), wrapped

skew-slash (WSSL) and wrapped skew-contaminated normal (WSCN) distributions are

compared with the Galicia wind direction data, discussed in Section 3.3, as an appli-

cation. Lastly, these distributions are then compared to the WN, WSN and WFGSN

distributions to investigate if a better fit can be obtained for the Galicia wind direction

data. The above outline is summarised in Figure 4.1.

63
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Figure 4.1: Outline of Chapter 4.
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4.1 Background

The SMN distributions present a group of heavy tailed distributions [8]. Appropriate

distributions for fitting skewed and heavy tailed data can be referred to as SSMN distri-

butions which include distributions such as the StN, the SSL and the SCN distribution

[8]. The SSMN distributions is based on the terminology of the SN distribution defined

in Section 2.2, Equation 2.7. Jammalamadaka and Kozubowski [14] highlighted the im-

portance of wrapping SMN distributions which generates useful flexible and asymmetric

circular models.

4.1.1 Skew scale mixtures of normal (SSMN) distributions

A standardised continuous random variable Z has a SMN distribution if its PDF is as

follows:

Z = ξ + κ(A)1/2V, (4.1)

where V ∼ N(0, ω2) is independent of the positive random variable A, κ(·) is a strictly

positive function and H(·; τ) the cumulative distribution function (CDF) which is in-

dexed by the parameter vector τ . The following theorem then follows from da Silva

Ferreira et al. [8].

Theorem 6 A random variable Z follows a SMN distribution with location parameter

−∞ < ξ <∞ and scale parameter space of ω2 if its PDF assumes the form

f0(z) =

∫ ∞
0

φ(z|ξ, κ(a)ω2)dH(a; τ), (4.2)

with the notation Z ∼ SMN (ξ, ω2, H;κ). When ξ = 0 and ω2 = 1, the notation Z ∼
SMN (H;κ) is used.

The following definition introduces the new class of SMN distributions on the basis of

Theorem 6 and Section 2.2, Equation 2.7, which will form the basis of this chapter [8].

Definition 1 From da Silva Ferreira et al. [8], a random variable Z follows a SSMN

distribution with location parameter −∞ < ξ < ∞, scale parameter ω2 and skewness

parameter −∞ < λ <∞ if its PDF is given by

f(z; ξ, ω2, λ,H;κ) = 2f0(z)Φ(λ
z − ξ
ω

), (4.3)
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where f0(z) is the PDF of SMN distribution as defined in Equation 4.2. The PDF in

Equation 4.3 has the notation Z ∼ SSMN (ξ, ω2, λ,H;κ). If ξ = 0 and ω2 = 1, it can be

referred to as the standard SSMN distribution where Z ∼ SSMN (λ,H;κ).

When λ = 0, the SMN distribution defined in Equation 4.2 is obtained. The wrapped

skew scale mixtures of normal (WSSMN) distributions is based on the terminology of

the WSN distribution defined in Section 2.5, Equation 2.15.

Scale mixtures of skew-normal distributions are defined by the following stochastic rep-

resentation by Kim and Genton [16]:

Z = ξ +W (η)1/2Y, (4.4)

where Y ∼ SN(0, ω2, λ), η is a mixing variable with a weight function W (η), independent

of Y, and a CDF H(η).

4.2 Examples of skew scale mixtures of normal (SSMN)

distributions

In the following section examples of SSMN distributions, such as the StN, the SSL and

the SCN distribution are discussed. The wrapped version of the distributions are defined

with a graphical representation of the PDF and wrapped PDF of each distribution.

4.2.1 The skew-Student-t normal (StN) distribution

The StN distribution with ν degrees of freedom, StN(ξ, ω2, λ, ν), is obtained from the

mixture model in Theorem 13, Appendix A.2, with A ∼Gamma(ν/2, ν/2) (Definition

12, Appendix A.1), ν > 0 and κ(a) = 1/a. The PDF of Z has the form

f(z; ξ, ω2, λ, ν) = 2
1

ω
√
νπ

Γ((ν + 1)/2)

Γ(ν
2
)

(1 +
d

ν
)−( ν+1

2
)Φ(λ

(z − ξ)
ω

), (4.5)

where d = (z − ξ)2/ω2. Gomez et al. [11] show that the StN distribution can provide

a broader asymmetry range than the ordinary SN distribution. If ν = 1 then it follows
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that the skew-Cauchy normal distribution is a special case of the StN distribution. Also,

when ν → ∞ the SN distribution is obtained as the limiting case. From Theorem 14,

Appendix A.2, the mean and variance of Z are given by

E[Z] = ξ + bωλ(ν/2)1/2 Γ((ν − 1)/2)

Γ(ν
2
)

ED[(D + λ2)−1/2],

V ar[Z] = ω2
[ ν

ν − 2
− b2λ2ν

2
(
Γ((ν − 1)/2)

Γ(ν
2
)

)2ED[(D + λ2)−1/2]
]
,

where b =
√

2
π

and D ∼Gamma(ν−1
2
, ν

2
) [8].

Figure 4.2 shows the PDF of the StN distribution in Equation 4.5 with parameters

ξ = 0, ω2 = 1 and different values for λ and ν.
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Figure 4.2: The StN PDF in Equation 4.5 with parameters ξ = 0, ω2 = 1 and combinations

of λ and ν.

In Figure 4.2 it can be observed that the tail is heavier when the value of ν increases.

Also, when λ becomes negative the PDF shifts to the left and vice versa.
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• The CF of the StN distribution

The CF of the StN distribution is obtained from the Laplace-Stieltjes transform and

the CF of the skew-t distribution using scale mixtures of skew-normal distributions [16].

Equation 4.6 is used to apply the Laplace-Stieltjes transform [16]. The skew-t distri-

bution is related to the SN distribution, from Equation 4.4, by the following stochastic

representation:

Z = ξ + η1/2Y, (4.6)

where η has an inverse-Gamma distribution, η ∼ IG(ν/2, ν/2). The PDF of η is

(ν/2ν/2)

Γ(ν/2)
η−ν/2−1 exp{−ν/(2η)},

where η > 0.

Theorem 7 Let Z follow the skew-t distribution defined in Equation 4.6. Then the CF

of Z is

ψZ(t) = exp(iξt){ΨT (ωt) + iτ ∗(δ, ωt)},

where

ψT (t) =
Kν/2(

√
ν | t |)(

√
ν | t |)ν/2

Γ(ν/2)2ν/2−1
, (4.7)

for t ∈ R, ν > 0,

τ ∗(δ, ωt) =

∫ ∞
0

exp(ηω2t2/2)τ(δ
√
ηdH(η)), δt > 0, (4.8)

with τ ∗(δ,−ωt) = −τ ∗(δ, ωt). The modified Bessel function of the third kind has the

following integral representation [16]

Kα(w) =
1

2

∫ ∞
0

yα−1 exp
{
− 1

2
w
(
y +

1

y

)}
dy, w > 0 for −∞ < α <∞.

Proof. The conditional distribution of Z given η follows a SN distribution, i.e.
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Z|η ∼ SN(ξ, ηω2, λ). Then, the CF of Z is

ψZ(t) =

∫ ∞
0

∫
R

exp(itz)f(z|η)dzdH(η)

=

∫ ∞
0

ψZ|η(t)dH(η)

= exp(iξt)

∫ ∞
0

exp(−ηω2t2/2){1 + iτ(δ
√
ηωt)}dH(η)(1)

= exp(iξt)
{
Lη(ω

2t2/2) + i

∫ ∞
0

exp(−ηω2t2/2)τ(δ
√
ηωt)dH(η)

}
= exp(iξt){ψT (ωt) + iτ ∗(δ, ωt)},

where Lη(γ) is the Laplace-Stieltjes transform

Lη(γ) = E{exp(−γη)} =

∫ ∞
0

exp(−γη)dH(η),

when η is a non-negative random variable.

(1) From Equation 2.17.

From Hurst [13], Lη(ω
2t2/2) becomes the CF of a StN distribution, ψT (ωt), after

obtaining the CF of a symmetric generalised hyperbolic distribution. Some of the

properties of the modified Bessel function of the third kind is then applied [13, 16].

Here, ψT (t) (Equation 4.7) is the CF of a StN distribution with ν degrees of freedom

and the integrand in Equation 4.8.

4.2.2 The wrapped skew-Student-t normal (WStN) distribu-

tion

By wrapping the StN distribution in Equation 4.5 onto the unit circle, the following PDF

is defined where Θ = Z(mod2π)

f(θ; ξ, ω2, λ, ν) = 2
1

ω
√
νπ

Γ((ν + 1)/2)

Γ(ν
2
)

(1 +
d

ν
)−( ν+1

2
)

∞∑
r=−∞

Φ(λ(
θ + 2π(r)− ξ

ω
)), (4.9)

for 0 ≤ θ ≤ 2π, −∞ < ξ < ∞, −∞ < λ < ∞ and ν > 0, which is denoted by

Θ ∼ WStN(ξ, ω2, λ, ν).
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Figure 4.3 shows the PDF of the WStN distribution in Equation 4.9 with parameters

ξ = 0, ω2 = 1 and different values for λ and ν.
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Figure 4.3: The PDF of the WStN in Equation 4.9 with parameters ξ = 0, ω2 = 1 and

combinations of λ and ν.

In Figure 4.3 it can be observed that as the value of λ increases, the PDF develops a

single mode.

• The CF of the WStN distribution

From Equation 4.9, the WSSMN distributions are defined by the following stochastic

representation:

Z = ξ +W (η)1/2(θ + 2πr), (4.10)

where θ ∼ WSN(0, ω2, λ), η is a mixing variable with a weight function W (η), inde-

pendent of θ, and a CDF H(η). The CF of the WStN distribution is obtained from the

Laplace-Stieltjes transform and the CF of the wrapped skew-t distribution using wrapped

scale mixtures of skew-normal distributions. The wrapped skew-t distribution is related
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to the WSN distribution, from Equation 4.10, by the following stochastic representation:

Z = ξ + η1/2(θ + 2πr), (4.11)

where η has an inverse-Gamma distribution, η ∼ IG(ν/2, ν/2). The PDF of η is

(ν/2ν/2)

Γ(ν/2)
η−ν/2−1 exp{−ν/(2η)},

where η > 0. To apply the Laplace-Stieltjes transform, Equation 4.11 is used.

Let Z follow the wrapped skew-t distribution defined in Equation 4.11. By applying

Theorem 10, Appendix A.2, the CF of Z is

ψZ(p) = exp(iξp){ψT (ωp) + iτ ∗(δ, ωp)},

ψT (p) =
Kν/2(

√
ν | p |)(

√
ν | p |)ν/2

Γ(ν/2)2ν/2−1
, (4.12)

for p = 0, 1, ..., ν > 0,

τ ∗(δ, ωp) =

∫ ∞
0

exp(ηω2p2/2)τ(δ
√
ηdH(η)), δp > 0,

with τ ∗(δ,−ωp) = −τ ∗(δ, ωp) and the integral representation of the modified Bessel

function of the third kind, Kα(w), defined in Theorem 7. Here, ψT (t) (Equation 4.12)

is the CF of a WStN distribution. This is stated without proof since the derivation is

similar to that of Theorem 7.

4.2.3 The skew-slash (SSL) distribution

From da Silva Ferreira et al. [8], the SSL distribution is denoted by SSL(ξ, ω2, λ, ν) and

arises when κ(a) = 1/a where the distribution of A is Beta(ν, 1), 0 < a < 1 and ν > 0

[8]. The PDF of the SSL distribution (from Definition 1) is given by

f(z; ξ, ω2, λ, ν) = 2νΦ(λ
(z − ξ)
ω

)

∫ 1

0

aν−1φ(z|ξ, ω
2

a
)da, (4.13)

where z ∈ R. The SSL distribution reduces to the SN distribution when ν → ∞. The

mean and variance of Z are given by

E[Z] = ξ +
bωλν

ν − 1/2
ED[(D + λ2)−1/2],
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V ar[Z] = ω2
( ν

ν − 1
− b2λ2ν2

(ν − 1/2)2
ED[(D + λ2)−1/2]

)
,

where D ∼Beta(1, ν − 1/2) [8].

Figure 4.4 shows the PDF of the SSL distribution in Equation 4.13 with parameters

ξ = 0, ω2 = 1 and different values for λ and ν.
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Figure 4.4: The PDF of the SSL distribution in Equation 4.13 with parameters ξ = 0, ω2 = 1

and combinations of λ and ν.

Figure 4.4 is centred at 0 where it can be observed that the tail is heavier with a lower

peak when the value of ν increases.
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• The CF of the SSL distribution

The CF of the SSL distribution is obtained by the following corollary.

Corollary 4 From Kim and Genton [16], let Z follow a mixture of SN distributions

with PDF from Definition 1. Then, the CF of Z is

ψZ(t) = 2
n∑
j=1

pj exp(iξt−W (ηj)ω
2t2/2)Φ(iδ

√
W (ηj)ωt)

=
n∑
j=1

pj exp(iξt−W (ηj)ω
2t2/2){1 + iτ(δ

√
W (ηj)ωt)

(1)},

where pj represent the probabilities p1, p2, ..., pn and W (ηj) the weight function.

(1) From Equation 2.17.

The CF for the StN distribution is obtained from the Laplace-Stieltjes transform and

the CF of the skew-t distribution using scale mixtures of skew-normal distributions.

For the SSL distribution the weight function is equal to W (η) = 1
η

2/(1−p)
[16], then the

CF for the SSL distribution follows from Corollary 4,

ψZ(t) = 2p exp
(
iξt− 1

η

2/(1−p)
ω2t2/2

)
Φ
(
iδ

√
1

η

2/(1−p)
ωt
)

= p exp
(
iξt− 1

η

2/(1−p)
ω2t2/2

){
1 + iτ

(
δ

√
1

η

2/(1−p)
ωt
)}
.

4.2.4 The wrapped skew-slash (WSSL) distribution

By wrapping the SSL distribution in Equation 4.13 onto the unit circle, the following

PDF is obtained where Θ = Z(mod2π)

f(θ; ξ, ω2, λ, ν) = 2ν
∞∑

r=−∞

Φ(λ(
θ + 2π(r)− ξ

ω
))

∫ 1

0

aν−1φ(θ + 2π(r)|ξ, ω
2

a
)da, (4.14)

for 0 ≤ θ ≤ 2π, −∞ < ξ < ∞, −∞ < λ < ∞ and ν > 0, which is denoted by

Θ ∼ WSSL(ξ, ω2, λ, ν).

Figure 4.5 shows the PDF of the WSSL distribution in Equation 4.14 with parameters

ξ = 0, ω2 = 1 and different values for λ and ν.
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Figure 4.5: The PDF of the WSSL distribution in Equation 4.14 with parameters ξ = 0, ω2 =

1 and combinations of λ and ν.

In Figure 4.5 it can be observed that as the value of ν increases, the ”bulge” of the PDF

increases. Also, when λ decreases the PDF tends to be much heavier around the circle.

• The CF of the WSSL distribution

From Equation 4.10, the WSSL distribution is related to the WSN distribution by the

following stochastic representation:

Z = ξ + (1/η2/(1−p))1/2(θ + 2πr), (4.15)

where η has an inverse-Gamma distribution, η ∼ IG(ν/2, ν/2). The PDF of η is

(ν/2ν/2)

Γ(ν/2)
η−ν/2−1 exp{−ν/(2η)},

where η > 0. To apply the Laplace-Stieltjes transform, Equation 4.15 is used.

Similarly, from Corollary 4 and by applying Theorem 10, Appendix A.2 the CF for the
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WSSL distribution can be defined as follows

ψZ(p) = 2p exp
(
iξp− 1

η

2/(1−p)
ω2p2/2

)
Φ
(
iδ

√
1

η

2/(1−p)
ωp
)

= p exp
(
iξp− 1

η

2/(1−p)
ω2p2/2

){
1 + iτ

(
δ

√
1

η

2/(1−p)
ωp
)}(1)

for p = 0, 1, ... .

(1) From Equation 2.17.

4.2.5 The skew-contaminated normal (SCN) distribution

The SCN distribution is denoted by SCN(ξ, ω2, λ, ν, γ), 0 < ν < 1, 0 < γ < 1, where A

is now a discrete random variable taking one of two states and κ(a) = 1/a [8]. Given

the parameter vector τ = (ν, γ)T , the PDF of A is denoted by h(a; τ) = ν ‖(a=γ) +(1−
ν) ‖(a=1), τ = (ν, γ)T . Then, it follows that

f(z; ξ, ω2, λ, ν, γ) = 2{νφ(z|ξ, ω
2

γ
) + (1− ν)φ(z|ξ, ω2)}Φ(λ

(z − ξ)
ω

). (4.16)

The SCN distribution reduces to the SN distribution when γ → 1 [8]. From da Silva

Ferreira et al. [8], the mean and variance of Z are given by

E[Z] = ξ + bωλ
( ν

(γ(γ + λ2))1/2
+

1− γ
(1 + λ2)1/2

)
,

V ar[Z] = ω2
[ν
γ

+ 1− /nu− b2λ2
( ν

(γ(γ + λ2))1/2
+

1− γ
(1 + λ2)1/2

)2]
.

Figure 4.6 shows the PDF of the SCN distribution in Equation 4.16 with parameters

ξ = 0, ω2 = 1 and different values for λ , ν and γ.
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Figure 4.6: The PDF of the SCN distribution in Equation 4.16 with parameters ξ = 0, ω2 = 1

and combinations of λ , ν and γ.

Figure 4.6 is centred at 0 where it can be observed that the tail is heavier with a lower

peak when the value of ν increases. When λ increases the tail becomes much heavier.

• The CF of the SCN distribution

The CF of the SCN distribution is a special case of Corollary 4, since W (η) = 1/η and

H is a discrete measure on {η1 = γ, η2 = 1} with probabilities p and 1− p, respectively

[16]. The CF of the SCN distribution, using Corollary 4, is then defined as follows

ψZ(t) = 2 exp(iξt)[p exp(−γ−1ω2t2/2)Φ(iδγ−1/2ωt) + (1− p) exp(−ω2t2/2)Φ(iδωt)]

= exp(iξt)[p exp(−γ−1ω2t2/2){1 + iτ(δγ−1/2ωt)}

+ (1− p) exp(−ω2t2/2){1 + iτ(δωt)}].
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4.2.6 The wrapped skew-contaminated normal (WSCN) distri-

bution

By wrapping the SCN distribution in Equation 4.16 onto the unit circle, the following

PDF is obtained where Θ = Z(mod2π)

f(θ; ξ, ω2, λ, ν, γ) = 2
∞∑

r=−∞

{νφ(θ + 2π(r)|ξ, ω
2

γ
) + (1− ν)φ(θ + 2π(r)|ξ, ω2)} (4.17)

× Φ(λ(
θ + 2π(r)− ξ

ω
)), (4.18)

for 0 ≤ θ ≤ 2π, −∞ < ξ < ∞, −∞ < λ < ∞, 0 < ν < 1 and 0 < γ < 1, which is

denoted by Θ ∼ WSCN(ξ, ω2, λ, ν, γ).

Figure 4.7 shows the PDF of the WSCN distribution in Equation 4.17 with parameters

ξ = 0, ω2 = 1 and different values for λ, ν and γ.
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Figure 4.7: The PDF of the WSCN distribution in Equation 4.17 with parameters ξ = 0, ω2 =

1 and different values (labeled on the figure) for λ, ν and γ.

In Figure 4.7 it can be observed that as the value of ν increases, the ”bulge” of the

PDF increases. Also, when γ increases the WSCN distribution reduces to the SN

distribution.
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• The CF of the WSCN distribution

The WSCN distribution is related to the WSN distribution, from Equation 4.10, by the

following stochastic representation:

Z = ξ + (1/η)1/2(θ + 2πr), (4.19)

where η has an inverse-Gamma distribution, η ∼ IG(ν/2, ν/2). The PDF of η is

(ν/2ν/2)

Γ(ν/2)
η−ν/2−1 exp{−ν/(2η)},

where η > 0. To apply the Laplace-Stieltjes transform, Equation 4.19 is used.

Similarly, the CF of the WSCN distribution is a special case of Corollary 4, since W (η) =

1/η and H is a discrete measure on {η1 = γ, η2 = 1} with probabilities p and 1 − p,

respectively [16]. The CF of the WSCN distribution, using Corollary 4 and Theorem 10,

Appendix A.2 is then defined as follows

ψZ(p) = 2 exp(iξp)[p exp(−γ−1ω2p2/2)Φ(iδγ−1/2ωp) + (1− p) exp(−ω2p2/2)Φ(iδωp)]

= exp(iξp)[p exp(−γ−1ω2p2/2){1 + iτ(δγ−1/2ωp)}

+ (1− p) exp(−ω2p2/2){1 + iτ(δωp)}]

for p = 0, 1, ... .

4.3 Application

The dataset used for this application is the same as discussed in Chapter 3, Section 3.3,

which consists of a 1000 hourly observations of wind direction in the Atlantic coast of

Galicia (NW-Spain). The goal in Section 4.3 is to compare the WN, WSN and WFGSN

distributions (from Chapter 3, Section 3.3) to the WStN, WSSL and WSCN distributions

(Section 4.2), for the Galicia wind direction data. Estimation of the parameters are

obtained using MLE. Circular moments of the WStN, WSSL and WSCN distributions

exist, but are not available in closed form, therefore it is not possible to use the method of

trigonometric moments in comparison to Section 2.6.3. Several different starting points
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were used to implement an optimisation algorithm in order to avoid local maxima [12].

A small number of local maxima is obtained when starting from many different points,

where the one corresponding to the maximum value of the likelihood function is selected.

Table 4.1 represents the parameter estimates and the standard errors for the parameters

of the WStN, WSSL and WSCN distributions.

Table 4.1: Estimates and the standard errors (in parenthesis) for the parameters of the WStN,

WSSL and WSCN distributions fitted to the Galicia wind direction data.

Distribution ξ ω2 λ ν γ

WStN -1.459 2.358 -0.250 34.577 -

(0.231) (0.048) (0.141) (2.699) -

WSSL 5.200 1.000 0.813 10.000 -

(1.057) (0.801) (0.186) (3.288) -

WSCN 5.262 1.000 0.824 0.010 0.990

(0.493) (0.406) (0.088) (0.121) (0.012)

Figure 4.8 illustrates a raw circular data plot and rose diagram of the Galicia wind

direction data together with the WStN, WSSL and WSCN PDF fitted by MLE. This

figure can be compared to the figure in Section 3.3, Figure 3.15.
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Figure 4.8: Raw circular data plot and rose diagram for the Galicia wind direction data

together with the WStN, WSSL and WSCN PDF fitted by MLE.

Table 4.2 shows the maximised log-likelihood (`max) and AIC/BIC values for the WN,

WSN, WFGSN, WStN, WSSL and WSCN distributions fitted to the Galicia wind

direction data. The AIC/BIC is calculated as −2(`max − p) and −2`max + log(n)p

respectively, where p is the number of parameters estimated and n the sample size[12].

Table 4.2: `max and AIC/BIC values for the WN, WSN, WFGSN, WStN, WSSL and WSCN

distributions fitted to the Galicia wind direction data where the minimum AIC/BIC value is

identified using bold type.

Distribution `max AIC BIC

WN -1803.424 3602.849 3593.069

WSN -1842.98 3679.96 3665.285

WFGSN -1867.77 3727.54 3707.973

WStN -1803.459 3598.917 3579.351

WSSL -1923.783 3839.565 3819.999

WSCN -1921.290 3832.580 3808.122
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The comparison based on the AIC/BIC value has identified that the WStN distribution

is the best fit for the Galicia wind direction data.

4.4 Summary

In this chapter, the PDF of the SMN distributions was revisited as well as the SSMN dis-

tributions. Examples of SSMN distributions were provided, such as the StN distribution,

SSL distribution and the SCN distribution. The PDF and CF of these distributions were

revisited where the wrapped version of each distribution was defined. Graphical repre-

sentations of the PDF and the wrapped PDF of these distributions were provided. Lastly,

the WStN distribution, WSSL distribution and the WSCN distribution were compared

to the WN, WSN and WFGSN distributions in Section 3.3, where the AIC/BIC value

has identified that the WStN distribution is the best fit for the Galicia wind direction

data. In the following chapter a conclusion of the study is provided.
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Conclusion

Directional data applied in practice are often asymmetric and bimodal which motivates

the study of wrapped distributions. In Chapter 1 the use and importance of the WN

distribution along with distributions that can incorporate skewness and bimodality, such

as the WSN and WFGSN distributions were motivated. The importance of the SSMN

distribution as well as the wrapped versions of these distributions were also highlighted.

In Chapter 2 the wrapped distribution and the WN distribution were revisited. The SN

and the WSN distributions were also investigated. The MLE and the method of trigono-

metric moments were also defined, where a simulation study consisting of two examples

for each method was conducted for the purpose of comparison. The simulation study

suggested that MLE gave slightly more accurate results than the method of trigonomet-

ric moments, where the bias and the standard error of the trigonometric moments can

be reduced by using the Monte Carlo approximation method.

In Chapter 3 the FGSN and the WFGSN distributions were defined. The WN, WSN and

WFGSN distributions were also compared with wind direction data as an application

where the estimates of the parameters were obtained using MLE. A comparison based on

the AIC/BIC has identified the WN distribution to fit the Galicia wind direction data

best. The WSN and WFGSN distribution will provide a better fit to circular data that

contains a higher level of skewness and bimodality.

82
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In Chapter 4 examples of SSMN distributions were provided, such as the StN distribution,

SSL distribution and the SCN distribution. The wrapped versions of each distribution

were used to improve the fit for the Galicia wind direction data. The estimates of the

parameters were obtained using MLE where the AIC/BIC value has indeed identified

that the WStN distribution is the best fit for the Galicia wind direction data.

For future research it can be feasible to consider another skewing mechanism to improve

the fit for the Galicia wind direction data. It would also be possible to wrap other distri-

butions, such as the skew-exponential power distribution discussed by Da Silva Ferreira

et al. [8], where the wrapped skew-exponential power distribution might describe the

shape of the observed distribution more effectively.
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Appendix A

Definitions and results

This Appendix contains a list of additional results and definitions referenced in this

study.

A.1 Definitions

Definition 2 Euler’s formula states that for any real number x,

exp(iξp) = cos pξ + i sin pξ.

Definition 3 The sine and cosine of a difference is defined as

cos(A−B) = cosA cosB + sinA sinB

sin(A−B) = sinA cosB − cosA sinB.

Definition 4 The following trigonometric identity is defined as

sin2(x) + cos2(x) = 1.

Definition 5 From [7], the expected value of the random variable X, when X is condi-

tional on Y , is equal to the following

E[X] = E[E[X|Y ]].
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Definition 6 Suppose that we are given unit vectors x1, ..., xn with corresponding an-

gles θi, i = 1, ..., n. The mean direction µ of θ1, ..., θn is the direction of the resultant

x1 + ... + xn of x1, ..., xn. It is also the direction of the centre of mass x̄ of x1, ..., xn.

Since the Cartesian coordinates of xj, for j = 1, ..., n, are (cos(θ), sin(θ)), the Cartesian

coordinates of the centre of mass are (C̄, S̄) where

C̄ =
1

n

n∑
j=1

cos(θ)

S̄ =
1

n

n∑
j=1

sin(θ)

Therefore µ is the solution of the equations

C̄ = ρ cos(θ)

S̄ = ρ sin(θ)

(provided that ρ > 0), where the mean resultant length ρ is given by

ρ = (C̄2 + S̄2)
1
2

[19].

Definition 7 As stated in [19], the moments

C̄ =
1

n

n∑
j=1

cos(θi)

S̄ =
1

n

n∑
j=1

sin(θi)

play key roles in defining the sample mean direction and the sample circular variance. It

is useful to combine them into the first trigonometric moment about the zero direction

m
′

1 = C̄ + iS̄.

Then

m
′

1 = R̄ exp(iθ̄).
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Extending the notation, the pth trigonometric moment about the zero direction for p =

1, 2, ... is defined as

m
′

p = ap + ibp,

where

ap =
1

n

n∑
j=1

cos p(θj)

bp =
1

n

n∑
j=1

sin p(θj).

Then

m
′

p = R̄p exp(iθ̄p), (A.1)

where θ̄p and R̄p denote the sample mean direction and sample mean resultant length of

pθ1, ..., pθn. The pth trigonometric moment about the mean direction is

mp = ap + ibp, (A.2)

where

ap =
1

n

n∑
j=1

cos p(θi − θ̄)

bp =
1

n

n∑
j=1

sin p(θi − θ̄).

Definition 8 From [19], the pth trigonometric moment about the zero mean direction

is defined as

ψp = ρp exp(iµp), ρp ≥ 0

as the population version of equation (A.1). The pth trigonometric moment about the

zero mean direction is defined by analogy with equation (A.2) as

ψp = αp + iβp (A.3)

where

αp = E[cos pΘ] =

∫ 2π

0

cos pθdF (Θ),

βp = E[sin pΘ] =

∫ 2π

0

sin pθdF (Θ).
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Definition 9 As defined in [19], the complex numbers {ψp : p = 0,±1, ...}, equation

(A.3), are the Fourier coefficients of F . When the ψp are related to F by

ψp = E[exp(ipΘ)] =

∫ 2π

0

exp(ipθ)dF (θ) p = 0,±1, ...,

it is usual to write

dF (θ) ∼ 1

2π

∞∑
p=−∞

ψp exp(−ipθ).

If
∑∞

p=1(α2
p +β2

p) is convergent then the random variable θ has a PDF f which is defined

almost everywhere by

f(θ) =
1

2π

∞∑
p=−∞

ψp exp(−ipθ). (A.4)

This result is an analogue on the unit circle of the inversion theorem for continuous

random variables on the real line. Equation (A.4) can then be written as

f(θ) =
1

2π
[1 + 2

∞∑
p=1

(αp cos pθ + βp sin pθ)].

Definition 10 As stated in Arnold et al. [2], the moment generating function (MGF)

MY (t), where Y ∼ SN(ξ, ω2, λ), can be written as

MY (t) = 2 exp
(t2

2

)
Φ(δt)

= 2 exp
(t2

2

)(1

2
+

∫ δt

0

φ(x)dx
)
,

where t ∈ R and X ∼ SN(0, 1, λ).

Definition 11 The circular mean and concentration of Θ are given by [19],

ξ̃ = arctan(
α1

β1

),

c̃ =
√
α2

1 + β2
1 .

Definition 12 A random variable A has the gamma distribution if its PDF is given by

fA(a) =
(ν/2)ν/2

Γ(ν
2
)
aν/2−1e−ν/2a, a > 0 (A.5)

where ν > 0. This is denoted by A ∼ Gamma(ν/2, ν/2) [7].
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A.2 Results

Theorem 8 If the function φ(z), z = x + iy, is defined by integration along a path in

the complex plane parallel with the x-axis from −∞+ iy to x+ iy, then:

(i) φ(z) is convergent;

(ii) φ(z) = φ(x+ iy) = exp(y
2

2
)
∫ x
−∞ exp(−ity)φ(t)dt, where φ(t) is the standard normal

PDF;

(iii) When x = 0 :

φ(iy) =
1

2
+

i√
π

∫ y/
√

2

0

exp(t2)dt

[16].

Theorem 9 From [4], if U ∼ N(0, 1) then

E{Φ(hU + k)} = Φ(
k√

1 + h2
),

where h, k ∈ R. From this result, the MGF of Y , where Y ∼ SN(ξ, ω2, λ), is readily

obtained, that is

MY (t) = E[exp(ξt+ ωxt)]

= 2 exp(ξt+ ω2t2/2)

∫
R
φ(x− ωt)Φ(λx)dx

= 2 exp(ξt+ ω2t2/2)Φ(δωt) (A.6)

where

δ = δ(λ) = λ/
√

1 + λ2, δ ∈ (−1, 1),

and X ∼ SN(0, 1, λ). Multiplication of (A.6) by the MGF of the N(µ, σ2) distribution,

exp(µt+ σ2t2/2) is still a function of type (A.6) [4].

Theorem 10 As stated in [19], if y is a random variable on the line then the corre-

sponding random variable yw of the wrapped distribution is given by

xw = x(mod2π).
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If x has a distribution function F then the distribution function Fw of yw is given by

Fw(θ) =
∞∑

k=−∞

[F (θ + 2π(k))− F (2π(k))], 0 ≤ θ ≤ 2π.

If the CF of y is ψ then the characteristic function {ψp : p = 0,±1, ...} of yw is given by

ψp = ψ(p).

Proof.

ψp =

∫ 2π

0

exp(iΘp)dFw(θ)

=
∞∑

k=−∞

∫ 2πk+1

2πk

exp(iΘp)dF (θ)

=

∫ ∞
−∞

exp(iyp)dF (y)

= ψ(p).

Theorem 11 If ψ is integrable then x has a PDF and

fw(θ) =
∞∑

k=−∞

g(θ + 2πk)

=
1

2π
[1 + 2

∞∑
p=1

(αp cos pθ + βp sin pθ)]

where ψ(p) = αp + iβp [19].

Theorem 12 Azzalini and Capitanio [5] proposed a stochastic representation of the flex-

ible generalised skew-normal distribution that provides a method that is useful for simu-

lation from a FGSN(ξ, ω2, λ, β) with PDF defined in Equation 3.1.

Let X be a continuous random vector with PDF f(x) and let U be a uniform random

variable on (0, 1), independent of X [27]. A random vector Y can be simulated with the

following representation:
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Y =

X + ξ, if U < π(X)

−X + ξ, if U > π(X)
(A.7)

As an example, from Wang et al. [27], let Y have a flexible generalised skew-normal

PDF defined in Equation 3.1 and X have a n−dimensional normal PDF with mean

0 and correlation matrix Ω, denoted as φn(x;0,Ω). Azzalini and Dalla Valle [6] then

provide the application of the probability integral transformation to Equation A.7, where

the following is then obtained,

Y =

X + ξ, if W < λTX

−X + ξ, if W > λTX
(A.8)

where W is N(0, 1), which is independent of X [27].

Theorem 13 Let Z ∼ SSMN(ξ, ω2, λ,H;κ). Then its stochastic representation is given

by

Z|A = a ∼ SN(ξ, ω2κ(a), λ
√
κ(a)),

where A ∼ H(a; τ) [8].

Theorem 14 Suppose that Z ∼ SSMN(ξ, ω2, λ,H;κ). Then, for b =
√

2
π

:

(a) E[Z] = ξ + bωλEA[ κ(A)√
1+λ2κ(A)

],

(b) V ar[Z] = ω2
(
EA[κ(A)]− b2λ2E2

A[ κ(A)√
1+λ2κ(A)

]
)

[8].
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R code used in this study

This Appendix contains all R code used throughout the study.

B.1 Chapter 2

B.1.1 An overlay of the SN(ξ, ω2, λ) distribution with PDF as

given in Equation 2.9

l i b r a r y ( c i r c u l a r )

l i b r a r y (Wrapped)

l i b r a r y ( NPCirc )

l i b r a r y ( sn )

dsn <− f unc t i on (y , xi , omega , lambda , beta )

(2/ omega )∗dnorm ( ( y−x i )/omega , 0 , 1)∗pnorm( lambda ∗(y−x i )/omega , 0 , 1)

wsn <−f unc t i on ( x ) dsn ( y=x , x i =0, omega=1, lambda=4)

PDF <− Vecto r i z e (wsn )

wsn1 <−f unc t i on ( x ) dsn ( y=x , x i =0, omega=1, lambda=1)

PDF1 <− Vecto r i z e ( wsn1 )

wsn2 <−f unc t i on ( x ) dsn ( y=x , x i =0, omega=1, lambda=−4)

PDF2 <− Vecto r i z e ( wsn2 )

94
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wsn3 <−f unc t i on ( x ) dsn ( y=x , x i =0, omega=1, lambda=−1)

PDF3 <− Vecto r i z e ( wsn3 )

p l o t . f unc t i on (PDF, xlim=c (−4 ,4) , c o l =4, lwd=1, xlab=”y ” , ylab=”SN”)

p l o t (PDF1, xlim=c (−4 ,4) , c o l =3, lwd=1,add=TRUE)

p lo t (PDF2, xlim=c (−4 ,4) , c o l =2, lwd=1,add=TRUE)

p lo t (PDF3, xlim=c (−4 ,4) , c o l=”orange ” , lwd=1,add=TRUE)

legend ( −4 .2 ,0 .65 , l egend=c (”SN(4)” ,”SN(1)” ,”SN(−4)” ,

”SN(−1)”) , bty=”n” , c o l=c (” blue ” ,” green ” ,” red ” ,” orange ”) ,

l t y=c (1 , 1 , 1 , 1 ) , nco l =1)

B.1.2 Visualisation of the skew-normal sampling scheme in Sec-

tion 2.2.1

x <− rnorm (10000 , mean=0, sd=1)

w <− rnorm (10000 , mean=0, sd=1)

x i <− 0

omega <− s q r t (1 )

lambda <− 4

dat <− x i +(omega∗ lambda )/ s q r t (1+lambda ˆ2)∗ abs ( x)+

( omega/ s q r t (1+lambda ˆ2))∗w−(omega∗ lambda∗ s q r t ( 2 ) / ( p i ∗(1+lambda ˆ 2 ) ) )

theopdf <− f unc t i on (y , xi , omega , lambda )

(2/ omega )∗dnorm ( ( y−x i )/omega , 0 , 1)∗pnorm( lambda ∗(y−x i )/omega , 0 , 1)

h i s t ( dat , p r o b a b i l i t y = TRUE, main = ”” , xlab=”x ” , ylab=”PDF” ,

ylim = c (0 , 0 . 8 ) , c o l=”blue ”)

x f i t<−seq (−8 ,8 ,0 .05)

y f i t<−theopdf ( x f i t , xi , omega , lambda )

l i n e s ( x f i t , y f i t , c o l=”red ” , lwd=3)

x i <− 0

omega <− s q r t (1 )

lambda <− 1
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dat <− x i +(omega∗ lambda )/ s q r t (1+lambda ˆ2)∗ abs ( x)+

( omega/ s q r t (1+lambda ˆ2))∗w−(omega∗ lambda∗ s q r t ( 2 ) / ( p i ∗(1+lambda ˆ2 ) ) )

theopdf <− f unc t i on (y , xi , omega , lambda )

(2/ omega )∗dnorm ( ( y−x i )/omega , 0 , 1)∗pnorm( lambda ∗(y−x i )/omega , 0 , 1)

h i s t ( dat , p r o b a b i l i t y = TRUE, main = ”” , xlab=”x ” , ylab=”PDF” ,

ylim = c (0 , 0 . 6 ) , c o l=”blue ”)

x f i t<−seq (−8 ,8 ,0 .05)

y f i t<−theopdf ( x f i t , xi , omega , lambda )

l i n e s ( x f i t , y f i t , c o l=”red ” , lwd=3)

x i <− 0

omega <− s q r t (1 )

lambda <− −4

dat <− x i +(omega∗ lambda )/ s q r t (1+lambda ˆ2)∗ abs ( x)+

( omega/ s q r t (1+lambda ˆ2))∗w−(omega∗ lambda∗ s q r t ( 2 ) / ( p i ∗(1+lambda ˆ2 ) ) )

theopdf <− f unc t i on (y , xi , omega , lambda )

(2/ omega )∗dnorm ( ( y−x i )/omega , 0 , 1)∗pnorm( lambda ∗(y−x i )/omega , 0 , 1)

h i s t ( dat , p r o b a b i l i t y = TRUE, main = ”” , xlab=”x ” , ylab=”PDF” ,

ylim = c (0 , 0 . 8 ) , c o l=”blue ”)

x f i t<−seq (−8 ,8 ,0 .05)

y f i t<−theopdf ( x f i t , xi , omega , lambda )

l i n e s ( x f i t , y f i t , c o l=”red ” , lwd=3)

x i <− 0

omega <− s q r t (1 )

lambda <− −1

dat <− x i +(omega∗ lambda )/ s q r t (1+lambda ˆ2)∗ abs ( x)+

( omega/ s q r t (1+lambda ˆ2))∗w−(omega∗ lambda∗ s q r t ( 2 ) / ( p i ∗(1+lambda ˆ2 ) ) )

theopdf <− f unc t i on (y , xi , omega , lambda )

(2/ omega )∗dnorm ( ( y−x i )/omega , 0 , 1)∗pnorm( lambda ∗(y−x i )/omega , 0 , 1)

h i s t ( dat , p r o b a b i l i t y = TRUE, main = ”” , xlab=”x ” , ylab=”PDF” ,
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ylim = c (0 , 0 . 6 ) , c o l=”blue ”)

x f i t<−seq (−8 ,8 ,0 .05)

y f i t<−theopdf ( x f i t , xi , omega , lambda )

l i n e s ( x f i t , y f i t , c o l=”red ” , lwd=3)

B.1.3 Examples of the WSN(ξ, ω2, λ) PDF given in Equation

2.15

s e t . seed (2012)

#Only need to change parameter va lue s

wsn <− f unc t i on ( x ) dwsn (x , x i =0, eta =1, lambda=−1)

curve . c i r c u l a r (wsn , n=500 , xlim=c ( −1 .65 ,1 .65) , main=NULL)

B.1.4 Simulation study: Method of trigonometric moments

and maximum likelihood estimation

#Method o f t r i gonomet r i c moments

rm( l i s t = l s ( a l l= TRUE) )

l i b r a r y ( c i r c u l a r )

l i b r a r y ( sn )

l i b r a r y ( NPCirc )

l i b r a r y ( C i r cS ta t s )

x i = 0 #only need to change parameters

omega = 1

lambda = 0 .7

n=1000

m=1000

ARB = MSE = es t imate s = matrix (0 , m, 3)

f o r ( i in 1 :m) {
theta <− rwsn (n , x i=xi , eta = omega , lambda = lambda )
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#Calcu la te t r i g moments

#cos

alpha1 = as . vec to r (mean( cos ( theta ) ) )

#s i n

beta1 = as . vec to r (mean( s i n ( theta ) ) )

thetabar = i f e l s e ( alpha1<0, p i+atan ( beta1 / alpha1 ) , atan ( beta1 / alpha1 ) )

rbar = ( alpha1ˆ2+beta1 ˆ2)ˆ(1/2)

bbar2 = as . vec to r (mean( s i n (2∗ ( theta−thetabar ) ) ) )

#Calcu la te ch i

integrand <− f unc t i on (u) {(2/ p i )ˆ(1/2)∗ exp (uˆ2/2)}
c h i e s t <− f unc t i on ( c h i e s t ){

j a <− i n t e g r a t e ( integrand , lower = 0 , upper = c h i e s t ) $va l

t=2∗ c h i e s t

jb <− i n t e g r a t e ( integrand , lower = 0 , upper = t ) $va l

func <− ( jb∗(1− j a ˆ2)−2∗( j a ))/(1+ ja ˆ2)ˆ3−( bbar2 /( rbar ˆ4) )

re turn ( func )

}
ch i <− un i roo t ( ch i e s t , lower = −10, upper = 15) $root

#ch i

#Calcu la te omega

j c h i <− i n t e g r a t e ( integrand , lower = 0 , upper = ch i ) $va l

newomega=(−2∗ l og ( rbar )+ log (1+ j c h i ˆ2 ) )ˆ (1/2)

#newomega

#Calcu la te lambda

pro = ( ch i /newomega)ˆ2

newlambda = s q r t ( pro/(1−pro ) )

#newlambda
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#Calcu la te x i

newxi = atan ( ( tan ( thetabar)− j c h i )/(1+ j c h i ∗ tan ( thetabar ) ) )

#newxi

#Fina l e s t imate s

colnames ( e s t imate s ) <− c ( ’mu’ , ’ sigma ’ , ’gamma1 ’ )

e s t imate s [ i , ] = c ( newxi , newomega , newlambda )

}

avg=colMeans ( e s t imate s )

avg

t ru e v a l <− c ( xi , omega , lambda )

b ia s <− avg−t ru e v a l

b i a s

sdpar <− apply ( es t imates , 2 , sd )

sdpar

Q <− apply ( es t imates , 2 , q u a n t i l e )

Q

ECDF <− l app ly ( 1 : 3 , f unc t i on ( i ) e cd f ( e s t imate s [ , i ] ) )

trueQ <− c (ECDF [ [ 1 ] ] ( x i ) , ECDF [ [ 2 ] ] ( omega ) , ECDF [ [ 3 ] ] ( lambda ) )

trueQ

Pml1 = ecd f ( e s t imate s [ , 1 ] )

p l o t (Pml1 , main = ””)

Pml2 = ecd f ( e s t imate s [ , 2 ] )
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p lo t (Pml2 , main = ””)

Pml3 = ecd f ( e s t imate s [ , 3 ] )

p l o t (Pml3 , main = ””)

p l o t ( dens i ty ( e s t imate s [ , 1 ] ) , main = ”” , ylab=”PDF”)

p lo t ( dens i ty ( e s t imate s [ , 2 ] ) , main = ”” , ylab=”PDF”)

p lo t ( dens i ty ( e s t imate s [ , 3 ] ) , main = ”” , ylab=”PDF”)

#MLE

#Only need to change parameters

x i <− 0.08521464

omega <− 1.00414198

lambda <− 0.94410201

n <− 1000

a <− rwsn (n , x i=xi , eta=omega , lambda=lambda )

logwsn <− f unc t i on ( par , theta ) −sum( log ( dwsn ( theta ,

x i=par [ 1 ] , e ta=par [ 2 ] , lambda=par [ 3 ] ) ) )

MLE <− do . c a l l ( rbind , l app ly ( 1 : n , f unc t i on ( . . . )

{
Samp <− sample (n , n , TRUE)

optim ( par=c ( xi , omega , lambda ) , fn=logwsn ,

method=c (” Nelder−Mead”) , theta=a [ Samp ] ) $par

} ) )

trueVal <− c ( xi , omega , lambda )
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avgpar <− apply (MLE, 2 , mean)

avgpar

b i a s <− avgpar−trueVal

b i a s

sdpar <− apply (MLE, 2 , sd )

sdpar

Q <− apply (MLE, 2 , q u a n t i l e )

Q

ECDF <− l app ly ( 1 : 3 , f unc t i on ( i ) e cd f (MLE[ , i ] ) )

trueQ <− c (ECDF [ [ 1 ] ] ( x i ) , ECDF [ [ 2 ] ] ( omega ) , ECDF [ [ 3 ] ] ( lambda ) )

trueQ

Pml1 = ecd f (MLE[ , 1 ] )

p l o t (Pml1 , main = ””)

Pml2 = ecd f (MLE[ , 2 ] )

p l o t (Pml2 , main = ””)

Pml3 = ecd f (MLE[ , 3 ] )

p l o t (Pml3 , main = ””)

p l o t ( dens i ty (MLE[ , 1 ] ) , main = ”” , ylab=”PDF”)

p lo t ( dens i ty (MLE[ , 2 ] ) , main = ”” , ylab=”PDF”)

p lo t ( dens i ty (MLE[ , 3 ] ) , main = ”” , ylab=”PDF”)
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B.2 Chapter 3

B.2.1 An overlay of the FGSN(ξ, ω2, λ, β) distribution with PDF

as given in Equation 3.1

dwgsn <− f unc t i on (y , xi , omega , lambda , beta )

(2/ omega )∗dnorm ( ( y−x i )/omega , 0 , 1)∗pnorm( lambda ∗(y−x i )/ omega+beta∗
( ( y−x i )/ omega )ˆ3 , 0 , 1)

wgnsn <−f unc t i on ( x ) dwgsn ( y=x , x i =0, omega=1, lambda=4, beta=0)

FGSN <− Vecto r i z e ( wgnsn )

wgnsn1 <−f unc t i on ( x ) dwgsn ( y=x , x i =0, omega=1, lambda=1, beta=−1)

FGSN1 <− Vecto r i z e ( wgnsn1 )

wgnsn2 <−f unc t i on ( x ) dwgsn ( y=x , x i =0, omega=1, lambda=4, beta=−1)

FGSN2 <− Vecto r i z e ( wgnsn2 )

wgnsn3 <−f unc t i on ( x ) dwgsn ( y=x , x i =0, omega=1, lambda=4, beta=1)

FGSN3 <− Vecto r i z e ( wgnsn3 )

p l o t . f unc t i on (FGSN, xlim=c (−4 ,4) , c o l =4, lwd=1, xlab=”y ”)

p l o t (FGSN1, xlim=c (−4 ,4) , c o l =3, lwd=1,add=TRUE)

p lo t (FGSN2, xlim=c (−4 ,4) , c o l =2, lwd=1,add=TRUE)

p lo t (FGSN3, xlim=c (−4 ,4) , c o l=”orange ” , lwd=1,add=TRUE)

legend ( −4 .2 ,0 .68 , l egend=c (”FGSN(0 , 1 , 4 , 0 )” , ”FGSN(0 ,1 ,1 ,−1)” ,

”FGSN(0 ,1 ,4 ,−1)” , ”FGSN( 0 , 1 , 4 , 1 ) ” ) , bty=”n” ,

c o l=c (” blue ” ,” green ” ,” red ” ,” orange ”) , l t y=c ( 1 , 1 , 1 , 1 ) )

B.2.2 Examples of the WFGSN(ξ, ω2, λ, β) PDF given in Equa-

tion 3.4

dwgsn <− f unc t i on ( theta , xi , omega , lambda , r )

(2/ omega )∗sum(dnorm ( ( theta+2∗pi ∗r−x i )/omega , 0 , 1)∗
pnorm( lambda ∗( theta+2∗pi ∗r−x i )/omega , 0 , 1 ) )

dwgn <− f unc t i on ( theta , xi , omega , lambda , beta , r )
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(2/ omega )∗sum(dnorm ( ( theta+2∗pi ∗r−x i )/omega , 0 , 1)∗
pnorm( lambda ∗( theta+2∗pi ∗r−x i )/ omega+

beta ∗ ( ( theta+2∗pi ∗r−x i )/ omega )ˆ3 , 0 , 1 ) )

#Only need to change parameter va lue s

wgnsn <−f unc t i on ( x )

dwgsn ( theta=x , x i =0, omega=1, lambda=−1, r =−100:100)

wgn <− f unc t i on ( x )

dwgn( theta=x , x i =0, omega=1, lambda=−1, beta =3, r =−100:100)

vwgnsn <− Vecto r i z e ( wgnsn )

vwgn <− Vecto r i z e (wgn)

curve . c i r c u l a r (vwgn , xlim=c ( −1 .65 ,1 .65) )

curve . c i r c u l a r ( vwgnsn , xlim=c ( −1 .65 ,1 .65) , add = TRUE,

c o l =2, l t y = 9 , lwd = 6)

B.2.3 Simulation study: Maximum likelihood estimation

rm( l i s t = l s ( a l=T) )

l i b r a r y ( NPCirc )

opt ions ( s c ipen = 999)

#Only need to change parameter va lue s

x i <− 0

Omega <− 1

lambda <− 1

beta <− −2

#s imu la t i on f o r FGSN

n=100

x=rnorm (n , 0 , 1 )

y=rnorm (n , 0 , 1 )

wx=(lambda∗x)+( beta∗xˆ3)

z=i f e l s e (y<wx , x,−x )
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z f i n=x i +(Omega∗z )

#s imu la t i on f o r WFGSN by apply ing the t rans fo rmat ion

theta = z f i n %%(2∗pi )

logwfgsn=func t i on ( par , x , K = 100 , min . k = 20)

{
x <− conver s i on . c i r c u l a r (x , un i t s = ” rad ians ” , ze ro = 0 ,

r o t a t i o n = ” counter ”)

x i <− conver s i on . c i r c u l a r ( xi , un i t s = ” rad ians ” , ze ro = 0 ,

r o t a t i o n = ” counter ”)

x i = par [ 1 ]

eta = par [ 2 ]

lambda = par [ 3 ]

beta = par [ 4 ]

x <− x [ ! i s . na ( x ) ]

n <− l ength ( x )

i f (sum( i s . na ( x ) ) > 0)

warning (” Miss ing va lue s were removed ”)

i f ( i s . n u l l (K) ) {
range <− abs ( x i − x )

K <− ( range + 6 ∗ eta )%/%(2 ∗ pi ) + 1

K <− max( min . k , K)

}
e l s e {

i f ( ! i s . numeric (K) | K <= 0) {
#warning (” Argument ’K’ must be a p o s i t i v e i n t e g e r .

#’K=min . k ’ was used ”)

K <− min . k

}
}
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fx <− numeric (n)

f o r ( i in 1 : n ) {
va l <− ( x [ i ] + 2 ∗ pi ∗ seq(−K, K, 1) − x i )/ eta

suma <− sum(dnorm( va l ) ∗ pnorm( lambda ∗ va l + beta ∗ va l ˆ3) )

fx [ i ] <− 2/ eta ∗ suma

}
r e turn(−sum( log ( fx ) ) )

}

MLE <− do . c a l l ( rbind , l app ly ( 1 : 1 0 0 , func t i on ( . . . )

{
Samp <− sample (n , n , TRUE)

x=rnorm (n , 0 , 1 )

y=rnorm (n , 0 , 1 )

wx=(lambda∗x)+( beta∗xˆ3)

z=i f e l s e ( y < wx , x,−x )

z f i n=x i +(Omega∗z )

theta = z f i n %%(2∗pi )

#s imu la t i on f o r WFGSN by apply ing the t rans fo rmat ion

optim ( par=c ( xi , Omega , lambda , beta ) ,

fn = logwfgsn , method = c (”BFGS”) , x = theta ) $par

} ) )

trueVal <− c ( xi , Omega , lambda , beta )

avgpar <− apply (MLE, 2 , mean)

avgpar
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b ia s <− avgpar−trueVal

b i a s

#Ca l cu la t ing standard e r r o r

sdpar <− apply (MLE, 2 , sd )

sdpar

#Ca l cu la t ing q u a n t i l e s

Q <− apply (MLE, 2 , q u a n t i l e )

Q

#Cal cu la t ing the q u a n t i l e where the t rue value l i e s

ECDF <− l app ly ( 1 : 4 , f unc t i on ( i ) e cd f (MLE[ , i ] ) )

trueQ <− c (ECDF [ [ 1 ] ] ( x i ) , ECDF [ [ 2 ] ] ( Omega) ,

ECDF [ [ 3 ] ] ( lambda ) , ECDF [ [ 4 ] ] ( beta ) )

trueQ

Pml1 = ecd f (MLE[ , 1 ] )

p l o t (Pml1 , main = ””)

Pml2 = ecd f (MLE[ , 2 ] )

p l o t (Pml2 , main = ””)

Pml3 = ecd f (MLE[ , 3 ] )

p l o t (Pml3 , main = ””)

Pml4 = ecd f (MLE[ , 4 ] )

p l o t (Pml4 , main = ””)

p l o t ( dens i ty (MLE[ , 1 ] ) , main = ”” , ylab=”PDF”)

p lo t ( dens i ty (MLE[ , 2 ] ) , main = ”” , ylab=”PDF”)
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p lo t ( dens i ty (MLE[ , 3 ] ) , main = ”” , ylab=”PDF”)

p lo t ( dens i ty (MLE[ , 4 ] ) , main = ”” , ylab=”PDF”)

B.2.4 Raw circular data plot and rose diagram for the Galicia

wind direction data

l i b r a r y ( NPCirc )

l i b r a r y (Wrapped)

l i b r a r y ( sn )

data (” speed . wind ”)

s e t . seed (2 )

sample wind <− sample ( speed . wind$Direct ion , s i z e =1000 , r e p l a c e =F)

#Rose diagram of data

d i r <− c i r c u l a r ( sample wind , un i t s=”degree s ” , template=”geograph i c s ”)

p l o t ( d i r , s tack=TRUE, shr ink = 1 . 1 5 )

ro s e . d iag ( dir , b ins =8, add=TRUE)

B.2.5 Estimates, standard errors and AIC values for the WN,

WSN and WFGSN

#Wrapped Normal”

data (” speed . wind ”)

s e t . seed (2 )

sample wind <− sample ( speed . wind$Direct ion , s i z e =1000 , r e p l a c e =F)

x i <− 0

omega <− 1

a1 <− sample wind

a2 <− a1%%(2∗pi )

a =na . exc lude ( a2 )
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logwsn <− f unc t i on ( par , theta )

−sum( log ( dwrappednormal ( x=theta , mu = par [ 1 ] , sd = par [ 2 ] ) ) )

Opt = optim ( par = c ( xi , omega ) , fn = logwsn , method = c (”L−BFGS−B”) ,

theta = a , he s s i an = TRUE)

Opt$val

Opt$par

aicwsn <− 2∗( Opt$value−2)

aicwsn

bicwn <− 2∗( mw$Measures [7 ])− l og (984)∗2

bicwn

#Standarderror ( exc lud ing NA va lues )

SE1=mw$Estimates [ 1 , 2 ] / s q r t (984)

SE1

SE2=mw$Estimates [ 2 , 2 ] / s q r t (984)

SE2

#Wrapped skew−normal

x i <− 0

omega <−0.5

lambda <− −1

a1 <− sample wind

a2 <− a1%%(2∗pi )

a =na . exc lude ( a2 )
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logwsn <− f unc t i on ( par , theta )

−sum( log ( dwsn ( theta , x i = par [ 1 ] , e ta = par [ 2 ] , lambda = par [ 3 ] ) ) )

Opt = optim ( par = c ( xi , omega , lambda ) , fn = logwsn ,

method = c (”L−BFGS−B”) , theta = a , lower = c (−3 ,0 ,−15) ,

upper = c (3 ,2 ,−1) , he s s i an = TRUE)

Opt$val

Opt$par

#Opt

aicwsn <− 2∗( Opt$value−3)

aicwsn

bicwsn <− 2∗( Opt$value)− l og (984)∗3

bicwsn

s tanda rde r r o r s = s q r t ( abs ( diag ( s o l v e (−Opt$hess ian ) ) ) )

s t anda rde r r o r s

#Wrapped f l e x i b l e g e n e r a l i s e d skew−normal

x i <−0

Omega <− 1

lambda <− 2

beta <− 2

a <− speed . wind2$Direct ion

#s imu la t i on f o r WFGSN by apply ing the t rans fo rmat ion

theta = a%%(2∗pi )

#a=c i r c u l a r ( a1 )

logwfgsn=func t i on ( par , x , K = 100 , min . k = 20)
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{
x <− conver s i on . c i r c u l a r (x , un i t s = ” rad ians ” ,

ze ro = 0 , r o t a t i o n = ” counter ”)

x i <− conver s i on . c i r c u l a r ( xi , un i t s = ” rad ians ” ,

ze ro = 0 , r o t a t i o n = ” counter ”)

x i = par [ 1 ]

eta = par [ 2 ]

lambda = par [ 3 ]

beta = par [ 4 ]

x <− x [ ! i s . na ( x ) ]

n <− l ength ( x )

i f (sum( i s . na ( x ) ) > 0)

#warning (” Miss ing va lue s were removed ”)

i f ( i s . n u l l (K) ) {
range <− abs ( x i − x )

K <− ( range + 6 ∗ eta )%/%(2 ∗ pi ) + 1

K <− max( min . k , K)

}
e l s e {

i f ( ! i s . numeric (K) | K <= 0) {
#warning (” Argument ’K’ must be a p o s i t i v e i n t e g e r .

#’K=min . k ’ was used ”)

K <− min . k

}
}
fx <− numeric (n)

f o r ( i in 1 : n ) {
va l <− ( x [ i ] + 2 ∗ pi ∗ seq(−K, K, 1) − x i )/ eta

suma <− sum(dnorm( va l ) ∗ pnorm( lambda ∗ va l + beta ∗ va l ˆ3) )

fx [ i ] <− 2/ eta ∗ suma

}
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re turn(−sum( log ( fx ) ) )

}

Optwf = optim ( par=c ( xi , Omega , lambda , beta ) , fn = logwfgsn ,

method = c (”BFGS”) , x = theta , he s s i an=TRUE,

lower = c (0 ,1 ,0 .01 , −140) , upper = c (4 , 4 , 40 , 150 ) )

Optwf$par

Optwf$value

a i cwf <− 2∗( Optwf$value−4)

a i cwf

bicwf <− 2∗( Optwf$value)− l og (984)∗4

bicwf

s t anda rde r r o r s = s q r t ( abs ( diag ( s o l v e (−Optwf$hessian ) ) ) )

s t anda rde r r o r s

B.2.6 Raw circular data plot with the WN, WSN and WFGSN

PDF fitted by MLE

l i b r a r y ( NPCirc )

l i b r a r y ( c i r c u l a r )

l i b r a r y (Wrapped)

data (” wind . data ”)

#Rose diagram of data

d i r <− c i r c u l a r ( sample wind , un i t s=”degree s ” , template=”geograph i c s ”)

p l o t ( d i r , s tack=TRUE, shr ink = 1 . 1 5 )

ro s e . d iag ( dir , b ins =8, add=TRUE)

wn <− f unc t i on ( x ) dwrappedg (x , ” norm” ,mean=−1.895088 , sd =2.295792 ,K=2)

p lo t . f unc t i on . c i r c u l a r (wn, add=TRUE, lwd=1, c o l =2, l t y=1 )
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wsn <− f unc t i on ( x ) dwsn (x , x i =−0.9516579 , eta =2, lambda= −1)

p l o t . f unc t i on . c i r c u l a r (wsn , add=TRUE, lwd=1, c o l =3, l t y=1 )

dwgn <− f unc t i on ( theta , xi , omega , lambda , beta , r )

(2/ omega )∗sum(dnorm ( ( theta+2∗pi ∗r−x i )/omega , 0 , 1)∗
pnorm( lambda ∗( theta+2∗pi ∗r−x i )/ omega+beta∗
( ( theta+2∗pi ∗r−x i )/ omega )ˆ3 , 0 , 1 ) )

wgn <− f unc t i on ( x ) dwgn( theta=x , x i =1.103749 , omega=2.5 ,

lambda= 3.479915 , beta=−15, r =−100:100)

vwgn <− Vecto r i z e (wgn)

curve . c i r c u l a r (vwgn , add=TRUE, lwd=1, c o l =4, l t y =1)

legend (” t o p l e f t ” , l egend=c (”WN” ,”WSN” ,”WFGSN”) ,

c o l=c (” red ” ,” green ” ,” blue ”) ,

bty=”n” , l t y=c (1 , 1 , 1 ) , nco l =1)

B.3 Chapter 4

B.3.1 The PDF of the StN, WStN, SSL, WSSL, SCN and WSCN

l i b r a r y (” sn ”)

l i b r a r y (”Wrapped”)

l i b r a r y (” c i r c u l a r ”)

l i b r a r y (”BayesCR”)

l i b r a r y (” l q r ”)

l i b r a r y (”VGAM”)

#skew t normal

dstn <− dst ( seq (−5 ,15 , by =0.005) , x i =0,omega=1, alpha =3,nu=2)

curve ( dst (x , 0 , 1 ) , from = −6, to = 10 , ylim=c ( 0 , 0 . 5 ) , c o l = ” purple ” ,

ylab = ”StN” , lwd = 1)

curve ( dst (x , 3 , 1 ) , from = −6, to = 10 , c o l = ” orange ” ,

add = TRUE, lwd = 1)

curve ( dst (x , 3 , 2 ) , from = −6, to = 10 , c o l = ” green ” ,
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add = TRUE, lwd = 1)

curve ( dst (x , −1 ,1) , from = −6, to = 10 , c o l = ”sky blue ” ,

add = TRUE, lwd = 1)

curve ( dst (x , 0 . 5 , 1 ) , from = −6, to = 10 , c o l = ” red ” ,

add = TRUE, lwd = 1)

legend (” to p r i gh t ” , l egend=c (”StN (0 , 1 , 0 , 1 )” , ” StN (0 , 1 , 3 , 1 ) ” ,

”StN (0 , 1 , 3 , 2 ) ” ,

”StN(0 ,1 ,−1 ,1)” , ”StN ( 0 , 1 , 0 . 5 , 1 ) ” ) , bty=”n” ,

c o l=c (” purple ” ,” orange ” ,” green ” ,” sky blue ” ,” red ”) ,

l t y=c (1 , 1 , 1 , 1 ) , nco l =1)

#a b l i n e ( v=0, l t y =2,add=TRUE)

#wrapped skew t normal

stnwr<−f unc t i on ( x ) dwrappedg (x , ” s t ” , x i =0,omega=1, alpha =3,nu=1,K=100)

curve . c i r c u l a r ( stnwr , c o l=”orange ” , shr ink =1.25 , lwd=1, l t y =1)

stnwr1<−f unc t i on ( x ) dwrappedg (x , ” s t ” , x i =0,omega=1, alpha =3,nu=2,K=100)

curve . c i r c u l a r ( stnwr1 , c o l=”green ” , lwd=1,add=TRUE, l t y =1)

stnwr2<−f unc t i on ( x ) dwrappedg (x , ” s t ” , x i =0,omega=1, alpha=−1,nu=1,K=100)

curve . c i r c u l a r ( stnwr2 , c o l=”sky blue ” , lwd=1,add=TRUE, l t y =1)

stnwr3<−f unc t i on ( x ) dwrappedg (x , ” s t ” , x i =0,omega=1, alpha =0.5 ,nu=1,K=100)

curve . c i r c u l a r ( stnwr3 , c o l=”red ” , lwd=1,add=TRUE, l t y =1)

stnwr4<−f unc t i on ( x ) dwrappedg (x , ” s t ” , x i =0,omega=1, alpha =0,nu=1,K=100)

curve . c i r c u l a r ( stnwr4 , c o l=”purple ” , lwd=1,add=TRUE, l t y =1)

legend ( −3 .6 ,0 .5 , l egend=c (”WStN(0 , 1 , 0 , 1 )” , ”WStN(0 , 1 , 3 , 1 )” , ”WStN(0 , 1 , 3 , 2 ) ” ,

”WStN(0 ,1 ,−1 ,1)” ,”WStN( 0 , 1 , 0 . 5 , 1 ) ” ) , bty=”n” ,

c o l=c (” purple ” ,” orange ” ,” green ” ,” sky blue ” ,” red ”) ,

l t y=c (1 , 1 , 1 , 1 ) , nco l =1)

#Skew s l a s h pdf

ssn<−f unc t i on ( y ) dSKD(y , mu = 0 .01 , sigma = 1 , p = 0 . 5 ,

d i s t = ” s l a s h ” , nu = 1)
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ssn1<−f unc t i on ( y ) dSKD(y , mu = 0 .01 , sigma = 1 , p = 0 . 2 ,

d i s t = ” s l a s h ” , nu = 3)

ssn2<−f unc t i on ( y ) dSKD(y , mu = 0 .01 , sigma = 1 , p = 0 . 5 ,

d i s t = ” s l a s h ” , nu = 2)

ssn3<−f unc t i on ( y ) dSKD(y , mu = 0 .01 , sigma = 1 , p = 0 . 9 ,

d i s t = ” s l a s h ” , nu = 5)

curve ( ssn , from = −10, to = 10 , ylim=c ( 0 , 0 . 3 5 ) , c o l = ” orange ” ,

ylab = ”SSL” , lwd = 1 , type = ” l ”)

curve ( ssn1 , from = −10, to = 10 , c o l = ” green ” , add = TRUE, lwd = 1)

curve ( ssn2 , from = −10, to = 10 , c o l = ”sky blue ” , add = TRUE, lwd = 1)

curve ( ssn3 , from = −10, to = 10 , c o l = ” red ” , add = TRUE, lwd = 1)

a b l i n e ( v=0, l t y =1,add=TRUE, lwd=1)

legend (” to p r i gh t ” , l egend=c (”SSL ( 0 , 1 , 0 . 5 , 1 ) ” ,

”SSL ( 0 , 1 , 0 . 2 , 3 ) ” , ” SSL ( 0 , 1 , 0 . 5 , 2 ) ” , ” SSL ( 0 , 1 , 0 . 9 , 5 ) ” ) ,

bty=”n” , c o l=c (” orange ” ,” green ” ,” sky blue ” ,” red ”) ,

l t y=c (1 , 1 , 1 , 1 ) , nco l =1)

#wrapped skew s l a s h pdf

curve . c i r c u l a r ( ssn , c o l=”orange ” , shr ink =1.2 , lwd=1, l t y =1)

curve . c i r c u l a r ( ssn1 , c o l=”green ” , lwd=1,add=TRUE, l t y =1)

curve . c i r c u l a r ( ssn2 , c o l=”sky blue ” , lwd=1,add=TRUE, l t y =1)

curve . c i r c u l a r ( ssn3 , c o l=”red ” , lwd=1,add=TRUE, l t y =1)

legend ( −3 .6 ,0 .2 , l egend=c (”WSSL( 0 , 1 , 0 . 5 , 1 ) ” , ”WSSL( 0 , 1 , 0 . 2 , 3 ) ” ,

”WSSL( 0 , 1 , 0 . 5 , 2 ) ” , ”WSSL( 0 , 1 , 0 . 9 , 5 ) ” ) , bty=”n” ,

c o l=c (” orange ” ,” green ” ,” sky blue ” ,” red ”) , l t y=c (1 , 1 , 1 , 1 ) , nco l =1)

#Skew contaminated normal pdf

s s ln<−f unc t i on ( y ) dSKD(y , mu = 0 , sigma = 1 , p = 0 . 5 ,

d i s t = ” cont ” , nu = 0 . 1 , gama=0.2)

s sn l1<−f unc t i on ( y ) dSKD(y , mu = 0 , sigma = 1 , p = 0 . 2 ,
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d i s t = ” cont ” , nu = 0 . 3 , gama=0.1)

s sn l2<−f unc t i on ( y ) dSKD(y , mu = 0 , sigma = 1 , p = 0 . 3 ,

d i s t = ” cont ” , nu = 0 . 2 , gama=0.4)

s sn l3<−f unc t i on ( y ) dSKD(y , mu = 0 , sigma = 1 , p = 0 . 9 ,

d i s t = ” cont ” , nu = 0 . 5 , gama=0.2)

s sn l4<−f unc t i on ( y ) dSKD(y , mu = 0 , sigma = 1 , p = 0 . 2 ,

d i s t = ” cont ” , nu = 0 . 7 , gama=0.9)

curve ( s s ln , from = −10, to = 10 , ylim=c ( 0 , 0 . 4 ) ,

c o l = ” orange ” , ylab = ”SCN” , lwd = 1)

curve ( s sn l1 , from = −10, to = 10 ,

c o l = ” green ” , add = TRUE, lwd = 1)

curve ( s sn l2 , from = −10, to = 10 ,

c o l = ”sky blue ” , add = TRUE, lwd = 1)

curve ( s sn l3 , from = −10, to = 10 ,

c o l = ” red ” , add = TRUE, lwd = 1)

curve ( s sn l4 , from = −10, to = 10 ,

c o l = ” purple ” , add = TRUE, lwd = 1)

a b l i n e ( v=0, l t y =1,add=TRUE, lwd=1)

legend (” top r i gh t ” , l egend=c (”SCN( 0 , 1 , 0 . 5 , 0 . 1 , 0 . 2 ) ” ,

”SCN( 0 , 1 , 0 . 2 , 0 . 3 , 0 . 1 ) ” ,

”SCN( 0 , 1 , 0 . 3 , 0 . 2 , 0 . 4 ) ” , ”SCN( 0 , 1 , 0 . 9 , 0 . 5 , 0 . 2 ) ” ,

”SCN( 0 , 1 , 0 . 2 , 0 . 7 , 0 . 9 ) ” ) ,

bty=”n” , c o l=c (” orange ” ,” green ” ,” sky blue ” ,” red ” , ” purple ”) ,

l t y=c (1 , 1 , 1 , 1 ) , nco l =1)

#wrapped SCN

curve . c i r c u l a r ( s s ln , c o l=”orange ” , shr ink =1.3 , lwd=1, l t y =1)

curve . c i r c u l a r ( s sn l1 , c o l=”green ” , lwd=1,add=TRUE, l t y =1)

curve . c i r c u l a r ( s sn l2 , c o l=”sky blue ” , lwd=1,add=TRUE, l t y =1)

curve . c i r c u l a r ( s sn l3 , c o l=”red ” , lwd=1,add=TRUE, l t y =1)
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curve . c i r c u l a r ( s sn l4 , c o l=”purple ” , lwd=1,add=TRUE, l t y =1)

legend ( −4 .5 ,0 .2 , l egend=c (”WSCN( 0 , 1 , 0 . 5 , 0 . 1 , 0 . 2 ) ” , ”WSCN( 0 , 1 , 0 . 2 , 0 . 3 , 0 . 1 ) ” ,

”WSCN( 0 , 1 , 0 . 3 , 0 . 2 , 0 . 4 ) ” , ”WSCN( 0 , 1 , 0 . 9 , 0 . 5 , 0 . 2 ) ” ,

”WSCN( 0 , 1 , 0 . 2 , 0 . 7 , 0 . 9 ) ” ) ,

bty=”n” , c o l=c (” orange ” ,” green ” ,” sky blue ” ,” red ” ,” purple ”) ,

l t y=c (1 , 1 , 1 , 1 ) , nco l =1)

B.3.2 Estimates, standard errors and AIC values for the WStN,

WSSL and WSCN

#WStN

l i b r a r y ( NPCirc )

l i b r a r y (Wrapped)

l i b r a r y ( sn )

l i b r a r y ( c i r c u l a r )

l i b r a r y (BayesCR)

l i b r a r y ( l q r )

l i b r a r y (VGAM)

#data from the NPCirc package

data (” speed . wind ”)

s e t . seed (2 )

sample wind <− sample ( speed . wind$Direct ion , s i z e =1000 , r e p l a c e =F)

x1 <− sample wind

x2 = x1%%(2∗pi )

x =na . exc lude ( x2 )

#wrapped skew student t

mw=mwrappedg (” s t ” , data = x , s t a r t s = c ( 0 , 1 , 0 . 4 , 0 . 4 ) ,

K = 2 , method = ”BFGS”)
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mw

#Standarderror ( exc lud ing NA va lues )

SE1=mw$Estimates [ 1 , 2 ] / s q r t (984)

SE1

SE2=mw$Estimates [ 2 , 2 ] / s q r t (984)

SE2

SE3=mw$Estimates [ 3 , 2 ] / s q r t (984)

SE3

SE4=mw$Estimates [ 4 , 2 ] / s q r t (984)

SE4

#AIC c a l c u l a t i o n

aicwn <− 2∗( mw$Measures [7 ]−4)

aicwn

#BIC

bicwn <− 2∗( mw$Measures [7 ])− l og (984)∗4

bicwn

#WSSL

mu <− 0

sigma <− 1

p <− 0 .5

nu <− 1

a1 <− sample wind

a2 <− a1%%(2∗pi )

a =na . exc lude ( x2 )
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logwsn <− f unc t i on ( par , theta )

−sum( log ( c i r c u l a r (dSKD( theta , mu = par [ 1 ] , sigma = par [ 2 ] ,

p = par [ 3 ] , d i s t = ” s l a s h ” , nu = par [ 4 ] ) ) ) )

Opt = optim ( par = c (mu, sigma , p , nu ) , fn = logwsn ,

method = c (”L−BFGS−B”) , theta = a , lower = c (0 , 1 , 0 . 0 1 , 0 . 0 1 ) ,

upper = c (10 , 10 , 0 . 999 , 10 ) , he s s i an = TRUE)

Opt$val

Opt$par

s t anda rde r r o r s = s q r t ( abs ( diag ( s o l v e (−Opt$hess ian ) ) ) )

s t anda rde r r o r s

aicwsn <− 2∗( Opt$val−4)

aicwsn

bicwn <− 2∗( Opt$val)− l og (984)∗4

bicwn

#WSCN

mu <− 0

sigma <− 1

p <− 0 .1

nu <− 0 .1

gama <− 0 .1

a1 <− sample wind

a2 <− a1%%(2∗pi )
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a =na . exc lude ( x2 )

logwsn <− f unc t i on ( par , theta )

−sum( log (dSKD( theta , mu = par [ 1 ] , sigma = par [ 2 ] , p = par [ 3 ] ,

d i s t = ” cont ” , nu = par [ 4 ] , gama = par [ 5 ] ) ) )

logwsn ( par = c (mu, sigma , p , nu , gama ) , a )

Opt = optim ( par = c (mu, sigma , p , nu , gama ) , fn = logwsn ,

method = c (”L−BFGS−B”) , theta = a ,

lower = c (0 , 1 , 0 . 0 0 0 1 , 0 . 0 1 , 0 . 0 1 ) ,

upper = c ( 1 0 , 1 0 , 0 . 9 9 , 0 . 9 9 , 0 . 9 9 ) , he s s i an = TRUE)

Opt$val

Opt$par

s t anda rde r r o r s = s q r t ( abs ( diag ( s o l v e (−Opt$hess ian ) ) ) )

s t anda rde r r o r s

aicwscn <− 2∗( Opt$value−5)

aicwscn

bicwscn <− 2∗( Opt$value)− l og (984)∗5

bicwscn

B.3.3 Raw circular data plot with the WStN, WSSL and WSCN

PDF fitted by MLE

l i b r a r y ( NPCirc )

l i b r a r y ( c i r c u l a r )

l i b r a r y (Wrapped)

data (” speed . wind ”)
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s e t . seed (2 )

sample wind <− sample ( speed . wind$Direct ion , s i z e =1000 , r e p l a c e =F)

#Rose diagram of data

d i r <− c i r c u l a r ( sample wind , un i t s=”degree s ” , template=”geograph i c s ”)

p l o t ( d i r , s tack=TRUE, shr ink = 1 . 1 )

ro s e . d iag ( dir , b ins =8, add=TRUE)

wstn <− f unc t i on ( x ) dwrappedg (x , ” s t ” , x i= −1.4591276 ,

omega=2.3584247 , alpha =−0.2502062 ,nu=34.5768341 ,K=100)

p l o t . f unc t i on . c i r c u l a r ( wstn , add=TRUE, lwd=1, c o l =2, l t y=1 )

wssl<− f unc t i on ( x ) dSKD(x , mu = 5.2001005 , sigma = 1 ,

p =0.8130232 , d i s t = ” s l a s h ” , nu = 10)

p l o t . f unc t i on . c i r c u l a r ( wssl , add=TRUE, lwd=1, c o l =3, l t y=1 )

wscn<− f unc t i on ( x ) dSKD(x , mu = 5.2618865 , sigma = 1 .000 ,

p = 0.8240806 , d i s t = ” cont ” , nu = 0 .010 , gama=0.990)

p l o t . f unc t i on . c i r c u l a r ( wscn , add=TRUE, lwd=1, c o l =4, l t y=1 )

legend ( −2 .8 ,1 .2 , l egend=c (”WStN” ,”WSSL” ,”WSCN”) ,

c o l=c (” red ” ,” green ” ,” blue ”) ,

bty=”n” , l t y=c (1 , 1 , 1 ) , nco l =1)
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Appendix C

Acronyms and symbols used

This Appendix contains a list of acronyms and symbols used throughout the study.

Acronyms

AIC Akaike information criterion

BIC Bayesian information criterion

CDF Cumulative distribution function

CF Characteristic function

ECDF Empirical cumulative distribution function

EPDF Empirical probability distribution function

FGSN Flexible generalised skew-normal

MGF Moment generating function

ML Maximum likelihood

MLE Maximum likelihood estimation

PDF Probability distribution function
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StN Skew-Student-t normal

SCN Skew-contaminated normal

SMN Scale mixtures of normal

SN Skew-normal

SSL Skew-slash

SSMN Skew scale mixtures of normal

WFGSN Wrapped flexible generalised skew-normal

WN Wrapped normal

WStN Wrapped skew-Student-t normal

WSCN Wrapped skew-contaminated normal

WSN Wrapped skew-normal

WSSL Wrapped skew-slash

WSSMN Wrapped skew scale mixtures of normal

Symbols

R real number

R+ positive real number

(.)T transpose of a vector
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