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Summary

The generalised gamma distribution has received much attention due to its �exibility and

also for having some well-known distributions as special cases. This study originates from

a statistic de�ned as the ratio of products of independent generalised gamma random

variables and shows that it can be represented as the product of independent generalised

gamma random variables with some re-parametrisation. By decomposing the character-

istic function of the negative logarithm of the statistic and then using the distribution of

the di¤erence of two independent generalized integer gamma random variables as a basis,

accurate and computationally appealing near-exact distributions are derived for the statis-

tic. In the process, a new �exible parameter is introduced in the near-exact distributions

which allows to control the degree of precision of these approximations. Furthermore, the

performance of the near-exact distributions is assessed using a measure of proximity be-

tween cumulative distribution functions; also, by comparison with the exact distribution,

empirical distribution and with an approximation developed using a di¤erent method and

which can only be applied in some particular cases.
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Chapter 0

Abbreviations and notation

cdf Cumulative distribution function

pdf Probability density function
d' Approximately equal in distribution

GIG Generalised integer gamma distribution

DGIG Distrubution of di¤erence of two independent GIG random variables

SDGIG Shifted DGIG distribution

� Approximately equal to

N A set of natural numbers

R A set of real numbers

R+ A set of positive real numbers

2 An element of a given set of numbers

C A set of complex numbers

exp (�) Exponential function, e(�)

� (a) Gamma function

�n (�)
nQ
j=1

� (�)


 (�; x) and �� (�; x) Incomplete gamma functions

�X (t) Characteristic function of the random variable X; �X (t) = E [exp (itX)]�
x
n

�
Combination function

(�)t Pochhammer coe¢ cient

1F1 (�) Con�uent hypergeometric function

Gm;n
r;s (�) Meijer�s G-function

Hm;n
r;s (�) Fox�s H-function

Mf (�) Mellin transform

1
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Chapter 1

Introduction

1.1 Background and motivation

The distribution of the product or ratio of independent random variables have played

an important role in many areas of research. Of particular interest in this study is the

distribution of the product of independent generalised gamma distributed random vari-

ables. Subsection 1.1.1 provides an overview of substantial contributions to the current

theoretical and application understanding of the distribution of product and ratio of gen-

eralised gamma random variables. In Subsection 1.1.2, the probability density function

(pdf) of the generalised gamma distributed random variable considered in this study is

given. Furthermore, it is shown that the inverse of the generalised gamma distributed

random variable also follows a generalised gamma distribution. Subsection 1.1.2 ends o¤

by formally de�ning the statistic of interest for this study.

1.1.1 Literature review

The generalised gamma distribution was introduced by Stacy (see [24]). It is a general-

isation of well-known distributions such as gamma, chi-squared, exponential, Rayleigh,

Weibull and Nakagami-m. Either in this generalised form or one of its special cases, the

generalised gamma distribution has received much interest and wide applications in areas

such as hydrological processes, wireless communication, reliability analysis, economics and

life testing. This is largely due to its �exibility. In a hydrological application, [1] used the

generalised gamma distribution to characterise the duration of a drought, its intensity and

successive non-drought duration respectively. In wireless systems, [4] described respec-

tively the fading coe¢ cient of a hop and a channel gain of a hop by using a generalised

gamma random variable. A similar application of the generalised gamma distribution

can be found in [20] where the performance of multi-hop wireless communication sys-

2
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1. INTRODUCTION
1.1 Background and motivation

tems in di¤erent transmission environments is analysed. [26] unknowingly reintroduced

the generalised gamma distribution as a general fading distribution, the so-called � � �

distribution. In [17], the e¤ects and measurement errors are analysed using the Poisson-

gamma hierachical generalised linear model. The authors then use the generalised gamma

distribution to model exponents of each these e¤ects.

In many of the applications mentioned above, the product or ratio of independent

generalised gamma random variables appears naturally. For instance, [1] considered both

the product and ratio of independent generalised gamma random variables to model the

magnitude of a drought and relative duration of a drought events respectively. In multi-

hop wireless relaying systems, the end-to-end signal-to-noise ratio (SNR) and the rate

o¤set can be modelled as a function of the product of independent generalised gamma,

Rayleigh or Nakagami-m random variables (see [4]). Signal-to-interference ratio (SIR) can

be modelled as the ratio of either independent generalised gamma, independent Rayleigh

or independent Nakagami-m random variables (see [20]): In [17] the authors modelled

the intensity of the Poison process in the Poisson-gamma hierarchical generalized linear

model as product of independent gamma random variables. In [16], the authors show

many applications of the linear combination of independent Gumbel distributed random

variables in biology and risk management. Using a rather simple transformation, the

distribution of a linear combination of independent Gumbel distributed random variables

can be obtained from a product or ratio of independent generalised gamma distributed

random variables.

The product and ratio of independent generalised gamma distributed random variables

also appear fundamental in the basic statistical theory. Well known distributions such

as the beta type I and the Snedecor�s F are particular cases of the ratio of independent

generalised gamma distributed random variables. The generalised variance is the product

of particular independent chi-squared random variables (see [7]). A large number of

hypothesis test statistics are distributed as the product or ratio of independent generalised

gamma random variables. Examples include equality of two generalised variances, details

and some other examples can be found in [8]. In [7], the authors detail a number of

applications in statistical theory of the product of independent generalised gamma random

variables.

In addition to numerous studies done on independent generalised gamma distributed

random variables, some authors (see for example [2] and [3]) have studied the product

and sum of correlated generalised gamma distributed random variables.

3
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1. INTRODUCTION
1.1 Background and motivation

1.1.2 Statistic of interest

As shown in Subsection 1.1.1, the ratio and product of independent generalised gamma

distributed random variables have been widely used to model problems arising in many

areas. It is for this reason that a deeper knowledge of the distribution of the ratio and

product of independent generalised gamma distributed random variables is necessary.

Let X be a random variable with the pdf given by

fX (x; r; �; �) = j�j
��rx�r�1

� (r)
exp

�
� (�x)�

�
(1.1)

for x � 0; r > 0, � > 0 and any non-zero quantity �. r, � and � are called shape, rate

and power parameters respectively. X is said to follow a generalised gamma distribution

denoted by X � G� (r; �; �) ([25], p.73).

Figure 1.1: Plots of the pdf of generalised gamma distribution

(see (1.1)) for various sets of parameter values.

The �exibility of the generalised gamma distribution, as noted in Subsection 1.1.1, can

be observed in Figure 1.1. It should be noted that the pdf in (1.1) is an alternative

representation of the generalised gamma distribution than that introduced by [24] where

the pdf is given as

fX (x; a; d; p) =
p

ad� (d=p)
xd�1 exp

�
�x
a

�p
for x > 0, a > 0, d > 0 and restricted p > 0. Thus the following re-parametrisation is

implied

4
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1. INTRODUCTION
1.1 Background and motivation

d = �r

a =
1

�
p = �:

The generalised gamma distribution has, as special cases, some of the well-known

distributions.

Table 1.1: Some of the special cases of the generalised

gamma distribution (see (1.1)).

Distribution r � �

gamma r � 1

exponential 1 � 1

Rayleigh 1 �
2

2

Nakagami-m r
p

r



1

Table 1.1 shows some distributions as well as their relationship with the generalised

gamma distribution. Further information on these distributions can be found in Appendix

B. and [25]. Included in [7] is another detailed list of distributions having particular

relationships with the generalised gamma distribution.

The next remark considers the distribution of the inverse of the generalised gamma

distributed random variable with pdf given by (1.1).

Remark 1.1 Let X � G� (r; �; �). De�ne

V =
1

X
:

Then the pdf of V is given by

fV (v) = fX
�
v�1
� ���v�2��

= j�j �
�r (v�1)

�r�1

� (r)
exp

�
�
�
�v�1

���
v�2

= j��j
�
��1
�(��)r

v(��)r�1

� (r)
exp

�
�
�
��1v

����
: (1.2)

It follows from (1.2) that V � G�
�
r; ��1;��

�
i.e. the inverse of a random variable with a

generalised gamma distribution is also a generalised gamma distributed random variable.

5
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1. INTRODUCTION
1.1 Background and motivation

The following notation will be useful for the remainder of this study. For a power

parameter, �, in a generalised gamma distribution, denote � by �� if � < 0 and �+ if

� > 0. Suppose that

X1j � G�(r1j; �1j; �
+
1j) j = 1; 2; : : : ; n1

X2t � G�(r2t; �2t; �
+
2t) t = 1; 2; : : : ; n2;

where n1 + n2 = n, n1 > 0 and n2 > 0. Consider the following statistic

G =

 
n1Y
j=1

X1j

! 
n2Y
t=1

X2t

!�1
: (1.3)

In (1.3), G is the ratio of the product of independent generalised gamma distributed

random variables. Let

G1 =

n1Y
j=1

X1j

and

G2 =

 
n2Y
t=1

X2t

!�1

=

n2Y
t=1

X�1
2t :

Clearly G1 is a product of independent generalised gamma distributed random variables.

Using Remark 1.1, each of X�1
2t � G�

�
r; ��12t ; �

�
2t

�
where ��2t = ��+2t. Therefore G2 is

simply a product of independent generalised gamma random variables itself. Thus another

representation of statistic (1.3) is

G = G1G2: (1.4)

This implies that G is a product of independent generalised gamma distributed random

variables such that in at least two of these random variables, one has a positive power

parameter and the other has negative power parameter. In e¤ect, one can view the ratio of

independent generalised gamma distributed random variables in (1.3) also as the product

of independent generalised gamma distributed random variables (1.4).

Next, the statistic of interest for this study is de�ned. Let X1; X2; : : : ; Xn where

Xj � G� (rj; �j; �j) such that �t < 0 and �k > 0 for some t; k 2 f1; 2; 3; : : : ; ng. De�ne

Y =

nY
j=1

Xj: (1.5)

6
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1. INTRODUCTION
1.2 Methodology

[15] and [17] considered statistics similar to (1.5). In fact, due to the closeness of the titles

and methodologies in these articles and this study, a reader may incorrectly conclude that

the content of this study have been considered in the aforementioned articles. [15] and

[17] only considered a case where all power parameters are either �� or �+. Therefore,

this study can be view as a generalisation of studies in [15] and [17] since the power

parameters are not restricted to be of the same sign (either negative or positive). In fact,

this is the �rst study in literature that the statistic as de�ned in (1.5) is studied and its

distribution evaluated. Noting that a generalised gamma distribution is a special case of

the H-function distribution (see (A.35)), [22] studied a more general case of Y where Y is

a product of independent H-function distributed random variables. However, the result is

of no practical application since Fox�s H-function are not computable. In [7], the statistic

Y is only noted but never studied. The authors then limit their attention to cases where

the power parameters are all either positive or negative.

1.2 Methodology

In the introduction of the generalised gamma distribution, [24] de�ned and considered

the distribution of a ratio of two independent generalised gamma random variables with

equal power parameters. However, [24] only went as far as expressing the distribution of

Y (see 1.5) for n = 2 in terms of a beta distribution by making use of the relationship

between the beta random variable and the ratio of two independent generalised gamma

random variables. In particular, [24] noted that if X1 and X2 are independent generalised

gamma random variables with same power parameters i.e. Xj � G�(rj; �j; �) for j = 1; 2

and

Y =
X1

X2

;

then

W =
Y �

Y � +

�
�2
�1

�� � beta (r1; r2) ;

where beta (r1; r2) denote the beta distribution with parameters r1 and r2. Then [24]

expressed the cumulative distribution of Y as

P (Y 6 y) = P

0BBB@W 6 y�

y� +

�
�2
�1

��
1CCCA : (1.6)

Subsequently, literature on the distribution of Y both exact (see [1], [8], [13], [14],

7
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1. INTRODUCTION
1.2 Methodology

[18], [21] and [23]) and approximations (see [4], [8], [12] and [17]) has been published.

With an exception of few authors, most of the theory on the distribution, or distribution

function speci�cally, of Y is in terms of either special functions or in�nite series. [4] also

commented on this issue.

To obtain the exact distribution of Y some authors have used the Mellin transforma-

tion (see (A.37)) and inverse Mellin transformation (see (A.38)). Subsection 1.2.1 gives a

brief comment of results from this methodology. Subsections 1.2.2 and 1.2.3 comment on

methodologies used to obtain the approximate distribution of Y .

1.2.1 Exact distribution of the statistic in terms of Meijer�s G-

function and Fox�s H-function

Authors in [18], [22] and [23] used the Mellin and inverse Mellin transformation to derive

the exact distribution of Y (see (1.5)) for any value of n. To obtain the computational form

of the exact distribution of Y , authors in [23] limited their study exclusively to the product

of independent gamma distributed random variables with rate parameter equal to 1 and

authors in [18] only considered a product of a random sample from a generalised gamma

distribution. Under these special conditions the exact distribution of Y could be expressed

in terms of Meijer�s G- function (see (A.36)). [11] studied the ratio of generalised gamma

distributed random variables. By forcing power parameters of various random various

to have some numerical relationship, the authors obtained the pdf of Y in tems of the

Meijer�s G- function. According to [22], the pdf of Y can be expressed in terms of Fox�s

H-function (see (A.35)). However Fox�s H-functions are not readily computable "even

nowadays when good softwares for symbolic and numeric computations are available"

[8]. [7] and [8] derived the exact distribution of Y is in terms of in�nite series. Though

distributions that are in terms of in�nite series can be approximated to a high degree of

accuracy, this would require a large number of terms in a series to be evaluated in order

to get the required accuracy. Therefore, even approximate distributions of Y that are in

terms of in�nite series are both time and computationally demanding and costly. With

reference to the in�nite structure of the pdf and the cumulative distribution function (cdf)

of Y in [7], the authors commented that the structure is somewhat complicated and a

simpler structure is a worthwhile goal.

1.2.2 Approximate distribution of the statistic in terms of ele-

mentary functions

Approximate distributions in [4] and [12] are in manageable forms. However [4] and [12]

considered only the case where Y (see (1.5)) is a product of independent generalised

8
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1. INTRODUCTION
1.2 Methodology

gamma random variables also with positive power parameters. In [12], Y is speci�cally

a product of n randomly sampled Rayleigh distributed random variables. A new ran-

dom variable, say Z, which is the nth root of Y divided by the Rayleigh parameter is

de�ned. Using 106 simulated values of Z and distributional �tting tool in MATLAB, they

determine the distribution of Z and then transform back to Y to obtain the approximate

distribution of Y: In [4], the authors noted a relationship between a Rayleigh distributed

random variable and an exponentially distributed random variable i.e. if X � Ra (1) (see

(B.4)), then X2 � EXP (1) (see (B.1)). Using this relationship and a transformation

to allow for exponential parameters other than 1, an approximation of the distribution

of product of independent exponentially distributed random variable is obtained. An

approximate distribution of the product of independent gamma distributed random vari-

ables and product of independent generalised gamma distributed random variables can be

obtained respectively in a similar fashion. This approach will be investigated in Section

3.2 and will be referred to as Chen�s approximation.

1.2.3 Distribution of the statistic using a characteristic function

based method

In [15], [16] and[17], near-exact distributions are derived by using characteristic function

based techniques. In this study, a similar approach is also followed to derive near-exact

distributions of Y (see (1.5)): Since the characteristic function of the generalised gamma

distributed random variable (and hence the characteristic function of Y ) is not readily

available, the characteristic function of Z = � log Y will be considered. By decomposing

the characteristic function Z, it is shown that Z can be represented as a sum of two

independent random variables. To develop near-exact distribution, one random variable

in the representation on Z is approximated while the other is left unchanged. In [7] and

[8], the characteristic function of Z is decomposed using Result 31 and the derived exact

pdf of Z is in terms of in�nite sums. Where the exact distribution is represented in terms

of in�nite series, an approximate distribution is obtained by truncating some of the terms.

However, to obtain the required accuracy, a large number of terms need to be evaluated.

In reference to this point, authors in [8] commented that "the development of near-exact

distribution seems to be much a much desirable goal".

9
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1. INTRODUCTION
1.3 Aims and outline of this dissertation

1.3 Aims and outline of this dissertation

1.3.1 Aims

� To develop near-exact distributions for statistic Y (see (1.5)). These near-exact

distributions are novel approximations of the exact distribution of Y .

� Assess the quality of near-exact distributions relative to other approximate distrib-
ution.

� Recommend the most e¢ cient approximate distribution given the problem being

modelled.

1.3.2 Outline

� In Chapter 2, the exact distribution of Y (see (1.5)) in terms of Fox�s H-function is
presented and the characteristic function of Z = � log Y is derived. Furthermore,

it will be shown that Z can be decomposed into a sum of two independent random

variables.

� Chapter 3 uses the representation of Z as a sum of two independent random variables
to develop near-exact distributions for Z. By applying a transformation from Z to Y

(see(1.5)), near-exact distributions of Y are developed. The chapter end by deriving

approximate distribution functions, presented in [4], of Y when the power parameter

is positive and �xed.

� Chapter 4 assesses the quality of near-exact distributions relative to approximate
distribution in terms of elementary functions, empirical distribution and exact dis-

tribution.

� Conclusion and future research opportunities are in Chapter 5.

� For the convenience of the reader, an Appendix with notation and abbreviation (in
Appendix 0), useful mathematical results (in Appendix A.) and statistical distrib-

utions (in Appendix B.) is included.

� Proposed computational modules for near-exact distributions developed in this study
are discussed in Appendix C. Link to Mathematica code for all computational mod-

ules implemented in this study is also included

Figure 1.2 summarises graphically the outline of this mini-dissertation

10
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1.4 Contributions

Figure 1.2: Outline of the study.

1.4 Contributions

� Present more detailed and alternative proofs (e.g Results 20 and 37) to some of the
popular results in near-exact distribution theory (see Appendix B.).

� Show that the ratio of independent generalised gamma distributed random variables
can be represented as the product of independent generalised gamma distributed

random variables (see (1.5)).

� Derive and evaluate the near-exact distribution functions for Y as de�ned in (1.5).

11
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1. INTRODUCTION
1.4 Contributions

� Contrast exact distribution and classical approximate distributions of Y (see (1.5))

against near-exact distributions.

� Assess the quality and usability of two approximate methods (i.e. near-exact distri-
bution and approximate method presented in [4]) against each other.

� Recommend the most e¢ cient approximate distribution to employ under various
conditions given the problem being modelled.

� Develop computational modules for calculating the pdf and cdf of Y (see (1.5)).

12
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Chapter 2

Exact distribution

A number of authors have studied the exact and approximate distributions of the product

of independent generalised gamma distributed random variables. In all of such studies,

power parameters were all either positive or negative (see [7], [15] and [17]). Fewer authors

have consider the ratio of independent generalised gamma distributed random variables.

With an exception of [18] and [22] where an arbitrary number of variables is considered,

every other study limited their study to a ratio of only two random variables (see for

example [1], [13] and [23]). Since a generalised gamma distribution is a special case of the

H-function distribution, pdf of the product of independentH-function distributed random

variables derived in [22] can be used to obtain the pdf of Y (see (1.5)) in terms of the Fox�s

H-function. [18] and [23] also derived the pdf of Y in terms of Fox�s H-function. However,

Fox�s H-functions are not readily computable. To obtain the computable form of the pdf

of Y , [23] considered only gamma distributed random variables with rate parameter equal

to 1 while [18] considered the special case where all the generalised gamma distributed

random variables have the same power parameter. In both special cases, Y has an exact

pdf that is in terms of the Meijer�s-G function which is easily computable using most

mathematical softwares. [20] also derived the exact distribution of Y in terms of the

Meijer�s-G function.

[13] derived the exact distribution of the logarithm of Y (for n = 2) and used trans-

formation techniques to obtain the exact distribution of Y: [8] and [17] adopted a newer

methodology using characteristic functions to derive the exact distribution and near-exact

distributions of Z = � log Y . Via some necessary transformations, near-exact distribu-
tions of Y are obtainable from near-exact distribution of Z.

Section 2.1 presents the exact distribution of Y in terms of Fox�s H-function. In

addition, the pdf of special cases of Y (i.e. as a product of independent exponentially

and gamma distributed random variables respectively) in terms of Meijer�s-G functions

is investigated. Starting from the characteristic function Z, Section 2.2 shows that Z can

13
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2. EXACT DISTRIBUTION
2.1 Meijer�s-G and Fox�s H-functions based method

be decomposed into a sum of two independent random variables. This decomposition will

be used in Chapter 3 to obtain near-exact distribution of Z and ultimately near-exact

distributions of Y .

2.1 Meijer�s-G and Fox�s H-functions based method

This section follows the approach in [18] and derives the exact distribution of Y (see

(1.5)). Using (A.39) and (B.13), the Mellin transformation of Y is given by

MY (s) =

nY
j=1

�
�
rj +

(s�1)
�j

�
� (rj)

�
�(s�1)
j

=
nY
j=1

�

�
rj +

(s� 1)
�j

� nY
j=1

��sj

nY
j=1

�j
� (rj)

:

Let B =
nQ
j=1

�j
� (rj)

and C =
nQ
j=1

�j so that

MY (s) = C�sB
nY
j=1

�

�
rj +

(s� 1)
�j

�
: (2.1)

From the relationship between the statistics de�ned in (1.4) and Y , (2.1) can be decom-

posed into two parts with one part associated with �j < 0 and the other with �j > 0.

Then (2.1) becomes

MY (s) = C�sB

n1Y
j=1

�

 
r1j �

1

�+1j
+

s

�+1j

!
n2Y
t=1

�

�
r2t +

1

��2t
� s

��2t

�
; (2.2)

where n1 is the number of random variables with positive power parameters, n2 is the

number of random variables with negative power parameters and n = n1 + n2. The pdf

of Y is obtained by using (2.2) in the inverse Mellin transformation (see (A.38)) as

fY (y) =
1

2�i

Z
C

y�sMY (s) ds

=
1

2�i

Z
C

y�sC�sB

n1Y
j=1

�

 
r1j �

1

�+1j
+

s

�+1j

!
n2Y
t=1

�

�
r2t +

1

��2t
� s

��2t

�
ds

=
B

2�i

Z
C

(Cy)�s
n1Y
j=1

�

 
r1j �

1

�+1j
+

s

�+1j

!
n2Y
t=1

�

�
r2t +

1

��2t
� s

��2t

�
ds: (2.3)

14

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2. EXACT DISTRIBUTION
2.1 Meijer�s-G and Fox�s H-functions based method

where C indicates the complex contour. Using (A.35), (2.3) can be represented in terms
of Fox�s H-function as

fY (y) = BHn1;n2
n2;n1

2666666666664
Cy j

�
1�

�
��21r21 � 1

��21

�
;
1

��21

��
1�

�
��22r22 � 1

��22

�
;
1

��22

�
�; : : : ;

�
1�

�
��2n2r2n2 � 1

��2n2

�
;
1

��2n2

�
�
�+11r11 � 1

�+11
;
1

�+11

�
�
�
�+12r12 � 1

�+12
;
1

�+12

�
; : : : ;

�
�+1n1r1n1 � 1

�+1n1
;
1

�+1n1

�

3777777777775
(2.4)

for y > 0. Therefore according to (B.16), Y is an H-function distributed random variable

with parameters�
�+11r11 � 1

�+11
;
�+12r12 � 1

�+12
; : : : ;

�+1n1r1n1 � 1
�+1n1

�
;�

1

�+11
;
1

�+12
; : : : ;

1

�+1n1

�
and�

1�
�
��21r21 � 1

��21

�
; 1�

�
��22r22 � 1

��22

�
; : : : ; 1�

�
��2n2r2n2 � 1

��2n2

��
;�

1

��21
;
1

��22
; : : : ;

1

��2n2

�
:

2.1.1 Special cases

In this subsection, useful forms of (2.4) when Y (see (1.5)) is a product of some of the

special cases of the independent generalised gamma random variables are derived. See

Table 1.1 for special cases of the generalised gamma distribution.

2.1.1.1 Product of independent exponential random variables

Suppose X � EXP (�) (see (B.1)): The Mellin transformation of X is given by (B.3).

Let X1; X2; : : : ; Xn be a set of independent random variables such that Xj � EXP (�j)

for j = 1; 2; : : : ; n.

De�ne

Yexp =

nY
j=1

Xj: (2.5)

15
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2. EXACT DISTRIBUTION
2.1 Meijer�s-G and Fox�s H-functions based method

Using (A.39) and (B.3), the Mellin transformation of Yexp is given by

MYexp (s) =

nY
j=1

�
��s+1j � (s)

�
: (2.6)

Using the inverse Mellin transformation of Yexp and (2.6), the exact pdf of Yexp is

fYexp (y) =
1

2�i

Z
C

y�sMYexp (s) ds

=

nQ
j=1

�j

2�i

Z
C

 
y

nY
j=1

�j

!�s nY
j=1

� (s) ds; (2.7)

such that

fYexp (y) =
nY
j=1

�jG
n;0
0;n

"
y

nY
j=1

�j j 0
#
: (2.8)

where Gm;n
r;s (�) is given in (A.36).

2.1.1.2 Product of independent gamma variables

Suppose X � � (r; �) (see (B.6)). The Mellin transformation of X is given by (B.10). Let

X1; X2; : : : ; Xn be a set of independent gamma random variables with the same shape

parameter such that Xj � � (r; �j) for j = 1; 2; : : : ; n.

De�ne

Y� =

nY
j=1

Xj: (2.9)

Using (A.39) and (B.10) the Mellin transformation of Y� is

MY� (s) =
nY
j=1

� (r + s� 1)
�s�1j � (r)

=
�n (r + s� 1)

�n (r)

nY
j=1

�1�sj ; (2.10)

where �n (�) =
nQ
j=1

� (�) : By using the inverse Mellin transformation, the exact pdf of Y�
is

16
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2. EXACT DISTRIBUTION
2.2 Characteristic functions based method

fY� (y) =
1

2�i

Z
C

y�sMY� (s) ds

=
1

2�i

Z
C

y�s
�n (r + s� 1)

�n (r)

nY
j=1

�1�sj ds

=

nQ
j=1

�j

(2�i) �n (r)

Z
C

 
y

nY
j=1

�j

!�s
�n (r � 1 + s) ds:

Let s0 = r � 1 + s, then

fY� (y) =

 
y

nQ
j=1

�j

!r�1
(2�i) �n (r)

nY
j=1

�j

Z
C

 
y

nY
j=1

�j

!�s0
�n (s0) ds0

=

 
y

nQ
j=1

�j

!r�1
�n (r)

nY
j=1

�jG
n;0
0;n

"
y

nY
j=1

�j j 0
#
: (2.11)

By using (2.8), (2.11) can be represented as

fY� (y) =

 
y

nQ
j=1

�j

!r�1
�n (r)

fYexp (y) ; (2.12)

where fYexp (�) is given in (2.8) and is the pdf of the product of n independent exponential
random variables with parameters �j for j = 1; 2; 3; : : : ; n.

Remark 2.1 Representation (2.12) of the exact pdf of the product of n independent

gamma distributed random variables will be useful in Section 3.2 when results from [4]

are derived.

2.2 Characteristic functions based method

In this section; the exact distribution of the random variable Z = � log Y , with Y de�ned
in (1.5), is derived by making use of characteristic functions. Furthermore, it will be

shown that Z can be decomposed into a sum of two independent random variables. The

decomposition of the characteristic function of Z will be useful in Chapter 3 where only

one of the two independent random variables representing Z will be approximated in order

17
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2. EXACT DISTRIBUTION
2.2 Characteristic functions based method

to obtain the near-exact distributions of Z. Through suitable transformations from Z,

near-exact distributions of Y will be obtained.

Let

Z = �
nX
j=1

logXj:

By using independence between Xjs, the characteristic function of Z can be derived as

�Z(t) = E[exp(itZ)]

= E

"
exp

 
�it

nX
j=1

logXj

!#

= E

"
nY
j=1

exp
�
logX�it

j

�#

=
nY
j=1

E
�
X�it
j

�
: (2.13)

Using (B.12) to evaluate the moment of Xj, (2.13) becomes

�Z(t) =
nY
j=1

�

�
rj �

it

�j

�
� (rj)

�itj (2.14)

Another representation of (2.14) can be derived as follows

�Z(t) =

nY
j=1

�

�
rj + 
 � it

�j

�
�

�
rj + 
 � it

�j

� � (rj + 
)

� (rj + 
)

�

�
rj �

it

�j

�
� (rj)

�itj

=

nY
j=1

8>><>>:
�

�
rj + 
 � it

�j

�
� (rj + 
)

9>>=>>;
� (rj + 
)

�

�
rj + 
 � it

�j

� �
�
rj �

it

�j

�
� (rj)

�itj ; (2.15)

and (2.15) has a new parameter 
 that is not present in (2.14). The impact of this

parameter will be investigated in Chapter 4. For reasons which will become apparent

later, 
 will be called a precision parameter. Applying result (A.5) in (2.15), the form of

18
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2. EXACT DISTRIBUTION
2.2 Characteristic functions based method

�Z(t) becomes

�Z(t) =
nY
j=1

8>><>>:
�

�
rj + 
 � it

�j

�
� (rj + 
)

9>>=>>;

�1Q
k=0

(rj + k) � (rj)


�1Q
k=0

�
rj + k � it

�j

�
�

�
rj �

it

�j

� �
�
rj �

it

�j

�
� (rj)

�itj

=

8>><>>:
nY
j=1

�

�
rj + 
 � it

�j

�
� (rj + 
)

9>>=>>;
8>><>>:

nY
j=1


�1Y
k=0

(rj + k)�
rj + k � it

�j

��itj
9>>=>>;

= �Z1(t)�Z2(t): (2.16)

Therefore Z can be expressed as a sum of two independent random variables i.e. Z =

Z1 + Z2. Z1 has characteristic functions �Z1(t) given by

�Z1(t) =
nY
j=1

�

�
rj + 
 � it

�j

�
� (rj + 
)

: (2.17)

From (B.14); it follows that (2.17) is a characteristic function of a random variable Z1
which is a linear combination of n independent log-gamma distributed random variables

with parameters rj + 
 and 1, where
1

�j
(for j =1, 2, 3,. . . ,n) are multipliers.

Z2 has characteristic function �Z2(t) given by

�Z2(t) =
nY
j=1


�1Y
k=0

(rj + k)�
rj + k � it

�j

��itj : (2.18)

Now (2.18) can be represented as

�Z2(t) =
nY
j=1


�1Y
k=0

(rj + k)�
rj + k � it

�j

� exp �log ��itj ��
=

nY
j=1


�1Y
k=0

(rj + k)

�
rj + k � it

�j

��1
exp (it log (�j))

=

"
nY
j=1


�1Y
k=0

�
1� it

1

�j (rj + k)

��1#
exp

 
it

nX
j=1

log (�j)

!
: (2.19)

By using (B.2), (2.19) is a product of n � 
 characteristic functions of independent

exponentially distributed random variables. Therefore Z2 can be viewed as a shifted

19
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2. EXACT DISTRIBUTION
2.2 Characteristic functions based method

sum of n � 
 independent exponentially distributed random variables with parameter
1

�j (rj + k)
for j =1,2,3,. . . ,n and k =0,1,2,. . . ,
 � 1 respectively where the shift is given

by ' =
nP
j=1

log (�j) . By summing the exponentially distributed random variables with

the same parameters, the characteristic function of Z2 can be represented as

�Z2(t) =
Ỳ
j=1

�
mj

j

�
�j � it

��mj exp (it') ; (2.20)

where ` is the number of distinct exponentially distributed random variables, �j =

�j (rj + k) and mj is the number of exponentially distributed random variables with pa-

rameter
1

�j
.

By de�nition of the statistic Y in (1.5), there is at least one �j < 0 and at least one

�j > 0 for j =1,2,. . . ,n. This implies that there is at least one �j < 0 and at least one

�j > 0 for j =1,2,3,. . . ,n. (2.20) can therefore be decompose as follows

�Z2(t) =

(
`+Y
j=1

(�+j )
m+
j
�
�+j � it

��m+
j

)(
`�Y
j=1

�
��j
�m�

j
�
��j � it

��m�
j

)
exp (it') ; (2.21)

where `+ and �+j are associated with �j > 0 and `
� and ��j are associated with �j < 0:

Remark 2.2 It is possible to consider cases where either �j > 0 or �j < 0, j = 1; 2; : : : ; n.
These two cases are considered and studied in [15] and [17] where it is shown that Z2 is

a generalised integer gamma distributed random variable.

Since ��j < 0, the following mathematical manipulation yield a di¤erent representation

of (2.21)

�Z2(t) =

(
`+Y
j=1

(�+j )
m+
j
�
�+j � it

��m+
j

)

�
(

`�Y
j=1

(�1)m
�
j
�
���j

�m�
j
�
(�1)

�
���j + it

���m�
j

)
exp (it')

=

(
`+Y
j=1

(�+j )
m+
j
�
�+j � it

��m+
j

)

�
(

`�Y
j=1

�
���j

�m�
j (�1)m

�
j (�1)m

�
j
�
���j + it

��m�
j

)
exp (it') : (2.22)

Let ��j = ���j (so that ��j > 0) and � = �t, then (2:22) can be represented as

20
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2. EXACT DISTRIBUTION
2.2 Characteristic functions based method

�Z2(t) =

(
`+Y
j=1

(�+j )
m+
j
�
�+j � it

��m+
j

)(
`�Y
j=1j

�
��j
�m�

j
�
��j � i�

��m�
j

)
exp (it')

= �Z21(t)�Z22(�) exp (it') : (2.23)

Consider

�Z21(t) =

`+Y
j=1

(�+j )
m+
j
�
�+j � it

��m+
j :

Using (B.9), �Z21(t) is a characteristic function of the sum of `+ independent gamma

random variables with parameters �+j and m
+
j where m

+
j are integers. It follows from

(B.38) that Z21 � GIG
�
`+;m+; �+

�
with parameters

m+ =
�
m+
1 ;m

+
2 ; : : : ;m

+
`+

�0
�+ =

�
�+1 ; �

+
2 ; : : : ; �

+
`+

�0
:

Similarly, Z22 � GIG
�
`�;m�; ��

�
where

m� =
�
m�
1 ;m

�
2 ; : : : ;m

�
`�

�0
�� = (��1; �

�
2; : : : ; �

�
`�)

0 :

Furthermore, from (2.23) Z21 and Z22 are independent. Note that since � = �t, then

�Z21(t)�Z22(�)

= �Z21(t)�Z22(�t)
= E [exp (itZ21)]E [exp (�itZ22)]
= E [exp (it (Z21 � Z22))] : (2.24)

It follows from Result 38 that (2.24) is the characteristic function of the random variable

Z21 � Z22 such that

Z21 � Z22 � DGIG
�
m+;m�; �+; ��; `+; `�

�
:

From (2.23)

Z2 = Z21 � Z22 + ';

21
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2. EXACT DISTRIBUTION
2.3 Chapter summary

therefore

Z2 � SDGIG
�
m+;m�; �+; ��; `+; `�; '

�
;

where SDGIG denoted the shifted version of the DGIG distribution.

2.3 Chapter summary

Contributions in this chapter are summarised as follows:

� In Section 2.1, the exact distribution of Y (see 1.5) is presented in terms of Fox�s

H-functions by using the inverse Mellin transformation.

� Furthermore, in section 2.1 the exact distribution of special cases of Y (where Y is

a product of independent exponentially- and gamma distributed random variables

respectively) is given in terms of Meijer�s-G functions. Furthermore, the exact pdf

of the product of independent gamma distributed random variables is represented

in terms of the exact pdf of the product of independent exponentially distributed

random variables (see (2.12)).

� In Section 2.2, the characteristic function of Z = � log Y is derived for the �rst

time. By decomposing its characteristic function, Z is represented as a sum of

two independent random variables i.e. Z = Z1 + Z2: Furthermore, Z1 is a linear

combination of n independent log-gamma distributed random variables.

� The process of decomposing the characteristic function of Z introduces a new pa-

rameter, 
; called the precision parameter. The e¤ect of the precision parameter is

investigated in Chapter 4 Subsection 4.3.1.
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Chapter 3

Approximate distributions

Near-exact distributions are approximate distributions for the exact distribution of the

statistic of interest. By decomposing the statistic of interest into a sum of independent

random variables and approximating a small part of the decomposition while leaving the

rest unchanged, near-exact distributions are obtained. In this chapter, near-exact distri-

butions for Z are developed and from a suitable transformation, near-exact distribution

for Y will be obtained.

In Chapter 2, a new representation of the exact characteristic function of Z = � log Y;
with Y de�ned in (1.5), was developed (see (2.23)). In Subsections 3.1.1 and 3.1.2 respec-

tively, the �rst and the second near-exact distributions are developed by approximating

one part of (2.23) and leaving the other part unchanged. Section 3.2 considers the product

of independent generalised gamma distributed random variables with equal positive power

parameters and con�rms results proposed in [4]. These results are useful in Chapter 4

when assessing the relative advantage of near-exact distributions in approximating the

exact distribution.

3.1 Near-Exact Distributions

3.1.1 First near-exact distribution

This approach was introduced in [16] on the study of the linear combination of independent

Gumbel random distributions.

Consider the following (2.16)

Z = Z1 + Z2; (3.1)

where Z1 and Z2 are independent random variables (see (2.16)). (2.17) shows that Z1
is a linear combination of n independent log-gamma distributed random variables with

23
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3. APPROXIMATE DISTRIBUTIONS
3.1 Near-Exact Distributions

parameters rj + 
 and 1. To obtain the �rst near-exact distribution of Z, Z1 will be

approximated by its own expected value while Z2 is left unchanged. Consequently, Z will

be approximated by

Za = E [Z1] + Z2: (3.2)

with E [Z1] is obtained by

E [Z1] =
1

i

@�Z1(t)

@t
jt=0 (3.3)

where �Z1 is given by (2.17). In (3.2) a shift is e¤ectively being added in Z2 where

Z2 � SDGIG
�
m+;m�; �+; ��; `+; `�; '

�
:

Therefore

Za � SDGIG
�
m+;m�; �+; ��; `+; `�; '�

�
;

where

m+ =
�
m+
1 ;m

+
2 ; : : : ;m

+
`+

�0
;

�+ =
�
�+1 ; �

+
2 ; : : : ; �

+
`+

�0
;

m� =
�
m�
1 ;m

�
2 ; : : : ;m

�
`�

�0
;

�� = (��1; �
�
2; : : : ; �

�
`�)

0 ;

' =

nX
j=1

log (�j) and

'� = '+ E [Z1] : (3.4)

The cdf of Y is

P (Y � y)

= P (Z > � log (y))
= 1� P (Z � � log (y)) : (3.5)

The �rst near-exact cdf of Y is obtained by replacing Z in (3.5) by its approximate random

variable Za so that

P (Y � y) � 1� P (Za � � log (y)) : (3.6)
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3. APPROXIMATE DISTRIBUTIONS
3.1 Near-Exact Distributions

Therefore by considering the shifted version of (B.68), the �rst near-exact cdf of Y is

given by

FY (y) �

8>>>>>>>>>>>><>>>>>>>>>>>>:

1�
`+P
j=1

m+P
k=1

k�1P
i=0

pjklFZjkl (� log (y � '�))

�
`�P
j=1

m�P
h=1

h�1P
i=0

p�jkl y � 1 + '�

1 +
`�P
j=1

m�P
h=1

h�1P
i=0

p�jklFZ�jkl (� log (y � '�))

�
`�P
j=1

m�P
h=1

h�1P
i=0

p�jkl y > 1 + '�;

(3.7)

pjkl and p�jkl, are de�ned as in (B.59) and (B.60) respectively. From (3.5), the pdf of Y is

given by

fY (y) =
d

dy
P (Y � y)

� d

dy
(1� P (Za � � log (y)))

= �
�
d

dy
P (Za � � log (y))

�
d

dy
(� log (y))

= fZa (� log (y))
1

y
: (3.8)

Therefore the �rst near-exact pdf of Y is obtained by applying shifted version of (B.58)

in (3.8) as

fY (y) =

8>>>>>>>>>>><>>>>>>>>>>>:

`+P
j=1

m+
jP

k=1

k�1P
i=0

pjkl
1

� (k � i)
(� log (y � '�))k�i�1

exp
�
(log (y � '�)) �+j

� 1
y

y � 1 + '�

`�P
j=1

m�
jP

h=1

h�1P
i=0

p�jkl
1

� (h� i)
(log (y � '�))h�i�1

exp
�
� (log (y � '�)) �+j

� 1
y

y > 1 + '�:

(3.9)

As noted in the introductory chapter; many other methods to approximate the distrib-

ution of Y are either in terms of in�nite series or special functions, therefore di¢ cult to

evaluate. The near-exact distribution developed in this section is not only easy to evaluate

computationally, but also far more accurate and e¢ cient in terms of computer run-time

and resources than most other methods in literature. This will be illustrated in Chapter

4.
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3. APPROXIMATE DISTRIBUTIONS
3.1 Near-Exact Distributions

3.1.2 Second near-exact distribution

In Subsection 3.1.1, the �rst near-exact distribution for Y was developed. In this Section,

the second near-exact distribution is developed using a similar methodology. However,

instead of approximating the random variable Z1 with its �xed expected value, it will be

approximated by a suitable random variable. As noted before, Z1 is a linear combination

of n independent log-gamma distributed random variables. Using Result 31, each of these

log-gamma distributed random variables can be represented as a sum of in�nite indepen-

dent exponential random variables. [17] advocates that Z1 can therefore be represented

by a sum of in�nite independent gamma random variables. From the in�nite gamma

distributed random variables representing Z1, a single random variable (denoted by W )

will be selected to approximate Z1. W will be selected such that it is independent of Z2
and satis�es the following system of equations

@j�Z1(t)

@tj
jt=0 =

@j�W (t)

@tj
jt=0 j = 1; 2; 3; (3.10)

where �Z1 is given by (2.17) and

�W (t) =

�
1� it

 

���
eit�;

(3.10) will be solved numerically to obtain values of  , � and �. The second near-exact

approximation of Z is therefore given by

Zb = Z2 + sign( )�W;

where the function sign(�) is de�ned as follows

sign(x) =

8><>:
1 if x > 0

0 if x = 0

�1 if x < 0:

Zb is either a sum or di¤erence of a shifted gamma random variable and an independent

SDGIG
�
m+;m�; �+; ��; `+; `�; '

�
distributed random variable. m+;m�; �+; ��; `+; `�

and ' de�ned on page 24. For sign( ) = 1, using (3.5) and (B.70) the second near exact

cdf of Y is
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3. APPROXIMATE DISTRIBUTIONS
3.2 Chen�s approximation

FY (y) �

8>>>>>><>>>>>>:
1�

`+P
j=1

m+
jP

k=1

k�1P
i=0

pjklFG1 (� log (y � � � ')) +
`�P
j=1

m�
jP

h=1

h�1P
i=0

p�jkl

�FDG (� log (y � � � ')) y � 1 + � + '

1�
`�P
j=1

m�
jP

h=1

h�1P
i=0

p�jklFDG1 (� log (y � � � ')) y > 1 + � + ';

(3.11)

pjkl and p�jkl, are de�ned as in (B.59) and (B.60). FG1 (�) is given by (B.52) with parameters�
k � i; �; �+j ;  

�
and FDG1 (�) is given by (B.18) with gamma distribution�s parameters

(�;  ) and Erlang distribution�s parameters (h � i; ��j ). For sign( ) = �1; using (3.5)
and (B.76) the second near-exact cdf of Y is

FY (y) �

8>>>>>>>>><>>>>>>>>>:

`+P
j=1

m+
jP

k=1

k�1P
i=0

pjklFDG1 (log (y � � � ')) y � 1 + � + '

`�P
j=1

m�
jP

h=1

h�1P
i=0

p�jklFG1 (log (y � � � '))

�
`+P
j=1

m+
jP

k=1

k�1P
i=0

pjklFDG1 (log (y � � � ')) y > 1 + � + ':

(3.12)

3.2 Chen�s approximation

In this section, the methodology used by [4] will be described and applied to obtain

an approximation for the distribution of the product of independent generalised gamma

distributed random variables with equal positive parameters. Firstly, an exponential dis-

tribution can be represented in terms of a Rayleigh distribution (see (B.4)) with parameter

equal to 1. Therefore, the exact distribution of Yexp (see (2.5)) can be represented in terms

of the product of n independent Rayleigh distributed random variables, denoted by YRa.

[12] derived the approximation of the exact pdf of n
p
YRa in terms of a Nakagami-m dis-

tribution. Subsequently, by using necessary transformations, the approximate pdf of Yexp
is obtained from the approximate pdf of n

p
YRa. Using (2.12), the approximate pdf of Yexp

and necessary transformations, the approximate distribution of Y� (see (2.9)) can be ob-

tained. Similarly, the approximate distribution of the product of independent generalised

gamma variables all with equal shape and equal power parameters can be obtained.
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3. APPROXIMATE DISTRIBUTIONS
3.2 Chen�s approximation

Figure 3.1 shows a step-by-step outline of this approximation method.

Figure 3.1: Outlines of steps in derivation of Chen�s approximation.

3.2.1 Product of independent exponential variables

Let X1; X2; : : : ; Xn be a set of independent random variables such that Xj � Ra (1) (see

(B.4))for j = 1; 2; : : : ; n. Let

YRa =
nY
j=1

Xj:

According to [12] the pdf of n
p
YRa, denoted by f npYRa (y), can be approximated accurately
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3. APPROXIMATE DISTRIBUTIONS
3.2 Chen�s approximation

by using the Nakagami-m distribution with pdf

f npYRa (y) � 2
�
m0


0

�m0 1

� (m0)
y2m0�1 exp

�
�m0


0
y2
�
; y > 0: (3.13)

wherem0 = 0:6102n+0:4263 and 
0 = 0:8808n�0:9661+1:12: Let X 0
j denote a normalised

�

Rayleigh distributed random variable such that X 0
j =

Xjp
2
for j = 1; 2; : : : ; n. The pdf of

X 0
j is

fX0
j
(x) = fXj

�p
2x
�p

2

=
p
2x exp

�
�(

p
2x)

2

2

�p
2

= 2x exp
�
�x2

�
; x > 0: (3.14)

Let a normalised version of YRa be

Y 0
Ra =

nY
j=1

X 0
j: (3.15)

From (3.13) pdf of n
p
Y 0
Ra, denoted by f n

p
Y 0Ra
(y), can be approximated as

f n
p
Y 0Ra
(y) � 2

�
2m0


0

�m0 1

� (m0)
y2m0�1 exp

�
�2m0


0
y2
�
; y > 0: (3.16)

Let Ej =

�
X 0
j

�2
�j

for j =1,2,3,. . . ,n. Through a suitable transformation in (3.14), the pdf

of Ej is given by

fEj (x) = fX0
j

�p
�jx
� p

�j

2
p
�jx

= 2
p
�jx exp

�
�
�p

�jx
�2� p

�j

2
p
�jx

= �j exp (��jx) ; x > 0: (3.17)

Therefore Ej � EXP (�j) (see (B.1)). Let

Yexp =
nY
j=1

Ej: (3.18)

�To make the rate parameter equal to 1
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3. APPROXIMATE DISTRIBUTIONS
3.2 Chen�s approximation

From (3.15), (3.18) can alternatively be represented as

Yexp =
nY
j=1

�
X 0
j

�2
�j

=
(Y 0
Ra)

2

nQ
j=1

�j

=

�
n
p
Y 0
Ra

�2n
nQ
j=1

�j

: (3.19)

By using the transformation in (3.19) the pdf of Yexp can be derived from the pdf of n
p
Y 0
Ra

fYexp (y) = f n
p
Y 0Ra

0BB@
 
y

nY
j=1

�j

! 1

2n

1CCA 1

2n

 
y

nY
j=1

�j

! 1

2n
�1

; y > 0:

(3.20)

By using (3.16), the pdf of Yexp can be approximated as

fYexp (y) � 2

�
2m0


0

�m0 1

� (m0)

0BB@
 
y

nY
j=1

�j

! 1

2n

1CCA
2m0�1

� exp

0BBB@�2m0


0

0BB@
 
y

nY
j=1

�j

! 1

2n

1CCA
2
1CCCA 1

2n

 
y

nY
j=1

�j

! 1

2n
�1

=

�
2m0


0

�m0 1

n� (m0)

 
y

nY
j=1

�j

!m0

n
�1

exp

0BB@�2m0


0

 
y

nY
j=1

�j

! 1
n

1CCA(3.21)
Furthermore; to recognise (3.21) as the pdf of a known distribution, it is adjusted so that

the approximation of fYexp (y) is
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3. APPROXIMATE DISTRIBUTIONS
3.2 Chen�s approximation

fYexp (y) �
 �

2m0


0

�n nY
j=1

�j

!m0

n 1

n� (m0)
y

m0

n
�1

exp

0BB@�2m0


0

 
y

nY
j=1

�j

! 1
n

1CCA ; y > 0 (3.22)

Therefore; from (B.11)

Yexp
d' G�

 
m0;

�
2m0


0

�n nY
j=1

�j;
1

n

!
:

3.2.2 Product of independent gamma variables

Suppose Xj � � (r; �j) (see (B.6)) for j =1,2,3,. . . ,n. Let

Y� =
nY
j=1

Xj: (3.23)

From (2.12), the exact pdf of Y� is given by

fY� (y) =

 
y

nQ
j=1

�j

!r�1
�n (r)

fYexp (y) ; (3.24)

where fYexp (y) is given by (3.20) and approximated by (3.22). By substituting (3.22) in

(3.24), the approximate pdf of Y� is given by

fY� (y) �

 
y

nQ
j=1

�j

!r�1
�n (r)

 �
2m0


0

�n nY
j=1

�j

!m0

n 1

n� (m0)
y

m0

n
�1

� exp

0BB@�2m0


0

 
y

nY
j=1

�j

! 1
n

1CCA ; y > 0: (3.25)

Furthermore, to recognise (3.25) as the pdf of a known distribution, it is adjusted so that

the approximation of fY� (y) is
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3. APPROXIMATE DISTRIBUTIONS
3.2 Chen�s approximation

fY� (y) �
 

nY
j=1

�j

�
2m0


0

�n!m0

n
+r

1

n� (m0 + nr)
y

m0

n
+r�1

� exp

0BB@�2m0


0

 
y

nY
j=1

�j

! 1
n

1CCA ; y > 0: (3.26)

Therefore; from (B.11)

Y�
d' G�

 
m0 + nr;

�
2m0


0

�n nY
j=1

�j;
1

n

!
:

3.2.3 Product of independent generalised gamma variables

Suppose Xj � G� (r; �j; �) (see (B.11)) for j = 1; 2; 3; : : : ; n. Let Uj = X�
j

fUj(u) = fXj

0@u1�
1A������1�u

1

�
�1

������
= j�j

�r�j u

1

�
r��1

� (r)
exp

0B@
0@��ju1�

1A�
1CA
������1�u

1

�
�1

������
=

�r�j
� (r)

ur�1 exp
�
���ju

�
, u > 0 (3.27)

It follows from (3.27) that Uj � �
�
r; ��j

�
. De�ne now

YG� =
nY
j=1

Xj; (3.28)

then (3.28) can be re-written as

YG� =
nY
j=1

U

1

�
j

= (Y�)

1

� ; (3.29)
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3. APPROXIMATE DISTRIBUTIONS
3.2 Chen�s approximation

With Y� de�ned in (3.23) and each component in Y� is a gamma distributed random

variables with shape parameter r and rate parameter ��j . By using a transformation from

Y� to YG�, the exact pdf of YG� is given by

fYG� (y) = fY�
�
y�
� ���y��1�� : (3.30)

The approximate pdf of YG� can be derived by substituting fY�
�
y�
�
by its approximate

form as given by (3.26)

fYG� (y) �
 

nY
j=1

��j

�
2m0


0

�n!m0

n
+r

1

n� (m0 + nr)
y
�

 m0

n
+r�1

!

� exp

0BB@�2m0


0

 
y�

nY
j=1

��j

! 1
n

1CCA���y��1��

=

0B@ nY
j=1

�j

�
2m0


0

�n
�

1CA
�

n
m0+nr

j�j
n� (m0 + nr � n)

y

�

n
(m0+nr�n)�1

� exp

0BB@�2m0


0

 
y

nY
j=1

�j

! �
n

1CCA y�; y > 0: (3.31)

Furthermore, to recognise (3.31) as the pdf of a known distribution, it is adjusted so that

the approximation of fYG� (y) is

fYG� (y) �

0B@�2m0


0

�n
�

nY
j=1

�j

1CA
�

n
(m0+n(r�1))

j�j
n� (m0 + n (r � 1))

�y
�

n
(m0+n(r�1))�1

exp

0BB@�2m0


0

 
y

nY
j=1

�j

! �
n

1CCA ; y > 0: (3.32)
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3. APPROXIMATE DISTRIBUTIONS
3.3 Chapter summary

Therefore; from (B.11)

YG�
d' G�

0B@m0 + n (r � 1) ;
�
2m0


0

�n
�

nY
j=1

�j;
�

n

1CA :

3.3 Chapter summary

The contribution in this chapter are summarised as follows:

� The decomposition (see (2.16)) of Z into Z1+Z2 is used to derive near-exact distri-
bution in Section 3.1. Near-exact distributions are obtained by approximating Z1
while Z2 is left unchanged.

� For the �rst near-exact distribution, Z1 is approximated by its own �xed expected
value.

� For the second near-exact distribution, Z1 is approximated by a gamma distributed
random variable.

� Section 3.2 presents results introduced in [4]. This results also approximate the
product of independent generalised gamma distributed random variables when the

power and shape parameter are �xed.
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Chapter 4

Computational studies

This chapter assesses the performance of each of the approximation methods that were

proposed in Chapter 3. The performance of the approximate distribution will be measured

in terms of

� the accuracy of the distribution in approximating the exact distribution,

� the required computer run-time of the approximate distribution and

� performance of an approximation method relative to other methods.

4.1 Exact distribution

In Section (2.1) of Chapter 2, the exact distribution of Y (see (1.5)) is derived in terms of

Fox�s H-function. Even with today�s powerful computers, Fox�s H-functions are still not

computable. Instead of the exact distribution of Y , the exact distribution of Z = � log Y
is evaluated using the inversion method in [9] and is given by (4.1)

FZ (z) =
1

2
� 1

2�

1Z
0

�Z(�t) exp (itz)� �Z(t) exp (�itz)
it

dt; (4.1)

where �Z(�) is given by (2.14).

4.2 Empirical distribution

Near-exact distribution as the focus of the study will also be assessed relative to this

empirical distribution. This method is outlined below.

To obtain an empirical value z of Z, simulate random variates from each of the given

independent generalised gamma distributions. In this study, Mathematica function is used
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4. COMPUTATIONAL STUDIES
4.3 Near-exact distributions

simulate a random variate from a generalised gamma distribution. Re-parametrisation

of the Mathematica function is necessary in order ensure similarity with the generalised

gamma distribution de�ned (1.1). Where the power parameter is negative, simulate from

an equivalent distribution with a positive parameter by using Remark 1.1. Multiply

random variates from distribution with power parameters of the same sign with each

other. One product (associated with random variates with positive power parameter)

is then divided by the remaining product. The quotient is an empirical variate of the

statistic G (see (1.3)) and is denoted by g. Obtain z as z = � log g: 106 of z values were
simulated to obtain the empirical distribution of Z:

To study the accuracy of the approximate distribution, a measure of proximity given

below (see [16] for details of the measure) is calculated.

� =
1

2�

1Z
�1

�����Z(t)� ��(t)

t

���� dt; (4.2)

where �Z(t) and �
�(t) are respectively the exact and the approximate characteristic func-

tions of the random variable Z = � log Y with Y de�ned in (1.5). According to [15]

sup
z2R

jFZ (z)� F � (z)j � �;

where FZ (z) and F � (z) are the exact and approximate cdf of the random variable Z

respectively. Therefore, � provides an upper bound on the proximity between FZ (z) and

F � (z).

4.3 Near-exact distributions

For computational purposes, three cases of a set of independent gamma distributed ran-

dom variables will be considered. Similar to the statistic of interest Y (see (1.5)), in each

of the three cases there will be at least �� and �+ in order to ensure that the ratio of

generalised gamma distributed random variables is considered. Note that in [4], [17] and

[15] only cases where power parameters are either all negative or positive are considered.

The three cases studies are summarised in Table 4.1.

Table 4.1: Sets of parameters of independent generalised gamma distribution.

Case r � �

I
�
1
3
; 22
7

	 �
1
2
; 1
4

	
f4;�2g

II f2; 3; 5g f3; 2; 10g
�
1
2
; 2;�1

4

	
III

�
2; 3; 5; 1

2

	 �
3; 2; 10; 2

7

	 �
1
2
; 2;�1

4
;�1

3
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4. COMPUTATIONAL STUDIES
4.3 Near-exact distributions

4.3.1 Proximity of the near-exact distribution

Table 4.2: Proximity measures for �rst near-exact distribution of Z.

Precision Case

parameter I II III

4 1.6�10�2 5.2�10�2 1.7�10�2

5 1.3�10�2 4.4�10�2 1.4�10�2

10 6.9�10�3 2.5�10�2 7.8�10�3

15 4.8�10�3 1.7�10�2 5.4�10�3

20 3.6�10�3 1.3�10�2 4.1�10�3

50 1.5�10�3 5.5�10�3 1.7�10�3

100 7.5�10�4 2.8�10�3 8.7�10�4

200 3.8�10�4 1.4�10�3 4.4�10�4

Table 4.3: Proximity measures for second near-exact distribution of Z.

Precision Case

parameter I II III

4 9.4�10�5 3.4�10�4 5.3�10�5

5 5.6�10�5 2.3�10�4 3.1�10�5

10 1.0�10�5 5.8�10�5 5.4�10�6

15 3.4�10�6 2.3�10�5 1.9�10�6

20 1.6�10�6 1.1�10�5 8.9�10�7

50 1.2�10�7 9.4�10�7 7.1�10�8

100 1.5�10�8 1.3�10�7 9.6�10�9

200 2.0�10�9 1.7�10�8 1.4�10�9

Tables 4.2 and 4.3 presents values of the proximity measure (�, see (4.2)) for each of

the cases and for various precision parameter values for the �rst and second near-exact

distribution of Z = � log Y respectively. It is evident in both these tables that in all the

cases when the precision parameter increases, values of the proximity measure decreases

i.e. the accuracy increases with an increase in the precision parameter. It is for this reason

that this parameter is called the precision parameter.

Since all proximity measures in Table 4.2 are far less than their corresponding values

in Table 4.3, the second near-exact distribution is considerably more accurate than the

�rst near-exact distribution.
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4. COMPUTATIONAL STUDIES
4.3 Near-exact distributions

4.3.2 Cumulative probabilities

Tables 4.4, 4.5 and 4.6 further assesses the accuracy of near-exact distributions by con-

sidering their cumulative probabilities relative to cumulative probabilities from the exact

and empirical distribution. For near-exact distributions, the precision parameter is set at

20.

Table 4.4: Case I cumulative probabilities from each distribution.

Case I

z Empirical First near-exact Second near-exact Exact

-2 0.0293930 0.0259231 0.0295135 0.0295136

-1
4
0.7967345 0.8005724 0.7981589 0.7981587

0 0.8551040 0.8568766 0.8550986 0.8550984
1
4

0.8954174 0.8973874 0.8961004 0.8961003

2 0.9898200 0.9900461 0.9899205 0.9899205

Table 4.5: Case II cumulative probabilities from each distribution.

Case II

z Empirical First near-exact Second near-exact Exact
5
2

0.007883 0.004827 0.007190 0.007193

5 0.061867 0.049257 0.061869 0.061867
15
2

0.297308 0.276796 0.292912 0.292895

10 0.689083 0.704776 0.689083 0.689101

15 0.991684 0.994032 0.991647 0.991644

Table 4.6: Case III cumulative probabilities from each distribution.

Case III

z Empirical First near-exact Second near-exact Exact

�15 0.02906600 0.02813162 0.02864619 0.02864621

-7 0.10945100 0.10626696 0.10813867 0.10813874

0 0.33124200 0.32773952 0.33170734 0.33170690

5 0.64419900 0.64527157 0.64485522 0.64485474

10 0.92631100 0.93338995 0.92627116 0.92627268
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4. COMPUTATIONAL STUDIES
4.3 Near-exact distributions

The �rst near-exact distribution provides a good approximation to the exact dis-

tribution but performs poorly relative to other approximations methods. The second

near-exact distribution is more accurate than the empirical distribution. It is accurate

to at least the �fth decimal digit whereas the other two methods are accurate to at most

three signi�cant digit. This further supports the conclusion in Subsection 4.3.1.

4.3.3 CDF plots

This Subsection contains plots of the empirical cdf, �rst near-exact cdf, second near-exact

cdf and exact cdf of Z = � log Y .

A

Figure 4.1: Case I cdf plots of various appr-

oximate distributions and exact distribution.

Figure 4.2: Simultaneous plots of

cdf plotted on Figure 4.1.

Figure 4.1 provides cdf plots for empirical distribution, �rst near-exact distribution,

second near exact distribution and exact distribution respectively. Figure 4.2 is a plot

of the cdf of these distributions on the same set of axes.Thought it is admittedly hard,

traces of colours of the �rst near-exact cdf and the exact cdf in Figure 4.1 can be seen in

Figure 4.2. However, the colour of the second near-exact cdf in Figure 4.1 is di¢ cult to

see in Figure 4.2. This is because when plotted on the same axes, the second near-exact

distribution lies almost completely on top of the exact distribution while it is not the

same case with the �rst near-exact distribution.
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4. COMPUTATIONAL STUDIES
4.3 Near-exact distributions

Figure 4.3: Re-plot of Figure 4.2 with point A

adjusted for each cdf.

Figure 4.3 is the same plot as Figure 4.2 except point A in Figure 4.2 has been man-

ually adjusted to help show separate cdf plots in Figure 4.3. In Figure 4.3; points A,

A.1, A.2 and A.3 lie on the empirical, �rst near-exact, second near-exact and exact cdf

plot respectively. As can be observed in Figure 4.2 (see point A), these points are so

close to each other that it is hard to distinguish one from the others. Figures 4.1, 4.2,

and 4.3 further emphasises the high level of accuracy of the near-exact distributions in

approximating the exact distribution of Z and in turn the exact distribution of Y:

Figure 4.4: Case II cdf plots of various appr-

oximate distributions and exact distribution.

Figure 4.5: Simultaneous plots of

cdf plotted on Figure 4.4.
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4. COMPUTATIONAL STUDIES
4.3 Near-exact distributions

Figure 4.6: Case III cdf plots of various appr-

oximate distributions and exact distribution.

Figure 4.7: Simultaneous plots of

cdf plotted on Figure 4.6.

Figures 4.4 and 4.5 and also Figures 4.6 and 4.7 paints a picture similar to that of

Figures 4.1 and 4.2. Figure 4.5 provides clear evident on the di¤erence in accuracy of the

�rst near-exact distribution relative to the second nea-exact.distribution. Their cdf plots

can clearly be identi�ed from each other whereas the cdf plots of the exact distribution

can be seen because it lies almost entirely on top of the cdf plot of the second near-exact

distribution.

4.3.4 Computer run-time

(4.1) provides a means to obtain the exact distribution of Z and hence of Y . The natural

question would be to ask why it is approximated when it can be obtained exactly. Table

4.1 shows the computer run-time for the exact, �rst near-exact and second near-exact dis-

tributions for Case II (see Table 4.1) and various precision parameter. The computations

were run using a Personal Computer Intel Core i7 @ 2.4GHz. The exact distribution is not

a¤ected by the choice of the precision parameter. For near-exact distributions, the higher

the precision parameter requires more computer run-time. Since the precision parameter

controls the accuracy of the near-exact distribution, the accuracy of the near-exact distri-

bution is at the cost of computer run-time. The �rst near-exact distribution consistently

requires relatively less computer run-time than the exact and near-exact distributions. For

larger values of the precision parameter, the second near-exact distribution takes longer

computer run-time than the exact distribution. The precision parameter of 10 provides a

good approximation (see Table 4.3) at half the computer run-time required by the exact

distribution. Therefore, the required accuracy can be obtained at an e¢ cient computer
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4. COMPUTATIONAL STUDIES
4.4 Chen�s approximation

run-time by choosing a suitable value of the precision parameter.

Table 4.7: Run-time for exact and near-exact distributions.

Distribution Precision parameter

type 4 10 15 20

Exact 2.90625 2.90625 2.90625 2.90625

First near-exact 0.015625 0.0625 0.109375 0.171875

Second near-exact 0.671875 1.54688 2.39063 3.26563

The empirical distribution naturally provides an unstable distribution i.e. di¤erent

distributional values are obtained with each simulation. The larger the simulated random

sample, the more relative stable results can be obtained. However, simulating larger

sample means that more computer run-time is required. In situations where stability is of

importance, the required sample size to be generated and thus the required computer run-

time may be unrealistic. This, combined with lower accuracy level relative to the more

stable second near-exact distribution, makes the empirical distribution an unattractive

means of approximating the exact distribution.

4.4 Chen�s approximation

The accuracy of near-exact distribution relative to the empirical distribution in approx-

imating the exact distribution was dealt with in Section 4.3. This section performs an

assessment of the quality of Chen�s approximation relative to near-exact distributions as

proposed in [15] and [17]. To do the assessment, cumulative probabilities and run-times

of each of the approximation method is evaluated.

Chen�s approximation requires the power parameter to be the same for all generalised

gamma random variables considered. As a results, the statistic of interest in this section

will di¤er to that de�ned in (1.5). The statistic of interest shall be de�ned the same

as (3.28) so that the �xed power parameter is either positive or negative. This statistic

of interest, denoted by YG�, is just as special case of the statistic of interest which was

studied by authors in [17] and [15]. [17] and [15] the power parameters are not necessarily

equal but are all either positive or negative whereas in YG� (see (3.23)), power parameters

are assumed to be equal.

For YG�, the power parameter is assumed to be positive. Following an approach similar

to the one in Section 3.1.1, the �rst near-exact distribution of YG� is SGIG
�
`;m; �; �+ E [Z1]

�
where
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4. COMPUTATIONAL STUDIES
4.4 Chen�s approximation

` is the number of independent exponential random variables with

distinct parameter � (r + k) for k = 0; 2; : : : ; 
 � 1 and 

is the precision parameter

� = (�1; �2; : : : ; �`)
0 �j is the parameter of the j

th distinct exponential

random variable

m = (m1;m2; : : : ;m`)
0 such that mj is the number of exponential random variables with

parameter �j

�
nP
j=1

log (�j); and

E [Z1] The expected value of the approximated random variable in the

decomposition of the random variable Z = � log (YG�)

Also following an approach similar to the one in Section 3.1.2, the second near-exact

distribution of YG� is GNIG
�
`;m; �; �;  ; � + �

�
with `;m; � and � de�ned above and

�;  and � shifted gamma parameter. More detail of these near-exact distribution can be

obtained in [15].

Table 4.8: Sets of parameters considered

on Chen�s approximation.

Case r � �

I f1; 1; 1g f1; 1; 1g f1; 1; 1g
II

�
3
2
; 3
2

	 �
3
2
; 3
	

f2; 2g

For computational purposes, two cases of a set of independent gamma distributed

random variables will be considered and are summrised in Table 4.8. Chen�s approxima-

tion, exact- and near-exact distributions will be evaluated and contrasted against each

other. For near-exact distributions, the precision parameter is set at 20.

Table 4.9: Case I cumulative probabilities from various distribution functions.

y Exact First near-exact Second near-exact Chen�s
1
5
0.4797166535 0.4780258803 0.4797168322 0.4760854883

1 0.7763872468 0.7801793736 0.7763870227 0.7755972501
3
2
0.8383692748 0.8431836528 0.8383689492 0.8384876671

2 0.8761380071 0.8813553388 0.8761376475 0.8767666136
5
2
0.9015172592 0.9068328141 0.9015169018 0.9024358694
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4.5 Chapter summary

Table 4.10: Case II cumulative probabilities from various distribution functions.

y Exact First near-exact Second near-exact Chen�s
1
5
0.4797166535 0.4780258803 0.4797168322 0.4760854883

1 0.7763872468 0.7801793736 0.7763870227 0.7755972501
3
2
0.8383692748 0.8431836528 0.8383689492 0.8384876671

2 0.8761380071 0.8813553388 0.8761376475 0.8767666136
5
2
0.9015172592 0.9068328141 0.9015169018 0.9024358694

Tables 4.9 and 4.10 shows cumulative probabilities from exact distribution, �rst near-

exact distribution, second near-exact distribution and Chen�s approximation. It is evident

from both these tables that Chen�s approximation generally provides a better approxima-

tion for the cdf of YG� (see (3.23)) than the �rst near-exact distribution when the precision

parameter is set at 20. However, the accuracy of the �rst near-exact distribution can be

increased by increasing the value of the precision parameter. Chen�s approximation per-

forms poorly relative to the second near-exact distribution.

Table 4.11: Run time for each approximation method

Approximation Run time (in seconds)

method Case I Case II

Chen�s 0.00000000000000001 0.00000000000000001

First near-exact 0.10937500000000000 0.09375000000000000

Second near-exact 8.95313000000000000 3.81250000000000000

Table 4.11 show the amount of time each approximation method took to calculate

cumulative probabilities at point y = 1
5
. The computations were run using a Personal

Computer Intel Core i7 @ 2.4GHz. Chen�s approximation is the fastest of the three ap-

proximations methods. Since Chen�s is computationally faster and more accurate than the

�rst near-exact distribution, it would be sensible to use Chen�s approximation. Though

the second near-exact distribution takes considerably longer time, it is by far much more

accurate method. Hence when high precision is of greater necessity than of run time, the

second near-exact distribution should be used.

4.5 Chapter summary

Contribution in this chapter are summarised as follows:

� The precision parameter controls the accuracy of the near-exact distributions, i.e.
the accuracy of the near-exact distribution increases when the precision parameter

increases (measure by �, see (4.2)).
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4. COMPUTATIONAL STUDIES
4.5 Chapter summary

� Given the accuracy and computer run-time, the second near-exact distribution is
the better option compared to the �rst near-exact and empirical distribution.

� Chen�s approximation is computationally faster than the near-exact distributions.
However, it is less accurate than the second near-exact distribution.

� Chen�s approximation restrict the shape and the power parameter to be �xed in all
generalised gamma distributed random variable. Near-exact distributions provides

�exibility on parameter choices

45

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5

Conclusion and future research

Of interest in this study was the statistic Y (see (1.5)) de�ned as the distribution of the

ratio and the product of independent generalised gamma distributed random variables.

Chapter 1 gave current literature of the statistic as well as its application. It was also

shown in this chapter that the ratio of independent generalised gamma distributed random

variables can be represented as the product of independent generalised gamma distributed

random variables with some re-parametrisation i.e. at least one power parameter being

negative and another be positive.

Chapter 2 presented the exact distribution of the statistic of interest in terms of Fox�s

H- function, special cases of Y were also considered and their exact distribution given

in terms of Meijer�s G- functions. Fox�s H- functions are not readily computable, hence

approximations of the distribution of Y were derived in Chapter 3. Also in Chapter 2,

the characteristic function of Z = � log Y was decomposed so that Z can be represented

as the sum of two independent random variables. In the process of decomposing the

characteristic function of Z, a new �exible parameter called the precision parameter was

introduced. By approximating only one of this two independent random variables and

leaving the other one unchanged, the near-exact distribution of Z, and hence of Y , were

derived in Chapter 3. An alternative approximation method, Chen�s approximation, was

also presented. However, this alternative only considered a case where the rate parameters

are equal and power parameters are also equal.

Chapter 4 performed numerical studies of the approximate distributions and the ex-

act distribution and compared them against each other. The exact distribution of Y was

computed using the inversion theorem. However, this required longer computer run-time

and is thus not e¢ cient for regular use. Though providing a better degree of accuracy,

empirical distributions were no more e¢ cient in computer run-time. Chen�s approxima-

tion provided a very good level of accuracy and was most e¢ cient in computer run-time.

However, unlike other appproximate methods considered in this study, it can only be
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5. CONCLUSION AND FUTURE RESEARCH

applied to special cases of Y . The choice of the precision parameter controls the de-

gree of accuracy for the near-exact distributions. The larger the precision parameter, the

more accurate the near-exact distribution but the greater amount of computer run-time

is required. The �rst near-exact distribution is less accurate than all other approximate

method. However the e¢ ciency in computer run-time relative to empirical distribution

makes it relatively attractive. The second near-exact distribution is the most accurate

approximate distribution presented in this study. A suitable choice of the precision para-

meter in the second near-exact distribution can give an optimal combination of accuracy

and computer run-time.

To derive near-exact distributions of Z, the decomposition Z = Z1+Z2 was considered.

For the �rst near-exact distribution, Z2 was left unchanged while Z1 was approximated

by its expected value which is a �xed value (see Section 3.1.1). The second near-exact

distribution is an improvement to the �rst near-exact distribution and is obtained by

approximating Z1 by a single random variable. Future research can improve on the second

near-exact distribution by approximating Z1 by a weighted sum of random variables. A

similar approach was considered in [17].
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APPENDICES

A. Mathematical functions and expressions

This section contains mathematical results which are useful in this study.

Result 1 ([10], p.xliii)
x factorial is de�ned as

x! = x � (x� 1) � (x� 2) � � � 2 � 1:

Result 2 ([10], p.xliii)
Let x 2 R, n 2 N and n � x; then x combination n is de�ned as�

x

n

�
= x (x� 1) (x� 2) � � � (x� n+ 1)

1

n!

=
x!

(x� n)!n!
: (A.1)

Result 3 ([10], p.895 (8.331))
Let x 2 R+,

� (x+ 1) = x� (x) : (A.2)

Result 4 ([10], p.897 (8.339))
Let x 2 N,

� (x) = (x� 1)! (A.3)

Result 5 ([10], p.xliii)
Let x 2 R and n 2 N, the Pochhammer coe¢ cient is de�ned as

(x)n = x (x+ 1) : : : (x+ n� 1) (A.4)

=
� (x+ n)

� (x)
(A.5)

(A.5) can be re-arranged as
� (x+ n) = (x)n � (x) :
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Result 6 ([10], p.1023(9.210))
Let x; �; � 2 R, the con�uent hypergeometric function is de�ned as

1F1(�; �;x) = 1 +
�

�

x

1!
+
� (�+ 1)

� (� + 1)

x2

2!
+
� (�+ 1) (�+ 2)

� (� + 1) (� + 2)

x3

3!
+ � � �

=
� (�)

� (�)

�
� (�)

� (�)

��1
x0

0!
+
� (� + 1)

� (�)

�
� (� + 1)

� (�)

��1
x1

1!

+
� (� + 2)

� (�)

�
� (� + 2)

� (�)

��1
x2

2!
+ � � � (A.6)

Applying (A.5) in the above equation:

1F1(�; �;x) =

1X
k=0

(�)k
(�)k

xk

k!
(A.7)

where (�)k is the Pochhammer symbol:

Result 7 ([10], p.899 (8.350))
Let z 2 R and � 2 R+, the lower and upper incomplete gamma functions are respec-

tively de�ned as


 (�; z) =

zZ
0

e�tt��1dt (A.8)

and

�� (�; z) =

1Z
z

e�tt��1dt: (A.9)

Notation �� (�; z)is used in order to avoid confusion with other notations in this study.

Result 8 ([10], p.900 (8.352))
Let z 2 R and � 2 R+, then


 (�; z) =
z�

�
1F1 (�;�+ 1; z) (A.10)

Result 9 ([10], p.900 (8.354))
Let z 2 R and � 2 R+; a series representation of the incomplete gamma function

de�ned in (A.8) is given by


 (�; z) =

1X
k=0

(�1)k z�+k
k! (�+ k)

: (A.11)

49

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



APPENDICES
A. Mathematical functions and expressions

Result 10 ([10], p.25)
Let a; x 2 R and n 2 N, the binomial power series is de�ned as

(a+ x)n =
nX
k=0

�
n

k

�
xkan�k: (A.12)

Result 11 Let n 2 N. Then
nX
i=1

nX
j=i

f (i; j) =

nX
j=1

jX
i=1

f (i; j) : (A.13)

Result 12 Let h; r; j1; j2; � � � jh 2 N. De�ne

� (h; r; j1; j2; � � � jg�1) =
hX
i=1

riX
j1=1

j1X
j2=1

j2X
j3=1

� � �
jh�2X
jh�1=1

f (h; r; j1; j2; : : : ; jh�1) (A.14)

where f (h; r; j1; j2; � � � jh�1) is any function depending on h; r; j1; j2; � � � jh�1:
(A.14) can be re-arranged as

� (h; r; j1; j2; � � � jh�1) =
hX
i=1

riX
k=1

riX
j1=k

j1X
j2=k

j2X
j3=k

�
j3X
j4=k

� � �
jh�3X
jh�2=k

f (h; r; j1; j2; � � � jh�1) : (A.15)

Proof. Assume that h = 4. Then (A.14) becomes

� (h; r; j1; j2; j3) =

4X
i=1

riX
j1=1

j1X
j2=1

j2X
j3=1

f (4; r; j1; j2; j3) (A.16)

apply (A.13) in the last two summation of (A.16) so that

� (4; r; j1; j2; j3) =
4X
i=1

riX
j1=1

j1X
j3=1

j1X
j2=j3

f (4; r; j1; j2; j3) : (A.17)

Another application of (A.13) to the middle two summations in (A.17) yields

� (4; r; j1; j2; j3) =

4X
i=1

riX
j3=1

riX
j1=j3

j1X
j2=j3

f (4; r; j1; j2; j3)
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Let j3 = k the above equation becomes

� (4; r; j1; j2; j3) =

4X
i=1

riX
k=1

riX
j1=k

j1X
j2=k

f (4; r; j1; j2; j3) :

The proof follows similarly for any value of h > 2.

Result 13 ([8], p.232)
Let h; k 2 N: then

h�1X
i=0

�
h� 1
i

�
(�x)h�1�i

k+i�1X
t=0

(k + i� 1)!
t!

xt

�k+i�t

=
k�1X
i=0

�
k � 1
i

�
xk�1�i

(h+ i� 1)!
�h+i

: (A.18)

Result 14 ([10], p.340 (3.351))
Let �; � 2 R+, then

1Z
0

t��1 exp (��t) dt = ���� (�) : (A.19)

Result 15 ([10], p.340 (3.381))
Let z; �; � 2 R+, then

1Z
z

t��1 exp (��t) dt = ����� (�; �z) : (A.20)

where �� (�) is de�ned in (A.9)

Result 16 ([10], p.346 (3.381))
Let �; � 2 R+, then

zZ
0

t��1 exp (��t) dt = ���
 (�; �z) : (A.21)

Result 17 ([10], p.340)
Let � 2 R+ and � 2 N, then

zZ
0

t� exp (��t) dt = �!

��+1
� exp (z�)

�X
k=0

�!

k!

zk

���k+1
: (A.22)
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Result 18 Let z; t; �; � 2 R+ and n 2 N;
1Z
z

(t� z)n t��1 exp (��t) dt

=
nX
k=0

�
n

k

�
(�z)k �� (n+ �� k; �z) :

Proof. Applying (A.12) on (t� z)n it follows that

1Z
z

(t� z)n t��1 exp (��t) dt

=
nX
k=0

�
n

k

�
(�z)k

1Z
z

tn+��k�1 exp (��t) dt: (A.23)

Using (A.20) and (A.23),

1Z
z

(t� z)n t��1 exp (��t) dt

=
nX
k=0

�
n

k

�
(�z)k �� (n+ �� k; �t) : (A.24)

Result 19 (A useful representation of the cdf of the gamma distribution (see B.6))
Let �; � 2 R+, then

zZ
0

��

� (�)
t��1 exp (��t) dt = (�z)�

� (� + 1)
1F1 (�;�+ 1;��z) :

Proof. From (A.21) it follows that

zZ
0

��

� (�)
t��1 exp (��t) dt

=
��

� (�)

zZ
0

t��1 exp (��t) dt

=
��

� (�)
���
 (�; �z)

=
1

� (k)

 (�; �z) : (A.25)
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Using (A.10), (A.25) can be written as

zZ
0

��

� (�)
t��1 exp (��t) dt

=
(�z)�

� (�)�
1F1 (�; �+ 1;��z) (A.26)

Applying (A.2), (A.26) becomes

zZ
0

��

� (�)
t��1 exp (��t) dt

=
(�z)�

� (� + 1)
1F1 (�;�+ 1;��z) : (A.27)

Result 20 (This is an alternative proof to the proof suggested in [5])

zZ
0

(z � t)q�1 tp�1 exp (��t) dt

= (q � 1)! (p� 1)! (�1)p
qX
j=1

aq�j;p
(j � 1)!z

j�1 (��)j�q�p

+(q � 1)! (p� 1)! (�1)q
pX
j=1

ap�j;q
(j � 1)!z

j�1�j�q�p exp (��z) : (A.28)

Proof. Applying (A.12) to (z � t)q�1 in the expression
zR
0

(z � t)q�1 tp�1 exp (��t) dt

zZ
0

(z � t)q�1 tp�1 exp(��t)dt

=

zZ
0

q�1X
j=0

�
q � 1
j

�
(�t)j zq�1�jtp�1 exp (��t) dt

=

q�1X
j=0

�
q � 1
j

�
(�1)j zq�1�j

zZ
0

tj+p�1 exp (��t) dt: (A.29)
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By applying (A.22), (A.29) becomes

zZ
0

(z � t)q�1 tp�1 exp(��t)dt

=

q�1X
j=0

�
q � 1
j

�
(�1)j zq�1�j

�
"
(j + p� 1)!

�j+p
� exp (��z)

j+p�1X
i=0

(j + p� 1)!
i!

zi

�j+p�i

#
: (A.30)

Furthermore; (A.30) results from applying (A:22). After some algebraic manipulation
and noting that (�1)j = (�1)�j for j 2 N, (A.30) can be written as

zZ
0

(z � t)q�1 tp�1 exp(��t)dt

=

q�1X
j=0

�
q � 1
j

�
(�1)j zq�1�j (j + p� 1)!k�j�p + (�1)q e�kz

�
q�1X
j=0

�
q � 1
j

�
(�1)q�j�1 zq�1�j

j+p�1X
i=0

(j + p� 1)!
i!

zi

kj+p�i
: (A.31)

Subsequently, use (A:18) in (A.31)

zZ
0

(z � t)q�1 tp�1 exp(��t)dt

=

q�1X
j=0

�
q � 1
j

�
(�1)j zq�1�j (j + p� 1)!��j�p

+(�1)q exp (��z)
p�1X
j=0

�
p� 1
j

�
zp�1�j (q + j � 1)!��j�q

=

q�1X
j=0

(q � 1)!
j! (q � 1� j)!

(�1)j zq�1�j (j + p� 1)!��j�p

+(�1)q exp (��z)
p�1X
j=0

(p� 1)!
j! (p� 1� j)!

zp�1�j (q + j � 1)!��j�q (A.32)
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(A.32) is simpli�ed further to obtain

zZ
0

(z � t)q�1 tp�1 exp(��t)dt

=

q�1X
j=0

(q � 1)!
j! (q � 1� j)!

(�1)q�1�j zj (q + p� 2� j)!�j�q�p+1

+(�1)q exp (��z)
p�1X
j=0

(p� 1)!
j! (p� 1� j)!

zj (q + p� 2� j)!�j�q�p+1

= (q � 1)! (p� 1)!

�
 
q�1X
j=0

1

j!
(�1)q�1�j zj�j�q�p+1 (q + p� 2� j)!

(p� 1)! (q � 1� j)!

!
+ (�1)q

� (q � 1)! (p� 1)!
 
p�1X
j=0

1

j!
zj�j�q�p+1

(q + p� 2� j)!

(q � 1)! (p� 1� j)!

!
exp (��z)

= (q � 1)! (p� 1)!
q�1X
j=0

1

j!
(�1)q�1�j zj�j�q�p+1

�
q + p� 2� j

p� 1

�

+(q � 1)! (p� 1)! (�1)q
p�1X
j=0

1

j!
zj�j�q�p+1

�
q + p� 2� j

q � 1

�
exp (��z)

= (q � 1)! (p� 1)!
qX
j=1

1

(j � 1)! (�1)
q�j zj�1�j�q�p

�
q + p� 1� j

p� 1

�
+ (q � 1)! (p� 1)!

� (�1)q
pX
j=1

1

(j � 1)!z
j�j�q�p

�
q + p� 1� j

q � 1

�
exp (��z) : (A.33)

De�ne

aj;q =

�
j + q � 1
q � 1

�
(A.34)

so that (A.33) can be simpli�ed using (A.34) as

zZ
0

(z � t)q�1 tp�1 exp(��t)dt

= (q � 1)! (p� 1)! (�1)p
qX
j=1

aq�j;p
(j � 1)!z

j�1 (��)j�q�p

+(q � 1)! (p� 1)! (�1)q
pX
j=1

ap�j;q
(j � 1)!z

j�1�j�q�p exp (��z) :
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De�nition 1 ([22], p.195)

The Fox�s H- function is de�ned as

H (x) = Hm;n
p;q

�
xj(a1;�1);��� ;(ap;�p)
(b1;�1);��� ;(bq ;�q)

�

=
1

2�i

Z
C

mQ
j=1

�
�
bj � �js

� nQ
j=1

� (1� aj + �js)

qQ
j=m+1

�
�
1� bj + �js

� pQ
j=n+1

� (aj � �js)

x�sds: (A.35)

where

i =
p
�1

0 6 m 6 q;

0 6 n 6 p;

�j > 0 for j = 1; 2; � � � ; p
�j > 0 for j = 1; 2; � � � ; q;

and aj (j = 1; 2; � � � ; p) and bj (j = 1; 2; � � � ; q) are complex numbers such that no pole
of �

�
bj � �js

�
for j = 1; 2; � � � ;m coincides with any pole of � (1� aj + �js) for j =

1; 2; � � � ; n. Furthermore ! is some real number such that the points

s =
bj + k

�j
;

for j = 1; 2; � � � ;m and k = 0; 1; � � � and the points

s =
aj � 1� k

�j
;

for j = 1; 2; � � � ; n and k = 0; 1; � � � ; lie to the right and the left of C, respectively. C is
the complex contour.

Result 21 ([22], p.196)

An important property of Fox�s H- function

Hm;n
p;q

�
xcj(a1;�1);��� ;(ap;�p)

(b1;�1);��� ;(bq ;�q)

�
=

1

c
Hm;n
p;q

�
xj(a1;

�1
c );��� ;(ap;

�p
c )

(b1;�1c );��� ;
�
bq ;

�q
c

�
�
; c > 0:
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De�nition 2 ([19], p.60)
Meijer�s G- function

G (x) = Gm;n
p;q

h
xja1;��� ;apb1;��� ;bq

i

=
1

2�i

Z
C

mY
j=1

� (bj + s)

nY
j=1

� (1� aj � s)

qY
j=m+1

� (1� bj � s)

pY
j=n+1

� (aj + s)

x�sds; (A.36)

where z 6= 0, i =
p
�1, C is a suitable complex contour. Parameters a1, a2, : : :, ap are

complex numbers such that
�bj � v 6= 1� ak + �;

for j = 1; 2; : : : ;m; k = 1; 2; : : : ; n; v; � = 0; 1; : : :

Result 22 ([19], p.23) If f (x) is a real, singled valued function that is de�ned almost
everywhere for x > 0 and is absolutely integrable over the range (0;1) ; then the Mellin
transformation of f (x) is de�ned by

MX (s) = E
�
Xs�1� = 1Z

0

xs�1f (x) dx: (A.37)

Result 23 ([19], p.23) If Mf (s) is a Mellin transformation of f (x) and is analytical
over s 2 C, then the Mellin inversion integral is equal to f (x) and given by

f (x) =
1

2�i

Z
C

x�sMf (s) ds: (A.38)

where s 2 R and i =
p
�1:

Result 24 ([18], p.194) The Mellin transformation of the product of independent random
variables is the product of the Mellin transformation of the individual random variables

Proof. Let X1; X2; � � � ; Xn be a series of n independent random variables such that
Xi has a distribution with pdf fXi (x). Let

Y =
nY
i=1

Xi:
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The Mellin transformation of Y is given by

MY (s) = E
�
Y s�1�

= E

24 nY
i=1

Xi

!s�135
= E

"
nY
i=1

Xs�1
i

#
:

Since X1; X2; : : : ; Xn are independent, we have

MY (s) =
nY
i=1

E
�
Xs�1
i

�
=

nY
i=1

MXi (s) : (A.39)

which completes the proof.
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B. Statistical distributions

This Section contains statistical results that are applied in this study. For the convenience
of the reader. Proofs have also been provided for some of non-standard statistical results.

Result 25 Exponential distribution ([25], p.54).
Suppose that a random variable X is exponentially distributed, with parameter �,

denoted by
X � EXP (�) :

Then the pdf of X is given by

f (x;�) = � exp (��x) ; x > 0 (B.1)

where � 2 R+. The characteristic function of X is given by

�X (t) = E [exp (itX)]

=

�
1� it

�

��1
: (B.2)

The Mellin transformation (see (A.37)) of X is given by

MX (s) =

1Z
0

xs�1� exp (�x�) dx

= � (s)�1�s
1Z
0

�s

� (s)
xs�1 exp (�x�) dx

The latter integral equates to a 1 so that

MX (s) =
� (s)

�s�1
(B.3)

Result 26 Rayleigh distribution ([25], p.138)
Suppose that a random variable X is Rayleigh distributed, with parameter �, denoted

by
X � Ra (�) :

Then the pdf of X is given by

fX (x; r; �) =
x

�2
exp

�
�
�
x2

2�2

��
; x > 0: (B.4)

where � 2 R+.
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Result 27 Nakagami�m distribution ([12])
Suppose that a random variable X is Nakagami�m distributed, with parameters 
 > 0

and m > 0:5, denoted by
X � Nm (
;m)

Then the pdf of X is given by

fX (x; 
;m) = 2
�m



�m 1

� (m)
x2m�1 exp

�
�m


x2
�
; x > 0: (B.5)

Result 28 Gamma distribution ([25], p.69)
Suppose that a random variable X has a gamma distribution, with parameters r and

�, denoted by
X � � (r; �) :

Then the pdf of X is given by

fX (x; r; �) =
� (�x)r�1

� (r)
exp (��x) ; x > 0: (B.6)

where r > 0, � > 0. For integer values of r, the distribution of X is known as Erlang
distribution with cdf given by

FX (x; r; �) = 1�
r�1X
i=1

(�x)i

i!
exp (��x) ; x > 0: (B.7)

The sth moment of X is given by

E [Xs] =
� (s+ r)

�s� (r)
(B.8)

and its characteristic function is given by

�X (t) = E [exp (itX)]

=

�
1� it

�

��r
: (B.9)

Using (B.8), the Mellin transformation of X is

MX (s) =
� (r + s� 1)
�s�1� (r)

: (B.10)
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Result 29 Generalised gamma distribution ([25], p.73)
Suppose that a random variable X has a generalised gamma distribution, with para-

meters r, � and �, denoted by
X � G� (r; �; �)

Then the pdf of X is given by

fX (x; r; �; �) = j�j
��rx�r�1

� (r)
exp

�
� (�x)�

�
; x > 0 (B.11)

where r > 0, � > 0 and � any real number. The sth moment of X is given by

E [Xs] =

1Z
�1

xsfX (x; r; �; �) dx

=

1Z
�1

xs j�j �
�rx�r�1

� (r)
exp

�
� (�x)�

�
dx

= ��s
�
�
r + s

�

�
� (r)

1Z
�1

j�j��(r+
s
� )x
(r+ s

� )��1

�
�
r + s

�

� exp�� (�x)�� dx
The latter integral equates to 1 so that

E [Xs] =
�
�
r + s

�

�
� (r)��s

(B.12)

From (B.12) the Mellin transformation of X is given by

MX (s) = E
�
Xs�1�

=
�
�
r + s�1

�

�
� (r)

��(s�1) (B.13)

Result 30 If X � � (r; �) (see (B.6)) then V = � logX has log-gamma distribution
denoted by V � Log� (r; �). The characteristic function of V is given by

�V (t) =
� (r � it)

� (r)��it

(See [16])

Proof.

�V (t) = E [exp (�it logX)]
= E

�
X�it�

=
� (r � it)

� (r)
�it (B.14)

which completes the proof.
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Result 31 If X � � (r; �) (see (B.6)) then V = � logX has log-gamma distribution
denoted by V � Log� (r; �). V can be represented as an in�nite sum of independent
exponentially distributed random variables (see [16]). (See [16])

Proof. Using the result from [16]

� (z) =
1

z

1Y
k=1

�
1 +

1

k

�z �
1 +

z

k

��1
; for z � C

we get another representation of the characteristic of V , (B.14) as

�V (t) =
1

r � it

1Y
k=1

�
1 +

1

k

�r�it�
1 +

r � it

k

��1

�
"
1

r

1Y
k=1

�
1 +

1

k

�r �
1 +

r

k

��1#�1
�it

=
r

r � it

1Y
k=1

�
1 +

1

k

�r�it�
k

k + r � it

��
1 +

1

k

��r
k + r

k
exp

�
log
�
�it
��

=

�
r

r � it
exp (it log �)

� 1Y
k=1

�
1 +

1

k

��it�
k + r

k + r � it

�

=

8>><>>:
1

1� it

�
1

r

� exp (it log �)
9>>=>>;

�

8>><>>:
1Y
k=1

1�
1� it

�
1

k + r

�� exp��it log�1 + 1
k

��9>>=>>; :

Let

�V1 (t) =
1

1� it

�
1

r

� exp (it log �)
�V2 (t) =

1Y
k=1

1�
1� it

�
1

k + r

�� exp��it log�1 + 1
k

��
; (B.15)

�V1 (t) is a characteristic function of an exponential random variable with parameter r and
shift exp (it log �) : �V2 (t) is a characteristic function of the sum of in�nite independent
exponential random variables with parameter k and shift exp

�
�it log

�
1 + 1

k

��
. Therefore

V = V1 + V2 is the sum of in�nite independent exponential random variables.
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Result 32 Consider a random variable X with pdf given by

fX (x) =

8><>:
kHcxj(a1;�1);:::;(ap;�p)

(b1;�1);:::;(bq ;�q)
; for x > 0

0; otherwise,
(B.16)

whereH (�) is Fox�sH� function de�ned in (A.35). k; c; aj (j = 1,2,. . . ,p), �j (j = 1,2,. . . ,p),
bj (j = 1,2,. . . ,p) and �j (j = 1,2,. . . ,p) are parameters of the distribution then X is said
to follow the H-function distribution. (See [22])

Result 33 Let W � � (�; �) and X � � (r; �) be independent random variables where
� 2 R+nN and r 2 N. De�ne

Z = W �X:

The pdf of Z is given by

fZ (z) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

r�1P
k=0

�
r�1
k

�
(�z)k �i (r � 1� k + �; (�+ �) z)

(�+ �)�+r�k�1

� �r��

� (r) � (�)
exp (�z) ; z > 0

r�1P
k=0

�
r�1
k

�
(�z)k � (�+ r � k � 1)

(�+ �)�+r�k�1

� �r��

� (r) � (�)
exp (�z) ; z < 0;

(B.17)

and the cdf of Z is given by

FZ (z) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

��

� (�)
exp (�z)

r�1P
i=1

�i

i!

iP
k=0

�
i

k

�
(�z)k � � (�; �z)

� (�)
+ 1

�� (i� k + �; (�+ �) z)

(�+ �)i�k+�
; z > 0

��

� (�)
exp (�z)

r�1P
i=1

�i

i!

iP
k=0

�
i

k

�
(�z)k

�� (i� k + �)

(�+ �)i�k+�
; z < 0:

(B.18)

(see [16])

Proof. The pdf of Z will be presented �rst, followed by the presentation of the cdf
of Z.

From the independence of W and X, the pdf of Z can be written as

fZ (z) =

1Z
�1

fX (w � z) fW (w) dw: (B.19)
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To evaluate (B.19), two cases will be considered i.e. z > 0 and z < 0:

Consider the �rst case; z > 0. (B.19) becomes

fZ (z) =

zZ
0

fX (w � z)| {z }
=0

fW (w) dw +

1Z
z

fX (w � z) fW (w) dw

=

1Z
z

fX (w � z) fW (w) dw: (B.20)

Using the pdf of W and X (see (B.6)), (B.20) becomes

fZ (z) =
�r��

� (r) � (�)
exp (�z)

1Z
z

(w � z)r�1w��1 exp (� (�+ �)w) dw (B.21)

(A.24) simpli�es the integral in (B.21) so that (B.21) can be represented as

fZ (z) =
�r��

� (r) � (�)
exp (�z)

r�1X
k=0

�
r � 1
k

�
(�z)k �i (r � 1� k + �; (�+ �) z)

(�+ �)r�k+��1
: (B.22)

Consider the second case; z < 0. (B.19) becomes.

fZ (z) =

1Z
0

fX (w � z) fW (w) dw; (B.23)

using the pdf of W and X (see (B.6)), (B.23) becomes

fZ (z) =
�r��

� (r) � (�)
exp (�z)

1Z
0

(w � z)r�1w��1 exp (� (�+ �)w) dw: (B.24)

By applying (A.12), (B.24) is

fZ (z) =
�r��

� (r) � (�)
exp (�z)

r�1X
k=0

�
r � 1
k

�
(�z)k

�
1Z
0

w�+r�k�2 exp (� (�+ �)w) dw: (B.25)

(A.19) simpli�es the integral in (B.25) so that (B.25) can be represented as

fZ (z) =
�r��

� (r) � (�)
exp (�z)

r�1X
k=0

�
r � 1
k

�
(�z)k � (�+ r � k � 1)

(�+ �)�+r�k�1
: (B.26)
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From (B.22) and (B.26), the pdf of Z is given by

fZ (z) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

r�1P
k=0

�
r�1
k

�
(�z)k �i (r � 1� k + �; (�+ �) z)

(�+ �)�+r�k�1

� �r��

� (r) � (�)
exp (�z) ; z > 0

r�1P
k=0

�
r�1
k

�
(�z)k � (�+ r � k � 1)

(�+ �)�+r�k�1

� �r��

� (r) � (�)
exp (�z) ; z < 0;

Similarly for the cdf of Z; two cases of z will be considered i.e z > 0 and z < 0. From the
independence of W and X, the cdf of Z can be written as

FZ (z) =

1Z
�1

FX (w � z) fW (w) dw

=

1Z
0

FX (w � z) fW (w) dw: (B.27)

Consider z > 0. Using (B.7), (B.27) becomes

FZ (z) = 1�
zZ
0

FX (w � z)| {z }
=0

fW (w) dw +

1Z
z

FX (w � z) fW (w) dw

= 1�
1Z
z

FX (w � z) fW (w) dw: (B.28)

Using (B.7) and (B.6); (B.28) becomes

FZ (z) = 1�
1Z
z

"
1�

r�1X
i=1

(� (w � z))i

i!
exp (�� (w � z))

#

� ��

� (�)
w��1 exp (��w) dw

= 1� ��

� (�)

1Z
z

w��1 exp (��w) dw

+
��

� (�)
exp (�z)

r�1X
i=1

�i

i!

1Z
z

(w � z)iw��1 exp (� (�+ �)w) dw: (B.29)
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Integral in (B.29) is simpli�ed using (A.24) so that (B.29) becomes

FZ (z) = 1� �i (�; �z)
� (�)

+
��

� (�)
exp (�z)

�
r�1X
i=1

�i

i!

iX
k=0

�
i

k

�
(�z)k �i (i� k + �; (�+ �) z)

(�+ �)i�k+�
: (B.30)

Next, consider z < 0, hence w � z > 0. Using (B.7) and (B.6), B.27 can be written as

FZ (z) = 1�
1Z
0

"
1�

r�1X
i=1

(� (w � z))i

i!
exp (�� (w � z))

#
�fW (w)

= 1�
1Z
0

fW (w) dw +
��

� (�)
exp (�z)

r�1X
i=1

�i

i!

�
1Z
0

(w � z)iw��1 exp (� (�+ �)w) dw: (B.31)

The former integral equates to 1. Applying (A.12) in (w � z)i in (B.31), we can rewrite
(B.31) as

FZ (z) =
��

� (�)
exp (�z)

r�1X
i=1

�i

i!

iX
k=0

�
i

k

�

(�z)k
1Z
0

wi�k+��1 exp (� (�+ �)w) dw: (B.32)

Adopting the integrand in (B.32) to be of the form of (B.6), if follows that

FZ (z) =
��

� (�)
e�z

r�1X
i=1

�i

i!

iX
k=0

�
i

k

�
(�z)k � (i� k + �)

(�+ �)i�k+�

�
1Z
0

(�+ �)i�k+�

� (i� k + �)
wi�k+��1 exp (� (�+ �)w) dw

=
��

� (�)
exp (�z)

r�1X
i=1

�i

i!

iX
k=0

�
i

k

�
(�z)k � (i� k + �)

(�+ �)i�k+�
: (B.33)
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From (B.30) and (B.33), the complete cdf for z is

FZ (z) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

��

� (�)
exp (�z)

r�1P
i=1

�i

i!

iP
k=0

�
i

k

�
(�z)k � � (�; �z)

� (�)
+ 1

�� (i� k + �; (�+ �) z)

(�+ �)i�k+�
; z > 0

��

� (�)
exp (�z)

r�1P
i=1

�i

i!

iP
k=0

�
i

k

�
(�z)k

�� (i� k + �)

(�+ �)i�k+�
; z < 0:

Result 34 ([5], p. 88) Let Y1 and Y2 be independent random variables such that Yi �
� (ri; �i) for �i > 0 , i = 1; 2 and integer valued ri. De�ne the random variable Z as

Z = Y1 + Y2:

The pdf of Z is given by

fZ (z) =

8>>>>>><>>>>>>:

�r11 �
r2
2

2P
i=1

(�1)S�ri
2P
i=1

(�1)S�ri exp (�z�i)

�
riP
j=1

ari�j;S�ri
(j � 1)! z

j�1 (2�i � L)j�S ; for z > 0

0; for z < 0;

(B.34)

where S = r1 + r2, L = �1 + �2 and ari�j;S�ri de�ned as in (A.34). (See [5])

Proof. From the independence between Y1 and Y2 and (A.28), the pdf of Z is

fZ (z) =

zZ
0

fY1 (y1) fY2 (z � y1) dy1

=

zZ
0

�1 (�1y1)
r1�1

� (r1)
exp (��1y1)

�2 (�2 (z � y1))
r2�1

� (r2)

exp (��1 (z � y1)) dy1: (B.35)

By using (A.3), (B.35) can be written as

fZ (z) =
�r11 �

r2
2 exp (��2z)

(r1 � 1)! (r2 � 1)!

�
zZ
0

(z � y1)
r2�1 yr1�11 exp (� (�1 � �2) y1) dy1: (B.36)
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The integral in (B.36) is simpli�ed using (A.28) so that

fZ (z) =
�r11 �

r2
2 exp (��2z)

(r1 � 1)! (r2 � 1)!
(r1 � 1)! (r2 � 1)!

� (�1)r1
r2X
j=1

ar2�j;r1
(j � 1)!z

j�1 (� (�1 � �2))
j�r1�r2

+
�r11 �

r2
2 exp (��2z)

(r1 � 1)! (r2 � 1)!
(r1 � 1)! (r2 � 1)!

� (�1)r2
r1X
j=1

ar1�j;r2
(j � 1)!z

j�1 (�1 � �2)
j�r1�r2 exp (� (�1 � �2) z) (B.37)

(B.37) is simpli�ed further to obtain

fZ (z) = �r11 �
r2
2 (�1)

r1

r2X
j=1

ar2�j;r1
(j � 1)!z

j�1 (� (�1 � �2))
j�r1�r2 exp (��2z)

+�r11 �
r2
2 (�1)

r2

r1X
j=1

ar1�j;r2
(j � 1)!z

j�1 (�1 � �2)
j�r1n�r2 exp (��1z)

= �r11 �
r2
2 (�1)

(r1+r2)�r2
r2X
j=1

ar2�j;(r1+r2)�r2
(j � 1)! zj�1

� (2�2 � (�1 � �2))
j�r1�r2 exp (��2z)

+�r11 �
r2
2 (�1)

(r1+r2)�r1
r1X
j=1

ar1�j;(r1+r2)�r1
(j � 1)! zj�1

� (2�1 � (�1 � �2))
j�r1�r2 exp (��1z) :

Let S = r1 + r2 and L = �1 + �2

fZ (z) =

8>>>><>>>>:
�r11 �

r2
2

2P
i=1

(�1)S�ri
2P
i=1

(�1)S�ri exp (�z�i)

�
riP
j=1

ari�j;S�ri
(j � 1)! z

j�1 (2�i � L)j�S ; for z > 0

0; for z < 0:
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Result 35 Let
Yi � � (ri; �i) i = 1; 2; 3:::; g > 2

be independent gamma random variables. Then, if ri (i = 1; 2; 3:::; g) are integers, the pdf
of Z = Y1 + Y2 + : : :+ Yg is given by

fZ (z) = K

gX
i=1

(�1)S�ri
riX
j1=1

ari�j1;r�i1
�
�i � ��i1

�j1�ri�r�1
�

j1X
j2=1

aj1�j2 ;r�i2
�
�i � ��i2

�j2�j1�r�2 � � � jg�2X
jg�1=1

ajg�2�jg�1;r�ig�1
(jg�1 � 1)!�

�i � ��ig�1
�jg�1�jg�2�r�g�1 zjg�1�1 exp (��iz) ; (B.38)

for z > 0, with

K =

gY
i=1

�rii ; (B.39)

S =

gX
i=1

ri;

and ar� are de�ned as in (A.34). �
�i
j is the j

th element of the set f�1; �2; � � ��gg n f�ig
and r�ij is the jth element of set fr1; r2; � � � ; rgg n frig where "n" denote set di¤erence.
Z is said to follow the generalised integer gamma with parameters g; r = (r1; r2; � � � ; rg)0
and � = (�1; �2; � � ��g)0, denoted by

Z � GIG (g; r; �) :

(See [5])

Proof. Result 34 obtains the distribution of Z1 = Y1 + Y2. For g = 3, de�ne
Z2 = Y1 + Y2 + Y3 = Z1 + Y3: The pdf of Z1 is given by (B.34)

fZ1 (z1) = K

2X
i=1

(�1)S
��ri

riX
j1=1

ari�j1;S��ri
(j1 � 1)!

�zj1�1 (2�i � L)j1�r1�r2 exp (��iz1) ; (B.40)

where S� =
2P
i=1

ri and K = �r11 �
r2
2 so that pdf of Z2 is given by

fZ2 (z2) =

z2Z
0

fZ1 (z1) fY3 (z2 � z1) dz1 : (B.41)

First consider fZ1 (z1) fY3 (z2 � z1) above. Using (B.40), (B.6) and the independence be-
tween Z1 and Y3, it follows that
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fZ1 (z1) fY3 (z2 � z1)

= K

2X
i=1

(�1)S
��ri

riX
j1=1

ari�j1;S��ri
(j1 � 1)!

zj1�1 (2�i � L)j1�r1�r2

� exp (��iz)
�3 (�3 (z2 � z1))

r3�1

� (r3)
exp (��3 (z2 � z1))

= K
�r33
� (r3)

2X
i=1

(�1)S
��ri

riX
j1=1

ari�j1;S��ri
(j1 � 1)!

(2�i � L)j1�r1�r2

� exp (��3z2) zj1�11 (z2 � z1)
r3�1 exp (� (�i � �3) z1) ; (B.42)

Substituting (B.42) into (B.41), the latter can be written as

fZ2 (z2) =

zZ
0

fZ1 (z1) fY3 (z2 � z1) dz1

= K
�r33
� (r3)

2X
i=1

(�1)S
��ri

riX
j1=1

ari�j1;S�ri
(j1 � 1)!

(2�i � L)j1�r1�r2

� exp (��3z2)
zZ
0

zj1�11 (z2 � z1)
r3�1 e�(�i��3)z1dz1 : (B.43)

The integral in (B.43) is simpli�ed using (A.28) to obtain the following representation of
fZ2 (z2)

fZ2 (z2) = K
�r33
� (r3)

2X
i=1

(�1)S
��ri

riX
j1=1

ari�j1;S��ri
(j1 � 1)!

(2�i � L)j1�r1�r2 exp (��3z2)

� (j1 � 1)! (r3 � 1)! (�1)j1
r3X
j2=1

ar3�j2;j1
(j2 � 1)!

zj2�12 (�3 � �i)
j2�r3�j1

+K
�r33
� (r3)

2X
i=1

(�1)S
��ri

riX
j1=1

ari�j1;S��ri
(j1 � 1)!

(2�i � L)j1�r1�r2 exp (��3z2)

� (j1 � 1)! (r3 � 1)! (�1)r3
j1X
j2=1

aj1�j2;r3
(j2 � 1)!

zj2�1

� (�i � �3)
j2�r3�j1 exp (� (�i � �3) z2) : (B.44)

Using (A.3) and the fact that (2�i � L)j1�r1�r2 (�1)j1 = (L� 2�i)j1�r1�r2 (�1)r1+r2
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fZ2 (z2) = K�r33 (�1)
r1+r2

2X
i=1

(�1)S
��ri

riX
j1=1

ari�j1;S�ri (L� 2�i)
j1�r1�r2 exp (��3z2)

�
r3X
j2=1

ar3�j2;j1
(j2 � 1)!

zj2�12 (�3 � �i)
j2�r3�j1 +K�r33

2X
i=1

S�i

�
riX
j1=1

ari�j1;S��ri (2�i � L)j1�r1�r2 (�1)r3
j1X
j2=1

aj1�j2;r3
(j2 � 1)!

�zj2�1 (�i � �3)
j2�r3�j1 exp (��iz2)

= K�r33 (�1)
r1+r2

r3X
j1=1

ar3�j1;r1 (�3 � �1)
j1�r1�r3

j1X
j2=1

aj1�j2;r2
(j2 � 1)!

�zj2�12 (�3 � �2)
j2�r2�j1 exp (��3z2)

+K�r33

2X
i=1

(�1)ri+r3
riX
j1=1

ari�j1;S��ri (2�i � L)j1�r1�r2

�
j1X
j2=1

aj1�j2;r3
(j2 � 1)!

zj2�1 (�i � �3)
j2�r3�j1 exp (��iz2) :

Assume that elements in a set are ordered in chronological order of their subscripts i.e.
element associated with smallest subscript is taken as the �rst elements and so on. In
the above derivations, �i 2 f�1; �2g. Therefore, set f�1; �2g is an intersection of mutu-
ally exclusive sets f�ig and f�1; �2g n f�ig with the latter set having only one element
as well. We can therefore express 2�i � L as the di¤erence between �i and the (�rst)
element in set f�1; �2g n f�ig. �3 � �1 is the di¤erence between �3 and the �rst element
of f�1; �2; �3g n f�3g. Similarly statements can be made with reference to set fr1; r2; r3g.
Let ��ij and r

�i
j denote the j

th element of set f�1; �2; �3g n f�jg and fr1; r2; r3g n frjg re-

spectively. Furthermore, let S =
3P
i=1

ri, Si = (�1)S�ri and K = �r11 �
r2
2 �

r3
3 , then the pdf of

Z2 can be written as

fZ2 (z2) = K
3X
i=1

(�1)S�ri
riX
j1=1

ari�j1;r�i1
�
�i � ��i1

�j1�ri�r�i1
�

j1X
j2=1

aj1�j2;r�i2
(j2 � 1)!

�
�i � ��i2

�j2�j1�r�i2 zj2�12 exp (��iz2) :

Similarly, pdf of Z = Y1 + Y2 + :::+ Yg for g > 2 can be derived as
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fZ (z) = K

gX
i=1

(�1)S�ri
riX
j1=1

ari�j1;r�i1
�
�i � ��i1

�j1�ri�r�1 j1X
j2=1

aj1�j2;r�i2

�
�
�i � ��i2

�j2�j1�r�i2 � � � jg�2X
jg�1=1

ajg�2�jg�1;r�ig�1
(jg�1 � 1)!

�
�i � ��ig�1

�jg�1�jg�2�r�g�1
�zjg�1�1 exp (��iz)

= K

gX
i=1

(�1)S�ri
riX
j1=1

j1X
j2=1

� � �
jg�2X
jg�1=1

ari�j1;r�i1
�
�i � ��i1

�j1�ri�r�i1 aj1�j2;r�i2
�
�
�i � ��i2

�j2�j1�r�i2 � � � ajg�2�jg�1;r�ig�1
(jg�1 � 1)!

�
�i � ��ig�1

�jg�1�jg�2�r�ig�1
zjg�1�1 exp (��iz) : (B.45)

where S =
gP
i=1

ri, Si = (�1)S�ri, K =
gQ
i=1

�rii and ar�i are de�ned as in (A:34) :

If � 2 R is a shift parameter then Z + � � SGIG (g; r; �; �). Next, the computational
form of (B.45) is obtained
Using (A:15) with jg�1 = k; (B:38) can be written as

fZ (z) = K

gX
i=1

(�1)S�ri
riX
k=1

riX
j1=k

j1X
j2=k

j2X
j3=k

� � �
jg�3X
jg�2=k

ari�j1;r�i1
�
�i � ��i1

�j1�ri�r�i1 aj
1�j2 ;r

�i
2

�
�
�i � ��i2

�j2�j1�r�i2 � � � ajg�2�k;r�ig�1
(k � 1)!

�
�i � ��ig�1

�k�jg�2�r�ig�1 zk�1 exp (��iz) :
Let

�j1 = ari�j1;r�i1
�
�i � ��i1

�j1�ri�r�i1
�jt = aj

t�1�jt ;r
�i
t

�
�i � ��it

�jt�jt�1�r�it t = 2; 3; 4; : : : ; g � 2

�k =
ajg�2�k;r�ig�1
(k � 1)!

�
�i � ��ig�1

�k�jg�2�r�ig�1 :
Therefore fZ (z) can be written in the form

fZ (z) = K

gX
i=1

riX
k=1

0@(�1)S�ri riX
j1=k

j1X
j2=k

j2X
j3=k

� � �
jg�3X
jg�2=k

�j1�k

g�2Y
t=2

�jt

1A
�zk�1 exp (��iz) :

Furthermore, let
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ci;k (g; r; �) =

0@(�1)S�ri riX
j1=k

j1X
j2=k

j2X
j3=k

� � �
jg�3X
jg�2=k

�j1�k

g�2Y
t=2

�jt

1A and (B.46)

Pi (z) =

riX
k=1

ci;k (g; r; �) z
k�1;

Computational form of (B.46) is given by (B.50) and (B.51) below. Hence

fZ (z) = K

gX
i=1

Pi (z) exp (��iz) : (B.47)

The cdf of Z is derived as

FZ (z) =

zZ
0

fZ (t) dt

= K

gX
i=1

riX
k=1

ci;k (g; r; �)

zZ
0

tk�1 exp (��it) dt

= K

gX
i=1

riX
k=1

ci;k (g; r; �)
� (k)

�ki

zZ
0

�ki
� (k)

tk�1 exp (��it) dt

= K

gX
i=1

riX
k=1

ci;k (g; r; �)
� (k)

�ki
FZik (z) ; (B.48)

where FZik (z) is the cdf of a random variable Zik � � (k; �i). Further note that

1 =

1Z
0

fZ (z) dz

=

1Z
0

K

gX
i=1

riX
k=1

ci;k (g; r; �) z
k�1 exp (��iz) dz

= K

gX
i=1

riX
k=1

ci;k (g; r; �)

1Z
0

zk�1 exp (��iz) dz

= K

gX
i=1

riX
k=1

ci;k (g; r; �)
� (k)

�ki

1Z
0

�ki
� (k)

zk�1 exp (��iz) dz:
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The latter integral equates to 1 so that

1 = K

gX
i=1

riX
k=1

ci;k (g; r; �)
� (k)

�ki
;

hence

(K)�1 =

gX
i=1

riX
k=1

ci;k (g; r; �)
� (k)

�ki
: (B.49)

Note that (B.46) in its current form is not easy to compute. The computation form of
(B.46) can be found in [5] and is given by:

ci;ri (g; r; �) =
1

(ri � 1)!

gY
j=1;j 6=i

(�j � �i)
�rj ; (B.50)

and for k = 0, 1, 2 ,. . . , ri � 1

ci;ri�k (g; r; �) =
1

k

kX
j=1

(ri � k + j � 1)!
(ri � k � 1)! R (j � 1; i; g; r; �)

�ci;ri�(k�j) (g; r; �) ; (B.51)

where

R (n; i; g; r; �) =

gX
i=1;i6=j

ri (�j � �i)
�n�1 ; n = 0; 1; 2; : : : ; ri � 1:

Result 36 (Generalised near-integer gamma with only two variables). Let

W � � (�; �) and

X1 � � (r1; �1) ;

where �; �1 2 R+; r1 2 N and � is positive non-integer number. De�ne

Z = X1 +W:

The cdf is given by

FZ (z) =
(�z)�

� (�+ 1)
1F1 (�; �+ 1;��z)� exp (��1z)

�
r1�1X
i=0

���i1z
i+�

� (i+ �+ 1)
1F1 (�; i+ �+ 1;� (� � �1) z) ; z > 0; (B.52)

where 1F1 (�) is de�ned as (A.7)

Result 36 is a special case of Result 37. It is included in this study for the �rst time
and will be used to give and alternative proof of Result 37 presented in [6].
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Proof. Using independence between X1 and W and their respective pdf, the cdf of
Z is given by

FZ (z) =

zZ
0

FX1 (z � w) fW (w) dw

=

zZ
0

 
1�

r1�1X
i=0

(�1 (z � w))i

i!
exp (��1 (z � w))

!

��
�w��1

� (�)
exp (��w) dw

=

zZ
0

��w��1

� (�)
exp (��w) dw �

r1�1X
i=0

�i1�
�

i!� (�)
exp (��1z)

�
zZ
0

(z � w)iw��1 exp (� (� � �1)w) dw:

Using ([10] p.347 (3.383)), it follows that

zZ
0

(z � w)iw��1 exp (� (�� �1)w) dw

=
i!� (�)

� (i+ �+ 1)
zi+� 1F1 (�; i+ �+ 1;� (� � �1) z) ;

then

FZ (z)

= FW (w)� exp (��1z)
r1�1X
i=0

�i1�
�zi+�

� (i+ �+ 1)

� (1F1 (�; i+ �+ 1;� (� � �1) z)) :

Using (A.27), FW (w) can be written as

FW (w) =
(�z)�

� (�+ 1)
1F1 (�; �+ 1;��z) ;

therefore

FZ (z) =
(�z)�

� (�+ 1)
1F1 (�; �+ 1;��z)� exp (��1z)

�
r1�1X
i=0

�i1�
�zi+�

� (i+ �+ 1)
1F1 (�; i+ �+ 1;� (� � �1) z) :
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Result 37 (Generalised near-integer gamma with at least two variables) Let V and W
be independent random variables such that V � GIG (g; r; �) where r = (r1; r2 � � � rg) and
� = (�1; �2 � � ��g) and W � � (�; �) where � is non-integer. De�ne the random variable

Z = V +W:

then the random variable Z follows a generalised near integer gamma distribution denoted
by

Z � GNIG (g; r; �; �; �) :

The pdf of Z is given by

fZ (z) = K��
gX
i=1

exp (�z�i)
riX
k=1

ci;k (g; r; �)
� (k)

� (k + �)

�zk+��1 1F1 (�; k + �;� (� � �i) z) ; z > 0; (B.53)

and the cdf of Z is given by

FZ (z) =
(�z)�

� (�+ 1)
1F1 (�; �+ 1;��z)�K��

gX
i=1

riX
k=1

c�i;k (g; r; �)

� exp (��iz)
k�1X
j=0

�jiz
j+�

� (j + �+ 1)
1F1 (�; j + �+ 1;� (� � �i) z) ; (B.54)

for z > 0, where K is de�ned as in (B.39), ci;k (g; r; �) is de�ned as in (B.46) and 1F1 (�) is
de�ned as (A.7). Furthermore c�i;k (g; r; �) = ci;k (g; r; �)

�(k)

�ki
. (See [6] for further details.)

Proof. Given the independent between V and W , we can use the pdf of V in (B.47)
and pdf of in W in (B.6) to get the pdf of Z as

fZ (z) =

zZ
0

fY (z � w) fW (w) dw

=

zZ
0

"
K

gX
i=1

riX
k=1

ci;k (g; r; �) (z � w)k�1 exp (� (z � w)�i)

#

��
�w��1

� (�)
exp (��w) dw

= K
��

� (�)

gX
i=1

exp (�z�i)
riX
k=1

ci;k (g; r; �)

�
zZ
0

(z � w)k�1w��1 exp (� (� � �i)w) dw; (B.55)
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where K is de�ned as in (B.39) in terms of (r; �) and ci;k (g; r; �) is de�ned as in (B.46).
Note that from ([10] p.347)

zZ
0

(z � w)k�1w��1 exp (� (� � �i)w) dw

=
� (k) � (�)

� (k + �)
zk+��1 1F1 (�; k + �;� (� � �i) z) :

Therefore (B.55) becomes

fZ (z) = K��
gX
i=1

exp (��iz)
riX
k=1

ci;k (g; r; �)

� � (k)

� (k + �)
zk+��1 1F1 (�; k + �;� (� � �i) z) :

The cdf of Z is given by

FZ (z) =

zZ
0

FY (z � w) fW (w) dw

=

zZ
0

K

gX
i=1

riX
k=1

ci;k (g; r; �)
� (k)

�ki
FZik (z � w) fW (w) dw

= K

gX
i=1

riX
k=1

ci;k (g; r; �)
� (k)

�ki

zZ
0

FZik (z � w) fW (w) dw: (B.56)

zR
0

FZik (z � w) fW (w) dw is the cdf of a sum of two independent gamma random variables

i.e. Zik + W where Zik � � (k; �i) and can therefore be represented by (B.52). Let
c�i;k (g; r; �) = ci;k (g; r; �)

�(k)

�ki
in (B.56) such that

FZ (z) = K

gX
i=1

riX
k=1

c�i;k (g; r; �)
(�z)�

� (�+ 1)
[1F1 (�; �+ 1;��z)]

�K��
gX
i=1

riX
k=1

c�i;k (g; r; �) exp (��iz)
k�1X
j=0

�jiz
j+�

� (j + �+ 1)

� 1F1 (�; j + �+ 1;� (� � �i) z) : (B.57)

Next, use (B.49) in (B.57)
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FZ (z) = K (K)�1
(�z)�

� (�+ 1)
1F1 (�; �+ 1;��z)

�K��
gX
i=1

riX
k=1

c�i;k (g; r; �) exp (��iz)
k�1X
j=0

�jiz
j+�

� (j + �+ 1)

� 1F1 (�; j + �+ 1;� (�i + �) z)

=
(�z)�

� (�+ 1)
1F1 (�; �+ 1;��z)�K��

gX
i=1

riX
k=1

c�i;k (g; r; �)

� exp (��iz)
k�1X
j=0

�jiz
j+�

� (j + �+ 1)
1F1 (�; j + �+ 1;� (� � �i) z) :

Result 38 [8] LetX1 � GIG
�
p1; r1j; �j

�
where r1j = (r11; r12 � � � r1p1) and �j = (�1; �2 � � ��p1)

and X2 � GIG
�
p2; r2l; �l

�
where r2l = (r11; r12 � � � r1p2) and �j = (�1; �2 � � � �p2) be inde-

pendent random variables and de�ne

Z = X1 �X2:

Then the pdf of Z is given by

fZ (z) =

8>>><>>>:
p1P
j=1

r1jP
k=1

k�1P
i=01

pjklfZjki (z) ; z > 0

p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklfZ�lhi (�z) ; z < 0;

(B.58)

where Zjki � � (k � i; �j) and Z�lhi � � (h� i; �l). Furthermore K1 and cjk are de�ned
in a similar manner as (B.39) and (B.46) and K2 and dlh are de�ned in a corresponding
manner, replacing p1by p2 and r1j by r2j. pjkl and p�jkl are respectively given by

pjkl = K1K2cjk

p2X
l=1

r2lX
h=1

dlh
(k � 1)!

i!

(h+ i� 1)!
(�l + �j)

h+i

1

�k�ij

(B.59)

and

p�jkl = K1K2dlh

p1X
j=1

r1jX
k=1

cjk

�
h� 1
i

�
(k + i� 1)!
(�l + �j)

k+i

1

�h�il

: (B.60)

Z is said to follow the di¤erence generalised integer gamma distribution and is denoted
by

Z � DGIG
�
r1j; r2l; �j; �l; p1; p2

�
:

(See [8])
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Proof. Let X2 = X1 � Z: Using independence between X1 and X2; the pdf of Z is
given by

fZ (z) =

1Z
max(z;0)

fX1 (x1) fX2 (x1 � z) dx1

=

1Z
max(z;0)

K1

p1X
j=1

r1jX
k=1

cjkx
k�1
1 exp (��jx1)K2

�
p2X
l=1

r2lX
h=1

dlh (x1 � z)h�1 exp (��l (x1 � z)) dx1

= K1K2

1Z
max(z;0)

p1X
j=1

p2X
l=1

 
r1jX
k=1

cjkx
k�1
1

!
 

r2lX
h=1

dlh (x1 � z)h�1
!
exp (� (�l + �j)x1) exp (�lz) dx1

= K1K2

p1X
j=1

p2X
l=1

1Z
max(z;0)

exp (� (�l + �j)x1) exp (�lz)

 
r1jX
k=1

r2lX
h=1

cjkdlhx
k�1
1 (x1 � z)h�1

!
dx1: (B.61)

Using (A.12), it follows that

(x1 � z)h�1 =

h�1X
i=0

�
h� 1
i

�
xi1 (�z)

h�i�1 ;

hence (B.61) can be written as

fZ (z) = K1K2

p1X
j=1

p2X
l=1

1Z
max(z;0)

r1jX
k=1

r2lX
h=1

cjkdlhx
k�1
1

�
h�1X
i=0

�
h� 1
i

�
xi1 (�z)

h�i�1 exp (� (�l + �j)x1) exp (�lz) dx1

= K1K2

p1X
j=1

p2X
l=1

exp (�lz)

r1jX
k=1

r2lX
h=1

cjkdlh

h�1X
i=0

�
h� 1
i

�
(�z)h�i�1

�
1Z

max(z;0)

xk+i�11 exp (� (�l + �j)x1) dx1: (B.62)
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Using (A.19) to simplify the integral in (B.62), (B.62) becomes

fZ (z) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

K1K2

p1P
j=1

p2P
l=1

exp (�lz)
r1jP
k=1

r2lP
h=1

cjkdlh
h�1P
i=0

�
h� 1
i

�
exp (� (�l + �j) z)

� (�z)h�i�1
k+i�1P
t=0

(k + i� 1)!
t!

zt

(�l + �j)
k+i+t

; z > 0

K1K2

p1P
j=1

p2P
l=1

ez�l
r1jP
k=1

r2lP
h=1

cjkdlh
h�1P
i=0

�
h� 1
i

�
(�z)h�i�1

� (k + i� 1)!
(�l + �j)

k+i
; z < 0:

(B.63)
From (A.18) follows that

h�1X
i=0

�
h� 1
i

�
(�z)h�i�1

k+i�1X
t=0

k + i� 1!
t!

zt

(�l + �j)
k�i+t

=
k�1X
i=0

�
k � 1
i

�
zk�i�1

(h+ i� 1)!
(�l + �j)

h+i

therefore (B.63) can be rewritten as

fZ (z) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

K1K2

p1P
j=1

p2P
l=1

exp (�z�j)
r1jP
k=1

r2lP
h=1

cjkdlh
k�1P
i=0

�
k � 1
i

�
�zk�i�1 (h+ i� 1)!

(�l + �j)
h+i
; z > 0

K1K2

p1P
j=1

p2P
l=1

exp(z�l)
r1jP
k=1

r2lP
h=1

cjkdlh
h�1P
i=0

�
h� 1
i

�
� (�z)h�i�1 (k + i� 1)!

(�l + �j)
k+i
; z < 0

=

8>>>>>>>>>>><>>>>>>>>>>>:

p1P
j=1

r1jP
k=1

k�1P
i=0

 
K1K2cjk

p2P
l=1

r2lP
h=1

dlh

�
k � 1
i

�
(h+ i� 1)!
(�l + �j)

h+i

!
�zk�i�1 exp (�z�j) ; z > 0
p2P
l=1

r2lP
h=1

h�1P
i=0

 
K1K2dlh

p1P
j=1

r1jP
k=1

cjk

�
h� 1
i

�
(k + i� 1)!
(�l + �j)

k+i

!
� (�z)h�i�1 exp(z�l); z < 0:

(B.64)
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Next, use (A.1) and (A.3) in
�
h�1
i

� (k+i�1)!
(�l+�j)

k+i :�
h� 1
i

�
(k + i� 1)!
(�l + �j)

k+i

=
(h� 1)!

i! (h� i� 1)!
(k + i� 1)!
(�l + �j)

k+i

=
(h� 1)!

i!

(k + i� 1)!
(�l + �j)

k+i

1

� (h� i)
:

Similarly �
k � 1
i

�
(h+ i� 1)!
(�l + �j)

h+i

=
(k � 1)!

i!

(h+ i� 1)!
(�l + �j)

h+i

1

� (k � i)
:

Let

p1jkl = K1K2cjk

p2X
l=1

r2lX
h=1

dlh
(k � 1)!

i!

(h+ i� 1)!
(�l + �j)

h+i

p1�jkl = K1K2dlh

p1X
j=1

r1jX
k=1

cjk

�
h� 1
i

�
(k + i� 1)!
(�l + �j)

k+i
:

Then fZ (z) in (B.64) can be written as

fZ (z) =

8>>><>>>:
p1P
j=1

r1jP
k=1

k�1P
i=0

p1jkl
1

� (k � i)
zk�i�1 exp (��jz) ; z > 0

p2P
l=1

r2lP
h=1

h�1P
i=0

p1�jkl
1

� (h� i)
(�z)h�i�1 exp (�lz) ; z < 0:

(B.65)

Thus Z with pdf given by (B.65) can be seen as a mixture of particular independent
random variables. To make this variables come from a familiar distribution, we can make
the following de�nitions

pjkl = p1jkl
1

�k�ij

p�jkl = p1�jkl
1

�h�il

:
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Therefore, Z is a mixture of independent gamma random variables and has pdf given by

fZ (z) =

8>>>><>>>>:
p1P
j=1

r1jP
k=1

k�1P
i=0

pjkl
�k�ij

� (k � i)
zk�i�1 exp (��jz) ; z > 0

p1P
j=1

r2lP
h=1

h�1P
i=0

p�jkl
�h�il

� (h� i)
(�z)h�i�1 exp (�lz) ; z < 0

=

8>>>><>>>>:
p1P
j=1

r1jP
k=1

k�1P
i=01

pjklfZjki (z) ; z > 0

p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklfZ�lhi (�z) ; z < 0;

where fZjki (z) is the pdf of Zjki � � (k � i; �j) and fZ�lhi (�z) is the pdf of Z
�
lhi �

� (h� i; �l) :

If � 2 R is a shift parameter then

Z + � � SDGIG
�
r1j; r2l; �j; �l; p1; p2; �

�
:

Next, the cdf of Z is determined using the pdf of Z in (B.58) as

FZ (z) =

zZ
�1

fZ (t) dt:

Two cases, i.e. z > 0 and z < 0 will be considered.
When z > 0;

FZ (z)

=

zZ
�1

fZ (t) dt

=

0Z
�1

fZ (t) dt+

zZ
0

fZ (t) dt

=

0Z
�1

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jklfZ�lhi (�t) dt+
zZ
0

p1X
j=1

r1jX
k=1

k�1X
i=0

pjklfZjkl (t) dt

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

0Z
�1

fZ�lhi (�t) dt+
p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl

zZ
0

fZjkl (t) dt

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl +

p1X
j=1

r1jX
k=1

k�1X
i=0

pjklFZjkl (z) ;
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where FZjkl (z) is the cdf of Zjkl: Therefore when z > 0, then

FZ (z) =

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl +

p1X
j=1

r1jX
k=1

k�1X
i=0

pjklFZjkl (z) : (B.66)

If z < 0;

FZ (z) =

zZ
�1

fZ (t) dt

=

zZ
�1

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jklfZ�lhi (�t) dt

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

zZ
�1

fZ�lhi (�t) dt

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

0@ 0Z
�1

fZ�lhi (�t) dt�
0Z
z

fZ�lhi (�t) dt

1A
=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl
�
1� FZ�lhi (�z)

�
:

Therefore if z < 0:

FZ (z) =

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

�
1� FZ�jkl (�z)

�
: (B.67)

Combining (B.66) and (B.67), the cdf of Z is given by

FZ (z) =

8>><>>:
p2P
l=1

r2lP
h=1

h�1P
i=0

p�jkl +
p1P
j=1

r1jP
k=1

k�1P
i=0

pjklFZjkl (z) z > 0
p2P
l=1

r2lP
h=1

h�1P
i=0

p�jkl

�
1� FZ�jkl (�z)

�
z < 0:

(B.68)

Lastly, the weights in (B.58) and (B.68) are shown to add to 1, and hence valid weights.
Integrating fZ (z) over the entire state space yields
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1Z
�1

fZ (z) dz =

0Z
�1

fZ (z) dz +

1Z
0

fZ (z) dz

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

0Z
�1

fZ�lhi (�z) dz +
p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl

1Z
0

fZjki (z) dz

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl +

p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl: (B.69)

Since
1R
�1

fZ (z) dz = 1, the weights sum to 1.

Result 39 [16] Let Y and W be independent random variables such that

Y � DGIG
�
r1j; r2l; �j; �l; p1; p2

�
and W � � (�; �). De�ne the random variable Z1 such that

Z1 = Y +W:

The cdf of Z1 is given by

FZ1 (z) =

8>>>>>>><>>>>>>>:

p1P
j=1

r1jP
k=1

k�1P
i=0

pjklFG1 (z)

+
p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklFDG1 (z) ; z > 0

p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklFDG1 (z) ; z < 0;

(B.70)

where pjkl and p�jkl are de�ned in (B.59) and (B.60) respectively. FG1 (z) and FDG1 (z) is
of form (B.52) and (B.18) respectively. The pdf of Z is given by

fZ1 (z) =

8>>>>>>>>><>>>>>>>>>:

p1P
j=1

r1jP
k=1

k�1P
i=0

pjklfG1 (z)

+
p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklfDG1 (z) ; z > 0

p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklfDG1 (z) ; z < 0;

where fG1 (z) and fDG1 (z) is of form (B.53) and (B.17) respectively. (See [16] for further
details.)
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Proof. Using independence of Y and W , cdf of Z1 is given by

FZ1 (z) =

1Z
�1

FY (z � w) fW (w) dw z 2 (�1;1) :

When z > 0, (B.68) can be use and if follows that

FZ1 (z) =

zZ
�1

FY (z � w)| {z }
>0

fW (w) dw +

1Z
z

FY (z � w)| {z }
�0

fW (w) dw

=

zZ
�1

FY (z � w)| {z }
>0

fW (w) dw +

1Z
�1

FY (z � w)| {z }
�0

fW (w) dw

�
zZ

�1

FY (z � w)| {z }
�0

fW (w) dw

=

zZ
�1

"
p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl +

p1X
j=1

r1jX
k=1

k�1X
i=0

pjklFZjki (z � w)

#
fW (w) dw

+

1Z
�1

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl
�
1� FZ�lhi (w � z)

�
fW (w) dw

�
zZ

�1

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl
�
1� FZ�lhi (w � z)

�
fW (w) dw (B.71)

(B.71) can be simpli�ed further to obtain:

FZ1 (z) =

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

zZ
0

fW (w) dw +

p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl

�
zZ

�1

FZjkl (z � w) fW (w) dw +

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

1Z
0

fW (w) dw

�
p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

1Z
�1

FZ�lhi (w � z) fW (w) dw

�
p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

zZ
0

fW (w) dw

+

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

zZ
�1

FZ�lhi (w � z) fW (w) dw; (B.72)
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where Zjki � � (k � i; �j) and Z�lhi � � (h� i; �l). Note that

zZ
0

FZjkl (z � w) fW (w) dw

= P (Zjkl � z �W )

= P (Zjkl +W � z) : (B.73)

(B.73) is the cdf of a sum of two independent gamma random variables, therefore Zjkl +
W � GNIG (2; r�; ��) where r� = (k � i; �) and �� = (�j; �). Denote this cdf by
FG1 (z) and is given by (B.52). (B.72) can be simplied using (B.73) and the fact that
1Z

�1

fW (w) dw =

1Z
�1

FZ�lhi (w � z) fW (w) dw = 1. Therefore (B.72) becomes

FZ1 (z) =

p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl

zZ
0

FZjkl (z � w) fW (w) dw

+

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

zZ
0

FZ�jkl (w � z) fW (w) dw

=

p1X
j=1

r1jX
k=1

k�1X
i=0

pjklFG1 (z) +

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jklFDG1 (z) :

When z < 0; use (B.68) and derive

FZ1 (z) =

1Z
z

FY (z � w)| {z }
�0

fW (w) dw

=

1Z
z

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl
�
1� FZ�lhi (w � z)

�
fW (w) dw

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

1Z
z

fW (w) dw

�
p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

1Z
z

FZ�lhi (w � z) fW (w) dw: (B.74)
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Further note that

1Z
z

FZ�jkl (w � z) fW (w) dw

= P
�
Z�jkl < W � z

�
= 1� P

�
W � Z�jkl < z

�
: (B.75)

(B.75) is the cdf of W � Z�jkl and will be denoted by FDG1 (z) ; the form of FDG1 (z) is
given in (B.18).

Integrals in (B.74) equates to 1: Using (B.75); the cdf in (B.74) can be represented as

FZ1 (z) =

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl �
p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl (1� FDG1 (z))

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jklFDG1 (z) ;

and the cdf of Z1 is therefore given by

FZ1 (z) =

8>>>>>>>><>>>>>>>>:

p1P
j=1

r1jP
k=1

k�1P
i=0

pjklFG1 (z)

+
p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklFDG1 (z) ; z > 0

p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklFDG1 (z) ; z < 0;

The pdf of Z1 is given by

fZ1 (z) =
d

dz
FZ1 (z)

=

8>>>>>>>><>>>>>>>>:

p1P
j=1

r1jP
k=1

k�1P
i=0

pjklfG1 (z)

+
p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklfDG1 (z) ; z > 0

p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklfDG1 (z) ; z < 0;

where fG1 (z) and fDG1 (z) is of form (B.53) and (B.17) respectively.
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Result 40 [16] Let Y and W be independent random variables such that

Y � DGIG
�
r1j; r2l; �j; �l; p1; p2

�
and W � � (�; �). De�ne the random variable Z1 such that

Z2 = Y �W:

The cdf of Z1 is given by

FZ2 (z) =

8>>>>>>>><>>>>>>>>:

1�
p1P
j=1

r1jP
k=1

k�1P
i=0

pjklFDG2 (�z) ; z � 0

1�
p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklFG2 (�z)

+
p1P
j=1

r1jP
k=1

k�1P
i=0

pjklFDG2 (�z) ; z > 0;

(B.76)

where pjkl and p�jkl are de�ned in (B.59) and (B.60) respectively. FG2 (z) and FDG2 (z)
are de�ned in (B.52) and (B.18) respectively. The pdf of Z2 is given by

fZ2 (z) =

8>>>>>>>><>>>>>>>>:

p1P
j=1

r1jP
k=1

k�1P
i=0

pjklfDG2 (�z) ; z � 0

p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklfG2 (�z)

�
p1P
j=1

r1jP
k=1

k�1P
i=0

pjklfDG2 (�z) ; z > 0;

(B.77)

where fG2 (z) and fDG2 (z) is de�ned by (B.53) and (B.17) respectively. (See [16] for
further details.)
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Proof. Two cases, i.e. z > 0 and z < 0 will be considered.
Consider �rst when z < 0:Using independence between Y and W; the cdf of Z2 is

given by

FZ2 (z) =

�zZ
0

FY (w + z)| {z }
�0

fW (w) dw +

1Z
�z

FY (w + z)| {z }
�0

fW (w) dw

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

�zZ
0

fW (w) dw �
p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

�zZ
0

FZ�jkl (�z � w) fW (w) dw

+

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

1Z
�z

fW (w) dw +

p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl

1Z
�z

FZjkl (z + w) fW (w) dw

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

1Z
0

fW (w) dw �
p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

�zZ
0

FZ�jkl (�z � w) fW (w) dw

+

p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl

1Z
�z

FZjkl (z + w) fW (w) dw; (B.78)

where Zjki � � (k � i; �j) and Z�lhi � � (h� i; �l) : Note that

�zZ
0

FZ�jkl (�z � w) fW (w)

= P
�
Z�jkl � �z �W

�
= P

�
Z�jkl +W � �z

�
= FG2 (�z) ; (B.79)

Zjkl +W � GNIG (2; r�; ��) where r� = (h� i; �) and �� = (vl; �). Therefore the cdf
of Zjkl +W is given by (B.79) and is of form (B.52) and shall be denoted by FG2 (�z).
Next, consider

1Z
�z

FZjkl (z + w) fW (w) dw

= 1� P (Zjkl � W � z)

= 1� P (Zjkl �W � �z)
= 1� FDG2 (�z) ; (B.80)

where FDG2 (�z) is the cdf of FDG2 (�z) with its form given by (B.18). Substituting
(B.79) and (B.80) in (B.78) so that it becomes
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FZ2 (z) =

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl �
p2X
l=1

r2lX
h=1

h�1X
i=0

p�jklFG2 (�z)

+

p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl (1� FDG2 (�z)) : (B.81)

From (B.69), it follows that

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl +

p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl = 1;

therefore (B.81) becomes

FZ2 (z) = 1�
p2X
l=1

r2lX
h=1

h�1X
i=0

p�jklFG2 (�z) +
p1X
j=1

r1jX
k=1

k�1X
i=0

pjklFDG2 (�z) : (B.82)

If z � 0. Using independence between Y and W; the cdf of Z2 is given by

FZ2 (z) =

1Z
0

FY (w + z)| {z }
�0

fw (w) dw

=

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl

1Z
0

fw (w) dw

+

p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl

1Z
0

FZjkl (z + w) fW (w) dw: (B.83)

Using (B.80) to simplify the second integral in (B.83), (B.83) becomes

FZ2 (z) =

p2X
l=1

r2lX
h=1

h�1X
i=0

p�jkl +

p1X
j=1

r1jX
k=1

k�1X
i=0

pjkl �
p1X
j=1

r1jX
k=1

k�1X
i=0

pjklFDG2 (�z)

= 1�
p1X
j=1

r1jX
k=1

k�1X
i=0

pjklFDG2 (�z) : (B.84)

From (B.84) and (B.82) the cdf of Z2 is given by
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FZ2 (z) =

8>>>>>>>><>>>>>>>>:

1�
p1P
j=1

r1jP
k=1

k�1P
i=0

pjklFDG2 (�z) ; z � 0

1�
p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklFG2 (�z)

+
p1P
j=1

r1jP
k=1

k�1P
i=0

pjklFDG2 (�z) ; z > 0;

The pdf of Z2 is given by

fZ2 (z) =
d

dz
FZ2 (z)

=

8>>>>>>>><>>>>>>>>:

p1P
j=1

r1jP
k=1

k�1P
i=0

pjklfDG2 (�z) ; z � 0

p2P
l=1

r2lP
h=1

h�1P
i=0

p�jklfG2 (�z)

�
p1P
j=1

r1jP
k=1

k�1P
i=0

pjklfDG2 (�z) ; z > 0;

where fG2 (z) and fDG2 (z) is de�ned by (B.53) and (B.17) respectively.
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C. Computational modules

This section contains details of the proposed computational modules for the near-exact
distributions of Y (see (1.5)) and their implementations. The proposed computational
modules are implemented using Mathematica, Version 10.

D1: All modules for the implementation of the �rst and second near-exact distribu-
tions are available at the following link:

http://www.up.ac.za/media/shared/115/product-of-independent-gen-
gamma.zp101826.pdf

D2: The link also contains modules for the implementation some of important statis-
tical distributions used in near-exact distributions developed in this study. Among these
statistical distributions is the generalised near-integer gamma. Modules for implemen-
tation of its pdf and cdf are denoted, respectively, by GNIGpdf[z_,el�_,��_,elr_,�r_]
and GNIGcdf[z_,el�_,��_,elr_,�r_] where z is the running value, the vector el� and
the parameter �� are the rate parameters, the vector elr is a list of the integer shape
parameters and �r is a non-integer shape parameter. Alternative modules can be found
at the following link:

https://sites.google.com/site/nearexactdistributions/

D3: The module to implement cumulative probabilities for the �rst near-exact dis-
tribution is denoted by SDGIGcdf[z_,r1_,r2_,�1_,�2_]. z is the running value, the
vectors r1 and r2 are list of parameters as indicated in (3.4) (speci�cally �+j and �

�
j).

The vectors �1 and �2 contains parameters as indicated in (3.4) (speci�callym+
j andm

�
j ).

D4: The proposed module to implement cumulative probabilities for the second near-
exact distribution is denoted by SDGIGcdf2[z_,r1_,r2_,�1_,�2_,��_; �r_]
where z, r1, r2, �1 and �2 are de�ned above. �� and �r denote, respectively, the rate
and the shape parameters for the independent gamma distributed random variables.

D5: Parameters used in modules GNIGpdf[z_,el�_,��_,elr_,�r_], GNIGcdf[z_-
,el�_,��_,elr_,�r_] and SDGIGcdf2[z_,r1_,r2_,�1_,�2_,��_; �r_] are obtained us-
ing a module denoted by ParameterPrep[rn_,rd_,�n_,�d_,�n_,�d_,precision_], where
rn,�n and �n denote vectors for shape, rate and power parameters, respectively, of gener-
alised gamma distributed random variables that are in of the numerator of G (see (1.3))
or having positive power parameters in Y (see (1.1.2)). rd,�d and �d denote vectors for
shape, rate and power parameters, respectively, of generalised gamma random variables
in the denominator of G (see (1.3)) or with negative power parameter in Y (see (1.1.2)).
The precision parameter is denoted by precision.

D6: To evaluate modules for both the �rst- and second near-exact distribution, some
preliminary modules in the link need to be evaluated �rst. Table 5.1 contains a list of such
modules with an indication by X of whether they should be evaluated before a module for
a given near-exact distribution is evaluated.
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Table 5.1: List of preliminary modules to be evaluated before a near-exact distribution
module is evaluated

Module
First

near-exact
Second
near-exact

FactorK[�_,r_] X X
cik[t_,r_,�_] X X
GNIGcdf[z_,el�_,��_,elr_,�r_] X
DGamErlangcdf[z_,el�_,��_,elr_,�r_] X
SDGIGcdfpos[z_,r1_,r2_,�1_,�2_,��_,�r_] X
SDGIGcdfpos[z_,r1_,r2_,�1_,�2_,��_,�r_] X

D7: In addition to these preliminary modules, the module for the �rst near-exact
distribution uses a Mathematica function to evaluate the cdf of the Erlang distribution
(see B.7).

As an example of an application of these modules, consider Case III in Table 4.1

r=
�
2; 3; 5;

1

2

�
; �=

�
3; 2; 10;

2

7

�
; �=f1

2
; 2;�1

4
;�1
3
g

By using ParameterPrep[f2; 3g,
�
5;
1

2

�
,f3; 2g,

�
10;

2

7

�
,
�
1
2
; 2
	
,

�
1

4
;
1

3

�
,20], the pa-

rameters for near-exact distributions are obtained. Various computational studies (similar
to those in Section 4.3) can be perfomed using these parameters and a relevant module
for a particular near-exact distribution.

Modules for the implementation of empirical distribution can be obtained in the link
below

http://www.up.ac.za/media/shared/115/product-of-independent-gen-
gamma.zp101826.pdf
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