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Abstract

This study emanates from a practical problem in the statistical process control (SPC) environment where
the quality of a process is monitored. Speci�cally, where the variance of a process is being assessed to be the
same for all samples. In the traditional SPC environment the parameters of the underlying manufacturing
process are usually assumed to be known. If, however, they are not known, they need to be estimated.
Estimating these parameters and using them in control charts has many associated problems, especially
when the samples that are used to calculate the estimates contain few data points. This study proposes
a new control chart that is used to detect a shift in the process's variance, but that does not directly rely
on parameter estimates, and as such overcomes many of these problem. The development of this newly
proposed control chart gives rise to a new beta type distribution. An overview of the problem statement
as identi�ed in the �eld of SPC is given and the newly developed beta type distribution is proposed.
Some statistical properties of this distribution are studied and the e�ect of di�erent parameter choices on
the shape of the distribution are investigated, with the focus speci�cally on the bivariate case. Through
simulation, a comparison study is also performed, comparing the newly proposed model with a generalised
version of the Q chart model, which was studied in depth by Adamski (2014).

Keywords Gamma Multivariate beta Shift in process variance Statistical Process Control

MSC 62E15 62H10 60E05
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Chapter 1

Introduction

This study emanates from a practical problem in the statistical process control (SPC) environment where
the quality of a process is monitored. In SPC the main goal is the detection and elimination of unwanted
variation in the production process, speci�cally when a process moves from an �in control� (IC) state to
an �out of control� (OOC) state. A process can move from IC to OOC if the process location and/or the
process spread experience a change. This is alternatively referred to as a �shift� in the process mean and/or
the process variance. Over the past century many methods have been developed by various authors to aid
in the detection of these shifts. One of the most common methods applied in detecting these shifts is the
control chart, where the control chart is a graphical representation used to monitor some attribute of a
process (such as the mean or variance) over time. The aim of a control chart is to determine whether a
process is IC or OOC.

A control chart is a graphical display of successive values of a summary measure (called the charting/plot-
ting statistic), calculated from samples of measurements taken on key quality characteristics, and plotted
on the vertical axis of a graph against the sample number/time on the horizontal axis. The control chart
traditionally has a centre line (CL) and two additional horizontal lines, one below the CL called the lower
control limit (LCL) and one above called the upper control limit (UCL). Traditionally, if all of the charting
statistics fall between the LCL and UCL the process is deemed to be IC, and if one of the charting statistics
falls below LCL or above the UCL respectively the process is said to be OOC, and the control chart is
said to �signal�. Note that the description of control charts given above is meant as a general introduction.
Many additions and alterations have been proposed to the standard control chart described above, with
some bearing only a slight resemblance to what has been described. (An IC process is depicted in Figure
1.1.)

6
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CHAPTER 1. INTRODUCTION 7

Figure 1.1: IC control chart.

The importance of establishing correct and accurate control limits should be obvious, but cannot be
overstated. Having control limits that are overly conservative (narrow) will increase the probability of a
control chart signaling that a process has gone OOC when indeed it has not, leading to an in�ated type
1 error. However having lenient (wide) control limits will lead to decreased sensitivity in signaling when a
process has indeed gone OOC and thus in�ates the type 2 error of the procedure. Analytically calculating
the true values of the control limits invariably involves the distribution of the charting statistics in some
way. A �ow diagram of the method used to derive charting statistics and the control limits, in a general
parametric case, is given in Figure 1.2.
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CHAPTER 1. INTRODUCTION 8

Figure 1.2: SPC derivation process (1).

Note that in general Fθ 6= Gθ 6= Hθ, although in some special cases the distributions may be the same.
It should also be noted that Hθ depends on Gθ and Gθ depends on Fθ. In other words the distribution
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CHAPTER 1. INTRODUCTION 9

of the charting statistics depends on the distribution of the sample statistics and the distribution of the
sample statistic depends on the underlying process distribution. The construction of parametric control
charts generally follow the method depicted in the �ow diagram above (Figure 1.2). Also note that while
Xij and Ti are assumed to be i.i.d., this is not necessarily the case for Zi. In the speci�c model that this
study proposes, Zi values are dependent non-identically distributed.

Some of the most notable, and commonly used control charts, are the Shewhart X̄ and S control charts
developed by Shewhart and Deming [51] (which are based on rational subgroups of data), the exponentially
weighted moving average (EWMA) chart developed by Roberts [50] and the cumulative sum (CUSUM)
chart which was �rst proposed by Page [46] (the latter two are traditionally based on individual observa-
tions). The practical uses of these charts vary, but in essence they are all parametric control charts that
are used to detect unwanted variation in the production process. Typically the Shewhart charts are used
to detect shifts larger than 1.5σ (where σ is the standard deviation of the process being monitored), while
the EWMA and CUSUM charts are used to detect shifts smaller than 1.5σ. While a detailed discussion
of these various charts is beyond the scope of this study, it should be noted that these control charting
methods traditionally all assume that the true values of process parameters (θ in Figure 1.2) are known
exactly. In other words, the assumption is made that process parameters, and thus the expected value and
variance of the process, are not random variables. In practice, however, this is hardly ever the case, and
these parameters need to be estimated.

If the expected value and variance of a process cannot be assumed to be known, then a two-phase approach
is traditionally applied. During the �rst phase, commonly called �phase I� or the �retrospective phase�,
samples are drawn, and using these data points, parameters (like the mean and variance) are estimated,
and charting statistics and trial control limits are calculated. If a charting statistic plots outside these
control limits, the process will be deemed to be OOC. If this occurs, an investigation is conducted into
potential causes for the process becoming OOC. If any causes can be found and eliminated, this is done,
and any sample data that were a�ected by this change in the process are discarded. Revised parameter
estimates and control limits are then calculated using the smaller data set. This process is repeated until
all of the charting statistics fall within the control limits (i.e. until the trial process is deemed to be IC).
When this occurs, all the remaining sample data is deemed to come from an IC process. Shewhart [52],
p76 wrote, and Jensen et al. [25] reiterated, that �In the majority of practical instances, the most di�cult
job of all is to choose the sample that is to be used as a basis for establishing the tolerance range (control
limits)�. During �phase II� or the �prospective phase�, a new, �nal, set of control limits is calculated based
on the IC data set from phase I. A charting statistic is then calculated after each sample that is drawn
during the production process, and is compared against the �nal control limits that were established at the
start of phase II. If the charting statistic falls outside the control limits, there is strong reason to believe
that the process has gone OOC and the reason for this shift in process quality should be investigated.

Montgomery [34] and Quesenberry [48] recommended collecting at least 25 to 30 samples, each containing
at least 5 data points, during phase I, before acceptable estimates are obtained for use in phase II. However,
Jones et al. [27, 28] and Jensen et al. [25] pointed out that using estimated parameters, even when using
a moderate sample size, has an adverse e�ect on the performance of the control chart during phase II,
and reduces the sensitivity of the control chart in detecting changes when the process goes OOC. As such
a process is often dependent on very large historical data sets to ensure that the estimates are accurate
enough for practical use.
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CHAPTER 1. INTRODUCTION 10

Another problem with parameter estimation, which has been the focus of considerable study (see Cryer
and Ryan [12], Sullivan and Woodall [53], Vargas [56], Derman and Ross [14] and Cruthis and Rigdon [11])
is the determination of which parameter estimates are the best suited for various types of control charts.
While properties of the estimates, such as the mean square error (MSE), are usually used, another option
that has been considered is the ability of certain estimates to detect a shift during phase I.

The practicality of collecting enough data to calculate the parameter estimates is another potential problem.
The Shewhart, EWMA and CUSUM charts (that require a phase I analysis to gather data) may require
many samples (and thus time, e�ort and money) before reasonable parameter estimates and control limits
can be established to monitor phase II performance. Many processes, however, involve low-volume pro-
duction, or production where high-volume sampling is too expensive or impractical. For these processes it
is desirable to begin charting as early in the production process as possible, with limited if any historical
data, and thus the traditional control charts are not ideally suited. To address this problem, many new
�self-starting� control charts have been proposed. These charts continuously update their control limits and
parameter estimates as each new sample is obtained, eliminating the need for many large phase I samples.
The most commonly used of these charts are the self-starting CUSUM proposed by Hawkins [23] and the Q
charts proposed by Quesenberry [47, 48, 49]. A lot of study has been done into Q charts in particular (see
[47, 48, 49, 10]), and it has been found that one of the shortcomings of the chart is that if a shift occurs
early in the production process, and is not detected, the chart becomes �contaminated� with this OOC
data. This leads to an insensitivity in detecting shifts later on. This phenomenon is a common problem
with self-starting charts and is called �masking of shifts�.

To address these problems in the traditional control charts, this mini dissertation proposes and investigates
a new control chart procedure to detect a sustained shift in the process variance, and in doing so develops
a new multivariate beta distribution which can be seen to consist of ratios of linear combinations gamma
random variables.

1.1 Problem statement

Let (Xi1, Xi2, ..., Xini
) , i = 0, 1, 2, ...,m represent m + 1 independent samples each of size ni ≥ 2 taken on

a successive sequence of items. The order of these samples is important and cannot be re-ordered; in other
words, they have a set sequence corresponding to the order in which they were taken. Assume that these
values are i.i.d., having been collected from a N (µ, σ2) distribution where both µ and σ2 are unknown.
(The less general case, when the mean of the process, µ, is known but the variance , σ2, is unknown, is also
considered later). Assume that from some time κ∗, 0 < κ∗ < m onward, the process variance experiences
a single sustained shift from σ2 to σ2

1 = λσ2 where λ 6= 1 and λ > 0. In essence, σ2
1 is the process variance

after the process experiences the shift at time κ∗. This shift at time κ∗ occurs between two successive
samples and, for notional simplicity, the sample immediately after the shift in the process variance occurs
is called sample κ; therefore, from sample κ onward the process is considered to come from a N (µ, λσ2)
distribution, which is OOC (see Figure 1.3). It is assumed that the shift in the process variance does not
occur at some point during a sample, and thus an entire sample comes from the same distribution. The
values of κ∗ and λ are also assumed to be unknown, but deterministic in nature, i.e. not random variables.
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CHAPTER 1. INTRODUCTION 11

In practice only an increase in the variance would likely be of concern; in other words, λ > 1, since if
0 < λ < 1, the implication is that the process has become more stable. A very small variance might
indicate, however, that the measurement system is faulty, or that the measuring mechanism in no longer
accurate enough to detect the variance, since there will always be some inherent variability in the process.
An alternative way in which 0 < λ < 1 may occur is if the process is not in control when monitoring starts,
and after some time the process becomes more stable. This will result in the process variance decreasing.

Note

1. At least two samples need to be drawn for a potential shift between them to be possible. As such,
m ≥ 1, so that there are at least two samples.

2. The sample sizes,ni, need not stay constant between di�erent samples, thus there is the possibility
of having varying sample sizes between samples.

3. It was stated that each sample must consist of at least ni ≥ 2 observations. This restriction is
necessary since the process mean and variance are both assumed to be unknown and have to be
estimated. The sample variance with an estimated mean (see Equation (1.2)) by de�nition requires
at least two data points in order to potentially be non-zero. If, however, the process mean is known,
this restriction becomes ni ≥ 1 (see Equation (1.3)).

Figure 1.3: Process shift.

The problem of detecting a shift in the process variance, as mentioned above, has been addressed in a
myriad of ways by many authors. While many of the methods mentioned vary slightly in their practical
applications, in essence, they are all concerned with the detection of shifts in a process's variance. Human
et al. [24] proposed a methodology for detecting a shift in the variance based on the Shewhart-type
control chart. Lazariv et al. [30] monitored the variance of a process using the generalised likelihood ratio
approach, the sequential probability ratio method, a generalised sequential probability ratio procedure,
the Shiryaev�Roberts procedure and a generalised modi�ed Shiryaev�Roberts approach. Zafar et al. [59]
proposed using two-sided memory control charts, named progressive variance (PV) control charts, which
are based on the sample variance, to monitor changes in process's dispersion. Eyvazian et al. [18] used
exponentially weighted moving sample variance control charts (the variance analogue of the EWMA chart
mentioned above in Chapter 1). Castagliola and Maravelakis [9] used a CUSUM approach, and Adamski
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CHAPTER 1. INTRODUCTION 12

[1] proposed a method by which a closed form expression of the Q chart model (originally developed by
Quesenberry [47]) could be calculated.

Besides developing the initial distribution theory that is required to construct the new control chart to
detect a shift in the process variance, this study will also compare the performance of the newly proposed
model, to that of another method that has been used to detect a sustained shift in a process variance,
namely the Q chart model that was investigated in depth by Adamski [1].

1.2 Proposed methodology

What follows is the process that this study proposes in order to construct a new control chart which could
be used to detect a shift in a process's variance.

If both the process mean (µ) and variance (σ2) are unknown, they are estimated by the sample mean and
sample variance respectively:

X̄i =

∑ni

j=1Xij

ni

, i = 0, 1, 2, ...,m, (1.1)

S2
i =

1

ni − 1

ni∑
j=1

(
Xij − X̄i

)2
, i = 0, 1, 2, ...,m. (1.2)

If, however, the mean is a �xed/deterministic value, say µ0, but the variance is unknown, the variance is
estimated as follows:

S2
i =

1

ni

ni∑
j=1

(Xij − µ0)
2 , i = 0, 1, 2, ...,m. (1.3)

The problem of determining if a shift in the process variance has occurred can be divided into two segments,
namely before the potential shift and after, as indicated below.
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CHAPTER 1. INTRODUCTION 13

Before the shift

Samples: i = 0, 1, 2, ..., κ− 1

Distribution: Xij ∼ N (µ, σ2)

If the process mean is not known, then
(ni − 1)S2

i

σ2
∼ χ2 (ni − 1) . (1.4)

If the process mean is known, then
(ni)S

2
i

σ2
∼ χ2 (ni) . (1.5)

After the shift

Samples: i = κ, κ+ 1, ...,m

Distribution: Xij ∼ N (µ, σ2
1 = λσ2)

If the process mean is not known, then
(ni − 1)S2

i

σ2
1

∼ χ2 (ni − 1) . (1.6)

If the process mean is known, then
(ni)S

2
i

σ2
1

∼ χ2 (ni) . (1.7)

Where χ2 (α) is a chi-square random variable with α degrees of freedom, it's density function is de�ned in
the Appendix, Result 1. χ2 (α) can alternatively be expressed as a gamma random variable, Gamma

(
α
2
, 2
)
,

where the �rst parameter, α
2
, is known as the shape parameter, and the second parameter, 2, is known

as the scale parameter (see Bain and Engelhardt [5], pp268-269). The gamma random variable's density
function is de�ned in the Appendix, Result 2.

In essence, this newly proposed model compares all the sample variances before a certain point (where the
potential shift occurs), with all sample variances after the time of the shift. Thus, the procedure in general
can be described as follows:

S2
0 is compared with S2

1 , S
2
2 , ..., S

2
m

S2
0 , S

2
1 is compared with S2

2 , S
2
3 , ..., S

2
m

S2
0 , S

2
1 , S

2
2 is compared with S2

3 , S
2
4 , ..., S

2
m

and so forth until
S2
0 , S

2
1 , ..., S

2
m−1 is compared with S2

m.

(1.8)

If there are m+ 1 samples, and thus m+ 1 sample variances, there will be m di�erent comparisons made
to determine whether, and if so where, the process experiences a change in its variance.

The charting statistics and control limits of a control chart are always derived under the assumption of
the null hypothesis; (i.e. under the assumption that no shift in the process has occurred and thus that the
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CHAPTER 1. INTRODUCTION 14

process is IC). Assuming that no shift in the process variance has occurred, it is possible to construct a
series of two sample statistics that correspond to the general procedure described above in Equation (1.8).
Each statistic corresponds to whether at sample r = κ the two independent samples (the sample variances
before time r and the sample variances after and including time r) are from normal distributions with the
same unknown variance σ2. See Bain and Engelhardt[5] p402. This can alternatively be viewed as whether
σ2 = σ2

1, implying that λ = 1. As such, it follows that detecting a shift in the process variance can be
reduced to the following sequence of m hypothesis tests:

H0 : σ2 = σ2
1

HA : σ2 6= σ2
1

or alternatively

H0 : λ = 1
HA : λ 6= 1.

Note that the hypothesis tests described above correspond to detecting whether the process variance
experienced an upward or a downward shift. As stated in Section 1.1, practically speaking, only an
increase in the process variance will likely be of concern. If this is the case, the sequence of m hypothesis
tests become:

H0 : σ2 = σ2
1

HA : σ2 < σ2
1

or alternatively

H0 : λ = 1
HA : λ > 1.

The series of statistics (when both the process mean and variance are unknown) that make up the building
blocks of the proposed process are given by

U∗
r =

( ∑m
i=r(ni−1)S2

i

λσ2
∑m

i=r(ni−1)

)
(∑r−1

i=0 (ni−1)S2
i

σ2
∑r−1

i=0 (ni−1)

) , r = 1, 2, ...,m− 1,m. (1.9)

If the process mean is known in advance, these statistics look as follows:

U∗∗
r =

( ∑m
i=r niS

2
i

λσ2
∑m

i=r ni

)
(∑r−1

i=0 niS2
i

σ2
∑r−1

i=0 ni

) , r = 1, 2, ...,m− 1,m. (1.10)

In essence, the sample variances before the potential shift are pooled together, and the sample variances
after the potential shift are pooled together. The numerator of the statistic at time r is the average,
weighted by each statistic's degrees of freedom, of all the sample variances between and including times r
and m, while the denominator is the corresponding weighted average of all the sample variances between
and including times 0 and r − 1, as graphically presented in Figure 1.4.
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CHAPTER 1. INTRODUCTION 15

Figure 1.4: Building blocks.

Dividing both the numerator and the denominator by the variance of the process at that time ensures that
each statistic follows a known distribution under the null hypothesis:

From equations (1.9), (1.4) and (1.6), it follows that if no shift has occurred in the process variance,

U∗
r =

( ∑m
i=r

(
ni−1

)
S2
i

λσ2 ∑m
i=r

(
ni−1

))(∑r−1
i=0

(
ni−1

)
S2
i

σ2 ∑r−1
i=0

(
ni−1

)
) =

(∑m
i=r

(
ni−1

)
S2
i∑m

i=r

(
ni−1

) )(∑r−1
i=0

(
ni−1

)
S2
i∑r−1

i=0

(
ni−1

)
) , r = 1, 2, ...,m − 1,m and thus each statistic U∗

r is univariate F

distributed with
∑m

i=r (ni − 1) and
∑r−1

i=0 (ni − 1) degrees of freedom, respectively. See Bain and Engelhardt
[5] p275 and Result 3. Similarly, from equations (1.10), (1.5) and (1.7), it follows that if no shift has occurred

in the process variance, and the mean of the process is known, U∗∗
r =

( ∑m
i=r niS

2
i

λσ2 ∑m
i=r

ni

)
(∑r−1

i=0
niS

2
i

σ2 ∑r−1
i=0

ni

) =

(∑m
i=r niS

2
i∑m

i=r
ni

)
(∑r−1

i=0
niS

2
i∑r−1

i=0
ni

) , r =

1, 2, ...,m− 1,m and thus each statistic U∗∗
r is univariate F distributed with

∑m
i=r ni and

∑r−1
i=0 ni degrees

of freedom, respectively. See Bain and Engelhardt [5] p275 and Result 3. Thus, it follows that under the
null hypothesis, each of the statistics (whether the mean is known or not) follows an F distribution.

Note

1. To avoid redundancy in the study going forward, only the case where the mean of the process is
unknown will be discussed and considered. It should be obvious, however, that exchanging one case
for the other is a very simple procedure with the only di�erence being the degrees of freedom of the
respective chi-square or F distributions.

2. From this point onward the term �charting statistics� will be used interchangeably with �statistics�
for the statistics de�ned in Equation (1.9), since these statistics are analogous to the plotted points
in Figure 1.1.
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CHAPTER 1. INTRODUCTION 16

3. The statistics in equations (1.9) and (1.10) are in essence ratios of linear combinations of the sample
variances. In the derivation chapter of this study, Chapter 4, the degrees of freedom that the sample
variances are weighted by (

∑m
i=r (ni − 1) and

∑r−1
i=0 (ni − 1)) are removed. These factors are removed

since they do not contain any random variables, and to simplify the derivations as well as to reduce
the notational complexity. To indicate this omission of the factors the superscript * in Equation (1.9)
is dropped, and therefore the statistics of interest become

Ur =

∑m
i=r Yi∑r−1
i=0 Yi

, r = 1, 2, ...,m− 1,m, (1.11)

where Yi ∼ χ2 (ni − 1) , i = 0, 1, ...,m.

4. During the chapter where the control limits/critical values of the distribution are simulated, Chapter
5, these deterministic multiples are taken into account so as to give accurate, practically relevant
values. i.e. The statistics being simulated are those in Equation (1.9), not Equation (1.11).

The �rst three steps of the SPC derivation process, as seen in Figure 1.2, have been described up to this
point. Namely, the process distribution has been de�ned (Section 1.1), the sample process characteristic
has been decided upon and consequently the sample statistics have been selected (Equation (1.2)), and
lastly the charting statistics have been de�ned (Equation (1.9)). To illustrate this the SPC derivation
process �ow chart is updated with speci�c details from the proposed model (as it currently stands) in
Figure 1.5.
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CHAPTER 1. INTRODUCTION 17

Figure 1.5: Updated SPC derivation process (2).

Now that the charting statistics have been de�ned, all that is necessary to have a fully functioning control
chart is to derive the control limits. (Note that the term �control limits� is often used interchangeably
in the relevant literature, as well as in this study, with the term �critical values�.) These critical values
depend on the joint density function of the charting statistics in Equation (1.9). The joint density function
of u1, u2, ..., um, as well as some of its relevant properties are derived and investigated in Chapter 4. This is
the main focus of this study. Suppose, for the purpose of this proposed methodology, that f (u∗

1, u
∗
2, ..., u

∗
m)

is the joint density function of the charting statistics in Equation (1.9) and that F (u∗
1, u

∗
2, ..., u

∗
m) is the

cumulative distribution function.

The reasoning behind the critical values that this study proposes is justi�ed by inspecting the sequence of
charting statistics in Equation (1.9). Suppose that an increase in the process variance does indeed occur
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CHAPTER 1. INTRODUCTION 18

at time r = κ∗, then:

• The statistic U∗
r 's numerator will contain only sample variances that come from a N (µ, λσ2) , λ > 1

distribution, whereas the denominator will contain only sample variances that come from a N (µ, σ2)
distribution.

• If k1 is some integer value such that 1 ≤ r−k1 < r, then statistic U∗
r−k1

=

 ∑r−1
i=r−k1

(
ni−1

)
S2
i +

∑m
i=r

(
ni−1

)
S2
i

λσ2
(∑r−1

i=r−k1

(
ni−1

)
+
∑m

i=r

(
ni−1

))


(∑r−k1−1
i=0

(
ni−1

)
S2
i

σ2 ∑r−k1−1
i=0

(
ni−1

)
)

will contain k1 sample variances in its numerator that are from a N (µ, σ2) distribution. This will
reduce the weighted average of the sample variances in U∗

r−k1
's numerator in comparison to the

numerator of U∗
r .

• Similarly, if k2 is some integer value such that r < r+k2 ≤ m, then statistic U∗
r+k2

=

( ∑m
i=r+k2

(
ni−1

)
S2
i

λσ2 ∑m
i=r+k2

(
ni−1

)
)

∑r−1
i=0

(
ni−1

)
S2
i
+
∑r+k2−1

i=r

(
ni−1

)
S2
i

σ2
(∑r−1

i=0

(
ni−1

)
+
∑r+k2−1

i=r

(
ni−1

))


will contain k2 sample variances in its denominator that are from a N (µ, λσ2) distribution. This will
increase the weighted average of sample variances in U∗

r+k2
's denominator in comparison to the de-

nominator of U∗
r .

• Thus, any statistic other than the one immediately following the shift in the process variance, will
contain either smaller (on average) sample variances in its numerator, or larger (on average) sample
variances in its denominator. Either of these scenarios result in a high probability that all other
statistics are smaller relative to U∗

r .

• This leads to the conclusion that the most probable place where an upwards shift in the process
variance will be detected is at the statistic immediately following the shift. The value that this statistic
assumes also has a high likelihood of being the maximum value of all the U∗

r , r = 1, 2, ...,m − 1,m
statistics.

• As such, the most reasonable method of calculating the critical value (to detect an upwards shift in
the process variance) of the control chart is to calculate the maximum order statistic of the charting
statistics U∗

r , r = 1, 2, ...,m− 1,m, (under the null hypothesis) and to set the critical value equal to
some percentile of the cumulative distribution function of the maximum order statistic.

Using a similar but inverted argument, it can be justi�ed that the critical value of the control chart should
be set equal to some percentile of the minimum order statistic of the charting statistics, under the null
hypothesis of no shift having occurred if the detection of a downward shift in the process variance is of
concern.

Deriving the order statistics of the statistics in Equation (1.9) is a complex task due to the way in which
the statistics are de�ned. Since the series of statistics in Equation (1.9) (or alternatively Equation (1.11))
are neither independent nor identically distributed, the process of �nding the order statistics is drastically
more complex in comparison to the i.i.d. case, and as such is beyond the scope of this study. Values for the
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CHAPTER 1. INTRODUCTION 19

95th percentile of the maximum order statistics are simulated though, in Chapter 5, for varying numbers
of samples and sample sizes, so that the proposed control chart may be practically applicable.

The SPC derivation process �ow chart is updated a �nal time in Figure 1.6 to concisely illustrate the main
focus of work that is done in this study.

Figure 1.6: Updated SPC derivation process (3).

Although analytically calculating the order statistics (and consequently the critical values) is outside the
scope of this mini dissertation, references to potential methods that could be used to derive the order
statistics are provided. Methods to calculate dependent non-identically distributed order statistics have
been proposed by David and Nagaraja [13], Barakat [7] and Güngör et al. [20]. Yiyu et al [58] also proposed
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CHAPTER 1. INTRODUCTION 20

an algorithm by which the order statistics could be computed if traditional Monte Carlo simulation proved
to be ine�ective or too computation-intensive. In general, the method of deriving the order statistics in the
dependent non-identically distributed case (as proposed by David and Nagaraja [13] and expanded upon
by Güngör et al. [20]) looks as follows:

1. Suppose that U∗
r , r = 1, 2, ...,m−1,m is a set of dependent variables with joint cumulative distribution

function F (u∗
1, u

∗
2, ..., u

∗
m). Suppose that U

∗
1:m ≤ U∗

2:m ≤ ... ≤ U∗
m−1:m ≤ U∗

m:m is the corresponding set
of order statistics and that Fr:m (x) is the notation used for the cumulative distribution function of
the rth order statistic out of m possibilities (the cumulative distribution function of U∗

r:m), at point
x. The order statistics can then be calculated using the equations below:

2. De�ne F
(ij+1,...,im)
j:j (x) = P

(
max

(
U∗
i1
, U∗

i2
, ..., U∗

ij

)
≤ x

)
. In other words F

(ij+1,...,im)
j:j (x) is the cumu-

lative distribution function of the maximum order statistic, given that U∗
ij+1

, U∗
ij+2

, ..., U∗
im have all

been dropped from the sample.

3. Then it is given in David and Nagaraja [13] that

Fr:m (x) = P (U∗
r:m ≤ x)

=
m∑
j=r

(−1)j−r

(
j − 1
r − 1

) ∑
1≤ij+1<ij+2<...<im≤m

F
(ij+1,...,im)
j:j . (1.12)

Generalisations to Equation (1.12) have been developed by Maurer and Margolin [32] as well as by Barakat
[7]. The expression for the order statistics given by Güngör et al. [20] is more simple, but assumes that
there must be a discontinuity at point x in Equation (1.12). David and Nagaraja [13] also noted that
a reasonably simple expressions for the cumulative distribution function of the order statistics may be
possible if the statistics u∗

1, u
∗
2, ..., u

∗
m are exchangeable; unfortunately, due to the practical interpretation

of the statistics in an SPC environment, the statistics in Equation (1.9) are not exchangeable. As such,
deriving a closed form expression for Equation (1.12) is a complex process and is beyond the scope of

this study. Note however that the function F
(ij+1,...,im)
j:j (x) will depend on the joint density function of the

statistics U∗
r , r = 1, 2, ...,m− 1,m that is derived in Chapter 4 (without the deterministic multipliers).

1.3 Step by step breakdown and example

Breakdown

The process described above in Section 1.2 will now be broken down into practical steps and demonstrated
using an example. As has been previously stated, only an increase in the process variance will likely be of
practical concern, and thus it is the example that is provided for explanatory purposes.

Step 1: Draw samples from the production process and record the relevant measurements.

Step 2: For each sample, calculate the sample mean and sample variance, using equations (1.1) and (1.2)
respectively.
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CHAPTER 1. INTRODUCTION 21

Step 3: Calculate the series of charting statistics, using Equation (1.9). (Note that the �rst sample variance
does not have an accompanying charting statistic.)

Step 4: Compare the largest statistic's value with the value in the simulated reference table, Table 5.2 in
Chapter 5, for the respective sample number and sample size.

Step 5: If the sample statistic's value is larger than the critical value in the table, it is likely that a shift
in the process variance has indeed occurred.

Example

Suppose that 20 samples are drawn, each of size 5, with the �rst 10 samples coming from a N (10, 1) distri-
bution. Between the tenth and eleventh samples the process variance changes and the process distribution
becomes N (10, 2) . Table 1.1 contains the simulated data set as well as the sample variance and statistics
at each time, with the sample variances and statistics rounded to three decimal places.

Sample (i) Xi1 Xi2 Xi3 Xi4 Xi5

0 9.479599256 10.56691524 9.644227827 9.922192028 8.044010508
1 10.47194441 11.51790471 11.74472233 10.18951674 8.404691508
2 10.58891577 11.87454682 10.36923275 8.564766567 9.18642507
3 10.00081471 9.891379517 9.797217375 10.21570997 10.09582396
4 9.997518836 8.492887577 9.988882093 9.699631678 10.12378723
5 9.319976293 9.530450784 8.873042307 9.075308429 9.844033462
6 11.37215805 9.460822493 9.950656515 9.351992745 10.1385974
7 9.495036039 11.14637131 8.937737897 11.12620794 10.78840213
8 9.423366203 10.75234038 10.67888261 9.396195898 10.5978987
9 10.56624601 10.32832171 10.50961135 9.101225395 9.610517548
10 10.26408665 11.54398765 10.08200336 9.289054774 9.391387216
11 7.970629009 11.0515601 10.54150721 6.650280932 7.196981595
12 6.859576928 11.67550834 14.23916062 8.506222474 7.210240772
13 9.647151931 7.684586804 6.895711418 10.10194056 10.53416521
14 8.251119191 6.412758839 12.78404927 5.002383216 11.59927779
15 12.08430764 9.997772064 11.47053094 10.92906678 10.34158227
16 12.42280402 9.15204892 8.567232875 8.319021087 12.41161476
17 8.885708032 8.011719555 7.156831946 9.591389856 6.115358978
18 8.268276112 11.86606195 9.385458771 8.867808556 13.14192198
19 9.446564676 8.547714646 6.450908873 10.28868587 10.62451621

Statistic (r) S2
r U∗

r

0.863 NA
1 1.767 2.994
2 1.663 2.000
3 0.027 1.878
4 0.450 2.642
5 0.145 3.159
6 0.650 3.929
7 1.035 4.297
8 0.484 4.381
9 0.411 4.953
10 0.818 5.667
11 3.978 6.125
12 10.050 4.599
13 2.535 2.297
14 11.033 2.354
15 0.708 1.175
16 4.283 1.459
17 1.892 1.257
18 4.386 1.510
19 2.794 1.125

Table 1.1: Simulated data and statistics - Proposed method.
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CHAPTER 1. INTRODUCTION 22

From Table 5.2 in Chapter 5, it follows that the 95th percentile of the maximum order statistic, of the
statistics in Equation (1.9), for m + 1 = 20 samples, each of size n = 5, is 5.863. Since the largest
calculated statistic is U∗

11 = 6.125, there is clear evidence to suggest that the process has indeed experienced
an increase in its variance. In Figure 1.7 the charting statistics based on the simulated data in Table 1.1
are plotted. The red horizontal line corresponds to the critical value of 5.863, and the blue vertical line is
a reference indicating when the process variance experienced the change.

Figure 1.7: Proposed control chart example.

As can be seen, for this speci�c simulated data set, the control chart does indeed achieve its maximum
charting statistic immediately after the change in the process variance, and the control chart does signal
that a shift in the process variance occurred.

1.4 Methodology of Q chart

For completeness' sake, the charting statistics that were used and studied in depth by Adamski [1], which
lead to a generalised beta distribution, are now shown and brie�y described, as they will be applicable
later on in this study, in chapters 2, 3 and 5.

The Q chart model studied by Adamski [1] emanates from a practical problem very similar to the one that
this study researches. As such, the description of the process going from an IC state to an OOC state, as
described in Section 1.1, is still applicable. The di�erence in methodology lies mainly in the way the Q
chart is implemented and in the way sample variances are compared.
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CHAPTER 1. INTRODUCTION 23

In the Q chart, an initial sample is drawn and is used to establish a base line value of the sample variance.
A second sample is then drawn and compared to the �rst. If it is found that the �rst and second samples
come from normal distributions with the same unknown variance σ2, a third sample is drawn and compared
to the weighted average of the �rst two samples. If the third sample is yet again found to come from a
normal distribution with the same unknown variance, σ2, as the previous pooled variances, this process is
repeated, until a sample variance is found to come from a normal distribution with a di�erent unknown
variance than its pooled predecessors, and the process is deemed to be OOC. As such, the comparisons
made between the sample variances look as follows:

S2
1 is compared with S2

0

S2
2 is compared with S2

0 , S
2
1

S2
3 is compared with S2

0 , S
2
1 , S

2
2

and so forth until
S2
m is compared with S2

0 , S
2
1 , ..., S

2
m−1.

(1.13)

Thus, once again, if there are m + 1 samples and m + 1 sample variances, there will be m di�erent
comparisons made to determine whether, and if so where, process experiences a change in variance.

Assuming that no shift in the process variance has occurred, it is possible to construct a series of two
sample statistics that correspond to the general procedure described above in Equation (1.13). Each
statistic corresponds to whether at sample r = κ, the two independent samples (the sample variances
before time r and the sample variances after time r) are from normal distributions with the same unknown
variance σ2. (See Bain and Engelhardt[5] p402.) This can alternatively be viewed as whether σ2

1 = σ2,
implying that λ = 1. As such, it follows that detecting a shift in the process variance can again be reduced
to the following sequence of m hypothesis tests:

H0 : σ2 = σ2
1

HA : σ2 6= σ2
1

or alternatively

H0 : λ = 1
HA : λ 6= 1.

Note that the hypothesis tests described above correspond to detecting whether the process variance
experienced an upward or a downward shift. As stated in Section 1.1, practically speaking, only an
increase in the process variance will likely be of concern. If this is the case, the sequence of m hypothesis
tests become:

H0 : σ2 = σ2
1

HA : σ2 < σ2
1

or alternatively

H0 : λ = 1
HA : λ > 1.
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CHAPTER 1. INTRODUCTION 24

The series of statistics that make up the building blocks of the Adamski [1] distribution are given by

T ∗∗
r =

(
nrS2

r

σ2nr

)
( ∑r−1

i=0 niS2
i

λσ2
∑r−1

i=0 ni

) , r = 1, 2, ...,m− 1,m. (1.14)

Adamski [1] assumed that the mean of the underlying process was known. If this is not the case and the
sample mean has to be estimated, the degrees of freedom merely change and the statistics become:

T ∗
r =

(
(nr−1)S2

r

σ2(nr−1)

)
( ∑r−1

i=0 (ni−1)S2
i

λσ2
∑r−1

i=0 (ni−1)

) , r = 1, 2, ...,m− 1,m. (1.15)

For a graphical representation of the statistics in Equation (1.15), see Figure 1.8.

Note that these charting statistics are set up under the null hypothesis (i.e. under the assumption that no
shift in the process variance has occurred). If this is the case, then the statistics de�ned by Adamski [1]
are known to follow F distributions. Each T ∗∗

r statistic is F distributed with nr and
∑r−1

i=0 (ni) degrees of
freedom respectively, whereas each T ∗

r statistic is F distributed with nr − 1 and
∑r−1

i=0 (ni − 1) degrees of
freedom respectively. (See Bain and Engelhardt [5] p275.)

Figure 1.8: Q chart statistics.

The potential for �masking of shifts� to occur with the Adamski [1] model should be apparent. For example,
if the statistic at time r indicates that no shift has occurred, when indeed it has, the OOC sample variance
will be included in the next statistic's denominator. If, for instance, there was in increase in the process
variance, the next statistic's denominator will be in�ated resulting in an arti�cially shrunk test statistic,
decreasing the chance of detecting the shift. This result was �rst observed by Quesenberry [47], and is
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CHAPTER 1. INTRODUCTION 25

noted in Adamski [1], where they discerned that the probability of detecting a shift in the process is at its
highest immediately after the shift occurs, and before the masking e�ect can take place.

Note that the statistics in Equation (1.15) are again, in essence, the ratios of linear combinations of the
sample variances. As in Adamski [1], from this point onwards the degrees of freedom that the sample
variances are weighted by (nr and

∑r−1
i=0 (ni)) are removed. These factors are removed to simplify the

theoretical derivations and to deduce the notational complexity in Chapter 3. To indicate this omission of
the factors we drop the superscript * in Equation (1.15), and therefore the statistics of interest become:

Tr =
Yr∑r−1
i=0 Yi

, r = 1, 2, ...,m− 1,m, (1.16)

where Yi ∼ χ2 (ni − 1) , i = 0, 1, ...,m.

Note

1. During the chapter where the control limits/critical values of the distribution are simulated, Chapter
5, these deterministic multiples are taken into account so as to give accurate, practically relevant
values. i.e. the statistics being simulated are those in Equation (1.15), not Equation (1.16).

2. Since the practical application of the of the Adamski [1] distribution di�ers slightly from the appli-
cation that this study proposes, the critical values that were used in their study were derived in an
alternative way to the method proposed in Section 1.2. To make their model directly comparable
to the one that this study proposes, a new set of critical values are simulated in Chapter 5. The
proposed critical value of the Q chart in this study follows the same logic that is applied in Section
1.2, namely that the critical value is set to some percentile of the maximum order statistic of the
statistics in Equation (1.15). Values for the 95th percentile of these order statistics are simulated in
Chapter 5, Table 5.1.

Example

Using the data set from Table 1.1, it can be seen that the Q chart also detects the increase in the process
variance. The obvious di�erence between the two methodologies being that, while it took the Q chart two
samples after the shift had occurred to detect the shift in the process variance (see Figure 1.9), the newly
proposed methodology detected the shift after a single sample. Note, however, that this observation is made
based on a single data set, and as such is insu�cient to make general statements about the comparative
e�cacy of the two competing models. A much more thorough comparison is made in Chapter 5.
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Sample (r) Xr1 Xr2 Xr3 Xr4 Xr5 S2
r U∗

r

0 9.479599256 10.56691524 9.644227827 9.922192028 8.044010508 0.863 NA
1 10.47194441 11.51790471 11.74472233 10.18951674 8.404691508 1.767 2.047
2 10.58891577 11.87454682 10.36923275 8.564766567 9.18642507 1.663 1.264
3 10.00081471 9.891379517 9.797217375 10.21570997 10.09582396 0.027 0.019
4 9.997518836 8.492887577 9.988882093 9.699631678 10.12378723 0.450 0.417
5 9.319976293 9.530450784 8.873042307 9.075308429 9.844033462 0.145 0.152
6 11.37215805 9.460822493 9.950656515 9.351992745 10.1385974 0.650 0.794
7 9.495036039 11.14637131 8.937737897 11.12620794 10.78840213 1.035 1.302
8 9.423366203 10.75234038 10.67888261 9.396195898 10.5978987 0.484 0.587
9 10.56624601 10.32832171 10.50961135 9.101225395 9.610517548 0.411 0.522
10 10.26408665 11.54398765 10.08200336 9.289054774 9.391387216 0.818 1.091
11 7.970629009 11.0515601 10.54150721 6.650280932 7.196981595 3.978 5.264
12 6.859576928 11.67550834 14.23916062 8.506222474 7.210240772 10.050 9.812
13 9.647151931 7.684586804 6.895711418 10.10194056 10.53416521 2.535 1.475
14 8.251119191 6.412758839 12.78404927 5.002383216 11.59927779 11.033 6.209
15 12.08430764 9.997772064 11.47053094 10.92906678 10.34158227 0.708 0.296
16 12.42280402 9.15204892 8.567232875 8.319021087 12.41161476 4.283 1.871
17 8.885708032 8.011719555 7.156831946 9.591389856 6.115358978 1.892 0.786
18 8.268276112 11.86606195 9.385458771 8.867808556 13.14192198 4.386 1.845
19 9.446564676 8.547714646 6.450908873 10.28868587 10.62451621 2.794 1.125

Table 1.2: Simulated data and statistics - Q chart.

Figure 1.9: Q chart of simulated data.
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CHAPTER 1. INTRODUCTION 27

From Table 5.1 in Chapter 5, it follows that the 95th percentile of the maximum order statistic, of the
statistics in Equation (1.15), for m = 20 samples, each of size n = 5, is 7.688. Since the largest calculated
statistic is T ∗

12 = 9.812, there is clear evidence to suggest that the process has indeed experienced an
increase in its variance. In Figure 1.9 the charting statistics based on the simulated data in Table 1.2 are
plotted. The red horizontal line corresponds to the critical value of 7.688, and the blue vertical line is a
reference indicating when the process variance experienced the change.

1.5 Objectives

• Lay the initial distributional foundation needed for a closed form expression of the critical values of
the proposed model, as described in Section 1.1.

• Derive the joint density function of the statistics given in Equation (1.11), with a speci�c focus on
the bivariate case.

• Investigate the properties of the above mentioned joint density function, including the relationship
between the proposed function and many commonly used bivariate beta densities.

• Compare, through simulation, the e�cacy of the control chart this study proposes with that of
another self-starting chart, speci�cally the Q chart form investigated by Adamski [1].

1.6 Key contributions

• A new methodology is proposed to detect a shift in the variance of a process.

• A new bivariate beta distribution is added to the literature.

• The generalised bivariate beta distribution derived by Adamski [1] is further generalised.

• The relationships among some of most commonly used bivariate beta distributions is derived. These
relationships have never been published in such detail, and are of importance, especially during
theoretical derivations of complex bivariate beta distributions.

1.7 Study outline

• Chapter 2 serves as a short literature review of some of the most commonly used bivariate beta
distributions. It also shows that the model that this study proposes, as well as that of Adamski [1],
in the bivariate case, are beta distributions. Relationships between all of the mentioned distributions
are derived and presented in a graphical manner.

• In Chapter 3 the �generalised beta distribution� derived by Adamski [1] is further generalised. The
distribution was originally derived in terms of chi-square random variables. This study derives it
in terms of gamma random variables. The reason for this is primarily the extra �exibility gained
by using gamma random variables, each with two parameters, in contrast to the chi-square random
variables, each with only one parameter. This added �exibility will facilitate the ease with which their
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model can be compared with the one that this study proposes, as well as to enable the hypothesis
being investigated to be easily varied. While the multivariate case is derived and some special cases
are given, the focus will mainly be on the bivariate case and its associated properties.

• Chapter 4 deals with the joint density function which emanates from Equation (1.11). Initially,
the bivariate joint density function is derived, and followed by its marginal densities, conditional
densities and the product moment. These are accompanied by exploratory shape analyses. Lastly
the multivariate joint density function is derived. Special cases are again presented.

Note that chapters 2 to 4 focus mainly on bivariate distributions. There are many reasons why
the focus of this study throughout is mainly on the bivariate cases. The primary one being that
focusing on the bivariate cases dramatically reduces the complexity of the theoretical derivations,
while allowing insights into the behaviour and properties of the distributions. The methods used
during the bivariate derivations are also likely to be similar in nature to the methods required during
higher dimensional derivations. Focusing on the bivariate case also allows graphical representations
of the distributions to be plotted, which would be impossible for higher dimensions. Another bene�t
of working with only two dimensions is that there is a vast amount of literature on other types
of bivariate beta distributions, which make comparisons between this proposed model and others
possible.

• In Chapter 5 the model that this study proposes is compared to the Q chart studied by Adamski
[1], this will be done through a simulation study.

• Conclusive remarks and areas for further research are provided.

• Appendix contains the series of Results used throughout the study. The Appendix contains not
only the de�nitions and theorems used in this study, but also the SAS code used in Chapter 5.
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Chapter 2

Positioning

2.1 Introduction

The aims of this chapter are to de�ne some of the most common bivariate beta distributions (Section 2.2),
to derive the relationships between them, and to relate these distributions to the bivariate distribution
derived by Adamski [1] and the one proposed by this study (Section 2.3).

Most of these relationships, though very useful, have never been published. Their usefulness stems from the
fact that many bivariate beta distributions have properties, speci�cally the product moment and marginal
distributions, which are very di�cult, if not impossible to derive from �rst principles. These relationships
between the di�erent bivariate beta distributions provide a way of making transformations to overcome this
problem. One of the transformations derived in this chapter is essential in deriving the product moment
of the model that this study proposes in Section 4.2.

There are many di�erent ways in which bivariate beta distributions have been de�ned and derived in the
literature. Some authors [2, 17] de�ne the distributions as a ratio between chi-square variables, others
[4, 21, 31] de�ne them in terms of gamma variables, and a third group [54, 44] state them as speci�c
cases and transformations of the Dirichlet distribution. In essence, however, they are distributions that are
comprised of ratios of linear combination of either chi-square or gamma random variables [45, 6, 43].

Suppose that, in Equation (1.16), m = 2. It then follows that the two statistics from Adamski [1] are given
by

T1 =
Y1

Y0

T2 =
Y2

Y0 + Y1

, (2.1)

where Yi ∼ χ2 (ni − 1) , i = 0, 1, 2.
Similarly suppose that, in Equation (1.11), m = 2. It then follows that the two statistics that this study
proposes are given by

29
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CHAPTER 2. POSITIONING 30

U1 =
Y1 + Y2

Y0

U2 =
Y2

Y0 + Y1

, (2.2)

where Yi ∼ χ2 (ni − 1) , i = 0, 1, 2.
It is obvious that the statistics in equations (2.1) and (2.2) are comprised of ratios of linear combinations
chi-square random variables, and thus will follow some form of bivariate beta distribution. From this point
onward the joint distribution resulting from Equation (2.1) will be deferred to as the �bivariate beta type
VII� distribution, and the joint distribution of Equation (2.2) will be called the �bivariate beta type VIII�
distribution. The derivation and investigation of this bivariate beta type VIII distribution is the main
focus of this study.

2.2 Bivariate beta distributions: type I to VIII

What follows are some well-known bivariate beta distributions as well as their relationships to each other:

Let Y1 ∼ χ2 (α), Y2 ∼ χ2 (β) and Y3 ∼ χ2 (γ) be independently distributed chi-square random variables.
These are the �building blocks� that make up the bivariate beta distributions in this chapter. (Note that
in sections 1.2 and 1.4 the random variables that formed the basis of the statistics in equations (1.11) and
(1.16) were Yi ∼ χ2 (ni − 1) , i = 0, 1, ...,m, where the indices of the variables were de�ned to start at 0, to
correspond with the sample number in the SPC setting. The degrees of freedom of the random variables
were also de�ned to be related to the sample size of each sample. For the remainder of this chapter, the
indices and degrees of freedom of the random variables are presented in a manner more in keeping with the
general construction of bivariate beta distributions as in the majority of the applicable literature. (From a
practical perspective, however, this change is of no consequence, since equivalence can easily be established
by equating the parameters n0 − 1 = α, n1 − 1 = β, n2 − 1 = γ and subtracting one from the indices.)

Bivariate beta type I

Let

Q1 =
Y1

Y1 + Y2 + Y3

andQ2 =
Y2

Y1 + Y2 + Y3

,

then the joint distribution of Q1 and Q2 is called a bivariate beta type I distribution with parameters
α
2
, β
2
, γ
2
> 0. The joint density function of this distribution is given by

fBI(q1, q2;
α
2
, β
2
, γ
2
) =

Γ
(

α
2
+β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(

β
2

)
Γ
( γ
2

)q α
2
−1

1 q
β
2
−1

2 (1− q1 − q2)
γ
2
−1 , 0 < q1, q2 < 1 and

q1 + q2 ≤ 1,

(2.3)

where Γ (.) is the gamma function, as de�ned in Result 6.
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The notation used in this chapter is as follows: fBI(q1, q2;
α
2
, β
2
, γ
2
) indicates a density function (f), where

the type of beta function (type I (BI)) is indicated in the subscript, between two variables (q1, q2), with
parameters (α

2
, β
2
, γ
2
). In Figure 2.2 this will be denoted alternatively as (Q1, Q2) ∼ BI (α, β, γ).

The multivariate generalisation of this distribution is called the Dirichlet type I distribution and has been
studied in depth (see Gupta and Richards [22] and Balakrishnan and Lai [6]). It has also been used in a
wide variety of practical applications. It has been used in consumer behaviour studies (Wrigley and Dunn
[57]), to model activity times in programme evaluation and review technique (PERT) networks [33], and
in Bayesian statistics [3], to name but a few applications.

Bivariate beta type II

Let

V1 =
Y1

Y3

and V2 =
Y2

Y3

,

then the joint distribution of V1 and V2 is called a bivariate beta type II distribution with parameters
α
2
, β
2
, γ
2
> 0. The joint density function of this distribution is given by

fBII(v1, v2;
α
2
, β
2
, γ
2
) =

Γ
(

α
2
+β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(

β
2

)
Γ
( γ
2

)v α
2
−1

1 v
β
2
−1

2 (1 + v1 + v2)
−
(

α
2
+β

2
+ γ

2

)
, v1, v2 > 0. (2.4)

There are other ways in which this distribution can be obtained. Tiao and Guttman [55], in addition
to studying the properties of this distribution in great detail, also noted that the distribution could be
obtained as transformation of a bivariate case of the Dirichlet distribution. They subsequently called the
above distribution the �inverted Dirichlet distribution�.

Bivariate beta type III

If

W1 =
Y1

Y1 + Y2 + 2Y3

andW2 =
Y2

Y1 + Y2 + 2Y3

,

then the joint distribution of W1 and W2 is called a bivariate beta type III distribution with parameters
α
2
, β
2
, γ
2
> 0. The multivariate generalisation was derived and studied by Cardeño et al. [8]. The joint

density function of this bivariate distribution is given by
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fBIII(w1, w2;
α
2
, β
2
, γ
2
) =

Γ
(

α
2
+β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(

β
2

)
Γ
( γ
2

)2α
2
+β

2w
α
2
−1

1 w
β
2
−1

2 (1− w1 − w2)
γ
2
−1

× (1 + w1 + w2)
−
(

α
2
+β

2
+ γ

2

)
, 0 < w1, w2 < 1 and

w1 + w2 ≤ 1.

(2.5)

Just as in the type I case, this density function is also de�ned on a bounded interval, and as such, the
bivariate beta type III is often used as an alternative to the bivariate beta type I. Ehlers [15] considered the
case when W1 =

Y1

Y1+Y2+cY3
and W2 =

Y2

Y1+Y2+cY3
, which is a generalisation of the above type III distribution.

Bivariate beta type IV

Let

X1 =
Y1

Y1 + Y3

andX2 =
Y2

Y2 + Y3

,

then the joint distribution of X1 and X2 is called a bivariate beta type IV distribution with parameters
α
2
, β
2
, γ
2
> 0. The joint density function of this distribution is given by

fBIV (x1, x2;
α
2
, β
2
, γ
2
) =

Γ
(

α
2
+β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(

β
2

)
Γ
( γ
2

)xα
2
−1

1 x
β
2
−1

2 (1− x1)
β
2
+ γ

2
−1 (1− x2)

α
2
+ γ

2
−1

× (1− x1x2)
−
(

α
2
+β

2
+ γ

2

)
, 0 < x1, x2 < 1.

(2.6)

This distribution is also called the Jones model and has its roots in the distribution proposed by Libby
and Novick [31]. However, it was more explicitly derived by Jones [29] and Olkin and Liu [44].

Bivariate beta type V

If

C1 =
aY1

aY1 + bY2 + cY3

and C2 =
bY2

aY1 + bY2 + cY3

,

then the joint distribution of C1 and C2 is called a bivariate beta type V distribution with parameters
α
2
, β
2
, γ
2
, a, b, c > 0. The joint density function of this distribution is given by

fBV (c1, c2;α, β, γ,
α
2
, β
2
, γ
2
) =

Γ
(

α
2
+β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(

β
2

)
Γ
( γ
2

) ( ca)α
2
(
c
b

)β
2 c

α
2
−1

1 c
β
2
−1

2 (1− c1 − c2)
γ
2
−1

×
(
1 + c−a

a
c1 +

c−b
b
c2
)−(α

2
+β

2
+ γ

2

)
, 0 < c1, c2 < 1 and

c1 + c2 ≤ 1.
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(2.7)

If a = 1, b = 1 and c = 1, the bivariate beta type V reduces to the bivariate beta type I. If a = 1, b = 1
and c = 2, the bivariate beta type V reduces to the bivariate beta type III. Thus the bivariate beta type
V distribution is a more �exible generalisation of the type I and type III distributions. This distribution,
as well as its triply non-central generalisation, was developed in detail by Ehlers et al. [16]. It should be
noted that Ehlers et al. [16] experienced di�culties deriving some properties of their distribution, and as
such had to utilise the relationships between the beta type V distribution and other beta distributions in
order to �nd closed form expressions of some properties. A similar problem was encountered with this
study, and similar transformation methods had to be applied in Section 4.2.5.

Bivariate beta type VI

If

Z1 =
Y1

Y2 + Y3

and Z2 =
Y2

Y1 + Y3

,

then the joint distribution of the above ratios will be called the bivariate beta type VI distribution. This
joint density function has not yet been derived in the literature but is a possibly useful addition to the
bivariate beta family, that could potentially also be applied to detecting shifts in a process variance. If the
statistics are de�ned as above, practically speaking, each sample variance would be compared to all others
in the sequence. Thus (supposing there are m + 1 samples), each sample variance would be compared to
the other m sample variances. A useful application of a control chart based on these statistics would be to
aid in the detection of once o� �uctuations in the process variance. This is in contrast to the application
of the statistics in Equation (2.2), which is the detection of a sustained shift in the process variance.

Note that since this density function has not been investigated no assumptions will be made about it's
domain in this study. However the implicit assumption is made that the parameters are restricted to values
for which the probability density function is non negative.

Bivariate beta type VII

The following bivariate beta distribution, which will be referred to as the type VII distribution, was derived
by Adamski [1], and was labelled a �generalised beta distribution�. If

T1 =
Y2

Y1

and T2 =
Y3

Y1 + Y2

,

the joint density function of T1 and T2, with parameters α
2
, β
2
, γ
2
> 0 is given by
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fBV II(t1, t2;
α
2
, β
2
, γ
2
) =

Γ
(

α
2
+β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(

β
2

)
Γ
( γ
2

) (t1)β
2
−1 (t2)

γ
2
−1 (1 + t1)

γ
2

× (1 + t1 + (1 + t1) t2)
−
(

α
2
+β

2
+ γ

2

)
, t1, t2 > 0.

(2.8)

This distribution will be generalised to be expressed in terms of gamma random variables in Section 3.2.

Bivariate beta type VIII

The model that this study proposes in terms of gamma variables is derived in Section 4.2, but when it is
reduced to be constructed from chi-square variables, (χ2 (α) ≡ Gamma

(
α
2
, 2
)
), it is also a bivariate beta

distribution that is made up of the Y1, Y2 and Y3 building blocks. If

U1 =
Y2 + Y3

Y1

and U2 =
Y3

Y1 + Y2

,

the joint distribution of U1 and U2 will be called a bivariate beta type VIII distribution with parameters
α
2
, β
2
, γ
2
> 0. The joint density function of this distribution is given by

fBV III(u1, u2;
α
2
, β
2
, γ
2
) =

Γ
(

α
2
+β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(

β
2

)
Γ
( γ
2

) (u1 − u2)
β
2
−1 u

γ
2
−1

2 (1 + u1)
γ
2 (1 + u2)

α
2

× ((1 + u2) + (u1 − u2) + u2 (1 + u1))
−
(

α
2
+β

2
+ γ

2

)
, u1 > u2 > 0.

(2.9)

The derivation of this density function, and its associated properties in Chapter 4, is the main focus of this
study.

Note that the above bivariate beta densities are de�ned on di�erent domains. These domains in�uence
their practical applications to a very large extent. For example, the bivariate beta type II distribution was
initially developed to overcome the limited domain that the bivariate beta type I distribution is de�ned
on, since the q1+ q2 ≤ 1 restriction of Equation (2.3) severely limits the situations where the bivariate beta
type I distribution can be used to model data. The model proposed by this study is de�ned on a di�erent
domain in comparison to the more commonly used bivariate beta distributions, and as such could lead
to novel practical applications. In Figure 2.1 the domains of the di�erent bivariate beta distributions are
displayed, however the variable names, q1, q2, v1, v2 etc. on the axes are all replaced with V ar1 and V ar2
to reduce the number of graphs required.

Figure 2.1: Domains of the bivariate beta joint density functions.
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There are many more bivariate beta type distributions available in the literature; the ones mentioned in this
study are only some of the most commonly used, and as such this study should not be seen as an exhaustive
collection of bivariate beta distributions. The bivariate beta types I and II were among the �rst derived, and
are also those which have received the most theoretical interest and practical applications. Types III and
V were later developed to be more general cases of the type I. Many authors have discussed and derived
a plethora of other bivariate beta distributions, which are mostly generalisations that either o�er some
theoretical property which the original distributions do not possess, or are applicable to speci�c practical
situations. Nadarajah [35, 36, 37], Nadarajah and Gupta [38] and Nadarajah and Kotz [39, 40, 41, 42]
in particular have studied beta distributions in great detail. Balakrishnan and Lai [6] also give a whole
host of bivariate beta distributions and their relation to other common distributions like the Laplace and
exponential distributions.

2.3 Relationships between bivariate beta type distributions

In Table 2.1 and Figure 2.2 that follow, each of the bivariate beta distributions mentioned Section 2.2 are
related to all the other bivariate beta distributions in this study. Since all of them depend on the same
chi-square variables it is reasonable to expect that there exists some relation between them. In Table 2.1,
the �rst column gives the two statistics of each bivariate beta distribution in terms of the chi-square random
variables (as they are de�ned in equations (2.3) to (2.9)). Columns two to nine then provide a relationship
between the di�erent bivariate beta distributions. For example, the �rst row, fourth column, provides the
relationship between the bivariate beta type I and type III distributions. Suppose that some equation
exists that contains both X1 and X2; also suppose that, for whatever reason, the equation is unsuitable
or impractical for use in a certain situation; it is then possible to rewrite X1 and X2 in terms of V1 and
V2 using the relationships in the second row, �fth column. A simple example where this is applicable is
provided after Table 2.1 and Figure 2.2.
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Y1, Y2, Y3 BI BII BIII BIV

BI

Q1 =
Y1

Y1+Y2+Y3

Q2 =
Y2

Y1+Y2+Y3

Q1 =
V1

1+V1+V2

Q2 =
V2

1+V1+V2

Q1 =
2W1

1+W1+W2

Q2 =
2W2

1+W1+W2

Q1 =
X1(1−X2)
1−X1X2

Q2 =
X2(1−X1)
1−X1X2

BII

V1 =
Y1

Y3

V2 =
Y2

Y3

V1 =
Q1

1−Q1−Q2

V2 =
Q2

1−Q1−Q2

V1 =
2W1

1−W1−W2

V2 =
2W2

1−W1−W2

V1 =
X1

1−X1

V2 =
X2

1−X2

BIII

W1 =
Y1

Y1+Y2+2Y3

W2 =
Y2

Y1+Y2+2Y3

W1 =
Q1

2−Q1−Q2

W2 =
Q2

2−Q1−Q2

W1 =
V1

2+V1+V2

W2 =
V2

2+V1+V2

W1 =
X1(1−X2)
2−X1−X2

W2 =
X2(1−X1)
1+X1+X2

BIV

X1 =
Y1

Y1+Y3

X2 =
Y2

Y2+Y3

X1 =
Q1

1−Q2

X2 =
Q2

1−Q1

X1 =
V1

1+V1

X2 =
V2

1+V2

X1 =
2W1

1+W1−W2

X2 =
2W2

1−W1+W2

BV

C1 =
aY1

aY1+bY2+cY3

C2 =
bY2

aY1+bY2+cY3

C1 =
aQ1

(a−c)Q1+(b−c)Q2+c

C2 =
bQ2

(a−c)Q1+(b−c)Q2+c

C1 =
aV1

aV1+bV2+c

C2 =
bV2

aV1+bV2+c

C1 =
2aW1

(2a−c)W1+(2b−c)W2+c

C2 =
2bQ2

(2a−c)W1+(2b−c)W2+c

C1 =
aX1(X2−1)

aX1(X2−1)+bX2(X1−1)−c(X1−1)(X2−1)

C2 =
bX2(X1−1)

aX1(X2−1)+bX2(X1−1)−c(X1−1)(X2−1)

BV I

Z1 =
Y1

Y2+Y3

Z2 =
Y2

Y1+Y3

Z1 =
Q1

1−Q1

Z2 =
Q2

1−Q2

Z1 =
V1

1+V2

Z2 =
V2

1+V1

Z1 =
2W1

1−W1+W2

Z2 =
2W2

1+W1−W2

Z1 =
X1(1−X2)

1−X1

Z2 =
X2(1−X1)

1−X2

BV II

T1 =
Y2

Y1

T2 =
Y3

Y1+Y2

T1 =
Q2

Q1

T2 =
1−Q1−Q2

Q1+Q2

T1 =
V2

V1

T2 =
1

V1+V2

T1 =
W2

W1

T2 =
1−W1−W2

2(W1+W2)

T1 =
(X1−1)

(
X2+X1

(
X2

2−4X2+2
))

X1(X2−1)(X1X2−1)

T2 =
(X1−1)(X2−1)
X1(1−2X2)+X2

BV III

U1 =
Y2+Y3

Y1

U2 =
Y3

Y1+Y2

U1 =
1−Q1

Q1

U2 =
1−Q1−Q2

Q1+Q2

U1 =
1+V2

V1

U2 =
1

V1+V2

U1 =
1−W1+W2

2W1

U2 =
1−W1−W2

2(W1+W2)

U1 =
X1−1

X1(1−X2)

U2 =
(X1−1)(X2−1)
X1(1−2X2)+X2

BV BV I BV II BV III

BI

Q1 =
bcC1

b(c−a)C1+a(c−b)C2+ab

Q2 =
abC2

b(c−a)C1+a(c−b)C2+ab

Q1 =
Z1

1+Z1

Q2 =
Z2

1+Z2

Q1 =
1

(T1+1)(T2+1)

Q2 =
T1

(T1+1)(T2+1)

Q1 =
1

(U1+1)

Q2 =
U1−U2

(U1+1)(U2+1)

BII

V1 =
X1

1−X1

c
a

V2 =
X2

1−X2

c
b

V1 =
Z1(Z2+1)
1−Z1Z2

V2 =
Z2(Z1+1)
1−Z1Z2

V1 =
1

T2(T1+1)

V2 =
T1

T2(T1+1)

V1 =
U2+1

U2(U1+1)

V2 =
U1−U2

U2(U1+1)

BIII

W1 =
bcC1

b(c−2a)C1+a(c−2b)C2+2ab

W2 =
abC2

b(c−2a)C1+a(c−2b)C2+2ab

W1 =
Z1(Z2+1)
2+Z1+Z2

W2 =
Z2(Z1+1)
2+Z1+Z2

W1 =
1

(T1+1)(2T2+1)

W2 =
T1

(T1+1)(2T2+1)

W1 =
U2+1

(2U2+1)(U1+1)

W2 =
U1−U2

(2U2+1)(U1+1)

BIV

X1 =
cC1

(c−a)C1−a(C2−1)

X2 =
cC2

(c−b)C2−b(C1−1)

X1 =
Z1(Z2+1)

1+Z1

X2 =
Z2(Z1+1)

1+Z2

X1 =
1+T2

1−T2(T1−2)−T 2
2 (T1+1)

X2 =
T2(2+T1)+T1

(T2+1)(T2(T1+1)+T1)

X1 =
U2+1

1+U2(U1+2)

X2 =
U1−U2

U1(U2+1)

BV

C1 =
aZ1(Z2+1)

aZ1(Z2+1)+bZ2(Z1+1)+c(1−Z1Z2)

C2 =
bZ2(Z1+1)

aZ1(Z2+1)+bZ2(Z1+1)+c(1−Z1Z2)

C1 =
a

a+bT1+cT2(T1+1)

C2 =
bT1

a+bT1+cT2(T1+1)

C1 =
a(U2+1)

a(U2+1)+b(U1−U2)+cU2(U1+1)

C2 =
b(U1−U2)

a(U2+1)+b(U1−U2)+cU2(U1+1)

BV I

Z1 =
−bcC1

a(b−c)C2−ab(C1−1)

Z2 =
−acC2

b(a−c)C1−ab(C2−1)

Z1 =
1

T2(T1+1)+T1

Z2 =
T1

T2(T1+1)+1

Z1 =
1
U1

Z2 =
U1−U2

1+U2(1+U1)

BV II

T1 =
aC2

bC1

T2 =
ab(1−C1−C2)
bcC1+acC2

T1 =
Z2(Z1+1)
Z1(1+Z2)

T2 =
1−Z1Z2

Z1(1+2Z2)+Z2

T1 =
U1−U2

1+U2

T2 = U2

BV III

U1 =
a(c−b)C2−b(C1−1)

bcC1

U2 =
ab(1−C1−C2)
bcC1+acC2

U1 =
1
Z1

U2 =
1−Z1Z2

Z1(1+2Z2)+Z2

U1 = T1 + T2 + T1T2

U2 = T2

Note that Table 2.1 has been split up into two segments to facilitate the physical printing of this study.
However, the second segment of the table containing the transformations for BV to BV III , should be seen as

being spliced onto the right side of the �rst segment.

Table 2.1: Beta relationships for models (2.3) to (2.9)
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Figure 2.2: Relationships between beta type I to type beta VIII
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The example that follows is provided to illustrate a situation were the transformations in Table 2.1 and
Figure 2.2 could be used. Note however that in the speci�c example chosen is rather simplistic, and could
in fact be solved using a more traditional �rst principal approach.

Example

Suppose that the derivation of the product moment of the bivariate beta type IV distribution in Equation
(2.6) is required. To derive this from �rst principles, Equation (2.6) is substituted into the equation for
the product moment, Result 5, and thus would be

E (Xr
1X

s
2) =

ˆ 1

0

ˆ 1

0

xr
1x

s
2fBIV (x1, x2;

α

2
,
β

2
,
γ

2
)dx2dx1

=

ˆ 1

0

ˆ 1

0

Γ
(
α
2
+ β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(
β
2

)
Γ
(
γ
2

)xr+α
2
−1

1 x
s+β

2
−1

2

× (1− x1)
β
2
+ γ

2
−1 (1− x2)

α
2
+ γ

2
−1 (1− x1x2)

−
(

α
2
+β

2
+ γ

2

)
dx2dx1

=
Γ
(
α
2
+ β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(
β
2

)
Γ
(
γ
2

) ˆ 1

0

x
r+α

2
−1

1 (1− x1)
β
2
+ γ

2
−1

ˆ 1

0

x
s+β

2
−1

2

× (1− x2)
α
2
+ γ

2
−1 (1− x1x2)

−
(

α
2
+β

2
+ γ

2

)
dx2dx1. (2.10)

While in this speci�c situation it is possible to solve the integrals in Equation (2.10), for a more complex
joint probability density function it my not be.

A solution to overcome this hurdle would be to use the transformations given in Table 2.1 or Figure 2.2.
Since the product moment of the bivariate beta type II distribution is easy to derive, using the relationship
displayed in row four, column three, of Table 2.1:

X1 =
V1

1 + V1

X2 =
V2

1 + V2

,

Equation (2.10) could be rewritten in terms of Equation (2.4) as
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E (Xr
1X

s
2) = E

([
V1

1 + V1

]r [
V2

1 + V2

]s)

=

ˆ ∞

0

ˆ ∞

0

(
v1

1 + v1

)r (
v2

1 + v2

)s

fBII(v1, v2;
α

2
,
β

2
,
γ

2
)dv2dv1

=

ˆ ∞

0

ˆ ∞

0

(
v1

1 + v1

)r (
v2

1 + v2

)s Γ
(
α
2
+ β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(
β
2

)
Γ
(
γ
2

)
× v

α
2
−1

1 v
β
2
−1

2 (1 + v1 + v2)
−
(

α
2
+β

2
+ γ

2

)
dv2dv1

=
Γ
(
α
2
+ β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(
β
2

)
Γ
(
γ
2

) ˆ ∞

0

ˆ ∞

0

(1 + v1)
−r (1 + v2)

−s

× v
r+α

2
−1

1 v
s+β

2
−1

2 (1 + v1 + v2)
−
(

α
2
+β

2
+ γ

2

)
dv2dv1

=
Γ
(
α
2
+ β

2
+ γ

2

)
Γ
(
α
2

)
Γ
(
β
2

)
Γ
(
γ
2

) ˆ ∞

0

(1 + v1)
−r v

r+α
2
−1

1

×
ˆ ∞

0

(1 + v2)
−s v

s+β
2
−1

2 (1 + v1 + v2)
−
(

α
2
+β

2
+ γ

2

)
dv2dv1, (2.11)

which may simplify the derivation process. It is a transformation exactly like the one described above that
is required later in this study to derive the product moment of the bivariate beta type VIII distribution.
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Chapter 3

Generalised beta type VII distribution

3.1 Introduction

As seen in Chapter 2, bivariate beta distributions are most often derived in terms of chi-square random
variables, but derivations in terms of gamma variables are not uncommon. In this study all derivations
that follow will be derived for the gamma case, since using gamma random variables will allow greater
�exibility during the modelling process.

As stated in Section 1.2, in the SPC environment, the joint density function of the charting statistics, as
well as the control limits, are constructed under the null hypothesis (i.e. under the assumption that no
shift in the process variance has occurred). While deriving the joint density function under this assumption
is correct, and often reduces the complexity of the derivations signi�cantly, it does limit the insight that
can be gained into the e�cacy of the control chart when the process goes OOC. It is for this reason that
the derivations in this study will be made in such a way that the joint density function of the charting
statistics could come either from an IC process or an OOC process (depending on the parameter choices).

In equations (1.4) and (1.6), it was shown that the sample variance, multiplied by the sample size minus one,
divided by the process variance, follows a χ2(ni− 1) distribution for each sample, and as a result the series
of statistics in Equation (1.15) each follow an F distribution under the null hypothesis. Consequently
the statistics in equations (1.11) and (1.16) are constructed to be ratios of linear combinations of chi-
square variables (under the null hypothesis). It is a well-established fact that if Y ∼ χ2(n − 1), then
Y can also be said to follow a Gamma(n−1

2
, 2) distribution (see Bain and Engelhardt [5] pp268-269).

Furthermore, it is a well-known property of gamma random variables that if c is some constant, then
cY ∼ Gamma(n−1

2
, 2c). Using these results, suppose that a shift of size λ occurs in the process variance at

time κ∗, then the corresponding statistics after the shift would be λYi ∼ Gamma(ni−1
2

, 2λ), i = κ, κ+1, ...,m
distributed (see Equation 1.16). Thus using the gamma notation for the random variables, instead of
the more traditional chi-square notation, allows for the modelling of the sample variances irrespective
of whether the process is IC or OOC. If the process is IC, λ = 1, and it follows that λYi = Yi ∼
Gamma(ni−1

2
, 2× 1) ≡ χ2(ni − 1), i = 0, 1, ...,m. In contrast, if the process is OOC, λ 6= 1, and it follows

that λYi ∼ Gamma(ni−1
2

, 2λ), i = κ, κ + 1, ...,m. In essence then, the hypothesis being worked under can
be changed depending on the choice of the second parameter of the speci�c gamma random variables in
equations (1.11) and (1.16). If the second parameter is equal to 2 for all gamma random variables, the
process is modelled under the IC assumption, while if the second parameter is not always equal to 2, a

40

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 3. GENERALISED BETA TYPE VII DISTRIBUTION 41

shift in the process variance can be modelled. Thus, by deriving the bivariate beta type density function
in terms of gamma variables, added �exibility is gained. It should be noted, however, that using gamma
random variables instead of chi-square leads to more terms in the derived equations and more complex
derivations.

Looking at the variables that make up the parameters of the gamma random variables in the previous
paragraph, it is obvious that in the SPC context the parameters have a practical interpretation. The
parameter of the chi-square variables is related to the sample size of the process samples. Similarly, the
�rst parameter of the gamma random variables is also related to the sample size of the process samples
(although the �rst gamma parameter is half that of the chi-square distribution). As demonstrated above,
the second parameter of the gamma variable is related to the variance of the sample. If the sample variance
comes from an IC distribution the parameter will be equal to 2, whereas if the process has experienced a
shift the parameter will not be equal to 2.

In Adamski [1], the density functions and properties of the statistics in Equation (2.1) were derived in
terms of chi-square random variables, with some random variables (those after the potential shift) being
multiplied by λ. By using the relationship between the chi-square and gamma distributions noted above,
their results can be expanded to allow for the more general gamma case. This will not only add �exibility
to their results, but will also allow the comparison between the studied Q chart process and the method
that this study proposes to be clearer. In this chapter some the statistics and densities that were derived in
Adamski [1] are generalised to allow for gamma variables. The main focus of this chapter will be to expand
on the bivariate probability density function and its relevant properties, since, as was stated in the study
outline, the methods used during the bivariate derivations are likely to be similar in nature to the methods
required during higher dimensional derivations and focusing on the bivariate case also allows graphical
representations of the distributions to be plotted, which would be impossible for higher dimensions.

Example

Suppose that a single sample of size 5 is drawn from a process, then the sample mean
(
X̄1

)
and variance

(S2
1) are calculated using equations (1.1) and (1.2). From equations (1.4) and (1.6) it is known that

(5−1)S2
1

σ2 ∼ χ2 (5− 1) and
(5−1)S2

1

σ2
1

∼ χ2 (5− 1). It follows, from Bain and Engelhardt [5] pp268-269, that

χ2 (4) can equivalently be written as Gamma
(
4
2
, 2
)
. Adamski [1] modelled a potential shift in the variance

by multiplying the chi-square variable by λ, where λ > 1 would indicate an increase in the variance,
λ < 1 would indicate a decrease in the process variance, and λ = 1 would indicate that no shift occurred.
Since this study proposes to use gamma random variables the multiplication by λ is no longer necessary.
By simply varying the second (scale) parameter of the gamma random variable, a shift in the process
variance can be modelled. A Gamma

(
4
2
, 2
)
variable would indicate that the process is in control, whereas

Gamma
(
4
2
, 2λ
)
, λ > 1 would imply an increase in the process variance, and similarly Gamma

(
4
2
, 2λ
)
, λ <

1 would indicate that the process has become more stable.
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CHAPTER 3. GENERALISED BETA TYPE VII DISTRIBUTION 42

In Section 3.2.1 the bivariate joint density function of the statistics in Equation (2.1) are generalised to the
gamma case. In Chapter 2, T1 and T2 were de�ned in terms of Y1 ∼ χ2 (α), Y2 ∼ χ2 (β) and Y3 ∼ χ2 (γ).
In this chapter they are de�ned in terms of independent gamma random variables, Wi ∼ Gamma (αi, βi)
for i = 0, 1, 2. They are, however, still named T1 and T2. Special cases of the distribution are investigated,
where

• the α's are all equal but β's are not necessarily equal (all sample sizes are the same but shifts in the
variance are possible),

• all the β's are equal but the α's may di�er (no shift occurs during the three samples, but sample
sizes may di�er),

• and thirdly where all the α's are equal and all the β's are equal (equal sample sizes, and no shift
occurs during the three samples).

In Section 3.2.2 the two marginal density functions of the bivariate density function in Section 3.2.1 are
derived, and the three special cases of each of the marginal densities are again investigated. The conditional
density functions are derived in Section 3.2.3. In Section 3.2.4 the product moment of the bivariate density
function is derived. In Section 3.3.1 the joint multivariate density function from Adamski [1] is also extended
to the gamma case, and the three special cases are again discussed.

3.2 Bivariate distribution

3.2.1 Joint density function

Theorem 3.1

Let Wi be independent gamma random variables with parameters (αi > 0, βi > 0) for i = 0, 1, 2. (Note
that in Equation (2.8) T1 and T2 were constructed out of three independent chi-square random variables;
here the theory is extended to allow for gamma random variables.)

Let T1 =
W1

W0
and T2 =

W2

W0+W1
.

Then the joint density function is given by

g (t1, t2) =

(
β
α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(t1)

α1−1 (t2)
α2−1 (1 + t1)

α2

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α0−α1−α2 , t1, t2 > 0.

(3.1)

Proof

Since the gamma random variables are independent, the joint density function of W0,W1,W2 is given by

g (w0, w1, w2) =
1

βα0
0 βα1

1 βα2
2 Γ (α0) Γ (α1) Γ (α2)

(
wα0−1

0 e
−w0

β0

)(
wα1−1

1 e
−w1

β1

)(
wα2−1

2 e
−w2

β2

)
, w0, w1, w2 > 0.

(3.2)
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Let T = W0, T1 =
W1

W0
and T2 =

W2

W0+W1
.

Using the �variables in common� technique (see Olkin and Trikalinos [45]) it is possible to �nd the joint
density function of T, T1 and T2 as follows:

The inverse transformation is then given by

W0 = T
W1 = T1T
W2 = T2 (T + T1T ) = T2T (1 + T1) .

The Jacobian of the transformation is
J (w0, w1, w2 → t, t1, t2)

=

∣∣∣∣∣∣
1 0 0
t1 t 0

t2 (1 + t1) t2t t (1 + t1)

∣∣∣∣∣∣
= t2 (1 + t1) .

By making the transformation and substituting the equations for W0,W1 and W2 into Equation (3.2), it
then follows that the joint density function of T, T1, T2 is

g (t, t1, t2) =
1

βα0
0 βα1

1 βα2
2 Γ (α0) Γ (α1) Γ (α2)

(
tα0−1e

− t
β0

)(
(t1t)

α1−1 e
− t1t

β1

)
×

(
(t2t (1 + t1))

α2−1 e
− t2t(1+t1)

β2

)
t2 (1 + t1)

=
1

βα0
0 βα1

1 βα2
2 Γ (α0) Γ (α1) Γ (α2)

(t1)
α1−1 (t2)

α2−1 (1 + t1)
α2

×
(
e
− t

β0 e
− t1t

β1 e
− t2t(1+t1)

β2

)(
tα0+α1+α2−1

)
. (3.3)

By integrating Equation (3.3) with respect to t, it follows that

g (t1, t2) =
1

βα0
0 βα1

1 βα2
2 Γ (α0) Γ (α1) Γ (α2)

(t1)
α1−1 (t2)

α2−1 (1 + t1)
α2

×
∞̂

0

(
e
−t
(

β1β2+t1β0β2+t2(1+t1)β0β1
β0β1β2

))(
tα0+α1+α2−1

)
dt. (3.4)

By applying Result 11 to Equation (3.4), it then follows that
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g (t1, t2) = Γ(α0+α1+α2)

β
α0
0 β

α1
1 β

α2
2 Γ(α0)Γ(α1)Γ(α2)

(t1)
α1−1 (t2)

α2−1 (1 + t1)
α2

×
(

β1β2+β0β2t1+β0β1(1+t1)t2
β0β1β2

)−α0−α1−α2

= (β0β1β2)
α0+α1+α2Γ(α0+α1+α2)

β
α0
0 β

α1
1 β

α2
2 Γ(α0)Γ(α1)Γ(α2)

(t1)
α1−1 (t2)

α2−1 (1 + t1)
α2

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α0−α1−α2

=

(
β
α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(t1)

α1−1 (t2)
α2−1 (1 + t1)

α2

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α0−α1−α2 .

�

Special cases

1) If αi = α for i = 0, 1, 2, then Equation (3.1) becomes

g (t1, t2) =

(
βα+α
0 βα+α

1 βα+α
2

)
Γ(α+α+α)

Γ(α)Γ(α)Γ(α)
(t1)

α−1 (t2)
α−1 (1 + t1)

α

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α−α−α

=
(
β2α
0 β2α

1 β2α
2

)
Γ(3α)

Γ(α)3
(t1)

α−1 (t2)
α−1 (1 + t1)

α

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−3α , t1, t2 > 0.

2) If βi = β for i = 0, 1, 2, then Equation (3.1) becomes

g (t1, t2) =
(
β2(α0+α1+α2)

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(t1)

α1−1 (t2)
α2−1 (1 + t1)

α2

× (β2 (1 + t1 + (1 + t1) t2))
−α0−α1−α2

= Γ(α0+α1+α2)
Γ(α0)Γ(α1)Γ(α2)

(t1)
α1−1 (t2)

α2−1 (1 + t1)
α2

× (1 + t1 + (1 + t1) t2)
−α0−α1−α2 , t1, t2 > 0.

This is the same as the joint density function derived in Adamski [1] with λ = 1, since if all β values are
equal no shift has occurred in the process variance.

3) If βi = β and αi = α for i = 0, 1, 2, then Equation (3.1) becomes

g (t1, t2) =
(
β2αβ2αβ2α

)
Γ(3α)

Γ(α)3
(t1)

α−1 (t2)
α−1 (1 + t1)

α

× (β2 (1 + t1 + (1 + t1) t2))
−3α

= Γ(3α)

Γ(α)3
(t1)

α−1 (t2)
α−1 (1 + t1)

α

× (1 + t1 + (1 + t1) t2)
−3α , t1, t2 > 0.
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3.2.2 Marginal density functions

Marginal density function of T1

Theorem 3.2

The marginal density function of T1 is given by

g (t1) =
(
β
α1
0 β

α0
1

)
Γ(α0+α1)Γ(α2)

Γ(α0)Γ(α1)Γ(α2)
(t1)

α1−1 (β1 + β0t1)
−α0−α1 , t1 > 0 , (3.5)

where αi, βi > 0 for i = 0, 1, 2.

Proof

By integrating Equation (3.1) with respect to t2, and rearranging the terms, it follows that

g (t1) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (1 + t1)
α2

×
∞̂

0

(t2)
α2−1 (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)

−α0−α1−α2 dt2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (1 + t1)
α2

×
∞̂

0

(t2)
α2−1 (β1β2 + β0β2t1 + t2 (β0β1 + β0β1t1))

−α0−α1−α2 dt2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (1 + t1)
α2

×
∞̂

0

(t2)
α2−1

(
(β1β2 + β0β2t1)

(
1 + t2

(β0β1 + β0β1t1)

(β1β2 + β0β2t1)

))−α0−α1−α2

dt2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (1 + t1)
α2 (β1β2 + β0β2t1)

−α0−α1−α2

×
∞̂

0

(t2)
α2−1

(
1 + t2

(β0β1 + β0β1t1)

(β1β2 + β0β2t1)

)−α0−α1−α2

dt2. (3.6)

By applying Result 12 to Equation (3.6), it follows that

g (t1) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (1 + t1)
α2 (β1β2 + β0β2t1)

−α0−α1−α2

× B (α2, α0 + α1) 2F1

(
α0 + α1 + α2, α2;α0 + α1 + α2; 1−

(β0β1 + β0β1t1)

(β1β2 + β0β2t1)

)
, (3.7)
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where B (.) is the beta function, de�ned in Result 7, and 2F1 (.) is the Gauss hypergeometric function,
de�ned in Result 8.

Since the �rst and third arguments of the hypergeometric function in Equation (3.7) are the same, the
hypergeometric function can be reduced to 1F0 (.), which is de�ned in the Appendix in Result 9. By
reducing Equation (3.7) in this manner, it follows that

g (t1) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (1 + t1)
α2 (β1β2 + β0β2t1)

−α0−α1−α2

× B (α2, α0 + α1) 1F0

(
α2; 1−

(β0β1 + β0β1t1)

(β1β2 + β0β2t1)

)
. (3.8)

As is stated in Result 9, the 1F0 hypergeometric function can alternatively be expressed as a result of the
binomial theorem, and thus, it follows that Equation (3.8) can be rewritten as follows

g (t1) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (1 + t1)
α2 (β1β2 + β0β2t1)

−α0−α1−α2

× B (α2, α0 + α1)

(
1−

(
1− (β0β1 + β0β1t1)

(β1β2 + β0β2t1)

))−α2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (1 + t1)
α2 (β2 (β1 + β0t1))

−α0−α1−α2

× B (α2, α0 + α1)

(
(β0β1 (1 + t1))

(β2 (β1 + β0t1))

)−α2

=

(
βα1
0 βα0

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (β2 (β1 + β0t1))
−α0−α1 B (α2, α0 + α1)

=
(βα1

0 βα0
1 ) Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (β1 + β0t1)
−α0−α1

Γ (α2) Γ (α0 + α1)

Γ (α0 + α1 + α2)
.

=
(βα1

0 βα0
1 ) Γ (α0 + α1)

Γ (α0) Γ (α1)
(t1)

α1−1 (β1 + β0t1)
−α0−α1 .

�

The marginal density function of T1 (Equation (3.5)) is very similar in form to the inverted univariate beta
distribution, also known as the beta prime distribution or the univariate beta type II distribution's density
function (see Johnson et al. [26] for the de�nition).
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Special cases T1

1) If αi = α for i = 0, 1, 2, then Equation (3.5) reduces to

g (t1) =
(
βα
0 β

α
1

)
Γ(2α)Γ(α)

Γ(α)Γ(α)Γ(α)
(t1)

α−1 (β1 + β0t1)
−2α

=
(
βα
0 β

α
1

)
Γ(2α)

Γ(α)2
(t1)

α−1 (β1 + β0t1)
−2α , t1 > 0.

2) If βi = β for i = 0, 1, 2, then Equation (3.5) reduces to

g (t1) = (βα1βα0 )Γ(α0+α1)
Γ(α0)Γ(α1)Γ(α2)

(t1)
α1−1 (β + βt1)

−α0−α1

=
(
βα0+α1

)
Γ(α0+α1)

Γ(α0)Γ(α1)Γ(α2)
(t1)

α1−1 (β (1 + t1))
−α0−α1

= Γ(α0+α1)
Γ(α0)Γ(α1)

(t1)
α1−1 (1 + t1)

−α0−α1 , t1 > 0.

It can be seen that if βi = β for i = 0, 1, 2, then T1 ∼ BetaII (α1, α0), where BetaII (.) the beta type II
density function de�ned in Result 4.

3) If βi = β and αi = α for i = 0, 1, 2, then Equation (3.5) reduces to

g (t1) = (βαβα)Γ(2α)Γ(α)
Γ(α)Γ(α)Γ(α)

(t1)
α−1 (β + βt1)

−α−α

=
(
β2α

)
Γ(2α)

Γ(α)2
(t1)

α−1 (β + βt1)
−2α

= Γ(2α)

Γ(α)2
(t1)

α−1 (1 + t1)
−2α , t1 > 0.

It can be seen that if βi = β and αi = α for i = 0, 1, 2, then T1 ∼ BetaII (α, α).

Marginal density function of T2

Theorem 3.3

The marginal density function of T2 is given by

g (t2) =

(
β
α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0+α1)Γ(α2)
(t2)

α2−1 (β1β2 + β0β1t2)
−α0−α1−α2

× 2F1

(
α0 + α1 + α2, α1;α0 + α1; 1− (β0β2+β0β1t2)

(β1β2+β0β1t2)

)
, t2 > 0 and∣∣∣1− (β0β2+β0β1t2)

(β1β2+β0β1t2)

∣∣∣ < 1,

(3.9)

where αi, βi > 0 for i = 0, 1, 2.
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Proof

By integrating Equation (3.1) with respect to t1, and rearranging the terms, it follows that

g (t2) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t2)

α2−1

×
∞̂

0

(t1)
α1−1 (1 + t1)

α2 (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α0−α1−α2 dt1

g (t2) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t2)

α2−1

×
∞̂

0

(t1)
α1−1 (1 + t1)

α2 (β1β2 + β0β1t2 + t1 (β0β2 + β0β1t2))
−α0−α1−α2 dt1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t2)

α2−1

×
∞̂

0

(t1)
α1−1 (1 + t1)

α2

(
(β1β2 + β0β1t2)

(
1 + t1

(β0β2 + β0β1t2)

(β1β2 + β0β1t2)

))−α0−α1−α2

dt1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t2)

α2−1 (β1β2 + β0β1t2)
−α0−α1−α2

×
∞̂

0

(t1)
α1−1 (1 + t1)

α2

(
1 + t1

(β0β2 + β0β1t2)

(β1β2 + β0β1t2)

)−α0−α1−α2

dt1. (3.10)

By applying Result 12 to Equation (3.10), it follows that

g (t2) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t2)

α2−1 (β1β2 + β0β1t2)
−α0−α1−α2

× B (α1, α0) 2F1

(
α0 + α1 + α2, α1;α0 + α1; 1−

(β0β2 + β0β1t2)

(β1β2 + β0β1t2)

)

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t2)

α2−1 (β1β2 + β0β1t2)
−α0−α1−α2

× Γ (α0) Γ (α1)

Γ (α0 + α1)
2F1

(
α0 + α1 + α2, α1;α0 + α1; 1−

(β0β2 + β0β1t2)

(β1β2 + β0β1t2)

)

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0 + α1) Γ (α2)
(t2)

α2−1 (β1β2 + β0β1t2)
−α0−α1−α2

× 2F1

(
α0 + α1 + α2, α1;α0 + α1; 1−

(β0β2 + β0β1t2)

(β1β2 + β0β1t2)

)
.
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�

Special cases T2

1) If αi = α for i = 0, 1, 2, then Equation (3.9) reduces to

g (t2) =

(
βα+α
0 βα+α

1 βα+α
2

)
Γ(α+α+α)

Γ(α+α)Γ(α)
(t2)

α−1 (β1β2 + β0β1t2)
−α−α−α

× 2F1

(
α + α + α, α;α + α; 1− (β0β2+β0β1t2)

(β1β2+β0β1t2)

)
=

(
β2α
0 β2α

1 β2α
2

)
Γ(3α)

Γ(2α)Γ(α)
(t2)

α−1 (β1β2 + β0β1t2)
−3α

× 2F1

(
3α, α; 2α; 1− (β0β2+β0β1t2)

(β1β2+β0β1t2)

)
, t2 > 0 and∣∣∣1− (β0β2+β0β1t2)

(β1β2+β0β1t2)

∣∣∣ < 1.

2) If βi = β for i = 0, 1, 2, then Equation (3.9) reduces to

g (t2) =
(
β2(α0+α1+α2)

)
Γ(α0+α1+α2)

Γ(α0+α1)Γ(α2)
(t2)

α2−1 β2(−α0−α1−α2) (1 + t2)
−α0−α1−α2

× 2F1

(
α0 + α1 + α2, α1;α0 + α1; 1− (ββ+ββt2)

(ββ+ββt2)

)
= Γ(α0+α1+α2)

Γ(α0+α1)Γ(α2)
(t2)

α2−1 (1 + t2)
−α0−α1−α2

× 2F1 (α0 + α1 + α2, α1;α0 + α1; 0)

= Γ(α0+α1+α2)
Γ(α0+α1)Γ(α2)

(t2)
α2−1 (1 + t2)

−α0−α1−α2 , t2 > 0.

Therefore T2 ∼ BetaII (α2, α0 + α1) when βi = β for i = 0, 1, 2.
The marginal density function of T2 is, also exactly the same as the marginal density function derived by
Adamski [1] when λ = 1. This is to be expected since if no shift occurs in the process variance (βi = β
for i = 0, 1, 2 or equivalently λ = 1) the gamma variables that this study uses reduces to the chi-square
variables used by Adamski [1].

3) If βi = β and αi = α for i = 0, 1, 2, then Equation (3.9) reduces to

g (t2) =
(
βα+αβα+αβα+α

)
Γ(α+α+α)

Γ(α+α)Γ(α)
(t2)

α−1 (ββ + ββt2)
−α−α−α

× 2F1

(
α + α + α, α;α + α; 1− (ββ+ββt2)

(ββ+ββt2)

)
= Γ(3α)

Γ(2α)Γ(α)
(t2)

α−1 (1 + t2)
−3α , t2 > 0.

Therefore T2 ∼ BetaII (α, 2α) when βi = β and αi = α for i = 0, 1, 2.
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3.2.3 Conditional density functions

Conditional density function of T1 given T2

Theorem 3.4

The conditional density function of T1, given T2, is

g (t1|t2) = Γ(α0+α1)
Γ(α0)Γ(α1)

(t1)
α1−1 (1 + t1)

α2

(
1 + β0t1(β2+β1t2)

β1β2+β0β1t2

)−α0−α1−α2

÷ 2F1

(
α0 + α1 + α2, α1;α0 + α1; 1− (β0β2+β0β1t2)

(β1β2+β0β1t2)

)
, t1 > 0 and∣∣∣1− (β0β2+β0β1t2)

(β1β2+β0β1t2)

∣∣∣ < 1,

(3.11)

where αi, βi > 0 for i = 0, 1, 2.

Proof

From equations (3.1) and (3.9), the conditional density function follows as
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g (t1|t2) =
g (t1, t2)

g (t2)

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (t2)
α2−1 (1 + t1)

α2

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α0−α1−α2

÷

[(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0 + α1) Γ (α2)
(t2)

α2−1 (β1β2 + β0β1t2)
−α0−α1−α2

× 2F1

(
α0 + α1 + α2, α1;α0 + α1; 1−

(β0β2 + β0β1t2)

(β1β2 + β0β1t2)

)]

=
Γ (α0 + α1)

Γ (α0) Γ (α1)
(t1)

α1−1 (1 + t1)
α2

(
β1β2 + β0β2t1 + β0β1 (1 + t1) t2

(β1β2 + β0β1t2)

)−α0−α1−α2

÷ 2F1

(
α0 + α1 + α2, α1;α0 + α1; 1−

(β0β2 + β0β1t2)

(β1β2 + β0β1t2)

)
=

Γ (α0 + α1)

Γ (α0) Γ (α1)
(t1)

α1−1 (1 + t1)
α2

×

β1β2 + β0β1t2

(
1 + β0β2t1+β0β1t1t2

β1β2+β0β1t2

)
(β1β2 + β0β1t2)

−α0−α1−α2

÷ 2F1

(
α0 + α1 + α2, α1;α0 + α1; 1−

(β0β2 + β0β1t2)

(β1β2 + β0β1t2)

)

=
Γ (α0 + α1)

Γ (α0) Γ (α1)
(t1)

α1−1 (1 + t1)
α2

(
1 +

β0t1 (β2 + β1t2)

β1β2 + β0β1t2

)−α0−α1−α2

÷ 2F1

(
α0 + α1 + α2, α1;α0 + α1; 1−

(β0β2 + β0β1t2)

(β1β2 + β0β1t2)

)
.

�

Conditional density function of T2 given T1

Theorem 3.5

The conditional density function of T2, given T1, is

g (t2|t1) =

(
β
α2
0 β

α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0+α1)Γ(α2)
(t2)

α2−1 (1 + t1)
α2 (β1 + β0t1)

α0+α1

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α0−α1−α2 , t2 > 0,

(3.12)

where αi, βi > 0 for i = 0, 1, 2.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 3. GENERALISED BETA TYPE VII DISTRIBUTION 52

Proof

From equations (3.1) and (3.5), it follows that

g (t2|t1) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(t1)

α1−1 (t2)
α2−1 (1 + t1)

α2

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α0−α1−α2

÷
[
(βα1

0 βα0
1 ) Γ (α0 + α1)

Γ (α0) Γ (α1)
(t1)

α1−1 (β1 + β0t1)
−α0−α1

]

=

(
βα2
0 βα2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0 + α1) Γ (α2)
(t2)

α2−1 (1 + t1)
α2 (β1 + β0t1)

α0+α1

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α0−α1−α2 .

�

3.2.4 Product moment

Theorem 3.6

The product moment of T1 and T2 is given by

E (T r
1T

s
2 ) =

(
β
α1−s
0 β

−α1
1 βs

2

)
Γ(α2+s)Γ(α0+α1−s)Γ(α1+r)Γ(α0−r)

Γ(α0)Γ(α1)Γ(α2)Γ(α0+α1)

×2F1

(
α0 + α1 − s, α1 + r;α0 + α1; 1− β0

β1

)
, α0 + α1 > s,

α0 > r and∣∣∣1− β0

β1

∣∣∣ < 1,

(3.13)

where αi, βi > 0 for i = 0, 1, 2.

Proof

The product moment of a bivariate distribution is de�ned in Result 5. By substituting Equation (3.1) into
Result 5, it follows that
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E (T r
1T

s
2 ) =

ˆ ∞

0

ˆ ∞

0

g (t1, t2) t
r
1t

s
2dt1dt2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

ˆ ∞

0

(t1)
α1+r−1 (t2)

α2+s−1 (1 + t1)
α2

× (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)
−α0−α1−α2 dt1dt2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

α2

×
ˆ ∞

0

(t2)
α2+s−1 (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)

−α0−α1−α2 dt2dt1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

α2

×
ˆ ∞

0

(t2)
α2+s−1

[
(β1β2 + β0β2t1)

(
1 +

β0β1 (1 + t1)

β1β2 + β0β2t1
t2

)]−α0−α1−α2

dt2dt1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

α2

× (β1β2 + β0β2t1)
−α0−α1−α2

ˆ ∞

0

(t2)
α2+s−1

(
1 +

β0β1 (1 + t1)

β1β2 + β0β2t1
t2

)−α0−α1−α2

dt2dt1.(3.14)

By applying Result 13, Equation (3.14) may be rewritten as

E (T r
1T

s
2 ) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

α2

× (β1β2 + β0β2t1)
−α0−α1−α2

(
β0β1 (1 + t1)

β1β2 + β0β2t1

)−α2−s

B (α2 + s, α0 + α1 + α2 − α2 − s) dt1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

α2

× (β1β2 + β0β2t1)
−α0−α1−α2

(
β0β1 (1 + t1)

β1β2 + β0β2t1

)−α2−s
Γ (α2 + s) Γ (α0 + α1 − s)

Γ (α0 + α1 + α2)
dt1
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E (T r
1T

s
2 ) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

Γ (α2 + s) Γ (α0 + α1 − s)

Γ (α0 + α1 + α2)

ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

−s

× (β1β2 + β0β2t1)
−α0−α1−α2 (β0β1)

−α2−s (β1β2 + β0β2t1)
α2+s dt1

=

(
βα1−s
0 βα0−s

1 βα0+α1
2

)
Γ (α2 + s) Γ (α0 + α1 − s)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

−s (β1β2 + β0β2t1)
−α0−α1+s dt1

=

(
βα1−s
0 βα0−s

1 βα0+α1
2

)
Γ (α2 + s) Γ (α0 + α1 − s)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

−s

[
(β1β2)

(
1 +

β0β2

β1β2

t1

)]−α0−α1+s

dt1

=

(
βα1−s
0 βα0−s

1 βα0+α1
2

)
Γ (α2 + s) Γ (α0 + α1 − s)

Γ (α0) Γ (α1) Γ (α2)
(β1β2)

−α0−α1+s

×
ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

−s

(
1 +

β0

β1

t1

)−α0−α1+s

dt1

=

(
βα1−s
0 β−α1

1 βs
2

)
Γ (α2 + s) Γ (α0 + α1 − s)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

(t1)
α1+r−1 (1 + t1)

−s

(
1 +

β0

β1

t1

)−α0−α1+s

dt1. (3.15)

Applying Result 12 and Result 7 to Equation (3.15) the following expression follows

E (T r
1T

s
2 ) =

(
βα1−s
0 β−α1

1 βs
2

)
Γ (α2 + s) Γ (α0 + α1 − s)

Γ (α0) Γ (α1) Γ (α2)

× B (α1 + r, α0 − r) 2F1

(
α0 + α1 − s, α1 + r;α0 + α1; 1−

β0

β1

)

=

(
βα1−s
0 β−α1

1 βs
2

)
Γ (α2 + s) Γ (α0 + α1 − s)

Γ (α0) Γ (α1) Γ (α2)

× Γ (α1 + r) Γ (α0 − r)

Γ (α0 + α1)
2F1

(
α0 + α1 − s, α1 + r;α0 + α1; 1−

β0

β1

)

=

(
βα1−s
0 β−α1

1 βs
2

)
Γ (α2 + s) Γ (α0 + α1 − s) Γ (α1 + r) Γ (α0 − r)

Γ (α0) Γ (α1) Γ (α2) Γ (α0 + α1)

× 2F1

(
α0 + α1 − s, α1 + r;α0 + α1; 1−

β0

β1

)
.

�
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3.3 Multivariate distribution

3.3.1 Joint density function

Theorem 3.7

Let Wi be independent gamma random variables with parameters (αi > 0, βi > 0) for i = 0, 1, 2, ...,m.

Let T1 =
W1

W0
and Tr =

Wr∑r−1
i=0 Wi

, r = 2, 3, ...,m.

The joint density function is then given by

g (t1, t2, ..., tm) =
Γ
(∑m

j=0 αj

)
∏m

j=0

[
β
αj
j Γ(αj)

] (∏m−1
k=1

[
(1 + tk)

∑m
j=k+1 αj

])(∏m
j=1

[
t
αj−1
j

])
×

(
1
β0

+ t1
β1

+
∑m

j=2

[
tj
βj

∏j−1
k=1 [1 + tk]

])−∑m
j=0 αj

, t1, t2, ..., tm > 0.

(3.16)

Proof

Since the gamma random variables are independent, the joint density function of Wi, i = 0, 1, 2, ...,m. is
given by

g (w0, w1, ..., wm) =
m∏
i=0

(
wαi−1

i e
−wi

βi

)
βαi
i Γ (αi)

, w0, w2, ..., wm > 0. (3.17)

Let T = W0, T1 =
W1

W0
and Tr =

Wr∑r−1
i=0 Wi

, r = 2, 3, ...,m.

The inverse transformation is then given by

W0 = T
W1 = T1T
W2 = T2T (1 + T1)
W3 = T3T (1 + T1) (1 + T2) .

In general, the transformation is

Wi = TiT
∏i−1

k=1 (1 + Tk) , i = 2, ...,m.

The Jacobian of the transformation is then

J (w0, ..., wm → t, t1, ..., tm)
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=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 ... 0
t1 t 0 ... 0

t2 (1 + t1) t2t t (1 + t1) ... 0
t3 (1 + t2) (1 + t1) t3t (1 + t2) t3t (1 + t1) ... 0

... ... ... ... ...

tm
∏m−1

k=1 (1 + tk) tmt
∏m−1

k=2 (1 + tk) tmt (1 + t1)
∏m−1

k=3 (1 + tk) ... t
∏m−1

k=1 (1 + tk)

∣∣∣∣∣∣∣∣∣∣∣∣
= tm

∏m−1
k=1 (1 + tk)

m−k .

By making the transformation and substituting the equations for W0,W1, ...Wm into Equation (3.17), it
follows that the joint density function of T, T1, T2, ..., Tm is

g (t, t1, t2, ..., tm) =

(
tα0−1e

− t
β0

)
βα0
0 Γ (α0)

(
(t1t)

α1−1 e
− t1t

β1

)
βα1
1 Γ (α1)

tm
m−1∏
k=1

(1 + tk)
m−k

×
m∏
j=2

((
tjt
∏j−1

k=1 (1 + tk)
)αj−1

e
−

tjt
∏j−1

k=1

(
1+tk

)
βj

)
β
αj

j Γ (αj)

= =
1∏m

j=0

[
β
αj

j Γ (αj)
] (t∑m

j=0[αj ]−1

m∏
j=1

[
t
αj−1
j

])

× ×
m∏
j=2

[
j−1∏
k=1

[1 + tk]
αj−1

]
m−1∏
k=1

[1 + tk]
m−k

× ×e
−t

(
1
β0

+
t1
β1

+
∑m

j=2

[
tj
βj

∏j−1
k=1[1+tk]

])

= =
1∏m

j=0

[
β
αj

j Γ (αj)
] (t∑m

j=0[αj ]−1

m∏
j=1

[
t
αj−1
j

])

× ×

(
m−1∏
k=1

[
(1 + tk)

∑m
j=k+1 αj

])
e
−t

(
1
β0

+
t1
β1

+
∑m

j=2

[
tj
βj

∏j−1
k=1[1+tk]

])
. (3.18)

The last step in Equation (3.18) follows by merely reordering the terms of the equation. For a more detailed
discussion of how to perform this reordering see Adamski [1] p19.

By integrating Equation (3.18) with respect to t, it follows that

g (t1, t2, ..., tm) =
1∏m

j=0

[
β
αj

j Γ (αj)
] (m−1∏

k=1

[
(1 + tk)

∑m
j=k+1 αj

])( m∏
j=1

[
t
αj−1
j

])

×
∞̂

0

t
∑m

j=0[αj ]−1e
−t

(
1
β0

+
t1
β1

+
∑m

j=2

[
tj
βj

∏j−1
k=1[1+tk]

])
dt. (3.19)
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By applying Result 11 to Equation (3.19) it follows that

g (t1, t2, ..., tm) =
1∏m

j=0

[
β
αj

j Γ (αj)
] (m−1∏

k=1

[
(1 + tk)

∑m
j=k+1 αj

])( m∏
j=1

[
t
αj−1
j

])

× Γ

(
m∑
j=0

αj

)(
1

β0

+
t1
β1

+
m∑
j=2

[
tj
βj

j−1∏
k=1

[1 + tk]

])−
∑m

j=0 αj

=
Γ
(∑m

j=0 αj

)
∏m

j=0

[
β
αj

j Γ (αj)
] (m−1∏

k=1

[
(1 + tk)

∑m
j=k+1 αj

])( m∏
j=1

[
t
αj−1
j

])

×

(
1

β0

+
t1
β1

+
m∑
j=2

[
tj
βj

j−1∏
k=1

[1 + tk]

])−
∑m

j=0 αj

.

�

Special cases

1) If αi = α for i = 0, 1, 2, ...,m then Equation (3.16) becomes

g (t1, t2, ..., tm) =
Γ
(∑m

j=0 α
)

∏m
j=0

[
βα
j Γ(α)

] (∏m−1
k=1

[
(1 + tk)

∑m
j=k+1 α

])(∏m
j=1

[
tα−1
j

])
×

(
1
β0

+ t1
β1

+
∑m

j=2

[
tj
βj

∏j−1
k=1 [1 + tk]

])−∑m
j=0 α

= Γ((m+1)α)

(m+1)Γ(α)
∏m

j=0

[
βα
j

] (∏m−1
k=1

[
(1 + tk)

(m−k)α
])(∏m

j=1

[
tα−1
j

])
×

(
1
β0

+ t1
β1

+
∑m

j=2

[
tj
βj

∏j−1
k=1 [1 + tk]

])−(m+1)α

, t1, t2, ..., tm > 0.

2) If βi = β for i = 0, 1, 2, ...,m then Equation (3.16) becomes
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g (t1, t2, ..., tm) =
Γ
(∑m

j=0 αj

)
∏m

j=0

[
βαjΓ(αj)

] (∏m−1
k=1

[
(1 + tk)

∑m
j=k+1 αj

])(∏m
j=1

[
t
αj−1
j

])
×

(
1
β
+ t1

β
+
∑m

j=2

[
tj
β

∏j−1
k=1 [1 + tk]

])−∑m
j=0 αj

=
Γ
(∑m

j=0 αj

)
β
∑m

j=0

[
αj

]∏m
j=0[Γ(αj)]

(∏m−1
k=1

[
(1 + tk)

∑m
j=k+1 αj

])(∏m
j=1

[
t
αj−1
j

])
×

(
1
β

)−∑m
j=0 αj

(
1 + t1 +

∑m
j=2

[
tj
∏j−1

k=1 [1 + tk]
])−∑m

j=0 αj

=
Γ
(∑m

j=0 αj

)
∏m

j=0[Γ(αj)]

(∏m−1
k=1

[
(1 + tk)

∑m
j=k+1 αj

])(∏m
j=1

[
t
αj−1
j

])
×

(
1 + t1 +

∑m
j=2

[
tj
∏j−1

k=1 [1 + tk]
])−∑m

j=0 αj

, t1, t2, ..., tm > 0.

3) If βi = β and αi = α for i = 0, 1, 2, ...,m then Equation (3.16) becomes

g (t1, t2, ..., tm) =
Γ
(∑m

j=0 α
)

∏m
j=0[β

αΓ(α)]

(∏m−1
k=1

[
(1 + tk)

∑m
j=k+1 α

])(∏m
j=1

[
tα−1
j

])
×

(
1
β
+ t1

β
+
∑m

j=2

[
tj
β

∏j−1
k=1 [1 + tk]

])−∑m
j=0 α

= Γ((m+1)α)

(m+1)[Γ(α)]β(m+1)α

(∏m−1
k=1

[
(1 + tk)

(m−k)α
])(∏m

j=1

[
tα−1
j

])
×

(
1
β

)−(m+1)α (
1 + t1 +

∑m
j=2

[
tj
∏j−1

k=1 [1 + tk]
])−(m+1)α

= Γ((m+1)α)
(m+1)[Γ(α)]

(∏m−1
k=1

[
(1 + tk)

(m−k)α
])(∏m

j=1

[
tα−1
j

])
×

(
1 + t1 +

∑m
j=2

[
tj
∏j−1

k=1 [1 + tk]
])−(m+1)α

, t1, t2, ..., tm > 0.
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Chapter 4

Generalised beta type VIII distribution

4.1 Introduction

This chapter focuses on the joint density function of the statistics that are de�ned in Equation (1.11),
its respective properties and subsequent derivations. In Section 4.2 the focus is on the bivariate case,
where U1 =

W1+W2

W0
and U2 =

W2

W0+W1
where Wi are independent gamma random variables with parameters

(αi > 0, βi > 0) for i = 0, 1, 2. In Section 4.3 the focus is on the multivariate case. These derivations are
necessary for creating the theoretical foundation that would be required to derive the closed for expression
for the control limits as discussed in Chapter 1.

The main focus of this chapter will be to expand on the bivariate probability density function and its
relevant properties, since, as was stated in the study outline, the methods used during the bivariate
derivations are likely to be similar in nature to the methods required during higher dimensional derivations
and focusing on the bivariate case also allows graphical representations of the distributions to be plotted,
which would be impossible for higher dimensions.

4.2 Bivariate distribution

Initially, the joint density function of the statistics in Equation (1.11) is derived in Section 4.2.1. This is
followed by a shape analysis and a short investigation into the three special cases described in Chapter
3, namely where the α's are all equal but the β's may be unequal, where all the β's are equal but the
α's may di�er, and thirdly where all the α's are equal and all the β's are equal. In Section 4.2.3, the
marginal density functions for both U1 and U2 are derived by integrating out the respective variables from
the joint density function. An alternative method for deriving the marginal density functions is mentioned
in a note. This alternative method involves constructing the marginal density functions from independent
gamma random variables. The derivations are similar in nature to those in sections 3.2.1 and 4.2.1. This
is followed an exploratory shape analysis and then by the derivations of the respective conditional density
functions. The product moment of U1 and U2 is derived in Section 4.2.5. Again two di�erent methods
are used. First the traditional method, namely integrating the joint density function with respect to both
variables. It is then also derived by using a transformation between the variables de�ned in sections 4.2.1
and 3.2. It will be shown that deriving the product moment using the traditional method results in a

59
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CHAPTER 4. GENERALISED BETA TYPE VIII DISTRIBUTION 60

closed-form expression with restrictions that are impossible to meet, and thus the transformation method
is necessitated. (This demonstrates the importance and relevance of the table of transformations between
the bivariate beta density function derived in Chapter 2, Table 2.1.)
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4.2.1 Joint density function

Theorem 4.1

Let Wi be independent gamma random variables with parameters (αi > 0, βi > 0) for i = 0, 1, 2.

Let U1 =
W1+W2

W0
and U2 =

W2

W0+W1
.

The joint density function of U1 and U2 is then given by

f (u1, u2) =

(
β
α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(u1 − u2)

α1−1 uα2−1
2 (1 + u1)

α2 (1 + u2)
α0

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2(1 + u1))
−α0−α1−α2 , u1 > u2 > 0.

(4.1)

Proof

Since the gamma random variables are independent, the joint density function of W0,W1,W2 is given by

f (w0, w1, w2) =

(
wα0−1

0 e
−w0

β0

)(
wα1−1

1 e
−w1

β1

)(
wα2−1

2 e
−w2

β2

)
βα0
0 βα1

1 βα2
2 Γ (α0) Γ (α1) Γ (α2)

, w0, w1, w2 > 0. (4.2)

Let U = W0, U1 =
W1+W2

W0
and U2 =

W2

W0+W1
.

Using the �variables in common� technique it is possible to �nd the joint density function of U,U1 and U2

as follows:

The inverse transformation is given by

W0 = U
W1 = U1U −W2

W2 = U2 (U +W1).

By simultaneous equations, it is possible to solve W1 and W2 in terms of U,U1 and U2.

W1 = U1U − U2 (U +W1)
W1 = U1U − U2U − U2W1

W1 + U2W1 = U1U − U2U
W1 (1 + U2) = U1U − U2U
W1 =

U1U−U2U
(1+U2)

W1 =
U(U1−U2)
(1+U2)
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W2 = U2 (U +W1) = U2

(
U + U(U1−U2)

(1+U2)

)
W2 = U2U + U2

U(U1−U2)
(1+U2)

W2 =
UU2(1+U2)+U2U(U1−U2)

(1+U2)

W2 =
UU2+UU2U2+UU1U2−UU2U2

(1+U2)

W2 =
UU2+UU1U2

(1+U2)

W2 =
UU2(1+U1)

(1+U2)
.

The Jacobian of this transformation is then given by

J (w0, w1, w2 → u, u1, u2)

=

∣∣∣∣∣∣∣
1 0 0

(u1−u2)
(1+u2)

u
(1+u2)

−u(1+u2)−u(u1−u2)

(1+u2)
2

u2(1+u1)
(1+u2)

uu2

(1+u2)
u(1+u1)(1+u2)−uu2(1+u1)

(1+u2)
2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 0 0

(u1−u2)
(1+u2)

u
(1+u2)

−u(1+u1)

(1+u2)
2

u1(1+u1)
(1+u1)

uu2

(1+u2)
u(1+u1)

(1+u2)
2

∣∣∣∣∣∣∣
= u

(1+u2)
u(1+u1)

(1+u2)
2 − −u(1+u1)

(1+u2)
2

uu2

(1+u2)

= uu(1+u1)

(1+u2)
3 + uuu2(1+u1)

(1+u2)
3

= uu(1+u1)(1+u2)

(1+u2)
3

= u2(1+u1)

(1+u2)
2 .

By making the transformation and substituting the equations for W0,W1 and W2 into Equation (4.2), it
follows that the joint density function of U,U1, U2 is

f (u, u1, u2) =
1

βα0
0 βα1

1 βα2
2 Γ (α0) Γ (α1) Γ (α2)

uα0−1e
− u

β0

(
u (u1 − u2)

(1 + u2)

)α1−1

× e
−

u(u1−u2)
(1+u2)

β1

(
uu2 (1 + u1)

(1 + u2)

)α2−1

e
−

uu2(1+u1)
(1+u2)

β2
u2 (1 + u1)

(1 + u2)
2

=
1

βα0
0 βα1

1 βα2
2 Γ (α0) Γ (α1) Γ (α2)

(u1 − u2)
α1−1 uα2−1

2 (1 + u1)
α2 (1 + u2)

−α1−α2

× u(α0+α1+α2)−1e
−u(β1β2(1+u2)+β0β2(u1−u2)+β0β1u2(1+u1))

β0β1β2(1+u2) . (4.3)

By integrating Equation (4.3) with respect to u, it follows that
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f (u1, u2) =
1

βα0
0 βα1

1 βα2
2 Γ (α0) Γ (α1) Γ (α2)

(u1 − u2)
α1−1 uα2−1

2 (1 + u1)
α2 (1 + u2)

−α1−α2

×
∞̂

0

u(α0+α1+α2)−1e
−u(β1β2(1+u2)+β0β2(u1−u2)+β0β1u2(1+u1))

β0β1β2(1+u2) du. (4.4)

By applying Result 11 to Equation (4.4), it then follows that

f (u1, u2) =
Γ (α0 + α1 + α2)

βα0
0 βα1

1 βα2
2 Γ (α0) Γ (α1) Γ (α2)

(u1 − u2)
α1−1 uα2−1

2 (1 + u1)
α2 (1 + u2)

−α1−α2

×
(
(β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))

β0β1β2 (1 + u2)

)−α0−α1−α2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(u1 − u2)

α1−1 uα2−1
2 (1 + u1)

α2 (1 + u2)
α0

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−α0−α1−α2 .

�

4.2.2 Shape analysis

In this section an exploratory shape analysis is conducted into the joint density function given in Equation
(4.1). (To avoid repetition, for the remainder of this chapter whenever reference is made to the �joint
density function�, it is Equation (4.1) that is being referred to). A standard set of parameters has been
chosen as a baseline. The parameters are chosen to be α0 = α1 = α2 = 5 and β0 = β1 = β2 = 2, in other
words, a process where all three samples consist of 5 × 2 + 1 = 11 observations (since αi =

ni−1
2
), and

where no shift has occurred in the process variance. Some of the parameters will then be varied from this
baseline in order to investigate the e�ect that a change in the speci�c parameters will have on the general
shape of the joint density function.

Note that the change in some parameters will be large - so large that they lose practical realism. This is
done to emphasise and investigate the general change in the shape, and is not meant to be an indication of
the practical applications of the joint density function. For example, suppose that, initially a process is IC
and thus Yi ∼ Gamma (5, 2). If the process undergoes a 20% increase in variance, this would correspond
to a Y ∗

i = 1.2Yi ∼ Gamma (5, 2× 1.2) ≡ Gamma (5, 2.4) random variable. This increase in the scale
parameter would probably have a minimal e�ect on the visual appearance of a bivariate graph of the
density function. Instead, to emphasise the potential e�ect of an increase in the process variance on the
shape of the density function, the scale parameter could be varied to 5, for instance. This would correspond
to a Y ∗∗

i = 2.5Yi ∼ Gamma (5, 2× 2.5) ≡ Gamma (5, 5) random variable, which implies that the process
variance increased 250% over the IC baseline values. In practice, a 250% increase in the variance is highly
unlikely, but it would serve to illustrate how the joint density function's shape corresponds to certain
parameter choices.
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The functions will only be plotted on the u1 ∈ [0, 3] , u2 ∈ [0, 3] domain. This by no means implies that
the functions stop at the upper limit of 3. The main purpose of this chapter is the comparison between
di�erent parameterisations of the joint density function.

Figure 4.1: Equal sample sizes and in control process.

From Figure 4.1, it is apparent that increasing the sample sizes also increases the height of the peak
of the density function. Larger sample sizes also shrink the length and width of the �tails� of the joint
density function. In essence, the higher the sample sizes, the smaller the domain on which the function
has signi�cant values. Increasing all sample sizes has very little e�ect in shifting the location of the joint
density function.
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Figure 4.2: Varying sample sizes and in control process.

Figure 4.2 illustrates the e�ect that having one large (sample relative to the other two small samples)
would have on the shape of the joint density function. Having a relatively large �rst sample would shift
the location of the joint density function towards the minimum end of the domain - in other words closer
to the [0,0] coordinate. However, this also results in joint density function having a much higher peak.
Having a relatively large second sample (relative the �rst and third samples) elongates the joint density
function in the U1 direction, making it insensitive to large values in U2. This result coincides with what
one would expect given the practical, SPC interpretation of the U1 statistic, namely that if the sample at
time 1 contains a lot of data points, the statistic at this time (U1) would have a large impact on the joint
density function. Similarly, if the third sample is large relative to the �rst and second samples, the joint
density function becomes elongated in the U2 direction, making it relatively insensitive to large values in
U1. This result again coincides with the general intuition given the practical, SPC interpretation of the U2

statistic.
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Figure 4.3: Equal sample sizes, unsustained increase in variance.

It should be noted that the scenario in the above image, Figure 4.3, falls outside the practical application
of the model that this study proposes (at least for the �rst two graphs). As previously stated, this study
is mainly concerned with detecting a sustained shift in the process variance. These �gures are included
however since they do yield insight into the workings of the derived joint probability density function. An
unsustained increase in the process variance, as depicted in Figure 4.3, would be better modelled by a beta
distribution that compares a single sample variance with the other m sample variances. A good example
of this would be the bivariate beta type VI distribution mentioned in Chapter 2.
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Figure 4.4: Equal sample sizes, unsustained decrease in variance.

Once again, it should be noted that the scenario in Figure 4.4, falls outside the practical application of
the model that this study proposes. As previously stated this study is mainly concerned with detecting a
sustained shift in the process variance. These �gures are included however since they do yield insight into
the workings of the derived joint probability density function. An unsustained decrease, as is depicted in
Figure 4.4, would be better modeled by the bivariate beta type VI distribution mentioned in Chapter 2.
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Figure 4.5: Equal sample sizes, sustained increase in variance.

Figure 4.5 illustrates an important advantage of the model that this study proposes over the more traditional
Q chart method, namely its resistance to the �masking of shifts� problem that was mentioned in Chapter 1
and again in Section 1.1. The above graphs demonstrate that a sustained increase in the process variance,
irrespective of size, minimally a�ects the general shape of the joint density function, but does a�ect the
location. In the above example, the shift in the process variance occurs at time 1, and as one would hope
and expect, the joint density function relies heavily on the value of the statistic at time 1, U1.
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Figure 4.6: Equal sample sizes, sustained decrease in variance.

Figure 4.6 again illustrates the resistance of the proposed model to the �masking of shifts� problem that
was mentioned in Chapter 1 and in Section 1.1. The above graphs demonstrate that a sustained decrease
in the process variance, irrespective of size, once again does not signi�cantly a�ect the general shape of the
joint density function much, however, the location is a�ected. In the above example, the shift in the process
variance again occurred at time 1, and as one would expect, the joint density function relies heavily on
the value of the statistic at time 1, U1. It should be noted however that a decrease in the process variance
does skew the distribution signi�cantly - much more so than an increase in the variance.
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Special cases

1) If αi = α for i = 0, 1, 2, Equation (4.1) simpli�es to

f (u1, u2) =
(
β2α
0 β2α

1 β2α
2

)
Γ(3α)

Γ(α)3
(u1 − u2)

α−1 uα−1
2 (1 + u1)

α (1 + u2)
α

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−3α , u1 > u2 > 0.

2) If βi = β for i = 0, 1, 2, Equation (4.1) simpli�es to

f (u1, u2) =
(
β2α0+2α1+2α2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(u1 − u2)

α1−1 uα2−1
2 (1 + u1)

α2 (1 + u2)
α0

×
(
β2 ((1 + u2) + (u1 − u2) + u2 (1 + u1))

)−α0−α1−α2

= Γ(α0+α1+α2)
Γ(α0)Γ(α1)Γ(α2)

(u1 − u2)
α1−1 uα2−1

2 (1 + u1)
α2 (1 + u2)

α0

× (1 + u1 + u2 (1 + u1))
−α0−α1−α2

= Γ(α0+α1+α2)
Γ(α0)Γ(α1)Γ(α2)

(u1 − u2)
α1−1 uα2−1

2 (1 + u1)
α2 (1 + u2)

α0

× ((1 + u2) (1 + u1))
−α0−α1−α2

= Γ(α0+α1+α2)
Γ(α0)Γ(α1)Γ(α2)

(u1 − u2)
α1−1 uα2−1

2 (1 + u1)
−α0−α1 (1 + u2)

−α1−α2 , u1 > u2 > 0.

3) If βi = β and αi = α for i = 0, 1, 2, Equation (4.1) simpli�es to

f (u1, u2) =
(
β6α

)
Γ(3α)

Γ(α)Γ(α)Γ(α)
(u1 − u2)

α−1 uα−1
2 (1 + u1)

α (1 + u2)
α

×
(
β2 ((1 + u2) + (u1 − u2) + u2 (1 + u1))

)−3α

= Γ(3α)

Γ(α)3
(u1 − u2)

α−1 uα−1
2 (1 + u1)

α (1 + u2)
α

× ((1 + u2) (1 + u1))
−3α

= Γ(3α)

Γ(α)3
(u1 − u2)

α−1 uα−1
2 (1 + u1)

−2α (1 + u2)
−2α , u1 > u2 > 0.

4.2.3 Marginal density functions

Deriving the marginal density functions by integrating out the relevant variables from the joint density
function, Equation (4.1), proved to be di�cult and time consuming, requiring a lot of trial and error in
rearranging the terms of the bivariate beta density function that had to be integrated. The results that
this method yields are far less compact than the method mentioned in the note at the end of this section;
however, their restrictions are more realistic, and as such this form is of greater practical signi�cance.

Marginal density function of U1

Theorem 4.2

The marginal density function of U1 is given by
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f (u1) =

(
β
α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(β1β2 + β0β2u1)

−α0−α1−α2

× (1 + u1)
α2
∑∞

k=0

[(
α0!

k!(α0−k)!

)
(u1)

k+α1+α2−1 Γ(α1)Γ(k+α2)
Γ(k+α1+α2)

× 2F1

(
α0 + α1 + α2, k + α2; k + α1 + α2;−u1(β1β2−β0β2+β0β1+β0β1u1)

β1β2+β0β2u1

)]
,

u1 > 0, β1 (β2 + β0 (1 + u1)) > β0β2 and
∣∣∣−u1(β1β2−β0β2+β0β1+β0β1u1)

β1β2+β0β2u1

∣∣∣ < 1,

(4.5)

where αi, βi > 0 for i = 0, 1, 2.

If α0 ∈ N, as will be the case in an SPC setting, the sum changes from
∑∞

k=0 to
∑α0

k=0. (See Result 18.)

Proof

By integrating Equation (4.1) with respect to u2, rearranging the terms, as well as applying Result 18 and
Result 19, it follows that

f (u1) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2

u1ˆ

0

(u1 − u2)
α1−1 uα2−1

2 (1 + u2)
α0

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−α0−α1−α2 du2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2

u1ˆ

0

(u1 − u2)
α1−1 uα2−1

2 (1 + u2)
α0

× (β1β2 + β1β2u2 + β0β2u1 − β0β2u2 + β0β1u2 + β0β1u1u2)
−α0−α1−α2 du2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2

u1ˆ

0

(u1 − u2)
α1−1 uα2−1

2 (1 + u2)
α0

× (β1β2 + β0β2u1 + u2 (β1β2 − β0β2 + β0β1 + β0β1u1))
−α0−α1−α2 du2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2 (β1β2 − β0β2 + β0β1 + β0β1u1)
−α0−α1−α2

×
u1ˆ

0

(u1 − u2)
α1−1 uα2−1

2 (1 + u2)
α0

(
β1β2 + β0β2u1

β1β2 − β0β2 + β0β1 + β0β1u1

+ u2

)−α0−α1−α2

du2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2 (β1β2 − β0β2 + β0β1 + β0β1u1)
−α0−α1−α2

×
u1ˆ

0

(u1 − u2)
α1−1 uα2−1

2

∞∑
k=0

((
α0

k

)
uk
2

)(
β1β2 + β0β2u1

β1β2 − β0β2 + β0β1 + β0β1u1

+ u2

)−α0−α1−α2

du2
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f (u1) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2 (β1β2 − β0β2 + β0β1 + β0β1u1)
−α0−α1−α2

×
u1ˆ

0

(u1 − u2)
α1−1 uα2−1

2

∞∑
k=0

(
α0!

k! (α0 − k)!
uk
2

)(
β1β2 + β0β2u1

β1β2 − β0β2 + β0β1 + β0β1u1

+ u2

)−α0−α1−α2

du2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2 (β1β2 − β0β2 + β0β1 + β0β1u1)
−α0−α1−α2

×
∞∑
k=0

(
α0!

k! (α0 − k)!

) u1ˆ

0

(u1 − u2)
α1−1 uk+α2−1

2

(
β1β2 + β0β2u1

β1β2 − β0β2 + β0β1 + β0β1u1

+ u2

)−α0−α1−α2

du2.

(4.6)

By applying Result 14 to Equation (4.6), the density function can be represented as

f (u1) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2 (β1β2 − β0β2 + β0β1 + β0β1u1)
−α0−α1−α2

×
(

β1β2 + β0β2u1

β1β2 − β0β2 + β0β1 + β0β1u1

)−α0−α1−α2 ∞∑
k=0

[(
α0!

k! (α0 − k)!

)
(u1)

k+α1+α2−1

× B (α1, k + α2) 2F1

(
α0 + α1 + α2, k + α2; k + α1 + α2;−

u1

β1β2+β0β2u1

β1β2−β0β2+β0β1+β0β1u1

)]

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2 (β1β2 + β0β2u1)
−α0−α1−α2

×
∞∑
k=0

[(
α0!

k! (α0 − k)!

)
(u1)

k+α1+α2−1 Γ (α1) Γ (k + α2)

Γ (k + α1 + α2)

× 2F1

(
α0 + α1 + α2, k + α2; k + α1 + α2;−

u1 (β1β2 − β0β2 + β0β1 + β0β1u1)

β1β2 + β0β2u1

)]
.

�
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Special cases U1

1) If αi = α for i = 0, 1, 2, Equation (4.5) simpli�es to

f (u1) =
(
β2α
0 β2α

1 β2α
2

)
Γ(3α)

Γ(α)3
(β1β2 + β0β2u1)

−3α

× (1 + u1)
α∑∞

k=0

[(
α!

k!(α−k)!

)
(u1)

k+2α−1 Γ(α)Γ(k+α)
Γ(k+2α)

× 2F1

(
3α, k + α; k + 2α;−u1(β1β2−β0β2+β0β1+β0β1u1)

β1β2+β0β2u1

)]
,

u1 > 0 and
∣∣∣−u1(β1β2−β0β2+β0β1+β0β1u1)

β1β2+β0β2u1

∣∣∣ < 1.

2) If βi = β for i = 0, 1, 2, Equation (4.5) simpli�es to

f (u1) =
(
βα1+α2βα0+α2βα0+α1

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(β2 + β2u1)

−α0−α1−α2

× (1 + u1)
α2
∑∞

k=0

[(
α0!

k!(α0−k)!

)
(u1)

k+α1+α2−1 Γ(α1)Γ(k+α2)
Γ(k+α1+α2)

× 2F1

(
α0 + α1 + α2, k + α2; k + α1 + α2;−

u1

(
β2−β2+β2+β2u1

)
β2+β2u1

)]
=

(
β2α0+2α1+2α2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
β2(−α0−α1−α2) (1 + u1)

−α0−α1−α2

× (1 + u1)
α2
∑∞

k=0

[(
α0!

k!(α0−k)!

)
(u1)

k+α1+α2−1 Γ(α1)Γ(k+α2)
Γ(k+α1+α2)

× 2F1

(
α0 + α1 + α2, k + α2; k + α1 + α2;−u1β2(1+u1)

β2(1+u1)

)]
= Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(1 + u1)

−α0−α1

×
∑∞

k=0

[(
α0!

k!(α0−k)!

)
(u1)

k+α1+α2−1 Γ(α1)Γ(k+α2)
Γ(k+α1+α2)

× 2F1 (α0 + α1 + α2, k + α2; k + α1 + α2;−u1)] , 0 < u1 < 1.

3) If βi = β and αi = α for i = 0, 1, 2, Equation (4.5) simpli�es to

f (u1) =
(
β2αβ2αβ2α

)
Γ(3α)

Γ(α)3
(β2 + β2u1)

−3α

× (1 + u1)
α∑∞

k=0

[(
α!

k!(α−k)!

)
(u1)

k+2α−1 Γ(α)Γ(k+α)
Γ(k+2α)

× 2F1

(
3α, k + α; k + 2α;−u1

(
β2−β2+β2+β2u1

)
β2+β2u1

)]
= Γ(3α)

Γ(α)3
(1 + u1)

−2α

×
∑∞

k=0

[(
α!

k!(α−k)!

)
(u1)

k+2α−1 Γ(α)Γ(k+α)
Γ(k+2α)

× 2F1 (3α, k + α; k + 2α;−u1)] , 0 < u1 < 1.
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Marginal density function of U2

Theorem 4.3

The marginal density function of U2 is given by

f (u2) =

(
β
α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α2)
(1 + u2)

α0
∑∞

k=0

[
α2!

k!(α2−k)!

×
∑∞

j=0

[
(−1)j

(
α0 + α1 + α2 + j − 1

j

)
(β0β2 + β0β1u2)

−α0−α1−α2−j

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
j uk−α0−j−1

2
Γ(α0+α2+j−k)

Γ(α0+α1+α2+j−k)

]]
, u2 > 0,

(4.7)

where αi, βi > 0 for i = 0, 1, 2.

If α2 ∈ N, as will be the case in an SPC setting, the sum changes from
∑∞

k=0 to
∑α2

k=0 . (See Result 18.)

Proof

By integrating Equation (4.1) with respect to u1, and rearranging the terms, it follows that

f (u2) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0

×
∞̂

u2

(u1 − u2)
α1−1 (1 + u1)

α2 (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2(1 + u1))
−α0−α1−α2 du1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0

×
∞̂

u2

(u1 − u2)
α1−1 (1 + u1)

α2 (β1β2 + β1β2u2 + β0β2u1 − β0β2u2 + β0β1u2 + β0β1u1u2)
−α0−α1−α2 du1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0

∞̂

u2

(u1 − u2)
α1−1 (1 + u1)

α2

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2 + u1 (β0β2 + β0β1u2))
−α0−α1−α2 du1. (4.8)

By applying Result 18 and Result 19 to Equation (4.8), it follows that
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f (u2) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β0β2 + β0β1u2)
−α0−α1−α2

×
∞̂

u2

(u1 − u2)
α1−1 (1 + u1)

α2

(
β1β2 + β1β2u2 − β0β2u2 + β0β1u2

β0β2 + β0β1u2

+ u1

)−α0−α1−α2

du1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β0β2 + β0β1u2)
−α0−α1−α2

×
∞̂

u2

(u1 − u2)
α1−1

∞∑
k=0

(
α2!

k! (α2 − k)!
uk
1

)(
β1β2 + β1β2u2 − β0β2u2 + β0β1u2

β0β2 + β0β1u2

+ u1

)−α0−α1−α2

du1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β0β2 + β0β1u2)
−α0−α1−α2

×
∞∑
k=0

 α2!

k! (α2 − k)!

∞̂

u2

(u1 − u2)
α1−1 uk

1

(
β1β2 + β1β2u2 − β0β2u2 + β0β1u2

β0β2 + β0β1u2

+ u1

)−α0−α1−α2

du1

 .

(4.9)

Applying Result 15 to Equation (4.9) leads to

f (u2) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β0β2 + β0β1u2)
−α0−α1−α2

×
(
β1β2 + β1β2u2 − β0β2u2 + β0β1u2

β0β2 + β0β1u2

+ u2

)−α0−α2 ∞∑
k=0

[
α2!

k! (α2 − k)!
uk
2B (−k + α0 + α2, α1)

× 2F1

(
−k, α1;−k − α1;−

β1β2+β1β2u2−β0β2u2+β0β1u2

β0β2+β0β1u2

u2

)]

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β0β2 + β0β1u2)
−α0−α1−α2

×
(
β1β2 + β1β2u2 − β0β2u2 + β0β1u2

β0β2 + β0β1u2

+ u2

)−α0−α2 ∞∑
k=0

[
α2!

k! (α2 − k)!
uk
2B (−k + α0 + α2, α1)

× 2F1

(
−k, α1;−k − α1;−

β1β2 + β1β2u2 − β0β2u2 + β0β1u2

β0β2u2 + β0β1u
2
2

)]
.

Note, however, that in the above expression, the third argument of the hypergeometric function will always
be a negative integer, ranging from −α1 to −α1−α2 (in the case that α2 ∈ N). This results in the function
being unde�ned or in�nite at these points. An alternative expression can be derived by rearranging
Equation (4.8), integrating with respect to u1, and applying Result 18 and Result 19 as follows
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f (u2) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0

×
∞̂

u2

(u1 − u2)
α1−1 (1 + u1)

α2 (β1β2 + β1β2u2 − β0β2u2 + β0β1u2 + u1 (β0β2 + β0β1u2))
−α0−α1−α2 du1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
−α0−α1−α2

×
∞̂

u2

(u1 − u2)
α1−1 (1 + u1)

α2

(
1 +

u1 (β0β2 + β0β1u2)

β1β2 + β1β2u2 − β0β2u2 + β0β1u2

)−α0−α1−α2

du1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
−α0−α1−α2

×
∞̂

u2

(u1 − u2)
α1−1

∞∑
k=0

(
α2!

k! (α2 − k)!
uk
1

)(
1 +

u1 (β0β2 + β0β1u2)

β1β2 + β1β2u2 − β0β2u2 + β0β1u2

)−α0−α1−α2

du1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
−α0−α1−α2

×
∞∑
k=0

 α2!

k! (α2 − k)!

∞̂

u2

(u1 − u2)
α1−1 uk

1

(
1 + u1

(β0β2 + β0β1u2)

β1β2 + β1β2u2 − β0β2u2 + β0β1u2

)−α0−α1−α2

du1


=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
−α0−α1−α2

×
∞∑
k=0

 α2!

k! (α2 − k)!

∞̂

u2

(u1 − u2)
α1−1 uk

1

∞∑
j=0

[
(−1)j

(
α0 + α1 + α2 + j − 1

j

)

×
(
u1

(β0β2 + β0β1u2)

β1β2 + β1β2u2 − β0β2u2 + β0β1u2

)−α0−α1−α2−j
]
du1

]

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
−α0−α1−α2

×
∞∑
k=0

[
α2!

k! (α2 − k)!

∞∑
j=0

[
(−1)j

(
α0 + α1 + α2 + j − 1

j

)

×
(

(β0β2 + β0β1u2)

β1β2 + β1β2u2 − β0β2u2 + β0β1u2

)−α0−α1−α2−j
∞̂

u2

(u1 − u2)
α1−1 uk−α0−α1−α2−j

1 du1

 . (4.10)

By applying Result 16 and Result 7 to Equation (4.10), it follows that
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f (u2) =

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
uα2−1
2 (1 + u2)

α0 (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
−α0−α1−α2

×
∞∑
k=0

[
α2!

k! (α2 − k)!

∞∑
j=0

[
(−1)j

(
(β0β2 + β0β1u2)

β1β2 + β1β2u2 − β0β2u2 + β0β1u2

)−α0−α1−α2−j

×
(

α0 + α1 + α2 + j − 1
j

)
uk−α0−α2−j
2

Γ (α0 + α2 + j − k) Γ (α1)

Γ (α0 + α1 + α2 + j − k)

]]

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α2)
(1 + u2)

α0

∞∑
k=0

[
α2!

k! (α2 − k)!

∞∑
j=0

[
(−1)j

×
(

α0 + α1 + α2 + j − 1
j

)
(β0β2 + β0β1u2)

−α0−α1−α2−j

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
j uk−α0−j−1

2

Γ (α0 + α2 + j − k)

Γ (α0 + α1 + α2 + j − k)

]]
.

�

Special cases U2

1) If αi = α for i = 0, 1, 2, Equation (4.7) simpli�es to

f (u2) =
(
β2α
0 β2α

1 β2α
2

)
Γ(3α)

Γ(α)2
(1 + u2)

α∑∞
k=0

[
α!

k!(α−k)!

∑∞
j=0

[
(−1)j

×
(

3α + j − 1
j

)
(β0β2 + β0β1u2)

−3α−j

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
j uk−α−j−1

2
Γ(2α+j−k)
Γ(3α+j−k)

]]
, u2 > 0.

2) If βi = β for i = 0, 1, 2, Equation (4.7) simpli�es to

f (u2) =
(
βα1+α2βα0+α2βα0+α1

)
Γ(α0+α1+α2)

Γ(α0)Γ(α2)
(1 + u2)

α0
∑∞

k=0

[
α2!

k!(α2−k)!

∑∞
j=0

[
(−1)j

×
(

α0 + α1 + α2 + j − 1
j

)
(β2 + β2u2)

−α0−α1−α2−j

× (β2 + β2u2 − β2u2 + β2u2)
j
uk−α0−j−1
2

Γ(α0+α2+j−k)
Γ(α0+α1+α2+j−k)

]]
= Γ(α0+α1+α2)

Γ(α0)Γ(α2)
(1 + u2)

α0
∑∞

k=0

[
α2!

k!(α2−k)!

∑∞
j=0

[
(−1)j

×
(

α0 + α1 + α2 + j − 1
j

)
(1 + u2)

−α0−α1−α2−j

× (1 + u2)
j uk−α0−j−1

2
Γ(α0+α2+j−k)

Γ(α0+α1+α2+j−k)

]]
, u2 > 0.

3) If βi = β and αi = α for i = 0, 1, 2, Equation (4.7) simpli�es to
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f (u2) =
(
β2αβ2αβ2α

)
Γ(3α)

Γ(α)2
(1 + u2)

α∑∞
k=0

[
α!

k!(α−k)!

∑∞
j=0

[
(−1)j

×
(

3α + j − 1
j

)
(β2 + β2u2)

−3α−j

× (β2 + β2u2 − β2u2 + β2u2)
j
uk−α−j−1
2

Γ(2α+j−k)
Γ(3α+j−k)

]]
= Γ(3α)

Γ(α)2
(1 + u2)

α∑∞
k=0

[
α!

k!(α−k)!

∑∞
j=0

[
(−1)j

×
(

3α + j − 1
j

)
(1 + u2)

−3α−j

× (1 + u2)
j uk−α−j−1

2
Γ(2α+j−k)
Γ(3α+j−k)

]]
, u2 > 0.

Note

An alternative method can be used to derive the marginal density functions, namely, constructing them
from independent gamma random variables, Wi ∼ Gamma (αi > 0, βi > 0) for i = 0, 1, 2, similar in nature
to the derivations in sections 3.2.1 and 4.2.1. The marginal density functions that are derived in this
manner have far more concise closed-form expressions; however, their restrictions are very limiting, to the
point where they lose practical applicability. It is for this reason that this method is only mentioned in
this cursory note.

Alternative marginal density function of U1

Let Wi be independent gamma random variables with parameters (αi > 0, βi > 0) for i = 0, 1, 2.
Let X1 = W1 +W2, X2 = W2 and U1 =

W1+W2

W0
.

The density function of U1 can alternatively be given by

f (u1) = Γ(α0+α1+α2)
Γ(α0)Γ(α1+α2)

(u1)
−α0−1

β
α0
0 β

α1
1 β

α2
2

×
(

1
β1

+ 1
u1β0

)−α0−α1−α2

2F1

(
α2, α0 + α1 + α2;α1 + α2;

β0(β2−β1)u1

β2(β1+β0u1)

)
, u1 > 0.

1
β2

− 1
β1

≥ 0 and∣∣∣β0(β2−β1)u1

β2(β1+β0u1)

∣∣∣ < 1.

(4.11)

Alternative marginal density function of U2

Let Wi be independent gamma random variables with parameters (αi > 0, βi > 0) for i = 0, 1, 2.
Let X1 = W0 +W1, X2 = W1 and U2 =

W2

W0+W1
.

The density function of U2 can alternatively be given by
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f (u2) = Γ(α0+α1+α2)
Γ(α0+α1)Γ(α2)

(u2)
α2−1

β
α0
0 β

α1
1 β

α2
2

×
(

1
β0

+ u2

β2

)−α0−α1−α2

2F1

(
α1, α0 + α1 + α2;α0 + α1;

β2(β1−β0)
β1(β2+β0u2)

)
, u2 > 0,

1
β1

− 1
β0

≥ 0 and∣∣∣ β2(β1−β0)
β1(β2+β0u2)

∣∣∣ < 1.

(4.12)

Note that these equations have the restrictions that 1
β2

− 1
β1

≥ 0 and 1
β1

− 1
β0

≥ 0 respectively. These
restrictions imply that both of the marginal density functions will only exist in this form when β0 ≥ β1 ≥
β2 ≥ 0. This implies that these marginal density functions only exist when a decrease in the process
variance is being investigated/modelled.

4.2.4 Shape analysis

In this section, exploratory shape analyses are conducted into the marginal density functions derived in
Section 4.2.3. To avoid repetition, for the remainder of this section whenever reference is made to the
�marginal density function of the �rst statistic�, it is Equation (4.5) for u1 that is being referred to.
Similarly, when reference is made to the �marginal density function of the second statistic�, it is Equation
(4.5) for u2 that is being referred to.

A standard set of parameters has been chosen as a baseline. The parameters are again chosen to be
α0 = α1 = α2 = 5 and β0 = β1 = β2 = 2; in other words, a process where all three samples consist 11
observations (since since αi =

ni−1
2
), and where no shift has occurred in the process variance. Some of the

parameters are then varied from this baseline in order to investigate the e�ect of a change in the speci�c
parameters on the general shape of the marginal density functions. The size of the parameter changes
will coincide with the same parameter choices from Section 4.2.2. (Note, however, that for some of the
parameter choices chosen below, the marginal density function of the second statistic, as in Equation (4.5),
experienced convergence problems. In these cases an alternative expression for the density function of u2

was plotted.)

Similar to Section 4.2.2, some parameters' changes will be large, so large that they lose practical realism.
This is done to emphasise and investigate the general change in the shape, and is not meant to be an
indication of the practical applications of the marginal density functions.

The functions will only be plotted on the u1 ∈ [0, 5] and u2 ∈ [0, 5] domains respectively. This by no means
implies that the functions stop at the upper limit of 5. The main purpose of this chapter is to compare
between di�erent parameterisations of the marginal density functions.
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Shape analysis of U1

Figure 4.7: Equal sample sizes, in control process.

From Figure 4.7 it is apparent that increasing the sample sizes also increases the height of the peak. Larger
sample sizes also shrink the length and width of the tails of the marginal density function. In essence, the
higher the sample sizes, the smaller the domain on which the function has signi�cant values. Increasing
all sample sizes has very little e�ect in shifting the location of the peak of the marginal density function of
the �rst statistic. This same e�ect was observed with the joint density function (see Figure 4.1).

Figure 4.8: Varying sample sizes, in control process.

Figure 4.8 illustrates the e�ect that having one large sample (relative to the other two small samples) has
on the shape of the density function. Having a relatively large �rst sample would shift the location of
the marginal density function towards the minimum end of the domain. However, this also results in the
density function having a much higher peak. This same e�ect was observed with the joint density function
(see Figure 4.2).

Having a large second sample relative the �rst and third samples, or having a large third sample relative to
the �rst and second samples, elongates the density function of U1. This results in larger, thicker tails. The
density function of U1 seems to be relatively insensitive to whether the larger sample size occurs during
the second or third sample (at least when all of the β's are equal).
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Figure 4.9: Equal sample sizes, unsustained increase in variance.

Figure 4.9 illustrates the e�ect a single, unsustained increase in the variance would have on the shape of the
marginal density function of U1. If the shift in the variance occurs during the �rst sample, the location of
the density function moves towards the minimum end of the domain, but the peak of the density function
is higher. If the shift occurs during the second or third sample, it results in the density function having
larger, thicker tails as well as a shift in location towards the right. The density function of U1 seems to be
insensitive to whether the once-o� increase in the variance occurs during the second or third sample.

Figure 4.10: Equal sample sizes, unsustained decrease in variance.

Figure 4.10 illustrates the e�ect that having a single, unsustained decrease in the variance would have
on the shape of the marginal density function of U1. If the shift in the variance occurs during the �rst
sample, the location of the density function shifts towards the right and its peak is lower than the standard
parameter choices. The density function also becomes more dispersed. If the shift occurs during the second
or third sample, it results in the density function having smaller, thinner tails as well as a shift in location
towards the left. The density function of U1 seems to be insensitive to whether the once-o� decrease in the
variance occurs during the second or third sample.

Figure 4.11: Equal sample sizes, sustained increase in variance.
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Figure 4.11 illustrates the e�ect that a sustained increase in the variance would have on the density function
of U1. Very little changes with regard to the general shape on the plotted domain (there is only a slight
distortion of the shape), despite a huge increase in the variance. However, on a larger domain it is observed
that the tail of the marginal density function of U1 becomes longer for larger shifts in the process variance.
Note that the height of the peak of the density function decreases for larger β values.

Figure 4.12: Equal sample sizes, sustained decrease in variance.

Figure 4.12 illustrates the e�ect that a sustained decrease in the variance would have on the density function
of U1. It is apparent that the general shape of the density function of U1 is not as insensitive to a decrease
in the variance as it was to an increase (see Figure 4.11). (A 50% increase in the process variance, for
example, increases the length and width of the tails far less dramatically than a 50% decrease in the process
variance.) Decreasing the variance of the second and third samples dramatically reduces the length and
width of the tails of the density function, while also increasing the height of the peak.

Shape analysis of U2

Figure 4.13: Equal sample sizes, in control process.

From Figure 4.13, it is apparent that increasing the sample sizes also increases the height of the peak.
Larger sample sizes also shrink the length and width of the tails of the marginal density function of U2. In
essence, the higher the sample sizes, the smaller the domain on which the function has signi�cant values.
Increasing all sample sizes has very little e�ect in shifting the location of the marginal density function.
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This same e�ect was observed with the joint density function (see Figure 4.1) In comparison to the marginal
density function of U1 (Figure 4.7), the peaks of U2 lie signi�cantly towards the left.

Figure 4.14: Varying sample sizes, in control process.

Figure 4.14 illustrates the e�ect that having one large sample (relative to the other two small samples)
would have on the shape of the marginal density function. Having a relatively large �rst or second sample
shifts the location of the density function towards the minimum end of the domain. However, this also
results in a much higher peak of the density function. The density function of U2 seems to be insensitive
to whether the large sample size occurs during the �rst or second sample (at least when all of the βs are
equal).

Having a large third sample relative to the �rst and second samples elongates the density function of U2.
This results in larger, thicker tails.

It can be seen that the domains on which the marginal densities have signi�cant values (see �gures 4.8 and
4.14) correspond to the domain on which the joint density function has signi�cant function values (Figure
4.2).

Figure 4.15: Equal sample sizes, unsustained increase in variance.

Figure 4.15 illustrates the e�ect that a single, unsustained increase in the variance would have on the shape
of the marginal density function of U2. If the shift in the variance occurs during the �rst or second samples,
the location of the density function moves towards the minimum end of the domain, but this also results
in the density function having higher peaks. If the shift occurs during the third sample, it results in the
density function having larger, thicker tails as well as a shift in location towards the right. The density
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function of U2 seems to be insensitive to whether the once-o� increase in the variance occurs during the
�rst or second sample.

Figure 4.16: Equal sample sizes, unsustained decrease in variance.

Figure 4.16 illustrates the e�ect that a single, unsustained decrease in the variance would have on the
shape of the marginal density function of U2. If the shift in the variance occurs during the �rst sample, the
location of the density function shifts towards the right relative to the location of the density function when
the shift occurs in the third sample. The peak of the density function is lower than the standard parameter
choices if the shift occurs during samples one or two, but is much higher if the shift occurs during the third
sample. The density function of U2 seems to be insensitive to whether the once-o� decrease in the variance
occurs during the �rst or second sample.

Figure 4.17: Equal sample sizes, sustained increase in variance.

Figure 4.17 illustrates the e�ect that a sustained increase in the variance would have on the density function
of u2. It is apparent that the general shape of the density function of U2 is insensitive to a change in the
variance. All that is a�ected by the change in the β1 and β2 values is the height of the density function,
with the height decreasing for larger β values. In comparison to the density function of U1 (Figure 4.11),
the location of the density function of U2 is distributed much further to the left, with sharper, higher peaks.
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Figure 4.18: Equal sample sizes, sustained decrease in variance.

Figure 4.18 illustrates the e�ect that a sustained decrease in the variance would have on the density function
of U2. It is apparent that the general shape of the density function of U2 is not as insensitive to a decrease
in the variance as it was to an increase (see Figure 4.17). Decreasing the variance of the second and third
samples dramatically reduces the length and width of the tails of the density function, while also increasing
the height of the peak.

Conditional density functions

Conditional density function of U1 given U2

Theorem 4.4

The conditional density function of U1 given U2 is given by

f (u1|u2) = (u1 − u2)
α1−1 (1 + u1)

α2 (β0β2 + β0β1u2)
α0+α1+α2

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−α0−α1−α2

÷
[∑∞

k=0

[
α2!

k!(α2−k)!
uk−α0−α2
2

Γ(α1)Γ(α0+α2−k)
Γ(α0+α1+α2−k)

× 2F1 (α0 + α1 + α2, α0 + α2 − k

;α0 + α1 + α2 − k; β0β2u2−β1β2−β1β2u2−β0β1u2

u2(β0β2+β0β1u2)

)]]
, u1 > u2 > 0 and∣∣∣β0β2u2−β1β2−β1β2u2−β0β1u2

u2(β0β2+β0β1u2)

∣∣∣ < 1,

(4.13)

where αi, βi > 0 for i = 0, 1, 2.

If α2 ∈ N, as will be the case in an SPC setting, the sum changes from
∑∞

k=0 to
∑α2

k=0 . (See Result 18.)

Proof

From equations (4.1) and (4.7), it follows that the conditional density function is given as
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f (u1|u2) =
f (u1, u2)

f (u2)

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(u1 − u2)

α1−1 uα2−1
2 (1 + u1)

α2 (1 + u2)
α0

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−α0−α1−α2

÷

[(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α2)
(1 + u2)

α0

∞∑
k=0

[
α2!

k! (α2 − k)!

×
∞∑
j=0

[
(−1)j

(
α0 + α1 + α2 + j − 1

j

)
(β0β2 + β0β1u2)

−α0−α1−α2−j

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
j uk−α0−j−1

2

Γ (α0 + α2 + j − k)

Γ (α0 + α1 + α2 + j − k)

]]]

=
(u1 − u2)

α1−1 uα2−1
2 (1 + u1)

α2

Γ (α1)
(β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))

−α0−α1−α2

÷

[
∞∑
k=0

[
α2!

k! (α2 − k)!

∞∑
j=0

[
(−1)j

(
α0 + α1 + α2 + j − 1

j

)
(β0β2 + β0β1u2)

−α0−α1−α2−j

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
j uk−α0−j−1

2

Γ (α0 + α2 + j − k)

Γ (α0 + α1 + α2 + j − k)

]]]
. (4.14)

�

Conditional density function of U2 given U1

Theorem 4.5

The conditional density function of U2 given U1 is given by

f (u2|u1) = (u1 − u2)
α1−1 uα2−1

2 (1 + u2)
α0 (β1β2 + β0β2u1)

α0+α1+α2

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−α0−α1−α2 .

÷
[∑∞

k=0

[(
α0!

k!(α0−k)!

)
(u1)

k+α1+α2−1 Γ(α1)Γ(k+α2)
Γ(k+α1+α2)

× 2F1 (α0 + α1 + α2, k + α2

; k + α1 + α2;−u1(β1β2−β0β2+β0β1+β0β1u1)
β1β2+β0β2u1

)]]
, u1 > u2 > 0 and∣∣∣−u1(β1β2−β0β2+β0β1+β0β1u1)

β1β2+β0β2u1

∣∣∣ < 1.

(4.15)

If α0 ∈ N, as will be the case in an SPC setting, the sum changes from
∑∞

k=0 to
∑α0

k=0 . (See Result 18.)

Proof

From equations (4.1) and (4.5), it follows that
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f (u2|u1) =
f (u1, u2)

f (u1)

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(u1 − u2)

α1−1 uα2−1
2 (1 + u1)

α2 (1 + u2)
α0

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−α0−α1−α2 .

÷

[(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(1 + u1)

α2 (β1β2 + β0β2u1)
−α0−α1−α2

×
∞∑
k=0

[(
α0!

k! (α0 − k)!

)
(u1)

k+α1+α2−1 Γ (α1) Γ (k + α2)

Γ (k + α1 + α2)

× 2F1

(
α0 + α1 + α2, k + α2; k + α1 + α2;−

u1 (β1β2 − β0β2 + β0β1 + β0β1u1)

β1β2 + β0β2u1

)]]
= (u1 − u2)

α1−1 uα2−1
2 (1 + u2)

α0 (β1β2 + β0β2u1)
α0+α1+α2

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−α0−α1−α2

÷

[
∞∑
k=0

[(
α0!

k! (α0 − k)!

)
(u1)

k+α1+α2−1 Γ (α1) Γ (k + α2)

Γ (k + α1 + α2)

× 2F1

(
α0 + α1 + α2, k + α2; k + α1 + α2;−

u1 (β1β2 − β0β2 + β0β1 + β0β1u1)

β1β2 + β0β2u1

)]]
.

�

4.2.5 Product moment

4.2.5.1 Construction by integration

Initially, the product moment of U1 and U2 is derived by using the de�nition in Result 5. This method proves
to be extremely unwieldy. Another problem, which results in the product moment becoming practically
useless when derived in this manner, is that irrespective of the order or method of integration, or any
manipulation applied to Equation (4.1), a beta function (see Result 7) always has a negative integer
argument, and since beta functions are not de�ned for negative integer arguments, the entire product
moment becomes unde�ned. This ultimately results in restrictions that are impossible to meet. Out of a
multitude of unsuccessful traditional derivation methods attempted, one is included below. This derivation
is included to demonstrate that the traditional, �rst-principle, approach is ine�ective at �nding a closed-
form expression for the product moment of Equation (4.1).

By substituting Equation (4.1), U1, U2 and the respective integration limits into Result 5, it follows that

E (U r
1U

s
2 ) =

ˆ ∞

0

ˆ u1

0

ur
1u

s
2

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(u1 − u2)

α1−1 uα2−1
2 (1 + u1)

α2 (1 + u2)
α0

× (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−α0−α1−α2 du2du1. (4.16)
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By applying Result 18 to Equation (4.16) multiple times, and rearranging the terms, it follows that

E (U r
1U

s
2 ) =

ˆ ∞

0

ˆ u1

0

ur
1u

s
2

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

α1−1∑
j=0

(
α1 − 1

j

)
(u1)

α1−1−j (−u2)
j uα2−1

2

× (1 + u1)
α2 (1 + u2)

α0 (β1β2 (1 + u2) + β0β2 (u1 − u2) + β0β1u2 (1 + u1))
−α0−α1−α2 du2du1

=

α1−1∑
j=0

(−1)j
(

α1 − 1
j

) (
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

ur+α1−1−j
1 (1 + u1)

α2

ˆ u1

0

us+j+α2−1
2 (1 + u2)

α0

× (β1β2 + β1β2u2 + β0β2u1 − β0β2u2 + β0β1u2 + β0β1u2u1)
−α0−α1−α2 du2du1

=

α1−1∑
j=0

(−1)j
(

α1 − 1
j

) (
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

ur+α1−1−j
1 (1 + u1)

α2

ˆ u1

0

us+j+α2−1
2 (1 + u2)

α0

× (β1β2 + β0β2u1 + u2 (β1β2 − β0β2 + β0β1 (1 + u1)))
−α0−α1−α2 du2du1

E (U r
1U

s
2 ) =

α1−1∑
j=0

(−1)j
(

α1 − 1
j

) (
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

ur+α1−1−j
1 (1 + u1)

α2

ˆ u1

0

us+j+α2−1
2 (1 + u2)

α0 (β1β2 + β0β2u1)
−α0−α1−α2

×
(
1 +

β1β2 − β0β2 + β0β1 (1 + u1)

β1β2 + β0β2u1

u2

)−α0−α1−α2

du2du1

=

α1−1∑
j=0

(−1)j
(

α1 − 1
j

) (
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

[
ur+α1−1−j
1 (1 + u1)

α2 (β1β2 + β0β2u1)
−α0−α1−α2

×
ˆ u1

0

us+j+α2−1
2 (1 + u2)

α0

(
1 +

β1β2 − β0β2 + β0β1 (1 + u1)

β1β2 + β0β2u1

u2

)−α0−α1−α2

du2

]
du1

=

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

) (
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

ur+α1−1−j
1 (1 + u1)

α2 (β1β2 + β0β2u1)
−α0−α1−α2

×
ˆ u1

0

us+j+k+α2−1
2

(
1 +

β1β2 − β0β2 + β0β1 (1 + u1)

β1β2 + β0β2u1

u2

)−α0−α1−α2

du2du1. (4.17)
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By applying Result 17, and rewriting the hypergeometric function in terms of Pochhammer symbols, as in
Result 4, Equation (4.17) may be rewritten as

E (U r
1U

s
2 ) =

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

) (
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

ur+α1−1−j
1 (1 + u1)

α2 (β1β2 + β0β2u1)
−α0−α1−α2

(u1)
s+j+k+α2

s+ j + k + α2

× 2F1

(
α0 + α1 + α2, s+ j + k + α2; 1 + s+ j + k + α2;−

β1β2 − β0β2 + β0β1 (1 + u1)

β1β2 + β0β2u1

u1

)
du1

=

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

) (
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

(s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

ur+s+α1+α2+k−1
1 (1 + u1)

α2 (β1β2 + β0β2u1)
−α0−α1−α2

× 2F1

(
α0 + α1 + α2, s+ j + k + α2; 1 + s+ j + k + α2;−

β1β2 − β0β2 + β0β1 (1 + u1)u1

β1β2 + β0β2u1

)
du1
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E (U r
1U

s
2 ) =

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

) (
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

(s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

ur+s+α1+α2+k−1
1 (1 + u1)

α2 (β1β2 + β0β2u1)
−α0−α1−α2

×
∞∑
n=0

(α0 + α1 + α2)n (s+ j + k + α2)n
(1 + s+ j + k + α2)n

(
−β1β2−β0β2+β0β1(1+u1)u1

β1β2+β0β2u1

)n
n!

du1

=
∞∑
n=0

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

)
(α0 + α1 + α2)n (s+ j + k + α2)n

(1 + s+ j + k + α2)n

×
(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

n! (s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

ur+s+α1+α2+k−1
1 (1 + u1)

α2

× (β1β2 + β0β2u1)
−α0−α1−α2 (−β1β2 + β0β2 − β0β1 (1 + u1)u1)

n (β1β2 + β0β2u1)
−n du1

=
∞∑
n=0

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

)
(α0 + α1 + α2)n (s+ j + k + α2)n

(1 + s+ j + k + α2)n

×
(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

n! (s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

ur+s+α1+α2+k−1
1 (1 + u1)

α2

× (β1β2 + β0β2u1)
−α0−α1−α2−n (−β1β2 + β0β2 − β0β1 (1 + u1)u1)

n du1

=
∞∑
n=0

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

)
(α0 + α1 + α2)n (s+ j + k + α2)n

(1 + s+ j + k + α2)n

×
(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

n! (s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

ur+s+α1+α2+k−1
1 (1 + u1)

α2

× (β1β2 + β0β2u1)
−α0−α1−α2−n (−β1β2 + β0β2)

n

(
1 +

β0β1 (1 + u1)u1

β1β2 + β0β2

)n

du1. (4.18)

By applying Result 18 to Equation (4.18) it follows that

E (U r
1U

s
2 ) =

∞∑
n=0

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

)
(α0 + α1 + α2)n (s+ j + k + α2)n

(1 + s+ j + k + α2)n

×
(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

n! (s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)
(−β1β2 + β0β2)

n

×
ˆ ∞

0

ur+s+α1+α2+k−1
1 (1 + u1)

α2 (β1β2 + β0β2u1)
−α0−α1−α2−n

n∑
l=0

(
n
l

)(
β0β1 (1 + u1)u1

β1β2 + β0β2

)l

du1
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E (U r
1U

s
2 ) =

∞∑
n=0

n∑
l=0

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

)(
n
l

)
(α0 + α1 + α2)n (s+ j + k + α2)n

(1 + s+ j + k + α2)n

×
(
βα1+α2+l
0 βα0+α2+l

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

n! (s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)
(−β1β2 + β0β2)

n

×
ˆ ∞

0

ur+s+α1+α2+k+l−1
1 (1 + u1)

α2+l (β1β2 + β0β2u1)
−α0−α1−α2−n (β1β2 + β0β2)

−l du1

=
∞∑
n=0

n∑
l=0

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

)(
n
l

)
(α0 + α1 + α2)n (s+ j + k + α2)n

(1 + s+ j + k + α2)n

×
(
βα1+α2+l
0 βα0+α2+l

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

n! (s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)
(−β1β2 + β0β2)

n (β1β2 + β0β2)
−l

×
ˆ ∞

0

ur+s+α1+α2+k+l−1
1 (1 + u1)

α2+l (β1β2)
−α0−α1−α2−n

(
1 +

β0β2

β1β2

u1

)−α0−α1−α2−n

du1

=
∞∑
n=0

n∑
l=0

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

)(
n
l

)
(α0 + α1 + α2)n (s+ j + k + α2)n

(1 + s+ j + k + α2)n

×
(
βα1+α2+l
0 βl−α1−n

1 β−α2−n
2

)
Γ (α0 + α1 + α2)

n! (s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)
(−β1β2 + β0β2)

n (β1β2 + β0β2)
−l

×
ˆ ∞

0

ur+s+α1+α2+k+l−1
1 (1 + u1)

α2+l

(
1 +

β0β2

β1β2

u1

)−α0−α1−α2−n

du1. (4.19)

Applying Result 12 to Equation (4.19) leads to the following expression

E (U r
1U

s
2 ) =

∞∑
n=0

n∑
l=0

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

)(
n
l

)
(α0 + α1 + α2)n (s+ j + k + α2)n

(1 + s+ j + k + α2)n

×
(
βα1+α2+l
0 βl−α1−n

1 β−α2−n
2

)
Γ (α0 + α1 + α2)

n! (s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)
(−β1β2 + β0β2)

n (β1β2 + β0β2)
−l

× B (r + s+ α1 + α2 + k + l, α0 + α1 + α2 + n− α2 − l − r − s− α1 − α2 − k − l)

× 2F1

(
α0 + α1 + α2 + n, r + s+ α1 + α2 + k + l;α0 + α1 + α2 + n− α2 − l; 1− β0β2

β1β2

)

=
∞∑
n=0

n∑
l=0

α1−1∑
j=0

α0∑
k=0

(−1)j
(

α1 − 1
j

)(
α0

k

)(
n
l

)
(α0 + α1 + α2)n (s+ j + k + α2)n

(1 + s+ j + k + α2)n

×
(
βα1+α2+l
0 βl−α1−n

1 β−α2−n
2

)
Γ (α0 + α1 + α2)

n! (s+ j + k + α2) Γ (α0) Γ (α1) Γ (α2)
(−β1β2 + β0β2)

n (β1β2 + β0β2)
−l

× B (r + s+ α1 + α2 + k + l, α0 − α2 + n− 2l − k − r − s)

× 2F1

(
α0 + α1 + α2 + n, r + s+ α1 + α2 + k + l;α0 + α1 + n− l; 1− β0β2

β1β2

)
. (4.20)
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The restriction that the second integration technique (Result 12) necessitates is that α0+α1+α2+n−α2−l >
r + s + α1 + α2 + k + l. This implies that −α2 − l > r + s, and this restriction will never be met. (Note
that in the above derivation α0 and α1 are assumed to be integers.)

4.2.5.2 Construction by transformation

Using the transformations in Chapter 2, it is possible to derive the product moment in an alternative way.
The method that is applied is similar in nature to the example given at the end of Chapter 2. Given that
the second statistic of the bivariate beta type VII distribution (T2 from Equation (2.8)) is the same as the
second statistic of the bivariate beta type VIII distribution (U2 from Equation (2.8)), the transformation
between the two sets of variables is the natural choice to use.

Theorem 4.6

The product moment of U1 and U2 is given by

E (U r
1U

s
2 ) =

∑r
p=0

(
r
p

) (
β
α1−p−s
0 β

−α1
1 βp+s

2

)
Γ(α2+p+s)Γ(α0+α1−p−s)Γ(α1+r−p)Γ(α0−r)

Γ(α0)Γ(α1)Γ(α2)Γ(α0+α1−p)

× 2F1

(
α0 + α1 − p− s, α1 + r − p;α0 + α1 − p; 1− β0β2

β1β2

)
, α0 + α1 > r + s,

α0 > α1 and∣∣∣1− β0β2

β1β2

∣∣∣ < 1.

(4.21)

Proof

The relationship between the bivariate beta type VII distribution and the bivariate beta type VIII distri-
bution was derived in Chapter 2. It is stated here again to make the derivation more coherent.

U1
d
= T1 + T2 + T1T2

U2
d
= T2

(4.22)

Using the relationship in Equation (4.22), it is possible to rewrite the product moment of U1 and U2 in
terms of the joint density function of the bivariate beta type VII distribution (Equation (3.1)). It follows
that by using Result 5 and Result 18, and then rearranging the terms, the product moment of U1 and U2

may be derived as follows
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E (U r
1U

s
2 ) = E ((T1 + T2 + T1T2)

r (T2)
s)

=

ˆ ∞

0

ˆ ∞

0

(t1 + t2 + t1t2)
r (t2)

s g (t1, t2) dt1dt2

=

ˆ ∞

0

ˆ ∞

0

(t1 + t2 + t1t2)
r (t2)

s

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

× (t1)
α1−1 (t2)

α2−1 (1 + t1)
α2 (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)

−α0−α1−α2 dt1dt2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

ˆ ∞

0

(t1 + t2 + t1t2)
r

× (t1)
α1−1 (t2)

α2+s−1 (1 + t1)
α2 (β1β2 + β0β2t1 + β0β1 (1 + t1) t2)

−α0−α1−α2 dt1dt2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

ˆ ∞

0

(t1 + t2 (1 + t1))
r

× (t1)
α1−1 (t2)

α2+s−1 (1 + t1)
α2

(
β0β1 (1 + t1)

(
β1β2 + β0β2t1
β0β1 (1 + t1)

+ t2

))−α0−α1−α2

dt1dt2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

ˆ ∞

0

(
(1 + t1)

(
t1

1 + t1
+ t2

))r

× (t1)
α1−1 (t2)

α2+s−1 (1 + t1)
α2

(
β0β1 (1 + t1)

(
β1β2 + β0β2t1
β0β1 (1 + t1)

+ t2

))−α0−α1−α2

dt1dt2

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(1 + t1)
r+α2 (t1)

α1−1

×
ˆ ∞

0

(
t1

1 + t1
+ t2

)r

(t2)
α2+s−1

(
β0β1 (1 + t1)

(
β1β2 + β0β2t1
β0β1 (1 + t1)

+ t2

))−α0−α1−α2

dt2dt1

=

(
βα1+α2
0 βα0+α2

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)
(β0β1)

−α0−α1−α2

ˆ ∞

0

(1 + t1)
r−α0−α1 (t1)

α1−1

×
ˆ ∞

0

(
t1

1 + t1
+ t2

)r

(t2)
α2+s−1

(
β1β2 + β0β2t1
β0β1 (1 + t1)

+ t2

)−α0−α1−α2

dt2dt1

=

(
β−α0
0 β−α1

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(1 + t1)
r−α0−α1 (t1)

α1−1

×
ˆ ∞

0

(
t1

1 + t1
+ t2

)r

(t2)
α2+s−1

(
β1β2 + β0β2t1
β0β1 (1 + t1)

+ t2

)−α0−α1−α2

dt2dt1

=

(
β−α0
0 β−α1

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(1 + t1)
r−α0−α1 (t1)

α1−1

×
ˆ ∞

0

r∑
p=0

(
r
p

)
(t2)

p

(
t1

1 + t1

)r−p

(t2)
α2+s−1

(
β1β2 + β0β2t1
β0β1 (1 + t1)

+ t2

)−α0−α1−α2

dt2dt1
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E (U r
1U

s
2 ) =

r∑
p=0

(
r
p

) (
β−α0
0 β−α1

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(1 + t1)
−α0−α1+p (t1)

α1+r−p−1

×
ˆ ∞

0

(t2)
α2+p+s−1

(
β1β2 + β0β2t1
β0β1 (1 + t1)

+ t2

)−α0−α1−α2

dt2dt1

=
r∑

p=0

(
r
p

) (
β−α0
0 β−α1

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(1 + t1)
−α0−α1+p (t1)

α1+r−p−1

×
(
β1β2 + β0β2t1
β0β1 (1 + t1)

)−α0−α1−α2
ˆ ∞

0

(t2)
α2+p+s−1

(
1 +

β0β1 (1 + t1)

β1β2 + β0β2t1
t2

)−α0−α1−α2

dt2dt1.

(4.23)

From Result 13, it follows that Equation (4.23) may be expressed as

E (U r
1U

s
2 ) =

r∑
p=0

(
r
p

) (
β−α0
0 β−α1

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(1 + t1)
−α0−α1+p (t1)

α1+r−p−1

×
(
β1β2 + β0β2t1
β0β1 (1 + t1)

)−α0−α1−α2
(

β0β1 (1 + t1)

β1β2 + β0β2t1

)−α2−p−s

B (α2 + p+ s, α0 + α1 + α2 − α2 − p− s) dt1

=
r∑

p=0

(
r
p

) (
β−α0
0 β−α1

1 βα0+α1
2

)
Γ (α0 + α1 + α2)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(1 + t1)
−α0−α1+p (t1)

α1+r−p−1

× (β1β2 + β0β2t1)
−α0−α1−α2 (β0β1 (1 + t1))

α0+α1+α2 (β0β1 (1 + t1))
−α2−p−s

(β1β2 + β0β2t1)
α2+p+s Γ (α2 + p+ s) Γ (α0 + α1 − p− s)

Γ (α0 + α1 + α2)
dt1

=
r∑

p=0

(
r
p

) (
β−α0
0 β−α1

1 βα0+α1
2

)
Γ (α2 + p+ s) Γ (α0 + α1 − p− s)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(1 + t1)
−α0−α1+p (t1)

α1+r−p−1

× (β1β2 + β0β2t1)
−α0−α1+p+s (β0β1 (1 + t1))

α0+α1−p−s dt1

=
r∑

p=0

(
r
p

) (
βα1−p−s
0 βα0−p−s

1 βα0+α1
2

)
Γ (α2 + p+ s) Γ (α0 + α1 − p− s)

Γ (α0) Γ (α1) Γ (α2)

×
ˆ ∞

0

(1 + t1)
−α0−α1+p+α0+α1−p−s (t1)

α1+r−p−1 (β1β2 + β0β2t1)
−α0−α1+p+s dt1

=
r∑

p=0

(
r
p

) (
βα1−p−s
0 βα0−p−s

1 βα0+α1
2

)
Γ (α2 + p+ s) Γ (α0 + α1 − p− s)

Γ (α0) Γ (α1) Γ (α2)

ˆ ∞

0

(1 + t1)
−s

× (t1)
α1+r−p−1 (β1β2)

−α0−α1+p+s

(
1 +

β0β2

β1β2

t1

)−α0−α1+p+s

dt1
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E (U r
1U

s
2 ) =

r∑
p=0

(
r
p

) (
βα1−p−s
0 βα0−p−s

1 βα0+α1
2

)
Γ (α2 + p+ s) Γ (α0 + α1 − p− s)

Γ (α0) Γ (α1) Γ (α2)
(β1β2)

−α0−α1+p+s

×
ˆ ∞

0

(1 + t1)
−s (t1)

α1+r−p−1

(
1 +

β0β2

β1β2

t1

)−α0−α1+p+s

dt1. (4.24)

By applying Result 12 to Equation (4.24), it follows that

E (U r
1U

s
2 ) =

r∑
p=0

(
r
p

) (
βα1−p−s
0 βα0−p−s

1 βα0+α1
2

)
Γ (α2 + p+ s) Γ (α0 + α1 − p− s)

Γ (α0) Γ (α1) Γ (α2)
(β1β2)

−α0−α1+p+s

× B (α1 + r − p, α0 − r) 2F1

(
α0 + α1 − p− s, α1 + r − p;α0 + α1 − p− s+ s; 1− β0β2

β1β2

)

=
r∑

p=0

(
r
p

) (
βα1−p−s
0 βα0−p−s−α0−α1+p+s

1 βα0+α1−α0−α1+p+s
2

)
Γ (α2 + p+ s) Γ (α0 + α1 − p− s)

Γ (α0) Γ (α1) Γ (α2)

× Γ (α1 + r − p) Γ (α0 − r)

Γ (α1 + r − p+ α0 − r)
2F1

(
α0 + α1 − p− s, α1 + r − p;α0 + α1 − p− s+ s; 1− β0β2

β1β2

)

=
r∑

p=0

(
r
p

) (
βα1−p−s
0 β−α1

1 βp+s
2

)
Γ (α2 + p+ s) Γ (α0 + α1 − p− s) Γ (α1 + r − p) Γ (α0 − r)

Γ (α0) Γ (α1) Γ (α2) Γ (α0 + α1 − p)

× 2F1

(
α0 + α1 − p− s, α1 + r − p;α0 + α1 − p; 1− β0β2

β1β2

)
.

�

4.3 Multivariate distribution

Theorem 4.7

Let Wi be independent gamma random variables with parameters (αi > 0, βi > 0) for i = 0, 1, 2, ...,m.

Let Ur =
∑m

i=r Wi∑r−1
i=0 Wi

, r = 1, 2, ...,m− 1,m.

Then the joint density function of U1, U2, ..., Um is given by

f (u1, u2, ..., um) =
∏m−1

j=1

[
(uj−uj+1)

αj−1
]
(um)αm−1Γ

(∑m
j=0[αj ]

)
∏m

j=0

[
β
αj
j Γ(αj)

]
× (1 + u1)

∑m
j=2[αj ]

∏m
j=2

[
(1 + uj)

−αj−1−αj
]

×
(

1
β0

+ (u1−u2)
β1(1+u2)

+
∑m−1

j=2

[
(1+u1)(uj−uj+1)

βj(1+uj)(1+uj+1)

]
+ (1+u1)um

βm(1+um)

)−∑m
j=0[αj ]

, u1 > u2 > ... > um > 0.

(4.25)
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Proof

Since the gamma random variables are independent, the joint density function of Wi, i = 0, 1, 2, ...,m. is
given by

f (w0, w1, ..., wm) =
m∏
i=0

(
wαi−1

i e
−wi

βi

)
βαi
i Γ (αi)

, w0, w1, ..., wm > 0. (4.26)

Let U = W0, Ur =
∑m

i=r Wi∑r−1
i=0 Wi

, r = 1, 2, ...,m− 1,m.

By solving the above set of simultaneous equations it follows that

W0 = U

W1 =
U (U1 − U2)

1 + U2

Wr =
U (1 + U1) (Ur − Ur+1)

(1 + Ur) (1 + Ur+1)
, r = 2, 3, ...,m− 1

Wm =
U (1 + U1)Um

(1 + Um)
.

The Jacobian of the transformation is then

J (w0, ..., wm → u, u1, ..., um)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 ... 0 0
u1−u2

1+u2

u
1+u2

−u(1+u1)

(1+u2)
2 0 0 0 ... 0 0

(1+u1)(u2−u3)
(1+u2)(1+u3)

u(u2−u3)
(1+u2)(1+u3)

u(1+u1)

(1+u2)
2 −u(1+u1)

(1+u3)
2 0 0 ... 0 0

(1+u1)(u3−u4)
(1+u3)(1+u4)

u(u3−u4)
(1+u3)(1+u4)

0 u(1+u1)

(1+u3)
2 −u(1+u1)

(1+u4)
2 0 ... 0 0

(1+u1)(u4−u5)
(1+u4)(1+u5)

u(u4−u5)
(1+u4)(1+u5)

0 0 u(1+u1)

(1+u4)
2 −u(1+u1)

(1+u5)
2 ... 0 0

... ... ... ... ... ... ... ... ...
(1+u1)(um−1−um)
(1+um−1)(1+um)

u(um−1−um)
(1+um−1)(1+um)

0 0 0 0 ... u(1+u1)

(1+um−1)
2 − u(1+u1)

(1+um)2

(1+u1)um

1+um

uum

1+um
0 0 0 0 ... 0 u(1+u1)

(1+um)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= um(1+u1)

m−1∏m
j=2(1+uj)

2 .

By making the transformation and substituting the equations for W0,W1, ...Wm into Equation (4.26), it
follows that the joint density function of U,U1, U2, ..., Um is
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f (u, u1, u2, ..., um) =

(
uαo−1e

− u
β0

)
βα0
0 Γ (α0)

((
u(u1−u2)

1+u2

)α1−1

e
−

u(u1−u2)
1+u2
β1

)
βα1
1 Γ (α1)

×
m−1∏
j=2



(u(1+u1)(uj−uj+1)

(1+uj)(1+uj+1)

)αj−1

e
−

u(1+u1)
(
uj−uj+1

)
(
1+uj

)(
1+uj+1

)
βj


β
αj

j Γ (αj)



×

((
u(1+u1)(um)

(1+um)

)αm−1

e
−

u(1+u1)(um)
(1+um)

βm

)
βαm
m Γ (αm)

um (1 + u1)
m−1∏m

j=2 (1 + uj)
2 .

=

∏m−1
j=1

[
(uj − uj+1)

αj−1] (um)
αm−1∏m

j=0

[
β
αj

j Γ (αj)
] u

∑m
j=0[αj ]−1 (1 + u1)

∑m
j=2[αj ]

m∏
j=2

[
(1 + uj)

−αj−1−αj
]

× e
−u

(
1
β0

+
(u1−u2)
β1(1+u2)

+
∑m−1

j=2

[
(1+u1)

(
uj−uj+1

)
βj

(
1+uj

)(
1+uj+1

)
]
+

(1+u1)um
βm(1+um)

)
. (4.27)

By integrating Equation (4.27) with respect to u, it follows that

f (u1, u2, ..., um) =

∏m−1
j=1

[
(uj − uj+1)

αj−1] (um)
αm−1∏m

j=0

[
β
αj

j Γ (αj)
] (1 + u1)

∑m
j=2[αj ]

m∏
j=2

[
(1 + uj)

−αj−1−αj
]

×
∞̂

0

u
∑m

j=0[αj ]−1e
−u

(
1
β0

+
(u1−u2)
β1(1+u2)

+
∑m−1

j=2

[
(1+u1)

(
uj−uj+1

)
βj

(
1+uj

)(
1+uj+1

)
]
+

(1+u1)um
βm(1+um)

)
du. (4.28)

By applying Result 11 to Equation (4.28), it then follows that

f (u1, u2, ..., um) =

∏m−1
j=1

[
(uj − uj+1)

αj−1] (um)
αm−1 Γ

(∑m
j=0 [αj]

)
∏m

j=0

[
β
αj

j Γ (αj)
] (1 + u1)

∑m
j=2[αj ]

m∏
j=2

[
(1 + uj)

−αj−1−αj
]

×

(
1

β0

+
(u1 − u2)

β1 (1 + u2)
+

m−1∑
j=2

[
(1 + u1) (uj − uj+1)

βj (1 + uj) (1 + uj+1)

]
+

(1 + u1)um

βm (1 + um)

)−
∑m

j=0[αj ]

.
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Special cases

1) If αi = α for i = 0, 1, 2, ...,m then Equation (4.25) becomes

f (u1, u2, ..., um) =
∏m−1

j=1

[
(uj−uj+1)

α−1
]
(um)α−1Γ

(∑m
j=0[α]

)
∏m

j=0[βj
αΓ(α)]

(1 + u1)
∑m

j=2[α]
∏m

j=2

[
(1 + uj)

−α−α]
×

(
1
β0

+ (u1−u2)
β1(1+u2)

+
∑m−1

j=2

[
(1+u1)(uj−uj+1)

βj(1+uj)(1+uj+1)

]
+ (1+u1)um

βm(1+um)

)−∑m
j=0[α]

=
∏m−1

j=1

[
(uj−uj+1)

α−1
]
(um)α−1Γ((m+1)α)∏m

j=0[βj
α]Γ(α)(m+1) (1 + u1)

(m−1)α∏m
j=2

[
(1 + uj)

−2α]
×

(
1
β0

+ (u1−u2)
β1(1+u2)

+
∑m−1

j=2

[
(1+u1)(uj−uj+1)

βj(1+uj)(1+uj+1)

]
+ (1+u1)um

βm(1+um)

)−(m+1)α

,

u1 > u2 > ... > um > 0.

2) If βi = β for i = 0, 1, 2, ...,m then Equation (4.25) becomes

f (u1, u2, ..., um) =
∏m−1

j=1

[
(uj−uj+1)

αj−1
]
(um)αm−1Γ

(∑m
j=0[αj ]

)
∏m

j=0

[
βαjΓ(αj)

] (1 + u1)
∑m

j=2[αj ]
∏m

j=2

[
(1 + uj)

−αj−1−αj
]

×
(

1
β
+ (u1−u2)

β(1+u2)
+
∑m−1

j=2

[
(1+u1)(uj−uj+1)

β(1+uj)(1+uj+1)

]
+ (1+u1)um

β(1+um)

)−∑m
j=0[αj ]

=
∏m−1

j=1

[
(uj−uj+1)

αj−1
]
(um)αm−1Γ

(∑m
j=0[αj ]

)
∏m

j=0

[
βαjΓ(αj)

] (1 + u1)
∑m

j=2[αj ]
∏m

j=2

[
(1 + uj)

−αj−1−αj
]

×
(

1
β

)−∑m
j=0[αj ] (

1 + (u1−u2)
(1+u2)

+
∑m−1

j=2

[
(1+u1)(uj−uj+1)

(1+uj)(1+uj+1)

]
+ (1+u1)um

(1+um)

)−∑m
j=0[αj ]

=
∏m−1

j=1

[
(uj−uj+1)

αj−1
]
(um)αm−1Γ

(∑m
j=0[αj ]

)
∏m

j=0[Γ(αj)]
(1 + u1)

∑m
j=2[αj ]

∏m
j=2

[
(1 + uj)

−αj−1−αj
]

×
(
1 + (u1−u2)

(1+u2)
+
∑m−1

j=2

[
(1+u1)(uj−uj+1)

(1+uj)(1+uj+1)

]
+ (1+u1)um

(1+um)

)−∑m
j=0[αj ]

,

u1 > u2 > ... > um > 0.

3) If βi = β and αi = α for i = 0, 1, 2, ...,m then Equation (4.25) becomes

f (u1, u2, ..., um) =
∏m−1

j=1

[
(uj−uj+1)

α−1
]
(um)α−1Γ

(∑m
j=0[α]

)
∏m

j=0[β
αΓ(α)]

(1 + u1)
∑m

j=2[α]
∏m

j=2

[
(1 + uj)

−α−α]
×

(
1
β
+ (u1−u2)

β(1+u2)
+
∑m−1

j=2

[
(1+u1)(uj−uj+1)

β(1+uj)(1+uj+1)

]
+ (1+u1)um

β(1+um)

)−∑m
j=0[α]

=
∏m−1

j=1

[
(uj−uj+1)

α−1
]
(um)α−1Γ((m+1)α)

β(m + 1)αΓ(α)m+1 (1 + u1)
(m−1)α∏m

j=2

[
(1 + uj)

−2α]
×

(
1
β

)−(m+1)α (
1 + (u1−u2)

(1+u2)
+
∑m−1

j=2

[
(1+u1)(uj−uj+1)

(1+uj)(1+uj+1)

]
+ (1+u1)um

(1+um)

)−(m+1)α

=
∏m−1

j=1

[
(uj−uj+1)

α−1
]
(um)α−1Γ((m+1)α)

Γ(α)m+1 (1 + u1)
(m−1)α∏m

j=2

[
(1 + uj)

−2α]
×

(
1 + (u1−u2)

(1+u2)
+
∑m−1

j=2

[
(1+u1)(uj−uj+1)

(1+uj)(1+uj+1)

]
+ (1+u1)um

(1+um)

)−(m+1)α

,

u1 > u2 > ... > um > 0.
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Chapter 5

Simulation and comparison

5.1 Introduction

In this chapter, a simulation study is performed to investigate how the proposed model would perform in
comparison to another self-starting chart, the Q chart form investigated by Adamski [1]. As mentioned in
Section 1.1, from a practical perspective, only an increase in the variance of the process will likely be of
concern, and as such it is the only case that is considered in this chapter. In other words, the distributions
will be studied under the null hypothesis of no shift occurring (H0 : λ = 1), as well as under alternative
hypothesis that the process variance has increased (HA : λ > 1).

In Section 5.2, some the IC properties of the control charts will be studied, this is imperative since the
control limits of a control chart are constructed under the null hypothesis that no shift has occurred, or
alternatively that the process is IC. The IC properties that are investigated for each distribution are:

• Where the maximum order statistic is most likely to occur when no shift has occurred in the pro-
cess variance. Practically, this is a very important question since, if the maximum order statistic
consistently occurs at roughly the same place in the sequence of samples, it implies that the control
chart should be treated with added suspicion if it indicates that a shift in the process occurs at this
location.

• How the 95th percentiles of the maximum order statistics, of the respective distributions, change as
the number of samples as well as the sample sizes vary. In essence, these values that are simulated
correspond to the UCLs of the control charts during phase I, and as such the terms �UCL�, �critical
value� and �95th percentile of the maximum order statistic� are used interchangeably in this chapter.
The UCL values are generated for the number of samples (m) equal to 4,9,14,19,24,29,49,99 and
499 as well as each sample size (n) equal to 2,5,10,15,20,25,30,50,100 and 500. Graphs are provided
indicating how these simulated 95th percentiles of the maximum order statistic vary as m and n
change.

In Section 5.3, the OOC performance of the newly proposed control chart is compared with the Q chart
model investigated by Adamski[1]. The probability that the respective control charts will detect a shift in
the process variance is investigated for di�ering sizes of shifts in the process variance. The comparison is
made for varying numbers of samples as well as sample sizes.

99

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 5. SIMULATION AND COMPARISON 100

In this chapter the values that are simulated and the graphs that are drawn are those that correspond to the
statistics in equations (1.9) and (1.15), and not those for which the distributions were derived, equations
(1.11) and (1.16). This has bee stated before in this study, but is repeated since it is an important
distinction to make.

5.2 Distributions when the process is IC

The location of the maximum order statistic when the process is IC is investigated using graphs. For
brevity's sake only a few of the 90 possible combinations of the number of samples and sample sizes
mentioned above will be included in this study. All of them, however, lead to the same general conclusion.
The three graphs that will be included are m = 29, n = 15; m = 19, n = 10 and m = 9, n = 5.

Figure 5.1: Location of maximum order statistic - m = 29, n = 15.
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CHAPTER 5. SIMULATION AND COMPARISON 101

Figure 5.2: Location of maximum order statistic - m = 19, n = 10.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 5. SIMULATION AND COMPARISON 102

Figure 5.3: Location of maximum order statistic - m = 9, n = 5.

As can be seen from �gures 5.1, 5.2 and 5.3, the beta type VII distribution's maximum order statistic occurs
most often at the �rst statistic, with the probability of the maximum occurring at subsequent statistics
steadily decreasing. This implies that the Q chart becomes more stable as the process progresses, which
makes practical sense since each subsequent statistic includes more of the sample data points. The beta
type VIII distribution's maximum order statistic occurs most often at the �rst statistic, and second-most
often at the last statistic. This is because of to the way in which the statistics of the beta type VIII
distribution are constructed (see Equation (1.9)). The denominator of the �rst statistic consists of only
one sample variance, as does the numerator of the last statistic. Having the numerator or denominator
consist of only one sample's data increases the potential for them to �uctuate erratically since they do not
average out over a few samples' worth of data. If, for example, the �rst sample variance is abnormally
small in comparison to the other m− 1 samples, it will result in a very large �rst statistic, and vice versa
for the last statistic. This implies that while the proposed model may detect shifts at the ends of the
samples, signals received at these locations should be treated with a bit of skepticism.
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CHAPTER 5. SIMULATION AND COMPARISON 103

In tables 5.1 and 5.2 which follow, values for the 95th percentiles of the maximum order statistics of the
beta type VII and beta type VIII distributions, respectively are simulated (to the third decimal) using
Monte Carlo simulation. How these values vary depending on the number of samples, as well as the sample
sizes, is shown in �gures 5.4, 5.5, 5.6 and 5.7.

n=2 5 10 15 20 25 30 50 100 500
m=4 202.879 7.515 3.630 2.786 2.410 2.187 2.040 1.732 1.475 1.190
9 204.627 7.619 3.729 2.867 2.478 2.243 2.090 1.770 1.500 1.202
14 203.879 7.685 3.759 2.900 2.503 2.268 2.114 1.789 1.512 1.207
19 202.930 7.688 3.780 2.919 2.523 2.287 2.129 1.800 1.522 1.211
24 203.569 7.685 3.802 2.936 2.536 2.300 2.141 1.811 1.528 1.214
29 201.419 7.666 3.811 2.943 2.546 2.309 2.150 1.818 1.535 1.216
49 207.101 7.706 3.840 2.983 2.580 2.3411 2.179 1.842 1.550 1.223
99 206.304 7.723 3.906 3.038 2.631 2.387 2.221 1.872 1.573 1.233
499 206.026 7.800 4.097 3.213 2.783 2.521 2.343 1.964 1.633 1.257

Table 5.1: 95th percentiles of the maximum order statistic of the multivariate beta type VII distribution.

The values in Table 5.1 were simulated using the SAS code found in Result 20, with 1 000 000 simulations,
and are rounded to three decimal places.

Figure 5.4: Varying 95th percentiles of the maximum order statistic of the multivariate beta type VII
distribution as a function of m.
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CHAPTER 5. SIMULATION AND COMPARISON 104

Figure 5.5: Varying 95th percentiles of the maximum order statistic of the multivariate beta type VII
distribution as a function of n.

n=2 5 10 15 20 25 30 50 100 500
m=4 235.290 6.336 3.095 2.421 2.118 1.942 1.826 1.582 1.379 1.153
9 249.969 5.958 2.929 2.311 2.029 1.869 1.761 1.539 1.351 1.143
14 253.365 5.891 2.881 2.272 2.003 1.843 1.739 1.525 1.342 1.139
19 252.002 5.863 2.857 2.254 1.989 1.834 1.731 1.517 1.339 1.138
24 254.506 5.835 2.845 2.247 1.982 1.828 1.724 1.514 1.335 1.137
29 255.251 5.803 2.832 2.239 1.978 1.823 1.723 1.512 1.335 1.136
49 266.453 5.772 2.810 2.228 1.967 1.815 1.715 1.508 1.331 1.135
99 264.693 5.772 2.802 2.218 1.959 1.810 1.709 1.505 1.329 1.134
499 265.135 5.770 2.791 2.216 1.957 1.806 1.706 1.500 1.328 1.134

Table 5.2: 95th percentiles of the maximum order statistic of the multivariate beta type VIII distribution.

The values in Table 5.2 were simulated using the SAS code found in Result 20, with 1 000 000 simulations,
and are rounded to three decimal places.
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CHAPTER 5. SIMULATION AND COMPARISON 105

Figure 5.6: Varying 95th percentiles of the maximum order statistic of the multivariate beta type VIII
distribution as a function of m.
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CHAPTER 5. SIMULATION AND COMPARISON 106

Figure 5.7: Varying 95th percentiles of the maximum order statistic of the multivariate beta type VIII
distribution as a function of n.

Some interesting observations and conclusions can be made about the beta type VII and beta type VIII
maximum order statistics using �gures 5.4, 5.5, 5.6 and 5.7, and tables 5.1 and 5.2:

• Figures 5.4, 5.5, 5.6 and 5.7 do not plot the UCLs for n = 2 since they are much larger than the
other simulated choices of n. Inducing these plots on the graphs would have in�ated the y-axes of
the graphs to the point where interpreting the trends in the UCL values would have been di�cult
from a visual perspective.

• When each sample consists of only two observations (n = 2), (the minimum required sample size when
the process mean is not known), both the beta type VII and beta type VIII distributions have very
large UCL values, irrespective of the number of samples used in the models. This implies that while
it is theoretically possible to use extremely small sample sizes, practically, it is inadvisable, especially
since increasing the sample sizes by very little, to n = 5, for instance - dramatically reduces the UCL
values.

• In tables 5.1 and 5.2 for values of n other than n = 2 and n = 5, the simulated 95th percentiles of the
maximum order statistics are monotone, however, when n = 2 or n = 5 this is not the case. It should
also be noted that when n = 2 (and to a lesser extent when n = 5) the simulated values in tables 5.1
and 5.2 vary greatly and erratically between repeat simulations, with the simulated values varying
by as much as 3% between repeated runs. This erratic behaviour continues even if the number of
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CHAPTER 5. SIMULATION AND COMPARISON 107

Monte Carlo simulations are increased from 1 000 000 to 10 000 000. As such this study recommends
that using extremely small sample sizes in these control charts should be avoided if at all possible.

• From �gures 5.5 and 5.7 it is clear that increasing the sample sizes for both the beta type VII and
the beta type VIII distributions lowers the UCL values. This corresponds with the intuitive feeling
that increasing the amount of data that the models can rely on results in smaller UCL values, which
leads to an increased probability of detecting a shift when it actually does occur. It is also clear
that increasing the sample sizes o�ers diminishing returns in terms of shrinking the UCL values. The
largest decreases in UCL values occur between n = 2 and n = 5, followed by the jump between n = 5
and n = 10. Practically, this means that increasing the sample size of the samples will only greatly
a�ect the UCLs up to a certain point, and it would probably not be feasible to, for example, increase
the sample sizes from 100 to 500, since the added economic cost of doing so might be outweighed by
the minimal decrease in the UCL values.

• One would expect (and hope) that, as the number of samples increases, the UCL values would
decrease. (The reasoning for this is similar to the reasoning that increasing the sample sizes should
shrink the UCL values in the point mentioned above). While it is clear from Figure 5.6 that this is
indeed the case for the beta type VIII distribution, Figure 5.4 shows that increasing the number of
samples for the beta type VII distribution actually increases the UCL values. This unwanted property
of that beta type VII distribution implies that applying the Q chart to a phase I-type setting, as
in this study, may not be practical. This unwanted increase in the UCL values as m increases can
also be seen in Figure 5.5, where the darker plotted lines (corresponding to higher values of m) plot
decreasingly in terms of UCL, whereas in Figure 5.7 the darker lines correspond to lower UCL values.

Note The SAS code that is used to simulate all of the values in this section can be found in Result 20.

5.3 Distributions when the process is OOC

The ability of control charts to quickly and e�ectively detect shifts in a production process is of paramount
importance. As mentioned in Chapter 1, di�erent charts are used to detect di�erent sized shifts. In
this section, the proposed model's potential to detect shifts in compared with that of the Q chart form
investigated by Adamski [1]. The probability of signaling that a shift in the process variance has occurred
depends on a few variables. In this study these variables are: the number of samples, the sample size of
the samples, where in the process the shift in the process variance occurs, and the size of the shift. The
�gures in this section take all of these parameters into account.

In each of the following �gures, the probability of signaling a shift in the variance is displayed as a function
of the size of the shift, where the shift size λ (see Section 1.1), ranges from λ = 1 (no shift) to λ = 5
(a �ve-fold increase in the process variance). Many di�erent combinations of the number of samples, the
sample sizes, as well as the locations of the shift were tested. The chosen parameters that were simulated
are: number of samples (m) equal to 10, 20 and 30, the sample sizes (n) equal to 2, 5, 10 and 20, and
the location of the shift in the process variance (κ) occurring at (roughly, due to integer sample numbers)
25%, 50% and 75% of the way through the samples. (The SAS code used to generate �gures 5.8 to 5.19
can be found in Result 21.)
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Figure 5.8: Probability of detecting a shift, m = 9, n = 2, κ = 3, 5, 7.
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Figure 5.9: Probability of detecting a shift, m = 9, n = 5, κ = 3, 5, 7.
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Figure 5.10: Probability of detecting a shift, m = 9, n = 10, κ = 3, 5, 7.
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Figure 5.11: Probability of detecting a shift, m = 9, n = 20, κ = 3, 5, 7.
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Figure 5.12: Probability of detecting a shift, m = 19, n = 2, κ = 5, 10, 15.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 5. SIMULATION AND COMPARISON 113

Figure 5.13: Probability of detecting a shift, m = 19, n = 5, κ = 5, 10, 15.
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Figure 5.14: Probability of detecting a shift, m = 19, n = 10, κ = 5, 10, 15.
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Figure 5.15: Probability of detecting a shift, m = 19, n = 20, κ = 5, 10, 15.
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Figure 5.16: Probability of detecting a shift, m = 29, n = 2, κ = 8, 15, 22.
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Figure 5.17: Probability of detecting a shift, m = 29, n = 5, κ = 8, 15, 22.
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Figure 5.18: Probability of detecting a shift, m = 29, n = 10, κ = 8, 15, 22.
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Figure 5.19: Probability of detecting a shift, m = 29, n = 20, κ = 8, 15, 22.
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From �gures 5.8 to 5.19, certain conclusions can be reached about the properties and e�cacy of the two
competing models:

• When n = 2, irrespective of the number of samples, the newly proposed model outperforms the Q
chart. There are some caveats however that should be noted:

1. In the above graphs, each plotted point was simulated 1 000 000 times during the Monte Carlo
process. For all the n = 2 graphs, the points vary erratically between each 0.05 increases in
the shift size, and thus even for a large number of simulations the process cannot be described
as �stable�. This corresponds to and is partially the result of the instability of critical values
that were simulated in tables 5.1 and 5.2. The erratic probability of the control charts to detect
di�erent sized shifts when n = 2 merely reiterates the fact that such small sample sizes are not
practically advisable.

2. The Q chart seems to be completely incapable of detecting an increase in the process variance
when n = 2, with the probability of detecting a shift staying at roughly 5%, irrespective of the
size of the shift.

3. While the new model's probability of detecting a shift does increase as the size of the shift
increases, it remains relatively low, at roughly 7% to 10%, just marginally higher than the 5%
chance when the process is actually IC. This implies that while it might be theoretically possible
to implement the new model for samples sizes of 2, it would likely not be a practically useful
technique.

4. The new model's probability of detecting a shift does not increase as the number of samples
increases, as would be expected (and as is the case for the other choices of n)

• From these points above, it can be concluded that using a sample size of 2 does not lead to an e�ective
control chart.

• For smaller numbers of samples (m = 9), the newly proposed model outperforms the Q chart for all
simulated sample sizes as well as locations of shifts (for all shift sizes).

• When there are 20 samples (m = 19), the newly proposed model outperforms the Q chart in nearly all
situations. The Q chart does have a higher probability of detecting a shift in the process variance only
when the sample sizes are small (n = 5), and the shift occurs relatively late in the process (κ = 15),
for shifts in the process variance between λ = 3 and λ = 4.75. Since a 300% to 475% increase in
the process variance is unlikely to occur in practice, the newly proposed model would likely be more
e�ective for m = 19.

• For m = 30, sweeping statements about the performances of the two methods are more di�cult to
make since the plotted percentage lines cross often. However it can be said that:

1. For small sample sizes (n = 5), the proposed model outperforms the Q chart for small shifts in
the process variance, whereas the Q chart performs better for larger shifts.

2. The Q chart performs at its best when the shift in the process variance occurs late in the series
of samples.
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3. For larger sample sizes (n = 20) the proposed model outperforms the Q chart when the shift in
the process variance occurs early, but when the shift occurs roughly half way through the series
of samples, or further, the performance of the two methods are very similar.

Note The SAS code that is used to calculate the probabilities that the two control charts will detect a
shift in the process variance can be found in Result 21.
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Conclusion

In this mini dissertation a new control chart was proposed to aid in the detection of a shift in a process's
variance. As a consequence of developing this control chart, new bivariate and multivariate beta distribu-
tions were added to the literature, and some properties of the new bivariate beta distribution were derived
and investigated. The generalised beta distribution developed by Adamski [1] was also expanded.

The control chart investigated by Adamski [1] was compared to the newly proposed model through a
simulation study, and it was found that under the described practical situation the control chart proposed
by this study performs favourably in comparison to the Q chart.

Opportunities for further research

• A closed-form expression for the critical values simulated in Chapter 5 still needs to be derived.

• Derivation of the properties of the multivariate beta distribution has yet to be investigated.

• Examination of the proposed model when the process mean experiences a shift has not yet been
researched.

• Application of the newly derived beta distributions to practical situations still needs to be investi-
gated.

• An investigation into relaxing some of the underlying assumptions of the proposed model has not yet
been researched.
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Appendix

Result 1 (Bain and Engelhardt [5] pp268-269)

If X ∼ χ2 (α), then X is said to be chi-square distributed with α∈ N degrees of freedom. It has the
following density function

f (x) = 1

2
α
2 Γ
(
α
2

)xα
2
−1e−

x
2 , x > 0,

where Γ (.) is the gamma function as de�ned in Result 6.

Result 2 (Bain and Engelhardt [5] p111)

If X ∼ Gamma (α > 0, β > 0), then X is said to be gamma distributed with degrees of freedom α and β
respectively. It has the following density function

f (x) = 1
βαΓ(α)

(
xα−1e−

x
β

)
, x > 0,

where Γ (.) is the gamma function as de�ned in Result 6.

Result 3 (Bain and Engelhardt [5] pp275-276)

If X ∼ F (α > 0, β > 0), then X is said to be F distributed with degrees of freedom α and β respectively.
It has the following density function

f (x) =
Γ
(

α+β
2

)
Γ
(
α
2

)
Γ
(

β
2

) (α
β

)α
2
x

α
2
−1
(
1 + α

β
x
)−α+β

2
, x > 0,

where Γ (.) is the beta function as de�ned in Result 6.

Result 4

If X ∼ BetaII (α > 0, β > 0), then X is said to be Beta type II distributed with degrees of freedom α and
β respectively. It has the following density function

f (x) = xα−1(1+x)−α−β

B(α,β)
, x > 0,

where B (.) is the beta function as de�ned in Result 7.
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Result 5

Suppose that X1 and X2 are two random variables, with joint density function f (x1, x2), then the product
moment of X1X2 is de�ned as

E (Xr
1X

s
2) =

´∞
−∞

´∞
−∞ xr

1x
s
2f (x1, x2) dx2dx1 .

Result 6 (Gradshteyn and Ryzhik [19] p892, 8.310.1)

The gamma function, Γ (x), is de�ned as

Γ (x) =
´∞
0

tx−1e−tdt.

Result 7 (Gradshteyn and Ryzhik [19] p902, 8.380.1)

The beta function, B (x > 0, y > 0), is de�ned as

B (x, y) =
´ 1

0
tx−1 (1− t)y−1 dt = Γ(x)Γ(y)

Γ(x+y)
,

where Γ (.) is the gamma function as de�ned in Result 6.

Result 8 (Gradshteyn and Ryzhik [19] p1005, 9.101 and 9.111, p1010 9.14)

The Gauss hypergeometric function, 2F1(a, b; c; z), is de�ned as

2F1 (a, b; c; z) =
∑∞

n=0
(α)n(b)n
(c)nn!

zn = 1
B(b,c−b)

´ 1

0
tb−1 (1− t)c−b−1 (1− tz)−a dt.

Note that the Gauss hypergeometric function is unde�ned/in�nite if c is a negative integer. Also, if either
a or b are equal to a non-positive number, say −m, the series terminates and becomes

2F1 (−m, b; c; z) =
∑m

n=0 (−1)n
(

m
n

)
(b)n
(c)n

zn ,

where (α)n is the Pochhammer symbol, de�ned in Result 10 and B (.) is the beta function as de�ned in
Result 7.

Result 9 (Gradshteyn and Ryzhik [19] p1010, 9.14.1 and p25 1.110)

The hypergeometric function, 1F0(a; z), can alternatively be expressed as coming from the binomial theo-
rem:

1F0 (a; z) =
∑∞

n=0 (a)n
zn

n!
= (1− z)−a,

where (α)n is the Pochhammer symbol, de�ned in Result 10.
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Result 10 (Gradshteyn and Ryzhik [19] pxliii)

The Pochhammer symbol, (q)n, is de�ned as:

(q)n =

{
1 n = 0

q (q + 1) (q + 2) ... (q + n− 1) n > 0

}
= Γ(q+n)

Γ(q)
,

where Γ (.) is the gamma function as de�ned in Result 6.

Result 11 (Gradshteyn and Ryzhik [19] p346, 3.381.4)
´∞
0

xα−1e−λdx = Γ(α)
λα , α > 0,

whereΓ (.) is the gamma function as de�ned in Result 6.

Result 12 (Gradshteyn and Ryzhik [19] p317, 3.197.5)´∞
0

xλ−1 (1 + x)ν (1 + αx)µ dx = B (λ,−µ− ν − λ) 2F1 (−µ, λ;−µ− ν; 1− α) ,−µ− ν > λ > 0,
where B (.) is the beta function as de�ned in Result 7 and 2F1 (.) is the Gauss hypergeometric function as
de�ned in Result 8.

Result 13 (Gradshteyn and Ryzhik [19] p315, 3.194.3)
´∞
0

xµ−1

(1+βx)ν
dx = β−µB (µ, ν − µ) , ν > µ > 0,

where B (.) is the beta function as de�ned in Result 7.

Result 14 (Gradshteyn and Ryzhik [19] p317, 3.197.8)´ u

0
xν−1 (x+ α)λ (u− x)µ−1 dx = αλuµ+ν−1B (µ, ν) 2F1

(
−λ, ν;µ+ ν;−u

α

)
, µ, ν > 0 ,

where B (.) is the beta function as de�ned in Result 7 and 2F1 (.) is the Gauss hypergeometric function as
de�ned in Result 8.

Result 15 (Gradshteyn and Ryzhik [19] p317, 3.197.2)
´∞
u

x−λ (x− u)µ−1 (x+ β)ν dx = u−λ (β + u)µ+ν B (λ− µ− ν, µ) 2F1

(
λ, µ;λ− µ;−β

u

)
,

∣∣β
u

∣∣ < 1
0 < µ < λ− ν,

where B (.) is the beta function as de�ned in Result 7 and 2F1 (.) is the Gauss hypergeometric function as
de�ned in Result 8.

Result 16 (Gradshteyn and Ryzhik [19] p315, 3.191.2)
´∞
u

x−ν (x− u)µ−1 dx = uµ−νB (ν − µ, µ) , ν > µ > 0,
where B (.) is the beta function as de�ned in Result 7.

Result 17 (Gradshteyn and Ryzhik[19] p315, 3.194.1)
´ u

0
xµ−1

(1+βx)ν
dx = uµ

µ 2F1 (ν, µ; 1 + µ;−βu) , µ > 0 ,

where 2F1 (.) is the Gauss hypergeometric function as de�ned in Result 8.
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Result 18 (Result 18 (Gradshteyn and Ryzhik[19] p25, 1.110 and 1.111)

In general,(a+ b)n =
∑∞

k=0

(
n
k

)
an−kbk.

However, if n ∈ N,

• (a+ b)n =
∑n

k=0

(
n
k

)
an−kbk

• (a+ b)−n =
∑∞

k=0

(
−n
k

)
a−n−kbk =

∑∞
k=0 (−1)k

(
n+ k − 1

k

)
a−n−kbk.

(
n
k

)
is called the binomial coe�cient, and is de�ned in Result 19.

Result 19 (Bain and Engelhardt [5] p35)

Suppose that n and k are both integers such that k ≤ n, then

(
n
k

)
= n!

k!(n−k)!
.

Result 20 (SAS code - IC process simulation)

/∗IN CONTROL DISTRIBUTION∗/
proc iml ;
sim = 500000;

∗∗ Paramters : dof=sample s i z e , alpha=gamma shape parameter ,
beta=gamma s c a l e parameter ∗∗ ;
dof = 5 ;
alpha = ( dof −1)/2;
beta = 2 ;

∗∗ m=Number o f samples , kappa=po s i t i o n o f s h i f t , lambda=s h i f t s i z e ∗∗ ;
m = 10 ; kappa = 1 ; lambda = 1 ;

∗∗ I n i t i a l i z e the ve c t o r s ∗∗ ;
Sample_Vector = j (1 ,m , . ) ;

∗∗ Beta type VIII ∗∗ ;
Stat i s t i c_VectorA = j (1 ,m−1 , . ) ;
Max_Val_VectorA = j (1 , sim , . ) ;
Max_Loc_VectorA = j (1 , sim , . ) ;
idA = j (1 , sim , 1 ) ;

∗∗ Beta type VII ∗∗ ;
Stat i s t i c_VectorK = j (1 ,m−1 , . ) ;
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Max_Val_VectorK = j (1 , sim , . ) ;
Max_Loc_VectorK = j (1 , sim , . ) ;
idK = j (1 , sim , 2 ) ;

do I t e r a t i o n s = 1 to sim ;
Seed_Before = j (1 , kappa , 0 ) ;
Seed_After = j (1 ,m−kappa , 0 ) ;
X_Before = beta∗rangam( Seed_Before , alpha ) ;
X_After = lambda∗beta∗rangam( Seed_After , alpha ) ;

Sample_Vector = X_Before | | X_After ;
do i = 1 to m − 1 ;
NumA = Sample_Vector [ 1 , i +1:m] ;

DenA = Sample_Vector [ 1 , 1 : i ] ;
NumA_DOF = (m−i )∗ ( dof −1);
DenA_DOF = ( i )∗ ( dof −1);
Stat i s t i c_VectorA [ i ] =

NumA[+]/NumA_DOF)/(DenA[+]/DenA_DOF) ;

NumK = Sample_Vector [ 1 , i +1: i +1] ;
DenK = Sample_Vector [ 1 , 1 : i ] ;

NumK_DOF = ( dof −1);
DenK_DOF = ( i )∗ ( dof −1);

Stat i s t i c_VectorK [ i ] = (
NumK[+]/NumK_DOF)/(DenK[+]/DenK_DOF) ;

end ;

Max_Val_VectorA [ I t e r a t i o n s ] = Stat i s t i c_VectorA [<>];
Max_Loc_VectorA [ I t e r a t i o n s ] = Stat i s t i c_VectorA [ <: >];
Max_Val_VectorK [ I t e r a t i o n s ] = Stat i s t i c_VectorK [<>];
Max_Loc_VectorK [ I t e r a t i o n s ] = Stat i s t i c_VectorK [ <: >];

end ;

datase t = ( idA ` | | Max_Val_VectorA ` | | Max_Loc_VectorA ` )
//( idK ` | | Max_Val_VectorK ` | | Max_Loc_VectorK ` ) ;

c r e a t e p r i n t ab l e from datase t [ colname={' id ' 'Max_Values ' ' Location_of_Maximum ' } ] ;
append from datase t ;
qu i t ;

data IC ;
s e t work . p r i n t ab l e ;
drop id ;
i f id = 1 then id1 = ' Beta type VIII ' ;
i f id = 2 then id1 = ' Beta type VII ' ;
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run ;
qu i t ;

proc un i va r i a t e data = IC nopr int ;
c l a s s id1 ;
var Max_Values Location_of_Maximum ;
output out=p e r c e n t i l e s 1 p c t l p t s = 95 pc t l p r e = Strength Width
run ;
qu i t ;

t i t l e 'Maximum Values : Beta type VIII vs . Beta type VII ' ;
ods g raph i c s o f f ;
proc un i va r i a t e data = IC nopr int ;

c l a s s id1 ;
histogram Max_Values / i n t e r t i l e = 1 .0
vax i s = 0 10 20 30
nco l s = 1
nrows = 2 ;

run ;
qu i t ;

t i t l e ' Locat ion o f Maximums : Beta type VIII vs . Beta type VII ' ;
ods g raph i c s o f f ;
proc un i va r i a t e data = IC nopr int ;

c l a s s id1 ;
histogram Location_of_Maximum / i n t e r t i l e = 1 .0
vax i s = 0 5 10 15 20 25 30
nco l s = 1
midpoints = 1 2 3 4 5 6 7 8 9 10
nrows = 2 ;

run ;
qu i t ;

Result 21 (SAS code - OOC process simulation)

l ibname a l b e r t 'D: ' ;
data a l b e r t . power ; id1 = ' xxxxxxxxxxxxxxxxxx ' ;
P robab i l i t y = 0 ;
Sh i f t = 0 ;
run ;
qu i t ;

%macro power ( lambda ) ;
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proc iml ;

sim = 500000;

∗∗ Paramters ∗∗ ;
dof = 20 ;
alpha = ( dof −1)/2;
beta = 2 ;

∗∗ Number o f samples , p o s i t i o n o f s h i f t and s h i f t s i z e ∗∗ ;
m = 30 ;
kappa = 22 ;

∗∗ I n i t i a l i z e the ve c t o r s ∗∗ ;
Sample_Vector = j (1 ,m , . ) ;

∗∗ Beta type VIII ∗∗ ;
Stat i s t i c_VectorA = j (1 ,m−1 , . ) ;
Max_Val_VectorA = j (1 , sim , . ) ;
Max_Loc_VectorA = j (1 , sim , . ) ;
idA = j (1 , sim , 1 ) ;

∗∗ Beta type VII ∗∗ ;
Stat i s t i c_VectorK = j (1 ,m−1 , . ) ;
Max_Val_VectorK = j (1 , sim , . ) ;
Max_Loc_VectorK = j (1 , sim , . ) ;
idK = j (1 , sim , 2 ) ;

do I t e r a t i o n s = 1 to sim ;
Seed_Before = j (1 , kappa−1 ,0) ;

Seed_After = j (1 ,m − kappa + 1 , 0 ) ;
X_Before = beta∗rangam( Seed_Before , alpha ) ;

X_After = &lambda∗beta∗rangam( Seed_After , alpha ) ;
Sample_Vector = X_Before | | X_After ;

do i = 1 to m − 1 ;
NumA = Sample_Vector [ 1 , i +1:m] ;

DenA = Sample_Vector [ 1 , 1 : i ] ;
NumA_DOF = (m−i )∗ ( dof −1);
DenA_DOF = ( i )∗ ( dof −1);
Stat i s t i c_VectorA [ i ] = (NumA[+]/NumA_DOF)/(DenA[+]/DenA_DOF) ;

NumK = Sample_Vector [ 1 , i +1: i +1] ;
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DenK = Sample_Vector [ 1 , 1 : i ] ;
NumK_DOF = ( dof −1);

DenK_DOF = ( i )∗ ( dof −1);
Stat i s t i c_VectorK [ i ] = (NumK[+]/NumK_DOF)/(DenK[+]/DenK_DOF) ;

end ;

Max_Val_VectorA [ I t e r a t i o n s ] = Stat i s t i c_VectorA [<>];
Max_Loc_VectorA [ I t e r a t i o n s ] = Stat i s t i c_VectorA [ <: >];

Max_Val_VectorK [ I t e r a t i o n s ] = Stat i s t i c_VectorK [<>];
Max_Loc_VectorK [ I t e r a t i o n s ] = Stat i s t i c_VectorK [ <: >];

end ;

datase t = ( idA ` | | Max_Val_VectorA ` | | Max_Loc_VectorA ` )
//( idK ` | | Max_Val_VectorK ` | | Max_Loc_VectorK ` ) ;

c r e a t e p r i n t ab l e from datase t [ colname={' id ' 'Max_Values ' 'Max_Loc ' } ] ;
append from datase t ;

data a l b e r t .OOC;
s e t p r i n t ab l e ;
drop id ;
i f id = 1 then id1 = ' Beta Type VIII ' ;
i f id = 2 then id1 = ' Beta Type VII ' ;
run ;
qu i t ;

data a l b e r t .OOCb;
s e t a l b e r t .OOC;

/∗Note that the va lue s ( 1 . 9 7 . . . and 2 . 5 4 . . . ) are the 95 th p e r c e n t i l e s o f the
r e s p e c t i v e maximum order s t a t i s t i c s ' d i s t r i b u t i o n s .
They are s imulated i s Result 20 , us ing proc un i va r i a t e ∗/

i f id1 = ' Beta Type VIII ' then do ;
i f Max_Values >= 1.97437942 then S igna l = 1 ;
e l s e S i gna l = 0 ;
end ;

i f id1 = ' Beta Type VII ' then do ;
i f Max_Values >= 2.542581604 then S igna l = 1 ;
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e l s e S i gna l = 0 ;
end ;
run ;
qu i t ;

proc s o r t data=a l b e r t .OOCb;
by id1 ;
run ;

proc means data = a l b e r t .OOCb nopr int ;
by id1 ;
var S i gna l ;
output out=work . power mean=Probab i l i t y ;
run ;

data work . power ;
s e t work . power ;
keep id1 Probab i l i t y Sh i f t ;
s h i f t = &lambda ;
run ;
qu i t ;

data a l b e r t . power ;
s e t a l b e r t . power
work . power ;
run ;
qu i t ;

%mend ;

%power (1 .00) ;% power (1 .05) ;% power (1 .10) ;% power (1 .15) ;% power ( 1 . 2 0 ) ;
%power (1 .25) ;% power (1 .30) ;% power (1 .35) ;% power (1 .40) ;% power ( 1 . 4 5 ) ;
%power (1 .50) ;% power (1 .55) ;% power (1 .60) ;% power (1 .65) ;% power ( 1 . 7 0 ) ;
%power (1 .75) ;% power (1 .80) ;% power (1 .85) ;% power (1 .90) ;% power ( 1 . 9 5 ) ;
%power (2 .00) ;% power (2 .05) ;% power (2 .10) ;% power (2 .15) ;% power ( 2 . 2 0 ) ;
%power (2 .25) ;% power (2 .30) ;% power (2 .35) ;% power (2 .40) ;% power ( 2 . 4 5 ) ;
%power (2 .50) ;% power (2 .55) ;% power (2 .60) ;% power (2 .65) ;% power ( 2 . 7 0 ) ;
%power (2 .75) ;% power (2 .80) ;% power (2 .85) ;% power (2 .90) ;% power ( 2 . 9 5 ) ;
%power (3 .00) ;% power (3 .05) ;% power (3 .10) ;% power (3 .15) ;% power ( 3 . 2 0 ) ;
%power (3 .25) ;% power (3 .30) ;% power (3 .35) ;% power (3 .40) ;% power ( 3 . 4 5 ) ;
%power (3 .50) ;% power (3 .55) ;% power (3 .60) ;% power (3 .65) ;% power ( 3 . 7 0 ) ;
%power (3 .75) ;% power (3 .80) ;% power (3 .85) ;% power (3 .90) ;% power ( 3 . 9 5 ) ;
%power (4 .00) ;% power (4 .05) ;% power (4 .10) ;% power (4 .15) ;% power ( 4 . 2 0 ) ;
%power (4 .25) ;% power (4 .30) ;% power (4 .35) ;% power (4 .40) ;% power ( 4 . 4 5 ) ;
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%power (4 .50) ;% power (4 .55) ;% power (4 .60) ;% power (4 .65) ;% power ( 4 . 7 0 ) ;
%power (4 .75) ;% power (4 .80) ;% power (4 .85) ;% power (4 .90) ;% power ( 4 . 9 5 ) ;
%power ( 5 . 0 0 ) ;

data a l b e r t . power1 ;
s e t a l b e r t . power ;
i f s h i f t = 0 then d e l e t e ;
run ;
qu i t ;

proc s o r t data = a l b e r t . power1 ;
by id1 Sh i f t ;
run ;
qu i t ;

ods output ;
symbol1 i n t e r p o l=sp l i n e c o l o r=blue value=dot he ight =1;
symbol2 i n t e r p o l=sp l i n e c o l o r=red value=dot he ight =1;
proc gp lo t data = a l b e r t . power1 ;
t i t l e ' P robab i l i t y to S i gna l vs . S h i f t S ize ' ;
p l o t Probab i l i t y ∗ Sh i f t = id1 / over l ay g r id
v r e f = 0 cv r e f=grey l v r e f=1
h r e f = 1 ch r e f=grey l h r e f =1;
run ;
qu i t ;
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