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Abstract

The normal distribution is popular in many statistical contexts. However, due to its symmetry

and tail behavior it may not necessarily be the best choice to use in many real world applications.

In order to alleviate the aforementioned issues, a symmetric generalised normal distribution that

exhibits flexibility in its tail behavior is proposed as candidate to apply existing skewing method-

ology to. Methods to approximate the characteristics of this new distribution and a corresponding

stochastic representation is derived. The skewed version of the generalised normal distribution,

along with other distributions, is used in a distribution fitting context and to approximate par-

ticular binomial distributions as an application.

Keywords: Approximating binomial distribution, Distribution fitting, Skew generalised-

normal, Stochastic representation.
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Chapter 1

Introduction

1.1 Background and motivation

The normal distribution is frequently used in a variety of fields: quantitative finance, clinical

studies, environmental risk analysis and banking, insurance and investment models. This distri-

bution is prominent in statistics and forms the foundation of various statistical techniques such

as analysis of variance and discriminant analysis. It also possesses attractive statistical charac-

teristics including symmetry, infinite support and ease of computation; the drawback, however,

is that it is inappropriate to use in scenarios where a non-negligible degree of skewness is present.

The gamma-, folded normal-, and Weibull distributions can be used when skewness is present,

however, these distributions do not have infinite real support and may not be suitable for certain

scenarios.

For example, normality of errors is a popular assumption in linear regression models, but

this is indeed only an assumption. If the distribution of the error term (which requires infinite

support) exhibits some characteristic of the normal distribution (approximately bell shaped), but

the distribution is slightly asymmetrical with non-normal tail behavior, then a distribution that

is more general in terms of its symmetry and tails needs to be considered. It is therefore expedient

to skew the normal distribution using reliable methodology in instances where the assumption

of symmetry is violated. In most cases, the point of departure in this framework is the standard

normal distribution. It is therefore of interest to consider generalising the standard normal

distribution and using skewing methodology to enhance the flexibility of the existing skew-normal

distribution and extensions thereof. This motivates the interest in developing distributions that

retain normal-like characteristics but allow primarily for varying levels of skewness.

9
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10 CHAPTER 1. INTRODUCTION

1.2 Literature review

Azzalini [5] introduced the skew-normal distribution, which includes the standard normal dis-

tribution as a special case, and studied the basic mathematical properties thereof. The skewing

methodology that is used to skew existing symmetric probability density functions (PDFs) is

stated in Proposition 1.

Proposition 1. Denote by f0 (·) a probability density function (PDF) on R
d, by G0 (·) a con-

tinuous cumulative distribution function (CDF) on R, and by w (·) a real-valued function on R
d,

such that f0 (−x) = f0 (x), w (−x) = −w (x) and G0 (−y) = 1 − G0 (y) for all x ∈ R
d, y ∈ R.

Then

fX (x) = 2f0 (x)G0 {w (x)} (1.1)

is a PDF on R
d [7].

Note that f0 is termed the symmetric base PDF, 2G0 {w (x)} is termed the skewing mechanism

and fX is termed the skewed version of the symmetric base PDF.

Interestingly, as discussed by Pourahmadi [25], skew-normal random variables inherit some

of the properties of the normal distribution, whilst also displaying particular characteristics

that are not attributed to the normal distribution. For example, the square of a skew-normal

random variable is distributed chi-square with one degree of freedom, however, the sum of two

independent skew-normal random variables is generally not skew-normally distributed.

Pewsey [24] highlighted inferential issues regarding Azzalini’s skew-normal distribution and

discussed reasons as to why a different parameterisation of the skew-normal distribution may be

more appropriate.

Arellano-Valle et. al. [3] noted that a limitation of the skew-normal distribution is that for

moderate values of the skewness parameter nearly all the mass lies to the right or left of 0, as

determined by the parameter. To mitigate this, the authors introduced a skew-generalised nor-

mal distribution which contains Azzalini’s skew-normal as a special case and displays enhanced

flexibility in modeling skewness. The extended skew-generalised normal distribution, a further

extension of the skew-generalised normal distribution [3], was derived by Venegas et. al. [30].

Gomez et. al. [15] derived a skew flexible-normal distribution, an extension to the skew-normal

model [5], which supports both unimodal and bimodal distributions.

A flexible skew-generalised normal distribution which contains the normal, Azzalini’s skew-

normal [5], the skew-generalised normal [3] and the skew flexible-normal [15] distributions as

special cases, was developed by Bahrami and Qasemi [9]. Skew-elliptical families and semi-

parametric extensions were investigated by Azzalini [6].
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1.2. LITERATURE REVIEW 11

Gomez et. al. [16] introduced a family of asymmetric distributions which includes Azzalini’s

skew-normal [5] and is more flexible in its shape (i.e. skewness and kurtosis).

Salinas et. al. [27] introduced an extended family of skew distributions which is more flexible

in terms of both skewness and kurtosis than those defined by Azzalini’s skewing methodology.

This family can be stochastically represented as the product of two random variables which is

crucial for simulation studies and derivation of theoretical properties. Salinas et. al. [27] then

used this extended family together with the exponential power distribution, as introduced by

Subbotin [28], to derive what is termed the extended skew exponential-power distribution. This

distribution includes Azzalini’s skew-normal [5] and the generalised skew-normal distribution of

[16].

Balakrishnan [11] generalised Azzalini’s skew-normal [5] in [4]. This distribution is known as

the Balakrishnan skew-normal distribution and includes Azzalini’s skew-normal [5] distribution.

Yadegari et. al. [31] provided a generalisation of the Balakrishnan skew-normal distribution and

a multivariate extension was also presented.

Hasanalipour and Sharafi [19] introduced a new generalised Balakrishnan skew-normal distri-

bution which contains Azzalini’s skew-normal [5] and Arellano-Valle et. al. [3] skew-generalised

normal. A method to simulate from this generalised Balakrishnan skew-normal distribution was

also presented.

Mameli and Musio [22] provided generalisations of the Balakrishnan skew-normal distribution.

The authors also introduced the beta skew-normal, which generalises Azzalini’s skew-normal

model [5] by considering the distribution of order statistics of the skew-normal distribution [5].

Abtahi et. al. [1] derived an empirical version of skew-normal density which employed kernel

density estimation of the function responsible for skewing the original symmetric distribution.

Multivariate and matrix extensions of the models discussed have been investigated. The uni-

variate skew-normal distribution [5] was extended to the multivariate case by Azzalini and Dalla

Valle [8]. The univariate skew-normal distribution [5] was extended to another multivariate case

(which includes Azzalini and Dalla Valle’s [8] multivariate extension) that is coherent with the

joint distribution of univariate skew normal random variables by Gupta and Chen [17]. A matrix

variate skew-normal distribution was derived by Harrar and Gupta [18].

For clarity, the univariate distributions mentioned in this literature review that stem from

Azzalini’s skew-normal distribution [5] are summarised in Figure 1.1.
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12 CHAPTER 1. INTRODUCTION

Figure 1.1: A summary of the distributions of referred to in the literature review.
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1.3. OBJECTIVES 13

1.3 Objectives

The aim of this study is to:

• Investigate and understand the methodology provided by Azzalini [5] in skewing a sym-

metric distribution (with a focus on the normal distribution);

• Review and revisit some existing generalisations of Azzalini’s skew-normal distribution;

• Justify the use of the generalised normal distribution due to Subbotin [28] as a candidate

in this framework;

• Investigate the properties of the newly proposed skew-symmetric version of the generalised

normal distribution and compare with existing distributions;

• Investigate the effect of the mechanism responsible for skewing a given symmetric distri-

bution;

• Develop a stochastic representation of the skew-symmetric version of the generalised normal

distribution;

• Apply developed theory in a distribution fitting context and to approximate the binomial

distribution.

1.4 Outline of study

• In Chapter 2 the skew-normal distribution, as proposed by Azzalini [5], is investigated.

Characteristics of this distribution are revisited and a sampling scheme to generate random

variates from this distribution is provided. Furthermore, existing extensions of the skew-

normal distribution, relevant to this study, are presented and are summarised in Figure 1.2

and Figure 1.3. The distributions in green will be extended in Chapter 3 and Chapter 4.
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14 CHAPTER 1. INTRODUCTION

Figure 1.2: A summary of the distributions investigated in Chapter 2.

Figure 1.3: The beta skew-normal distribution investigated in Chapter 2 using methodology in

[22].

• In Chapter 3 the generalised normal distribution [28] is considered as a new candidate to

apply the existing skewing methodology to. The proposed skew-symmetric version of the

generalised normal distribution is developed using the methodology discussed in Propo-

sition 1, Section 1.2 and is termed the skew generalised-normal type I distribution. The

added flexibility in modeling skewness with the skew generalised-normal type I distribution

is graphically and numerically investigated. An acceptance-rejection sampling scheme is

used to draw random samples from the skew generalised-normal type I distribution and two

different approaches are used to investigate the characteristics of this distribution. Finally,
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1.4. OUTLINE OF STUDY 15

a stochastic representation of the skew generalised-normal type I distribution is derived.

• Chapter 4 explores the effect of the skewing mechanism as outlined in Proposition 1,

Section 1.2, the difference being that the generalised normal distribution is used as both the

symmetric base PDF and also skewing mechanism. This chapter also uses the generalised

normal distribution (see Chapter 3.1) as the symmetric base PDF (see Proposition 1,

Section 1.2) to extend the generalised Balakrishnan skew-normal type I distribution in

Chapter 2. The beta skew-normal in Chapter 2 (see [22]) is generalised using the proposed

skew generalised-normal type I distribution (see Chapter 3) in the definition of a beta

generated distribution [22].

The distributions of interest in Chapter 3 and Chapter 4 are summarised in Figure 1.4 and

Figure 1.5 respectively where φ∗ (·) and Φ∗ (·) denote the PDF and CDF of the generalised

normal distribution.

Figure 1.4: A summary of the distributions investigated Chapter 3 and Chapter 4.

Figure 1.5: The beta skew generalised-normal type I distribution investigated in Chapter 4.

• Chapter 5 applies some of the developed theory in a distribution fitting context. Some of

the developed distributions are used to approximate the binomial distribution as a further
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16 CHAPTER 1. INTRODUCTION

application.

• Chapter 6 concludes the study.

• Appendix A contains a list of symbols and notation used throughout.

• Appendix B contains a list of additional definitions and results referenced in this study.

• Appendix C contains code used in this study.
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Chapter 2

The skew-normal distribution and

extensions

In Section 2.1, the skewing methodology (see Proposition 1, Section 1.2) is applied to the normal

distribution yielding Azzalini’s skew-normal distribution [5]. Characteristics (i.e. expected value,

variance, skewness and kurtosis) of the skew-normal distribution are revisited in Section 2.2.

A stochastic representation, including a visualisation of the corresponding sampling scheme is

presented in Section 2.3. In Section 2.4 the effect of the skewness parameter on the characteristics

of the SN distribution is investigated. In Section 2.5 existing generalisations of the skew-normal

model, relevant to this study, are presented.

2.1 The skew-normal (SN ) distribution

In this section, using the same notation defined in Proposition 1, Section 1.2, the case where

f0 = φ, (with φ and Φ representing the standard normal PDF and CDF respectively) and where

w (x) = λx for λ ∈ R is investigated. The following corollaries result from Proposition 1.

Corollary 1. A random variable X has the skew-normal distribution if its PDF is given by

fX (x;λ) = 2φ (x) Φ (λx) , x ∈ R (2.1)

where λ ∈ R. This is denoted by X ∼ SN (λ) [5].

Corollary 2. A random variable Y has the skew-normal distribution with location parameter µ

and scale parameter σ if its PDF is given by

fY (y;µ, σ, λ) = 2
σφ
(y−µ

σ

)

Φ
(

λ
(y−µ

σ

))

, y ∈ R (2.2)

where µ ∈ R, σ ∈ R
+ and λ ∈ R. This is denoted by Y ∼ SN

(

µ, σ2, λ
)

.

17
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18 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

Proof. Let X ∼ SN (λ) with PDF (2.1). Consider the random variable Y = µ+ σX, where the

location and scale parameters are denoted µ ∈ R and σ ∈ R
+ respectively.

If y = µ+ σx then d
dyu

−1 (y) = 1
σ , and it follows that

fY (y;µ, σ, λ) = fX
(

u−1 (y) ;λ
)

∣

∣

∣

∣

d

dy
u−1 (y)

∣

∣

∣

∣

= 2φ
(

u−1 (y)
)

Φ
(

λu−1 (y)
)

∣

∣

∣

∣

d

dy

(

u−1 (y)
)

∣

∣

∣

∣

= 2φ

(

y − µ

σ

)

Φ

(

λ

(

y − µ

σ

)) ∣

∣

∣

∣

1

σ

∣

∣

∣

∣

=
2

σ
φ

(

y − µ

σ

)

Φ

(

λ

(

y − µ

σ

))

.

2.2 Characteristics of skew-normal distribution

2.2.1 Moment generating function

In this section the moment generating function (MGF) of the SN
(

µ, σ2, λ
)

distribution with

PDF (2.1) is derived.

Lemma 1. If U ∼ N (0, 1) then EU [Φ (hU + k)] = Φ
(

k√
1+h2

)

for h, k ∈ R [7], where Φ (·)
denotes the CDF of the standard normal distribution.

Proof. By definition

EU [Φ (hU + k)] =

∫

R

Φ (hu+ k)φ (u) du

=

∫

R

∫ hu+k

−∞
φ (b)φ (u) dbdu

=

∫ hu+k

−∞

∫

R

φ (b)φ (u) dudb

=

∫ hu+k

−∞
φ (b)

(∫

R

φ (u) du

)

db

=

∫ hu+k

−∞
φ (b) db

= P [B < hU + k]

= P [B − hU < k] (2.3)

where B is independent of U .

Using well-known results [10] it follows that the distribution of W = B − hU is again normally
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2.2. CHARACTERISTICS OF SKEW-NORMAL DISTRIBUTION 19

distributed with

E [W ] = E [B − hU ]

= E [B]− hE [U ]

= 0.

Since B and U are independent, cov (B,U) = 0 and it follows that

var [W ] = var [B − hU ]

= var [B] + h2var [U ]

= 1 + h2.

Therefore W ∼ N
(

0, 1 + h2
)

.

Then from (2.3) it follows that

EU [Φ (hU + k)] = P [B − hU < k]

= P [W < k]

= P

[

W − E [W ]
√

var [W ]
<

k − E [W ]
√

var [W ]

]

= P

[

Z <
k√

1 + h2

]

, where Z ∼ N (0, 1)

= Φ

(

k√
1 + h2

)

which concludes the proof.

Theorem 1. The MGF of random variable Y = µ+ σX with PDF (2.1) is given by

MY (t) = 2etµ+
1
2
t2σ2

Φ (δσt) , t ∈ R (2.4)

where δ = λ√
1+λ2

and Φ (·) denotes the standard normal CDF [7].

Proof. From (2.1) it follows that

MY (t) = E
[

etY
]

= E

[

et(µ+σX)
]

=

∫

R

etµ+tσx2φ (x)Φ (λx) dx

= 2etµ
∫

R

etσx
1√
2π

e−
1
2
x2
Φ (λx) dx

= 2etµ
∫

R

1√
2π

e−
1
2(x

2−2tσx)Φ (λx) dx.
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20 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

Note that (x− tσ)2 = x2 − 2tσx+ t2σ2 =⇒ x2 − 2tσx = (x− tσ)2 − t2σ2.

Therefore

MY (t) = 2etµ
∫

R

1√
2π

e−
1
2((x−tσ)2−t2σ2)Φ (λx) dx

= 2etµ+
1
2
t2σ2

∫

R

1√
2π

e−
1
2
(x−tσ)2Φ (λx) dx.

If p = x− tσ then x = p+ tσ and dx
dp = 1.

Let φ (·) denote the standard normal PDF; then:

MY (t) = 2etµ+
1
2
t2σ2

∫

R

1√
2π

e−
1
2
p2Φ (λ (p+ tσ)) dp

= 2etµ+
1
2
t2σ2

∫

R

φ (p)Φ (λ (p+ tσ)) dp

= 2etµ+
1
2
t2σ2

EP [Φ (λP + λtσ)] (2.5)

where P ∼ N (0, 1).

Applying Lemma 1 it follows from (2.5) that

MY (t) = 2etµ+
1
2
t2σ2

Φ

(

λtσ√
1 + λ2

)

= 2etµ+
1
2
t2σ2

Φ (δσt)

where δ = λ√
1+λ2

.

2.2.2 Moments

To compute the central moments of Y ∼ SN
(

µ, σ2, λ
)

with PDF (2.2), the method as in [7]

which uses the cumulant generating function, KY (t), will be used (see Definition 14, Appendix

B.1).

In order to simplify the derivation of the central moments, the inverse Mills ratio, m (·), (see

Definition 13, Appendix B.1) will be used. The following properties of the inverse Mills ratio

are derived freely using the quotient, product and chain rules of differentiation. Let m′ (·) and

m′′ (·) respectively denote the 1st and 2nd derivatives of m (·).
Property 1:

m (0) =

√

2

π

Proof.

m (0) =
φ (0)

Φ (0)

=

1√
2π
1
2

=

√

2

π
.
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2.2. CHARACTERISTICS OF SKEW-NORMAL DISTRIBUTION 21

Property 2:

m′ (x) =
d

dx
m (x) = −m (x) [x+m (x)]

Proof.

d

dx
m (x) =

d

dx

(

φ (x)

Φ (x)

)

=

(

d
dxφ (x)

)

Φ (x)− φ (x)
(

d
dxΦ (x)

)

(Φ (x))2

=
−xφ (x)Φ (x)− φ (x)φ (x)

(Φ (x))2

= −
(

xφ (x)

Φ (x)
+

(

φ (x)

Φ (x)

)2
)

= −φ (x)

Φ (x)

[

x+
φ (x)

Φ (x)

]

= −m (x) [x+m (x)] .

Property 3:

m′′ (x) =
d2

dx2
m (x) = −m (x) + x2m (x) + 3x (m (x))2 + 2 (m (x))3

Proof.

d2

dx2
m (x) =

d

dx

(

d

dx
m (x)

)

=
d

dx
(−m (x) [x+m (x)])

= − d

dx

(

xm (x) + (m (x))2
)

= −
(

d

dx
(xm (x)) +

d

dx
(m (x))2

)

= −
((

d

dx
x

)

m (x) + x

(

d

dx
m (x)

)

+ 2m (x)

(

d

dx
m (x)

))

= − (m (x) + x (−m (x) [x+m (x)]) + 2m (x) (−m (x) [x+m (x)]))

= −
(

m (x)− x2m (x)− x (m (x))2 − 2x (m (x))2 − 2 (m (x))3
)

= −
(

m (x)− x2m (x)− 3x (m (x))2 − 2 (m (x))3
)

= −m (x) + x2m (x) + 3x (m (x))2 + 2 (m (x))3 .
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22 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

Using the derived properties of the inverse Mills ratio, some characteristics of the skew-normal

distribution are derived.

Expected value

Theorem 2. Consider Y ∼ SN
(

µ, σ2, λ
)

with MGF (2.4), then

E [Y ] = µ+ δσ

√

2

π

where δ = λ√
1+λ2

.

Proof. From Theorem 1 it follows that

E [Y ] =
d

dt
KY (t)

∣

∣

∣

∣

[1]

t=0

=
d

dt
(logMY (t))

∣

∣

∣

∣

t=0

=
d

dt

(

log
(

2etµ+
1
2
t2σ2

Φ (δσt)
))

∣

∣

∣

∣

t=0

=
d

dt

(

tµ+
1

2
t2σ2 + log (2Φ (δσt))

)∣

∣

∣

∣

t=0

= µ+ σ2t+
d
dt2Φ (δσt)

2Φ (δσt)

∣

∣

∣

∣

∣

t=0

= µ+ σ2t+
2δσφ (δσt)

2Φ (δσt)

∣

∣

∣

∣

t=0

= µ+ σ2t+ δσm (δσt)
∣

∣

t=0
[2]

= µ+ δσm (0)

= µ+ δσ

√

2

π
[3]

where δ = λ√
1+λ2

.

[1]Applying Definition 14, Appendix B.1;

[2]Applying Definition 13, Appendix B.1;

[3]Using Property 1.

Variance

Theorem 3. Consider Y ∼ SN
(

µ, σ2, λ
)

with MGF (2.4), then

var [Y ] = σ2

(

1− 2

π
δ2
)

where δ = λ√
1+λ2

.
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2.2. CHARACTERISTICS OF SKEW-NORMAL DISTRIBUTION 23

Proof. From Theorem 1 it follows that

var [Y ] =
d2

dt2
KY (t)

∣

∣

∣

∣

[1]

t=0

=
d

dt

(

d

dt
logMX (t)

)∣

∣

∣

∣

t=0

=
d

dt

(

d

dt

(

tµ+
1

2
t2σ2 + log (2Φ (δσt))

))∣

∣

∣

∣

t=0

=
d

dt

(

µ+ σ2t+
δσφ (δσt)

Φ (δσt)

)∣

∣

∣

∣

t=0

= σ2 + δσ
d

dt
m (δσt)

∣

∣

∣

∣

t=0

[2]

= σ2 + δσ

(

−m (δσt) [δσt +m (δσt)]
d

dt
(δσt)

)∣

∣

∣

∣

t=0

[3]

= σ2 + (δσ)2 (−m (δσt) [δσt+m (δσt)])
∣

∣

∣

t=0

= σ2 + (δσ)2
(

− (m (0))2
)

= σ2 + (δσ)2
(

− 2

π

)

[4]

= σ2

(

1− 2

π
δ2
)

where δ = λ√
1+λ2

.

[1]Applying Definition 14, Appendix B.1;

[2]Applying Definition 13, Appendix B.1;

[3]Using Property 2;

[4]Using Property 1.

3rd central moment

Theorem 4. Consider Y ∼ SN
(

µ, σ2, λ
)

with MGF (2.4), then

E

[

(Y − E [Y ])3
]

=
1

2
(4− π)

(

δσ

√

2

π

)3

where δ = λ√
1+λ2

.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



24 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

Proof. From Theorem 1 it follows that

E

[

(Y − E [Y ])3
]

=
d3

dt3
KY (t)

∣

∣

∣

∣

[1]

t=0

=
d

dt

(

d2

dt2
logMX (t)

)∣

∣

∣

∣

t=0

=
d

dt

(

d2

dt2
log
(

2etµ+
1
2
t2σ2

Φ (δσt)
)

)∣

∣

∣

∣

t=0

=
d

dt

(

d2

dt2

(

tµ+
1

2
t2σ2 + log (2Φ (δσt))

))∣

∣

∣

∣

t=0

=
d

dt

(

d

dt

(

µ+ σ2t+
δσφ (δσt)

Φ (δσt)

))∣

∣

∣

∣

t=0

=
d

dt

(

d

dt

(

µ+ σ2t+ δσm (δσt)
)

)∣

∣

∣

∣

t=0

[2]

=
d

dt

(

σ2 + δσ
d

dt
m (δσt)

)∣

∣

∣

∣

t=0

= (δσ)

(

d2

dt2
m (δσt)

)∣

∣

∣

∣

t=0

= (δσ)
d

dt

(

m′ (δσt) δσ
)

∣

∣

∣

∣

t=0

= (δσ)

((

d

dt
m′ (δσt)

)

δσ +m′ (δσt)
(

d

dt
δσ

))∣

∣

∣

∣

t=0

= (δσ)
(((

m′′ (δσt)
)

δσ
)

δσ + 0
)∣

∣

t=0

= (δσ)3 m′′ (δσt)
∣

∣

∣

t=0

= (δσ)3
(

−m (δσt) + (δσt)2 m (δσt) + 3 (δσt) (m (δσt))2 + 2 (m (δσt))3
)∣

∣

∣

t=0

[3]

= (δσ)3
(

−m (0) + 2 (m (0))3
)

= (δσ)3



−
√

2

π
+ 2

(

√

2

π

)3




[4]

= (δσ)3
(

2

π

)3/2
(

2−
(

2

π

)−1
)

=

(

δσ

√

2

π

)3
1

2
(4− π)

=
1

2
(4− π)

(

δσ

√

2

π

)3

where δ = λ√
1+λ2

.

[1]Applying Definition 14, Appendix B.1;

[2]Applying Definition 13, Appendix B.1;

[3]Using Property 3;

[4]Using Property 1.
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2.2. CHARACTERISTICS OF SKEW-NORMAL DISTRIBUTION 25

4th central moment [7]

This stated without proof since the derivation follows similarly as before.

Theorem 5. Consider Y ∼ SN
(

µ, σ2, λ
)

, with MGF (2.4), then

E

[

(Y − E [Y ])4
]

= 2 (π − 3)

(

δσ

√

2

π

)4

where δ = λ√
1+λ2

.

Standardisation of the 3rd and 4th central moments produces the commonly used measures

of skewness (γ1) and kurtosis (γ2) of random variable Y given by

γ1 =
E

[

(Y − E [Y ])3
]

(var [Y ])
3
2

=

1
2 (4− π)

(

δσ

√

2
π

)3

(

σ2
(

1− 2
π δ

2
))

3
2

and

γ2 =
E

[

(Y − E [Y ])4
]

(var [Y ])2
=

2 (π − 3)
(

δσ
√

2
π

)4

(

σ2
(

1− 2
π δ

2
))2

where δ = λ√
1+λ2

.

2.2.3 SN PDF and skewing mechanism

Figure 2.1 and Figure 2.3 depict the PDF of the SN
(

µ, σ2, λ
)

distribution i.e. fX (x;µ, σ, λ) as

given in (2.2) and the corresponding skewing mechanism, 2Φ
(

λ
(x−µ

σ

))

, for varying parameter

values.

(a) SN PDF (b) SN skewing mechanism

Figure 2.1: The SN PDF (2.2) and corresponding skewing mechanism for varying σ and arbitrary

µ = 0 and λ = 2.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



26 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

Remarks

In Figure 2.1b, it is observed that σ has an effect on the skewing mechanism for all σ. Since in

this case λ = 2 > 0, the resulting SN distributions are all positively skewed.

The observation made in Figure 2.1b is stated in general terms:

Remark 1. Let x0 (x1) be the value of x for which the skewing mechanism approximately attains

its minimum (maximum) value. The minimum and maximum values of the skewing mechanism

will be denoted θx0 and θx1 respectively. Then to obtain the skew-symmetric version of the

normal distribution:

• for x ∈ (x0, x1) the skewing mechanism multiplies the original symmetric normal PDF by

a value in the interval (θx0 , θx1);

• for x < x0, the SN PDF (2.2) is approximately θx0 and;

• for x > x1, the SN PDF (2.2) is approximately θx1 multiplied by the original symmetric

normal PDF.

Remark 2. The behavior of the skewing mechanism in the interval (x0, x1) determines how the

skewness is introduced into the original skew-symmetric distribution. This interval is solely

responsible for the resulting skewness and will be referred to as the skewing window.

This terminology will be used through the study and is summarised in Figure 2.2.

Figure 2.2: The skewing window exhibited by a particular skewing mechanism.

Example 1. Consider Figure 2.1b. When σ = 3, by inspection of the red curve x0 ≈ −4, x1 ≈ 4,

θx0 ≈ 0 and θx1 ≈ 2, and so:

• for x ∈ (−4, 4) the skewing mechanism multiplies original symmetric normal PDF by a

value in the interval (0, 2);

• for x < −4, the SN PDF is approximately 0;
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2.2. CHARACTERISTICS OF SKEW-NORMAL DISTRIBUTION 27

• for x > 4, the SN PDF is approximately 2 multiplied by the original symmetric normal

PDF;

Remark 3. It is important to note that θx0 ≈ 0 and θx1 ≈ 2 will always be the case when the

skewing mechanism is 2G0 (·) where G0 (·) is as defined in Proposition 1, Section 1.2.

(a) SN PDF (b) SN skewing mechanism

Figure 2.3: The SN PDF (2.2) and skewing mechanism, 2Φ
(

λ
(x−µ

σ

))

, for varying λ and arbi-

trary µ = 0 and σ = 1.

Remarks

1. In Figure 2.3a, it is observed that for λ > 0 and λ < 0 the resulting SN distributions are

respectively positively and negatively skewed;

2. In Figure 2.3b, for λ = 0 it is observed that the skewing mechanism has a value of 1 and

therefore the resulting distribution is simply the original symmetric normal distribution;

3. As can be deduced from Figure 2.3b, for increasing |λ|, the skewing window becomes

narrower which implies that the resulting skewness is obtained by multiplying the original

symmetric normal PDF by a value in the interval (0, 2) over a narrower range of x resulting

in a SN PDF (2.2) with peaks attaining a higher probabilities as in Figure 2.3a.
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28 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

2.2.4 SN CDF

Consider X ∼ SN (λ) with PDF (2.1). Denote the CDF of X by FX (x;λ). Then

FX (x;λ) =

∫ x

−∞
2φ (t)Φ (λt) dt

=

∫ x

−∞
2φ (t)

∫ λt

−∞
φ (u) dudt

= 2

∫ x

−∞

∫ λt

−∞
φ (t)φ (u) dudt

= Φ(x)− T (x, λ) (2.6)

for x ∈ R, λ ∈ R, where T (x, λ) is Owen’s T function [23] which is defined as

T (x, λ) =
1√
2π

∫ λ

0

e−
1
2
x2(1+t2)

1 + t2
dt

for x, λ ∈ R.

Proof. The proof is given in [5].

2.3 Stochastic representation of SN distribution

Following the approach of Henze [20], a stochastic representation is revisited that is useful for

generating random numbers from a SN
(

µ, σ2, λ
)

distribution. This provides a method to gen-

erate random numbers from X ∼ SN
(

µ, σ2, λ
)

with PDF (2.2).

Theorem 6. If U1 ∼ N (0, 1) and U2 ∼ N (0, 1) are two independent normal distributed random

variables, then

X =
λ|U1|+ U2√

1 + λ2
∼ SN (λ).

Proof. Let U1 ∼ N (0, 1) and U2 ∼ N (0, 1) be independent and let a = λ√
1+λ2

, b = 1√
1+λ2

and

X = λ|U1|+U2√
1+λ2

= a|U1|+ bU2.

Then

P [X ≤ x] = EU1 [P [X ≤ x|U1 = u1]]

=

∫

R

P [a|u1|+ bU2 ≤ x]φ (u1) du1

=

∫ 0

−∞
P [a|u1|+ bU2 ≤ x]φ (u1) du1 +

∫ ∞

0
P [a|u1|+ bU2 ≤ x]φ (u1) du1.(2.7)
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2.3. STOCHASTIC REPRESENTATION OF SN DISTRIBUTION 29

U1 is symmetric about u1 = 0 therefore

∫ 0

−∞
P [a|u1|+ bU2 ≤ x]φ (u1) du1 =

∫ ∞

0
P [a|u1|+ bU2 ≤ x]φ (u1) du1

=

∫ ∞

0
P [au1 + bU2 ≤ x]φ (u1) du1. (2.8)

It follows from (2.7) and (2.8) that

P [X ≤ x] = 2

∫ ∞

0
P [au1 + bU2 ≤ x]φ (u1) du1

= 2

∫ ∞

0
P

[

U2 ≤
x− au1

b

]

φ (u1) du1

= 2

∫ ∞

0
Φ

(

x− au1

b

)

φ (u1) du1. (2.9)

Applying a standard statistical result [10] (see Theorem 13, Appendix B.2) it follows from (2.9)

that

fX (x) =
d

dx
P [X ≤ x]

= 2

∫ ∞

0

d

dx
Φ

(

x− au1

b

)

φ (u1) du1

= 2

∫ ∞

0
φ

(

x− au1

b

)

1

b
φ (u1) du1

= 2

∫ ∞

0

1√
2π

e
− 1

2

(

x−au1
b

)2
1

b
φ (u1) du1

= 2

∫ ∞

0

1√
2π

e
−(

x2−2xau1+a2u21)
2b2

1

b

1√
2π

e−
1
2
u2
1du1

= 2
1√
2π

e
− x2

2b2

∫ ∞

0

1√
2πb2

e
−u21

2
−(

−2xau1+a2u21)
2b2 du1

= 2
1√
2π

e
− x2

2b2

∫ ∞

0

1√
2πb2

e
−(

u21b
2−2xau1+a2u21)

2b2 du1

= 2
1√
2π

e
− x2

2b2

∫ ∞

0

1√
2πb2

e
−(

u21(a2+b2)−2xau1)
2b2 du1, since a2 + b2 = 1

= 2
1√
2π

e
− x2

2b2

∫ ∞

0

1√
2πb2

e
−(

u21−2xau1+x2a2)
2b2 e

x2a2

2b2 du1

= 2
1√
2π

e
− x2

2b2
+x2a2

2b2

∫ ∞

0

1√
2πb2

e
− (u1−ax)2

2b2 du1

= 2
1√
2π

e
−(

x2−x2a2)
2b2

∫ ∞

0

1√
2πb2

e
− (u1−ax)2

2b2 du1

= 2
1√
2π

e
−

x2(1−a2)
2b2

∫ ∞

0

1√
2πb2

e
− (u1−ax)2

2b2 du1

= 2
1√
2π

e
−x2b2

2b2

∫ ∞

0

1√
2πb2

e
− (u1−ax)2

2b2 du1

= 2φ (x)

∫ ∞

0

1√
2πb2

e
− (u1−ax)2

2b2 du1. (2.10)
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30 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

If w = u1−ax
b then u−1 (w) = wb+ ax and d

dwu
−1 (w) = b. Note the change in the bounds of the

integral. If u1 = 0 =⇒ w = −ax
b . The upper bound does not change.

Applying the transformation it follows from (2.10) that

fX (x) = 2φ (x)

∫ ∞

−ax
b

1√
2π

e−
w2

2 dw

= 2φ (x)

∫ ∞

−ax
b

φ (w) dw

= 2φ (x) lim
k→∞

Φ (w)|k−ax
b

= 2φ (x)

(

lim
k→∞

Φ (k)− lim
k→∞

Φ

(−ax

b

))

= 2φ (x)

(

1− Φ

(−ax

b

))

= 2φ (x)Φ
(ax

b

)

. (2.11)

Since a
b =

λ√
1+λ2

1√
1+λ2

= λ it follows from (2.11) that

fX (x;λ) = 2φ (x)Φ (λx) .

Therefore X ∼ SN (λ) distribution with PDF fX (x;λ) as given in (2.1).

Corollary 3. If U1 ∼ N (0, 1) and U2 ∼ N (0, 1) are two independent normal distributed random

variables, then

Y = µ+ σX

= µ+ σ
λ|U1|+ U2√

1 + λ2
∼ SN

(

µ, σ2, λ
)

with PDF (2.2).

Since software that can generate normal distributed random variables is readily available,

Theorem 6 and Corollary 3 provide a representation to easily generate random numbers from a

SN distribution.
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2.4. EXAMINING THE EFFECT OF λ ON THE CHARACTERISTICS OF SN DISTRIBUTION 31

2.3.1 Visualisation of SN sampling scheme derived in Section 2.3

(a) Parameter set:
(

µ = 0, σ2 = 1, λ = 2
)

(b) Parameter set:
(

µ = 0, σ2 = 2, λ = 2
)

(c) Parameter set:
(

µ = 0, σ2 = 1, λ = −2
)

(d) Parameter set:
(

µ = 0, σ2 = 1, λ = 4
)

Figure 2.4: Histograms of realised random samples of size 10 000 taken from X ∼ SN
(

µ, σ2, λ
)

with the corresponding theoretical PDF (2.2), overlaid for different values of µ, σ2 and λ.

Figure 2.4 shows histograms of the random samples taken from X ∼ SN
(

µ, σ2, λ
)

using the

stochastic representation in Corollary 3 with the corresponding theoretical PDF (2.2) overlaid.

2.4 Examining the effect of λ on the characteristics of SN distri-

bution

Consider random variable X ∼ SN
(

µ, σ2, λ
)

with PDF (2.2). The effect of the parameter λ

on the characteristics (i.e. expected value, standard deviation, skewness and kurtosis) of the

distribution shows the effect that the introduction of λ has on the distribution. Figure 2.5 shows
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32 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

characteristics of the SN (µ, σ, λ) distribution for varying λ. The characteristics are theoretically

calculated using the results obtained in Section 2.2.2.

(a) Parameter set:
(

µ = 0, σ2 = 1
)

(b) Parameter set:
(

µ = 0, σ2 = 16
)

Figure 2.5: Characteristics of SN distribution with PDF (2.2) for varying λ and specified µ and

σ2.

Similarities between Figure 2.5a and Figure 2.5b:

• expected value increases (decreases) monotonically with increasing (decreasing) values of

λ;

• standard deviation is at a maximum when λ is zero and decreases towards a minimum as

|λ| increases;

• skewness is zero when λ = 0 and increases (decreases) monotonically towards a maximum

(minimum) for increasing (decreasing) values of λ (see Figure 2.3a);

• kurtosis is zero when λ = 0 and increases towards a maximum as |λ| increases (see Figure

2.3a).

Effect of increasing σ from Figure 2.5a to Figure 2.5b:

• increasing σ does not effect the respective skewness and kurtosis of the two distributions;

• the expected value in Figure 2.5b is higher (lower) for any λ > 0 (λ < 0) than the expected

value in Figure 2.5a;

• the standard deviation in Figure 2.5b is higher (lower) for any λ > 0 (λ < 0) than the

expected value in Figure 2.5a.
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2.5. EXTENSIONS OF THE SKEW-NORMAL MODEL 33

For any λ 6= 0, the resulting SN distribution will have positive kurtosis, indicating that the PDF

of SN
(

µ, σ2, λ
)

as given in (2.2) will a sharper peak than the normal distribution with same

mean and variance i.e. N
(

µ, σ2
)

.

2.5 Extensions of the skew-normal model

In this section, a short overview of the extensions of the skew-normal model as illustrated in

Figure 1.2 and Figure 1.3 is presented. The following structure summarises the extensions inves-

tigated in Section 2.5.1 through to Section 2.5.5.

Figure 2.6: The symmetric base PDF and skewing mechanism

Figure 2.6 emphasises that the extensions of the skew-normal distribution presented in in

Section 2.5.1 through to Section 2.5.5 use the normal distribution PDF as the symmetric base

PDF and a particular function of the CDF of the normal distribution as the skewing mechanism.

In Section 2.5.6 the PDF (2.1) and CDF (2.6) of the SN distribution is used in the definition of

a beta generated distribution as illustrated in Figure 1.3.

2.5.1 Skew-generalised normal distribution

Arellano-Valle et. al. [3] introduced the following skew-generalised normal distribution.

Definition 1. A random variable X has the skew-generalised normal distribution if its PDF is

given by

fX (x;λ1, λ2) = 2φ (x) Φ

(

λ1x√
1+λ2x2

)

, x ∈ R (2.12)

where λ1 ∈ R and λ2 ∈ R
+. This is denoted by X ∼ SGN (λ1, λ2).

Special cases:

• λ2 = 0 corresponds to the SN (λ1) ;

• λ1 = 0 corresponds to the standard N (0, 1) distribution;

The parameter, λ2, can be used to adapt the tail-length of the distribution.
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34 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

2.5.2 Balakrishnan skew-normal distribution

Balakrishnan [11] introduced the following generalisation of Azzalini’s skew-normal [5] distribu-

tion.

Definition 2. A random variable X has the Balakrishnan skew-normal distribution if its PDF

is given by

fX (x;n, λ) = cn (λ)φ (x)Φn (λx) , x ∈ R (2.13)

where n ∈ R
+, λ ∈ R, and

cn (λ) =
1

∫

R
φ (x)Φn (λx) dx

=
1

EU [Φn (λU)]

with U ∼ N (0, 1) . This is denoted by X ∼ BSN (n, λ).

Note that for n = 0 and n = 1, the above PDF reduces to the standard normal and the

Azzalini’s skew-normal [5] distributions, respectively.

2.5.3 Generalised Balakrishnan skew-normal type I distribution

Hasanalipour and Sharafi [19] generalised the Balakrishnan skew-normal distribution (see Defi-

nition 2).

Definition 3. A random variable X has the generalised Balakrishnan skew-normal type I dis-

tribution if its PDF is given by

fX (x;n, λ1, λ2) = cn (λ1, λ2)φ (x)Φn

(

λ1x√
1+λ2x2

)

, x ∈ R (2.14)

where n ∈ R
+, λ1 ∈ R, λ2 ∈ R

+ and

cn (λ1, λ2) =
1

∫

R
φ (x)Φn

(

λ1x√
1+λ2x2

)

dx

(2.15)

=
1

EB1

[

Φn

(

λ1B1√
1+λ2B2

1

)] (2.16)

with B1 ∼ N (0, 1) . This is denoted by X ∼ GBSN 1 (n, λ1, λ2).

Corollary 4. A random variable Y has the generalised Balakrishnan skew-normal type I dis-

tribution with location parameter µ ∈ R and scale parameter σ ∈ R
+ if its PDF is given by

fY (y;µ, σ, n, λ1, λ2) = cn(µ,σ,λ1,λ2)
σ φ

(y−µ
σ

)

Φn

(

λ1(y−µ)√
σ2+λ2(y−µ)2

)

, y ∈ R (2.17)
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2.5. EXTENSIONS OF THE SKEW-NORMAL MODEL 35

where n ∈ R
+, λ1 ∈ R, λ2 ∈ R

+ and

cn (µ, σ, λ1, λ2) =
1

∫

R

1
σφ
(y−µ

σ

)

Φn

(

λ1(y−µ)√
σ2+λ2(y−µ)2

)

dy

=
1

EB2

[

Φn

(

λ1(B2−µ)√
σ2+λ2(B2−µ)2

)]

with B2 ∼ N
(

µ, σ2
)

. This is denoted by Y ∼ GBSN 1

(

µ, σ2, n, λ1, λ2

)

.

Proof. Let X ∼ GBSN 1 (n, λ1, λ2) with PDF (2.14). Consider the random variable Y = µ+σX,

where the location and scale parameters are denoted µ ∈ R and σ ∈ R
+ respectively.

If y = µ+ σx then u−1 (y) = y−µ
σ . Then d

dyu
−1 (y) = 1

σ , and it follows that

fY (y;µ, σ, λ1, λ2) = fX
(

u−1 (y) ;n, λ1, λ2

)

∣

∣

∣

∣

d

dy
u−1 (y)

∣

∣

∣

∣

=
1

∫

R
φ (u−1 (y))Φn

(

λ1u−1(y)√
1+λ2(u−1(y))2

)

∣

∣

∣

d
dy (u

−1 (y))
∣

∣

∣
dy

φ
(

u−1 (y)
)

×Φn





λ1u
−1 (y)

√

1 + λ2 (u−1 (y))2





∣

∣

∣

∣

d

dy

(

u−1 (y)
)

∣

∣

∣

∣

=
1

∫

R
φ
(y−µ

σ

)

Φn

(

λ1( y−µ
σ )

√

1+λ2( y−µ
σ )

2

)

∣

∣

1
σ

∣

∣ dy

φ

(

y − µ

σ

)

Φn





λ1

(y−µ
σ

)

√

1 + λ2

(y−µ
σ

)2





∣

∣

∣

∣

1

σ

∣

∣

∣

∣

=
1

∫

R

1
σφ
(y−µ

σ

)

Φn

(

λ1(y−µ)√
σ2+λ2(y−µ)2

)

dy

1

σ
φ

(

y − µ

σ

)

Φn





λ1 (y − µ)
√

σ2 + λ2 (y − µ)2





=
cn (µ, σ, λ1, λ2)

σ
φ

(

y − µ

σ

)

Φn





λ1 (y − µ)
√

σ2 + λ2 (y − µ)2





where

cn (µ, σ, λ1, λ2) =
1

∫

R

1
σφ
(y−µ

σ

)

Φn

(

λ1(y−µ)√
σ2+λ2(y−µ)2

)

dy

=
1

EB2

[

Φn

(

λ1(B2−µ)√
σ2+λ2(B2−µ)2

)]

with B2 ∼ N
(

µ, σ2
)

.

GBSN 1 PDF and skewing mechanism

Figure 2.7 - Figure 2.9 depict the PDF of the GBSN 1

(

µ, σ2, n, λ1, λ2

)

distribution i.e.

fX (x;µ, σ, n, λ1, λ2) as given in (2.17) and the corresponding skewing mechanism,

cn (µ, σ, λ1, λ2) Φ
n

(

λ1(x−µ)√
σ2+λ2(x−µ)2

)

, for varying parameter values.
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36 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

(a) GBSN 1 PDF (b) GBSN 1 skewing mechanism

Figure 2.7: The GBSN 1 PDF (2.17) and skewing mechanism,

cn (µ, σ, λ1, λ2) Φ
n

(

λ1(x−µ)√
σ2+λ2(x−µ)2

)

, for varying λ1 and arbitrary µ = 0, σ = 1, n = 2

and λ2 = 0 (i.e. (2.13)).

Remarks

1. Comparing Figure 2.3b and Figure 2.7b, we can see that by increasing n, θx1 (as defined in

Figure 2.2) increases and the skewing window (see Figure 2.2) becomes narrower resulting

in the peaks of the GBSN I PDF (2.17) (Figure 2.3a) attaining higher probabilities than

that of the SN PDF (2.1) (see Figure 2.3b).

2. In Figure 2.7b, for increasing |λ1|, the skewing window (see Figure 2.2) becomes narrower

which implies that the resulting skewness is obtained by multiplying the original symmetric

normal PDF by a value in the interval (θx0 , θx1) (where x0, x1, θx0 and θx1 are defined

in Figure 2.2) over a narrower range of x resulting in a GBSN I PDF (2.17) with peaks

attaining a higher probabilities.

3. For λ1 > 0 (λ1 < 0), a larger θx1 has the effect of pulling the left (right) tail of the GBSN I

PDF (2.17) closer to zero, resulting in a lighter left tail.
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2.5. EXTENSIONS OF THE SKEW-NORMAL MODEL 37

(a) GBSN 1 PDF (b) GBSN 1 skewing mechanism

Figure 2.8: The GBSN 1 PDF (2.17) and skewing mechanism,

cn (µ, σ, λ1, λ2) Φ
n

(

λ1(x−µ)√
σ2+λ2(x−µ)2

)

, for varying λ2 and arbitrary µ = 0, σ = 1, n = 2

and λ1 = 2.

Remarks

1. With λ1 > 0 in this case, with decreasing λ2 a larger θx1 has the effect of pulling the left

tail of the GBSN I PDF (see (2.17)) closer to zero, resulting in a lighter left tail.

(a) GBSN 1 PDF (b) GBSN 1 skewing mechanism

Figure 2.9: The GBSN 1 PDF (2.17) and skewing mechanism,

cn (µ, σ, λ1, λ2) Φ
n

(

λ1(x−µ)√
σ2+λ2(x−µ)2

)

, for varying n and arbitrary µ = 0, σ = 1, λ1 = 2

and λ2 = 0.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



38 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

Remarks

1. As in Figure 2.9b, with λ1 > 0 in this case, with increasing n a larger θx1 has the effect of

pulling the left tail of the GBSN I PDF (2.17) closer to zero, resulting in a shorter left tail

as in Figure 2.9a.

2.5.4 Generalised Balakrishnan skew-normal type II distribution

Yadegari et. al. [31] also generalised the Balakrishnan skew-normal distribution (see Definition

2).

Definition 4. A random variable X has the generalised Balakrishnan skew-normal type II

distribution if its PDF is given by

fX (x;m,n, λ) = cm,n (λ)φ (x) Φn (λx) [1− Φ (λx)]m , x ∈ R (2.18)

where m,n ∈ R
+, λ ∈ R and

cm,n (λ) =
1

∫

R
φ (x)Φn (λx) [1−Φ (λx)]m dx

=
1

∑m
i=0

(m
i

)

(−1)i
∫

R
φ (x) [Φ (λx)]n+i dx

=
1

∑m
i=0

(m
i

)

(−1)i EB3

[

[Φ (λU)]n+i
]

by using a binomial expansion (refer to Theorem 15, Appendix B.2) with B3 ∼ N (0, 1) . This is

denoted by X ∼ GBSN 2 (m,n, λ).

Note that for m = 0 the above PDF reduces to the PDF of the BSN (n, λ) distribution i.e.

fX (x;n, λ) as given in (2.13).

2.5.5 Generalised Balakrishnan skew-normal type III distribution

As stated in [22] another generalisation of the Balakrishnan skew-normal distribution (see Defi-

nition 2) is as follows:

Definition 5. A random variable X has the generalised Balakrishnan skew-normal type III

distribution if its PDF is given by

fX (x;m,nλ1, λ2) = cm,n (λ1, λ2)φ (x) Φn (λ1x) Φ
m (λ2x) , x ∈ R (2.19)

where m,n ∈ R
+; λ1, λ2 ∈ R and

cm,n (λ1, λ2) =
1

∫

R
φ (x) Φn (λ1x) Φm (λ2x) dx

=
1

EB4 [Φ
n (λ1B4) Φm (λ2B4)]
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2.5. EXTENSIONS OF THE SKEW-NORMAL MODEL 39

with B4 ∼ N (0, 1) . This is denoted by X ∼ GBSN 3 (m,n, λ1, λ2).

Note that for m = 0 the above PDF reduces to the PDF of the BSN (n, λ1) distribution i.e.

fX (x;n, λ1) as given in (2.13).

2.5.6 Beta skew-normal distribution

Using the form of a beta generated distribution, Mameli [22] proposed setting F (·) as the CDF

of SN (µ, σ, λ). Then, with fX (x;µ, σ, λ), the corresponding PDF as given in (2.2), the following

definition is obtained:

Definition 6. A random variable Y has the beta skew-normal distribution with location pa-

rameter µ and scale parameter σ if its PDF is given by

fY (y;µ, σ, λ, a, b) = 1
B(a,b)F (y;µ, σ, λ)a−1 (1− F (y;µ, σ, λ))b−1 fY (y;µ, σ, λ) , y ∈ R

(2.20)

where B (a, b) denotes the complete beta function (see Definition 15, Appendix B.1), F (y;µ, σ, λ)

denotes the CDF of the SN
(

µ, σ2, λ
)

distribution with PDF (2.2), λ ∈ R and a, b ≥ 1.

This is denoted by X ∼ BetaSN
(

µ, σ2, λ, a, b
)

.

Remark. The restriction on the parameters a and b in Definition 6 i.e. a, b ≥ 1 ensures than the

BetaSN PDF (2.21) is unimodal.

Corollary 5. A random variable X has the standard beta skew-normal distribution if its PDF

is given by

fX (x;λ, a, b) = 1
B(a,b)F (x;λ)a−1 (1− F (x;λ))b−1 fX (x;λ) , x ∈ R (2.21)

where B (a, b) denotes the complete beta function (see Definition 15, Appendix B.1), F (x;λ)

denotes the CDF of the SN (λ) distribution with PDF fX (x;λ) as given in (2.1), λ ∈ R and

a, b ≥ 1. This is denoted by X ∼ BetaSN (λ, a, b).

BetaSN PDF

Figure 2.10 and Figure 2.11 depict the PDF of the BetaSN
(

µ, σ2, λ, a, b
)

distribution i.e.

fY (y;µ, σ, λ, a, b) as given in (2.20) for varying parameter values.
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40 CHAPTER 2. THE SKEW-NORMAL DISTRIBUTION AND EXTENSIONS

Figure 2.10: The BetaSN PDF (2.20) for

varying λ and arbitrary µ = 0, σ2 = 1,

a = 2 and b = 1

Figure 2.11: The BetaSN PDF (2.20) for

varying λ and arbitrary µ = 0, σ2 = 1,

a = 2 and b = 3

Remarks

1. When λ = 0, the BetaSN PDF (2.20) reduced to the beta-normal case as in Eugene et.

al. [14];

2. When a > b, as in Figure 2.10, having λ < 0 will result in a BetaSN PDF (2.20) with

peaks attaining a higher probability than a corresponding −λ > 0. For example, when

λ = −4 the peak of the BetaSN PDF (2.20) attains a higher probability than that of a

BetaSN PDF with λ = 4;

3. The opposite is true when b > a as in Figure 2.11. Having λ > 0 will result in a BetaSN
PDF (2.20) with peaks attaining a higher probability than a corresponding −λ < 0. For

example, when λ = 4 the peak of the BetaSN PDF (2.20) attains a higher probability

than that of a BetaSN PDF with λ = −4.

2.6 Summary

In this chapter, the skewing methodology used to define the SN distribution, as introduced by

Azzalini [5], is investigated. The characteristics (i.e. MGF, expected value, variance, skewness

and kurtosis) of this distribution are revisited, and the PDF and CDF of the skew-normal

distribution is explored. The skewing mechanism that is used to develop the SN distribution

is also investigated. A stochastic representation of the skew-normal model is developed and

using this representation, a sampling scheme is employed to generate random variates from a

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



2.6. SUMMARY 41

SN distribution with specified parameters. Finally, existing generalisations and extensions of

the SN distribution and associated skewing mechanisms, relevant to this study, are addressed.
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Chapter 3

Skew generalised-normal type I

distribution

Azzalini [7] remarked that the SN distribution has short tails making it unsuitable for use when

there is a need for a model to have heavier tails than the normal distribution. One method

to solve this problem is to use a symmetric base PDF f0, (see Proposition 1, Section 1.2) with

heavier tails than the normal distribution. Following this motivation, this study focuses on the

generalised normal distribution (introduced by Subbotin [28]) which is flexible enough to allow

for tails heavier than that of the normal distribution. In Section 3.1, the generalised normal

distribution is given and a sampling scheme to generate random variates from this distribution

is proposed. A skew generalised-normal distribution is proposed in Section 3.2 and is termed the

skew generalised-normal type I (SGN I) distribution in order to differentiate from the distribu-

tion discussed in Chapter 4.1. The effect of particular parameters on the characteristics of the

SGN I distribution is investigated in Section 3.3 and Section 3.4 respectively. The acceptance-

rejection algorithm is presented and used to sample from the SGN I distribution and a visual

representation of this method is presented in Section 3.5. Two methods which are used to de-

rive expressions for the characteristics (i.e. expected value, variance, skewness and kurtosis)

of this distribution are presented in Section 3.6 and Section 3.7 respectively. In Section 3.8 a

numerical study is performed to evaluate the effectiveness of the two methods in approximating

the characteristics of the SGN I distribution. These results are compared to the characteristics

which are calculated from realised random samples (using the approach in Section 3.5) drawn

from the SGN I distribution. In Section 3.9 the stability and efficiency of the two methods in

approximating the characteristics of the SGN I distribution is investigated. A stochastic repre-

sentation of the SGN I distribution is derived and visualisation thereof is presented in Section

3.10. In Section 3.11 the sample estimates of characteristics evaluated from a random sample

42
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3.1. GENERALISED NORMAL DISTRIBUTION 43

from a SGN I distribution versus increasing sample size is investigated.

3.1 Generalised normal distribution

In this section, the generalised normal (GN ) distribution attributed to Subbotin [28] is presented

and a sampling scheme to generate random variates from this distribution is proposed.

Definition 7. A random variable X has the generalised normal distribution if its PDF is given

by

fX (x;β) = β

2Γ
(

1
β

)e−|x|β , x ∈ R (3.1)

where Γ (·) denotes the gamma function (see Definition 18, Appendix B.1). This is denoted by

X ∼ GN (β).

Corollary 6. A random variable Y has the generalised normal distribution with location param-

eter µ ∈ R and scale parameter α ∈ R
+ if its PDF is given by

fY (y;µ, α, β) = β

2αΓ
(

1
β

)e−| y−µ
α |β , y ∈ R (3.2)

where β ∈ R
+. This is denoted by Y ∼ GN

(

µ, α2, β
)

.

Proof. Let X ∼ GN (β) with PDF fX (x;β) as given in (3.1). Consider the random variable

Y = µ+αX, where the location and scale parameters are denoted µ ∈ R and α ∈ R
+ respectively.

If y = µ+ αx then x = u−1 (y) = y−µ
α . Then d

dyu
−1 (y) = 1

α , and it follows that

fY (y;µ, α, β) = fX
(

u−1 (y) ;β
)

∣

∣

∣

∣

d

dy
u−1 (y)

∣

∣

∣

∣

=
β

2Γ
(

1
β

)e−|u−1(y)|β
∣

∣

∣

∣

d

dy

(

u−1 (y)
)

∣

∣

∣

∣

=
β

2Γ
(

1
β

)e−| y−µ
α |β

∣

∣

∣

∣

1

α

∣

∣

∣

∣

=
β

2αΓ
(

1
β

)e−| y−µ
α |β .

Corollary 7. Note that when µ = 0, α =
√
2 and β = 2 in (3.2), the PDF simplifies to

fX (x) =
2

2
√
2Γ
(

1
2

)e
−
∣

∣

∣

x−0√
2

∣

∣

∣

2

=
1√
2π

e−
x
2
2

= φ (x)

for x ∈ R, which is the PDF of the standard normal distribution.
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44 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

3.1.1 GN PDF

Figure 3.1 - Figure 3.3 depict the PDF of the GN
(

µ, α2, β
)

distribution i.e. fX (x;µ, α, β) as

given in (3.2), for varying parameter values.

Figure 3.1: The GN PDF (see (3.2)) for

varying α and arbitrary µ = 0 and β = 2

Figure 3.2: The GN PDF (see (3.2)) for

varying α and arbitrary µ = 0 and β = 5

Figure 3.3: The GN PDF (see (3.2)) for varying β and arbitrary µ = 0 and α =
√
2

Remarks

• β affects the shape of the GN PDF (see (3.2));

• For β > 2 the peak of the PDF becomes flatter with shorter tails when compared to the

corresponding PDF of the normal distribution, N
(

µ, α2
)

;

• For β < 2 the peak of the PDF becomes more pointed with longer tails when compared to

the corresponding PDF of the normal distribution i.e. N
(

µ, α2
)

.
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3.1. GENERALISED NORMAL DISTRIBUTION 45

3.1.2 GN CDF

If X ∼ GN (β) then the CDF is given as

FX (x;β) = 1
2 +

sign(x)

2Γ
(

1
β

)γ
(

1
β , |x|β

)

, x ∈ R (3.3)

(see [2]) where β ∈ R
+, Γ (·) denotes the gamma function (see Definition 18, Appendix B.1); γ (·)

denotes the incomplete gamma function (see Definition 19, Appendix B.1) and sign(·) denotes

the function as in Definition 20, Appendix B.1). FX (x;β) will be denoted as Φ∗ (·) from Chapter

4 onward.

3.1.3 Expected value and variance of GN distribution

Theorem 7. If X ∼ GN (β) with PDF fX (x;β) as in (2.1) then E [X] = 0 and var [X] =
Γ
(

3
β

)

Γ
(

1
β

) .

Proof. Consider

E [X] =

∫ ∞

−∞
xfX (x;β) dx

=
β

2Γ
(

1
β

)

∫ ∞

−∞
xe−|x|βdx

=
β

2Γ
(

1
β

)

(∫ 0

−∞
xe−(−x)βdx+

∫ ∞

0
xe−xβ

dx

)

=
β

2Γ
(

1
β

)

(∫ ∞

0
−xe−xβ

dx+

∫ ∞

0
xe−xβ

dx

)

=
β

2Γ
(

1
β

)

∫ ∞

0

(

−xe−xβ

+ xe−xβ
)

dx

= 0. (3.4)

Using var [X] = E
[

X2
]

− (E [X])2 we calculate E
[

X2
]

as

E
[

X2
]

=

∫ ∞

−∞
x2fX (x;β) dx

=
β

2Γ
(

1
β

)

∫ ∞

−∞
x2e−|x|βdx

=
β

2Γ
(

1
β

)

(∫ 0

−∞
x2e−(−x)βdx+

∫ ∞

0
x2e−xβ

dx

)

=
β

Γ
(

1
β

)

(
∫ ∞

0
x2e−xβ

dx

)

=
β

Γ
(

1
β

)

β

(∫ ∞

0

(

xβ
)

1
β
e−xβ

x2−ββxβ−1dx

)

. (3.5)
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46 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

Let w = xβ then x = w
1
β and dw

dx = βxβ−1 then it follows from (3.5) that

E
[

X2
]

=
1

Γ
(

1
β

)

(
∫ ∞

0
w

1
β e−w

(

w
1
β

)2−β
dw

)

=
1

Γ
(

1
β

)

(∫ ∞

0
w

3
β
−1

e−wdw

)

=
Γ
(

3
β

)

Γ
(

1
β

)

[1]

. (3.6)

[1]Applying Definition 18, Appendix B.1.

If follows from (3.4) and (3.6) that

var [X] = E
[

X2
]

− (E [X])2 =
Γ
(

3
β

)

Γ
(

1
β

) .

3.1.4 Stochastic representation of GN distribution

Following a similar approach to that of Azzalini [7], a stochastic representation of the GN
(

µ, α2, β
)

distribution is derived. This provides a method to generate random numbers from X ∼ GN
(

µ, α2, β
)

with PDF (3.2).

Theorem 8. Let X ∼ GN
(

µ, α2, β
)

. Then

X =











µ+ αZ
1
β , with probability 1

2

µ− αZ
1
β , with probability 1

2

where Z ∼ Gamma
(

1
β , 1
)

(see Definition 16, Appendix B.1).

Proof. Consider Z =
∣

∣

∣

X−µ
α

∣

∣

∣

β
. Then |X − µ| = αZ

1
β which can be written as

X =











µ+ αZ
1
β , P [X − µ > 0] = 1

2

µ− αZ
1
β , P [X − µ < 0] = 1

2

The property, P [X − µ > 0] = P [X − µ < 0] = 1
2 , follows from the symmetry of X ∼ GN

(

µ, α2, β
)

with PDF fX (x;µ, α, β) as given in (3.2). Subsequently the PDF of Z needs to be determined.

Since this is a many-to-one transformation it is necessary to partition A = {x|fX (x;µ, α, β) > 0} =

(−∞,∞) into two disjoint subsets, A1 = {x|x < µ} = (−∞, µ) and A2 = {x|x > µ} = (µ,∞).
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3.1. GENERALISED NORMAL DISTRIBUTION 47

The point x = µ can be neglected in the partitioning since X is continuous. Then z =
∣

∣

∣

X−µ
α

∣

∣

∣

β

has the unique solutions x1 = u−1
1 (z) = µ − αz

1
β and x2 = u−1

2 (z) = µ + αz
1
β over these

respective intervals. In addition d
dzu

−1
1 (z) = −α

β z
1
β
−1

and d
dzu

−1 (y) = α
β z

1
β
−1

.

It follows from Theorem 14, Appendix B.2 that

fZ (z) =

2
∑

j=1

fX

(

u−1
j (z)

)

∣

∣

∣

∣

d

dz
u−1
j (z)

∣

∣

∣

∣

= fX
(

u−1
1 (z)

)

∣

∣

∣

∣

d

dz
u−1
1 (z)

∣

∣

∣

∣

+ fX
(

u−1
2 (z)

)

∣

∣

∣

∣

d

dz
u−1
2 (z)

∣

∣

∣

∣

=
β

2αΓ
(

1
β

)e
−
∣

∣

∣

∣

u
−1
1 (z)−µ

α

∣

∣

∣

∣

β
∣

∣

∣

∣

−α

β
z

1
β
−1

∣

∣

∣

∣

+
β

2αΓ
(

1
β

)e
−
∣

∣

∣

∣

u
−1
2 (z)−µ

α

∣

∣

∣

∣

β
∣

∣

∣

∣

α

β
z

1
β
−1

∣

∣

∣

∣

=







β

2αΓ
(

1
β

)e
−
∣

∣

∣

∣

∣

µ−αz

1
β −µ

α

∣

∣

∣

∣

∣

β

+
β

2αΓ
(

1
β

)e
−
∣

∣

∣

∣

∣

µ+αz

1
β −µ

α

∣

∣

∣

∣

∣

β





α

β
z

1
β
−1

=





β

2αΓ
(

1
β

)e−z +
β

2αΓ
(

1
β

)e−z





α

β
z

1
β
−1

=
β

αΓ
(

1
β

)e−zα

β
z

1
β
−1

=
1

1
β

Γ
(

1
β

)e−zz
1
β
−1

for z ∈ R
+.

Therefore Z ∼ Gamma
(

1
β , 1
)

and the result follows.

Since there is readily available software that can generate gamma distributed random num-

bers, Theorem 8 provides a representation to easily generate random numbers from a generalised

normal distribution.
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48 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

3.1.5 Visualisation of GN sampling scheme derived in Section 3.1.4

(a) Parameter set:
(

µ = 0, α2 = 2, β = 3
)

(see Figure 3.3) (b) Parameter set:
(

µ = 0, α2 = 9, β = 3
)

(c) Parameter set:
(

µ = 0, α2 = 2, β = 1
)

(see Figure 3.3) (d) Parameter set:
(

µ = 0, α2 = 2, β = 10
)

(see Figure 3.3)

Figure 3.4: Histograms of realised random samples of size 10 000 taken from X ∼ GN
(

µ, α2, β
)

with the corresponding theoretical PDF (3.2), overlaid for different values of µ, α2 and β.

Figure 3.4 shows histograms of the random samples taken from X ∼ GN
(

µ, α2, β
)

using the

stochastic representation in Theorem 8 with the corresponding theoretical PDF (3.2) overlaid.

3.2 The skew generalised-normal type I distribution

In this section, the methodology introduced in Chapter 2 is applied using the generalised normal

distribution defined in Section 3.1 as the symmetric base PDF (see Figure (1.4)). Using the

same notation defined in Proposition 1, Section 1.2, the case when f0 = φ∗, G0 = Φ, where

φ∗ (x;β) represents the PDF defined in (3.1), Φ (·) represents the standard normal CDF, and

where w (x) =
√
2λx for λ ∈ R is investigated and the following definition is obtained:
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3.2. THE SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION 49

Definition 8. A random variable X has the standard skew generalised-normal type I distribution

if its PDF is given by

fX (x;β, λ) = 2φ∗ (x;β) Φ
(√

2λx
)

, x ∈ R (3.7)

where β ∈ R
+ and λ ∈ R. This is denoted by X ∼ SGN I (β, λ).

Expanding (3.7) using the definition φ∗ (·) as in (3.2), it follows that

fX (x;β, λ) = 2φ∗ (x;β) Φ
(√

2λx
)

= 2
β

2Γ
(

1
β

)e−|x|βΦ
(√

2λx
)

=
β

Γ
(

1
β

)e−|x|βΦ
(√

2λx
)

(3.8)

for x ∈ R, where β ∈ R
+ and λ ∈ R.

Corollary 8. A random variable Y has the skew generalised-normal type I distribution with

location parameter µ ∈ R and scale parameter α ∈ R
+ if its PDF is given by

fY (y;µ, α, β, λ) = 2
αφ

∗ (y−µ
α ;β

)

Φ
(√

2λ
(y−µ

α

))

, y ∈ R (3.9)

where β ∈ R
+ and λ ∈ R. This is denoted by Y ∼ SGN I

(

µ, α2, β, λ
)

.

Proof. Let X ∼ SGN I (β, λ) with PDF (3.7). Consider the random variable Y = µ+αX, where

the location and scale parameters are denoted µ ∈ R and α ∈ R
+ respectively.

If y = µ+ αx then d
dyu

−1 (y) = 1
α and it follows that

fY (y;µ, α, β, λ) = fX
(

u−1 (y)
)

∣

∣

∣

∣

d

dy
u−1 (y)

∣

∣

∣

∣

= 2φ∗ (u−1 (y) ;β
)

Φ
(√

2λu−1 (y)
)

∣

∣

∣

∣

d

dy

(

u−1 (y)
)

∣

∣

∣

∣

= 2φ∗
(

y − µ

α
;β

)

Φ

(√
2λ

(

y − µ

α

)) ∣

∣

∣

∣

1

α

∣

∣

∣

∣

=
2

α
φ∗
(

y − µ

α
;β

)

Φ

(√
2λ

(

y − µ

α

))

(3.10)

Expanding (3.9) using the definition φ∗ (·) as in (3.2) it follows that

fY (y;µ, α, β, λ) =
2

α
φ∗
(

y − µ

α

)

Φ

(√
2λ

(

y − µ

α

))

= =
2

α

β

2Γ
(

1
β

)e−| y−µ
α |βΦ

(√
2λ

(

y − µ

α

))

=
β

αΓ
(

1
β

)e−| y−µ
α |βΦ

(√
2λ

(

y − µ

α

))

(3.11)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



50 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

for y ∈ R, where µ ∈ R, α, β ∈ R
+ and λ ∈ R. This is denoted by Y ∼ SGN I

(

µ, α2, β, λ
)

.

Corollary 9. When µ = 0, α =
√
2 and β = 2 the SGN I distribution with PDF (3.11) collapses

to that of the SN distribution with PDF (2.1).

3.2.1 SGN I PDF

Figure 3.5 - Figure 3.8 depict the PDF of the SGN I

(

µ, α2, β, λ
)

distribution as given in (3.11),

and the corresponding skewing mechanism for varying parameter values.

(a) SGN I PDF (b) SGN I skewing mechanism

Figure 3.5: The SGN I PDF (3.11) and skewing mechanism, 2Φ
(√

2λ
(x−µ

α

))

, for varying α and

arbitrary µ = 0, β = 2 and λ = 2.

Remarks

1. In Figure 3.5a when α =
√
2, the SGN I distribution simplifies to the SN distribution with

PDF (2.1) with µ = 0, σ = 1 and λ = 2 (see black curve Figure 2.1a);

2. Figure 3.5a is the SGN I PDF (3.11) that results when the skewing mechanism in Figure

3.5b acts on the GN PDF (3.2) in Figure 3.1.
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3.2. THE SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION 51

Figure 3.6: The SGN I PDF (3.11) for vary-

ing α and arbitrary µ = 0, β = 5 and λ = 2.

Figure 3.7: The SGN I PDF (3.11) for vary-

ing β and arbitrary µ = 0, α =
√
2 and

λ = 2.

Remarks

1. The accompanying SGN I skewing mechanism for Figure 3.6 is not provided since it would

be identical to that of Figure 3.5b since β has no impact on the skewing mechanism. Thus

Figure 3.6 is the SGN I PDF 3.11 that results when the skewing mechanism in Figure 3.5b

acts on the GN PDF (3.2) in Figure 3.2.

2. The accompanying SGN I skewing mechanism for Figure 3.7 is not provided since it would

be identical to that of the green curve Figure 3.5b (corresponding to α =
√
2) for all β,

since β has no impact on the skewing mechanism. Thus Figure 3.7 is the SGN I PDF (see

3.11) that results when the skewing mechanism for α =
√
2 in Figure 3.5b acts on the GN

PDF (3.2) in Figure 3.3.
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52 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

(a) SGN I PDF (b) SGN I skewing mechanism

Figure 3.8: The SGN I PDF (3.11) and skewing mechanism, 2Φ
(√

2λ
(x−µ

α

))

, for varying λ and

arbitrary µ = 0, α = 3 and β = 5.

Remarks

1. Figure 3.8a is the SGN I PDF 3.11 that results when the skewing mechanism in Figure

3.8b acts on the GN PDF (3.2) in Figure 3.2 where α = 3;

2. In Figure 3.8b, for λ = 0 it is observed that the skewing mechanism has a value of 1

and therefore the resulting distribution is simply the original symmetric GN PDF (3.2) as

illustrated in Figure 3.2 where α = 3;

3. As can be deduced from Figure 3.8b, for increasing |λ|, the skewing window becomes

narrower which implies that the resulting skewness is obtained by multiplying the original

symmetric GN PDF (3.2) by a value in the interval (0, 2) over a narrower range of x

resulting in a SGN I PDF 3.11 with peaks attaining higher probabilities.

3.3 Examining the effect of λ on the characteristics of SGN I dis-

tribution

Consider random variable X ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11). The effect of the parameter

λ on the characteristics (i.e. expected value, standard deviation, skewness and kurtosis) of

the SGN I distribution is illustrated below. The characteristics are calculated by numerically

integrating the function

E [Xr] =

∫

R

xrfX (x;µ, α, β, λ) dx (3.12)
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for r = 1, 2, 3, 4 to obtain the respective moments. These calculated moments are used in

Definitions 22 - 25, Appendix B.1 to obtain the respective characteristics. It is important to

note however, that for β = 1 (see Figure 3.9a), the particular numerical integration technique

used in SAS to evaluate (3.12) failed. The Method 2 (as will be discussed in Section 3.7) was

instead employed to approximate the characteristics. Figure 3.9 shows the characteristics of the

SGN I

(

µ, α2, β, λ
)

distribution versus λ.

(a) Parameter set:
(

µ = 0, α2 = 2, β = 1
)

(b) Parameter set:
(

µ = 0, α2 = 2, β = 5
)

(c) Parameter set:
(

µ = 0, α2 = 1, β = 2
)

(d) Parameter set:
(

µ = 0, α2 = 9, β = 5
)

Figure 3.9: Characteristics of the SGN I distribution with PDF (3.11) for varying λ and specified

µ, α and β .

Remarks

1. If we had µ = 1, α2 = 2 and β = 2 then the characteristics of SGN I distribution with

PDF (3.11) for varying λ would be identical to that in Figure 2.5a;

2. As illustrated by Figure 3.9b and 3.9d, the kurtosis obtained for the SGN I distribution

is negative for all λ, indicating that for β = 5 the SGN I

(

µ, α2, β, λ
)

PDF has lighter
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54 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

tails and a flatter peak than a normal distribution with same mean and variance as the

respective SGN I distribution;

3. As illustrated by Figure 3.9a, the kurtosis obtained for the SGN I distribution is positive

for all λ, indicating that for β = 1 the SGN I

(

µ, α2, β, λ
)

PDF has heavier tails and a

more pronounced peak than a normal distribution with same mean and variance as the

respective SGN I distribution;

4. As illustrated by Figure 3.9c, the kurtosis obtained for the SGN I distribution is positive

for λ 6= 0 , indicating that for β = 2 and λ 6= 0 the SGN I

(

µ, α2, β, λ
)

PDF has heavier

tails and a more pronounced peak than a normal distribution with same mean and variance

as the respective SGN I distribution.

3.4 Examining the effect of β on the skewness of SGN I distribu-

tion

It is important to note that skewness is invariant under location-scale transformations. Therefore,

the only parameters that affect the skewness of SGN I

(

µ, α2, β, λ
)

are β and λ. Given β, the

minimum and maximum attainable skewness of X ∼ SGN I (β, λ) with PDF fX (x;β, λ) as in

(3.8) is calculated with the following algorithm.

1. Fix a value β;

2. Use Method 2 (see Section 3.7) to approximate the skewness of X ∼ SGN I (β, λ) with

PDF (3.8);

3. Use an optimisation strategy (e.g. Nelder–Mead method) to find a two values λ1, λ2 in the

arbitrary range [−50, 50] such that the skewness of X ∼ SGN I (β, λ) obtains its respective

minimum and maximum.

Given a value of β, the minimum and maximum skewness attainable by varying the respective

values of λ1 and λ2 is summarised in Table 3.1.
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β Minimum skewness λ1 Maximum skewness λ2

0.5 -4.30197 -44.21 4.30197 44.21

1 -1.9994 -50 1.9994 50

1.5 1.33585 -50 1.33585 50

2 -0.99356 -50 0.99356 48.87

2.5 -0.10750 0.6888842 0.10943 -0.606611

3 -0.21079 0.9239452 0.20991 -0.910176

4 -0.35097 1.0671345 0.35022 -1.118644

5 -0.43620 1.2053199 0.43485 -1.192504

10 -0.59082 1.3530452 0.58926 -1.287575

100 -0.66620 1.4154796 0.66644 -1.31521

Table 3.1: Approximate ranges of skewness attainable by the SGN I (β, λ) distribution by varying

λ for different β values.

Table 3.1 provides insight into the degree of skewness that is attainable be skewing a sym-

metric distribution using the methodology presented in Proposition 1, Chapter 1.

• When β = 2, the PDF (3.11) is reduced to a scaling of the SN (λ) distribution with PDF

(2.1). However, as previously noted, scaling does not affect the skewness of a distribution.

Thus when β = 2 the associated range of skewness is that which is attainable by the SN (λ)

distribution with PDF (2.1).

• The broader range of the attainable skewness for β < 2 highlights the added flexibility in

modeling skewness that the SGN I (β, λ) distribution with PDF (3.11) provides over the

SN (λ) distribution with PDF (2.1).

Remarks

1. When considering the SN (λ) distribution with PDF (2.1), λ > 0 and λ < 0 imply that the

distribution will be respectively positively and negatively skewed. In this case skewness is

a monotonically increasing function of λ as illustrated in Figure 2.5a and Figure 2.5b;

2. For β ≤ 2 the SGN I (β, λ) distribution with PDF (3.11) obtains its minimum and max-

imum skewness at the respective lower and upper edge of the considered range of λ (i.e.

λ ∈ [50, 50]). This is due to the skewness of the SGN I (β, λ) distribution with PDF (3.11)

being a monotonically increasing function of λ when β ≤ 2 as illustrated in Figure 3.9a

and Figure 3.9c;
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56 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

3. For β > 2 the SGN I (β, λ) distribution with PDF (3.11) obtains its maximum skewness

(i.e. most positively skewed) at a value λ < 0;

4. For β > 2 the SGN I (β, λ) distribution with PDF (3.11) obtains its minimum skewness

(i.e. most negatively skewed) at a value λ > 0;

5. The effect described by the two above points above is graphically represented by the yellow

curve in Figure 3.9b and Figure 3.9d which can be seen to be non-monotonic functions of

λ. For β > 2 this is the general behavior of skewness of the SGN I (β, λ) distribution with

PDF (3.11).

3.5 Sampling from the SGN I distribution

The acceptance-rejection (AR) method (similar to [21]) is used to generate random numbers

from a SGN I

(

µ, α2, β, λ
)

distribution with PDF (3.11).

3.5.1 AR algorithm

1. Find a distribution H, with PDF, h(x), with a similar range and shape to f(x), for which

there are methods to generate variates from;

2. Find c, the maximum value f(x)
h(x) takes over the range of x i.e. c = maxx

{

f(x)
h(x)

}

;

3. Let g(x) = f(x)
ch(x) ;

4. Generate random variate u from uniform distribution that covers the PDF f (x);

5. Generate a random variate y from h(x) independent from U ;

6. If u >g(y) repeat Step 4 and 5, else return x = y.

It is required to generate random numbers from the distribution, X ∼ SGN I

(

µ, α2, β, λ
)

with

PDF (3.11) and the AR algorithm (see 3.5.1) in applied to this framework:

1. Find a distribution H, with PDF, h(x), with a similar range and shape to fX (x;µ, α, β, λ)

as given in (3.11), from which random numbers can be generated with known methods.

Let H ∼ Uniform(−N,N) thus the PDF is, h(x) = 1
2N . In implementation it is necessary

that N → ∞ (i.e. become ’large’) in the code so that H covers the range of F.

2. Find c, the maximum value f(x)
h(x) takes over the range i.e. c = maxx

{

f(x)
h(x)

}

Therefore fX (x;µ, α, β, λ) is maximised and h(x) is minimised over values of x.
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3.5. SAMPLING FROM THE SGN I DISTRIBUTION 57

In our case the maximum of fX (x;µ, α, β, λ) as given in (3.11) is found using an optimiza-

tion routine and is denoted fmax.

Since h(x) = 1
2N ≥0 does not depend on x, minx{h(x)} = 1

2N

Thus c =maxx

{

fX(x;µ,α,β,λ)
h(x)

}

= maxx{fX(x;µ,α,β,λ))}
min{h(x)} = fmax

1
2N

= 2Nfmax.

3. Let g(x) = f(x)
ch(x) =

f(x)

2Nfmax× 1
2N

= f(x)
fmax

.

4. Generate random variate u from U ∼ Uniform(0, 1).

5. Generate a random variate y from H independent from U :

(a) Generate random variate u∗ from U∗ ∼ Uniform(0, 1) distribution;

(b) Set y = −N + 2Nu∗i.e. a realisation from H ∼ Uniform(−N,N) distribution.

6. If u >g(y) repeat Steps 4 and 5, else return x = y.

3.5.2 Visualisations of the AR algorithm

Figure 3.10 - Figure 3.13 visually show the results of implementing AR algorithm on SAS 9.4

software. The green and red points indicate the random numbers that were respectively ac-

cepted and rejected as candidates from the SGN I

(

µ, α2, β, λ
)

distribution with PDF (3.11). A

histogram of the realised random variates drawn from SGN I

(

µ, α2, β, λ
)

is plotted and the true

theoretical PDF as given in (3.11) is overlaid.

Simulation 1

Figure 3.10: Parameter set:
(

µ = 0, α2 = 16, β = 2, λ = 2
)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



58 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

Simulation 2

Figure 3.11: Parameter set:
(

µ = 0, α2 = 16, β = 5, λ = 2
)

Simulation 3

Figure 3.12: Parameter set:
(

µ = 0, α2 = 25, β = 3, λ = −2
)
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3.5. SAMPLING FROM THE SGN I DISTRIBUTION 59

Simulation 4

Figure 3.13: Parameter set:
(

µ = 0, α2 = 4, β = 2, λ = 25
)

Table 3.2 summarises the results of the SGN I variates obtained in the above simulations.

Simulation 1 Simulation 2 Simulation 3 Simulation 4

µ 0 0 0 0

α2 16 16 25 4

β 2 5 3 2

λ 2 2 -2 25

Sample size (n) 13883 12000 15735 5347

Estimated mean 2.0079664 1.6660456 -2.188361 1.1362277

Estimated standard deviation 1.964543 1.5412058 2.1220783 0.8546721

Estimated skewness 0.4353946 -0.322299 -0.017579 0.9116042

Estimated kurtosis 0.2824671 -0.251794 -0.211116 0.5684229

Time taken (seconds) 1.09 0.0940001 0.1100001 0.1099999

Table 3.2: Parameter structure and analysis of SGN I variates obtained in Simulation 1 through

Simulation 4.
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60 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

3.6 Characteristics of the SGN I distribution (Method 1)

Consider a random variable X ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11). Expressions for the

moments, expected value, variance, skewness and kurtosis of the distribution of X (see Definition

21 - Definition 25, Appendix B.1) are now derived:

Moments of SGN I

(

µ, α2, β, λ
)

distribution

Applying Definition 21, Appendix B.1 to the random variable X ∼ SGN I

(

µ, α2, β, λ
)

with PDF

(3.11), an expression for the rth non-central moments of X is obtained as follows

E [Xr] =

∫

R

xrfX (x;µ, α, β, λ) dx

=

∫

R

xr
β

αΓ
(

1
β

)e−|x−µ
α |βΦ

(√
2λ

(

x− µ

α

))

dx

=

∫

R

2xr
β

2αΓ
(

1
β

)e−|x−µ
α |βΦ

(√
2λ

(

x− µ

α

))

dx

=

∫

R

2xrfX (x;µ, α, β) Φ

(√
2λ

(

x− µ

α

))

dx

where fX (x;µ, α, β) denotes the PDF of the GN distribution as given in (3.2).

Therefore

E [Xr] =

∫

R

2xrΦ

(√
2λ

(

x− µ

α

))

fX (x;µ, α, β) dx

= EX∗

[

2Xr
∗Φ
(√

2λ

(

X∗ − µ

α

))]

(3.13)

where X∗ ∼ GN
(

µ, α2, β
)

has PDF fX∗ (x∗;µ, α, β), as in (3.2).

Expected value

From (3.13) and Definition 22, Appendix B.1 it follows that

E [X] = EX∗

[

2X∗Φ
(√

2λ

(

X∗ − µ

α

))]

where X∗ ∼ GN
(

µ, α2, β
)

has PDF (3.2).

Variance

From (3.13) it follows that

E
[

X2
]

= EX∗

[

2X2
∗Φ
(√

2λ

(

X∗ − µ

α

))]
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3.6. CHARACTERISTICS OF THE SGN I DISTRIBUTION (METHOD 1) 61

and using Definition 23, Appendix B.1 it follows that

var [X] = E
[

X2
]

− (E [X])2

= EX∗

[

2X2
∗Φ
(√

2λ

(

X∗ − µ

α

))]

−
(

EX∗

[

2X∗Φ
(√

2λ

(

X∗ − µ

α

))])2

where X∗ ∼ GN
(

µ, α2, β
)

has PDF (3.2).

Skewness (γ1)

From (3.13) it follows that

E
[

X3
]

= EX∗

[

2X3
∗Φ
(√

2λ

(

X∗ − µ

α

))]

and using Definition 24, Appendix B.1 it follows that

γ1 =

{

EX∗

[

2X3
∗Φ
(√

2λ

(

X∗ − µ

α

))]

−3EX∗

[

2X∗Φ
(√

2λ

(

X∗ − µ

α

))]

EX∗

[

2X2
∗Φ
(√

2λ

(

X∗ − µ

α

))]

+2

(

EX∗

[

2X∗Φ
(√

2λ

(

X∗ − µ

α

))])3
}

(var [X])−
3
2

where X∗ ∼ GN
(

µ, α2, β
)

has PDF (3.2).

Kurtosis (γ2)

From (3.13) it follows that

E
[

X4
]

= EX∗

[

2X4
∗Φ
(√

2λ

(

X∗ − µ

α

))]

and using Definition 25, Appendix B.1 it follows that

γ2 =

{

EX∗

[

2X4
∗Φ
(√

2λ

(

X∗ − µ

α

))]

−4EX∗

[

2X∗Φ
(√

2λ

(

X∗ − µ

α

))]

EX∗

[

2X3
∗Φ
(√

2λ

(

X∗ − µ

α

))]

+6

(

EX∗

[

2X∗Φ
(√

2λ

(

X∗ − µ

α

))])2

EX∗

[

2X2
∗Φ
(√

2λ

(

X∗ − µ

α

))]

−3

(

EX∗

[

2X∗Φ
(√

2λ

(

X∗ − µ

α

))])4
}

(var [X])−2 − 3

where X∗ ∼ GN
(

µ, α2, β
)

has PDF (3.2).
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62 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

3.7 Characteristics of the SGN I distribution (Method 2)

Consider a random variable X ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11). Alternative expressions

for the moments, expected value, variance, skewness and kurtosis of the distribution of X (see

Definition 21 - Definition 25, Appendix B.1) are now derived:

Theorem 9. If X ∼ SGN I (β, λ) with PDF (3.8) then

E

[

Xk
]

=



















Γ
(

k+1
β

)

Γ
(

1
β

) , for k even

Γ
(

k+1
β

)

Γ
(

1
β

)

{

2EA

[

Φ
(√

2λA
1
β

)]

− 1
}

, for k odd

(3.14)

where A ∼ Gamma
(

k+1
β , 1

)

(see Definition 16, Appendix B.1).

Proof. Let X ∼ SGN I (β, λ) with PDF fX (x;β, λ) as defined in (3.8) then

E

[

Xk
]

=

∫

R

xkfX (x;λ) dx

=

∫

R

xk
β

Γ
(

1
β

)e−|x|βΦ
(√

2λx
)

dx

=

∫ ∞

0
xk

β

Γ
(

1
β

)e−xβ

Φ
(√

2λx
)

dx+

∫ 0

−∞
xk

β

Γ
(

1
β

)e−(−x)βΦ
(√

2λx
)

dx

=

∫ ∞

0
xk

β

Γ
(

1
β

)e−xβ

Φ
(√

2λx
)

dx+

∫ ∞

0
(−x)k

β

Γ
(

1
β

)e−xβ

Φ
(

−
√
2λx

)

dx

=

∫ ∞

0
xk

β

Γ
(

1
β

)e−xβ

Φ
(√

2λx
)

dx+ (−1)r
∫ ∞

0
xk

β

Γ
(

1
β

)e−xβ

Φ
(

−
√
2λx

)

dx

= I1 + I2

where

I1 =

∫ ∞

0
xk

β

Γ
(

1
β

)e−xβ

Φ
(√

2λx
)

dx

and

I2 = (−1)k
∫ ∞

0
xk

β

Γ
(

1
β

)e−xβ

Φ
(

−
√
2λx

)

dx

.
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Let a = xβ then x = a
1
β . Therefore, da = βxβ−1dx and it follows that

I1 =
1

Γ
(

1
β

)

∫ ∞

0
βxk+(β−1)−(β−1)e−xβ

Φ
(√

2λx
)

dx

=
1

Γ
(

1
β

)

∫ ∞

0
xk−(β−1)e−xβ

Φ
(√

2λx
)

βxβ−1dx

=
1

Γ
(

1
β

)

∫ ∞

0

(

a
1
β

)k−(β−1)
e−aΦ

(√
2λa

1
β

)

da

=
Γ
(

k+1
β

)

Γ
(

1
β

)

∫ ∞

0

1

Γ
(

n+1
β

)a
k+1
β

−1
e−aΦ

(√
2λa

1
β

)

da

=
Γ
(

k+1
β

)

Γ
(

1
β

) EA

[

Φ
(√

2λA
1
β

)]

(3.15)

where A ∼ Gamma
(

k+1
β , 1

)

.

Similarly,

I2 =
(−1)k Γ

(

k+1
β

)

Γ
(

1
β

) EA

[

Φ
(

−
√
2λA

1
β

)]

=
(−1)k Γ

(

k+1
β

)

Γ
(

1
β

) EA

[

1− Φ
(√

2λA
1
β

)]

(3.16)

where A ∼ Gamma
(

k+1
β , 1

)

.

Therefore from (3.15) and (3.16) it follows that

E

[

Xk
]

=
Γ
(

k+1
β

)

Γ
(

1
β

) EA

[

Φ
(√

2λA
1
β

)]

+
(−1)k Γ

(

r+1
β

)

Γ
(

1
β

) EA

[

1− Φ
(√

2λA
1
β

)]

=
Γ
(

k+1
β

)

Γ
(

1
β

)

(

EA

[

Φ
(√

2λA
1
β

)]

+ (−1)k EA

[

1− Φ
(√

2λA
1
β

)])

=
Γ
(

k+1
β

)

Γ
(

1
β

)

(

EA

[

Φ
(√

2λA
1
β

)]

+ (−1)k
(

1− EA

[

Φ
(√

2λA
1
β

)]))

=
Γ
(

k+1
β

)

Γ
(

1
β

)

(

EA

[

Φ
(√

2λA
1
β

)]

+ (−1)k + (−1)k+1
EA

[

Φ
(√

2λA
1
β

)])

=
Γ
(

k+1
β

)

Γ
(

1
β

)

{

(−1)k + EA

[

Φ
(√

2λA
1
β

)](

1 + (−1)k+1
)}

=



















Γ
(

k+1
β

)

Γ
(

1
β

) , for k even

Γ
(

k+1
β

)

Γ
(

1
β

)

{

2EA

[

Φ
(√

2λA
1
β

)]

− 1
}

, for k odd
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where A ∼ Gamma
(

k+1
β , 1

)

(see Definition 16, Appendix B.1).

As an additional result EA

[

Φ
(√

2λA
1
β

)]

, as it appears in Theorem 9, is considered.

EY

[

Φ
(

λA
1
β

)]

=

∫

R+

Φ
(√

2λa
1
β

)

fA (a) da

=

∫

R+

Φ
(√

2λa
1
β

) 1

Γ
(

k+1
β

)a
k+1
β

−1
e−ada (3.17)

since A ∼ Gamma
(

k+1
β , 1

)

.

Using Theorem 16, Appendix B.2 it follows from (3.17)

E

[

Φ
(√

2λA
1
β

)]

=

∫

R+







1

2
+

1√
2π

∞
∑

m=0

(

−1
2

)m
(√

2λa
1
β

)2m+1

m! (2m+ 1)







1

Γ
(

n+1
β

)a
k+1
β

−1
e−ada

=
1

2

∫

R+

1

Γ
(

k+1
β

)a
k+1
β

−1
e−ada+

∫

R+

1√
2π

∞
∑

m=0

(

−1
2

)m
(√

2λa
1
β

)2m+1

m! (2m+ 1)

a
k+1
β

−1
e−a

Γ
(

k+1
β

) da

= 0.5 +
1√
2π

∫

R+

∞
∑

m=0

(

−1
2

)m
(√

2λa
1
β

)2m+1

m! (2m+ 1)

1

Γ
(

k+1
β

)a
k+1
β

−1
e−ada

= 0.5 +
1

√
2πΓ

(

k+1
β

)

∞
∑

m=0

(

−1
2

)m (√
2λ
)2m+1

m! (2k + 1)

∫

R+

a
2m+1

β a
k+1
β

−1
e−ada

= 0.5 +
1

√
2πΓ

(

k+1
β

)

∞
∑

m=0

(

−1
2

)m (√
2λ
)2m+1

m! (2m+ 1)

∫

R+

a
k+2m+2

β
−1

e−ada

= 0.5 +
1√
2π

∞
∑

m=0

(

−1
2

)m (√
2λ
)2m+1

m! (2m+ 1)





Γ
(

k+2(m+1)
β

)

Γ
(

k+1
β

)





= 0.5 +
1√
2π

∞
∑

m=0

(

−1
2

)m (√
2λ
)2m+1

m! (2m+ 1)

Γ
(

k+1
β + 2m+1

β

)

Γ
(

k+1
β

) (3.18)

since
∫

R+
1

Γ
(

n+1
β

)a
n+1
β e−ada = 1.

Now

2E
[

Φ
(

λA
1
β

)]

− 1 =



1 +
2√
2π

∞
∑

m=0

(

−1
2

)m (√
2λ
)2m+1

m! (2m+ 1)

Γ
(

k+1
β + 2m+1

β

)

Γ
(

k+1
β

)



− 1

=

√

2

π

∞
∑

m=0

(

−1
2

)m (√
2λ
)2m+1

m! (2m+ 1)

Γ
(

k+1
β + 2m+1

β

)

Γ
(

k+1
β

) (3.19)
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Then from (3.14) and (3.19) it follows that

E

[

Xk
]

=



















Γ
(

k+1
β

)

Γ
(

1
β

) , for k even

√

2
π

Γ
(

k+1
β

)

Γ
(

1
β

)

∑∞
m=0

(− 1
2)

m
(
√
2λ)

2m+1

m!(2m+1)

Γ
(

k+1
β

+ 2m+1
β

)

Γ
(

k+1
β

) , for k odd

(3.20)

where A ∼ Gamma
(

k+1
β , 1

)

(see Definition 16, Appendix B.1).

The sum in (3.19) only converges for certain parameter structures. Generally, β needs to be

sufficiently larger than λ in order for the sum in (3.19) to be able to converge with standard

computing power. The issue is that the terms
(√

2λ
)2m+1

and Γ
(

k+1
β + 2m+1

β

)

become too large

for a computer to store in memory for large values of k.

The range of λ given β such that the infinite sum converges is obtained by calculating the

infinite sum for a given β and increasing λ in increments of 0.01 until the infinite sum fails to

converge. The last λ for which the infinite sum given β converges is the upper limit of λ. The

lower limit of λ for a given β is calculated similarly. Table 3.3 shows values of λ for which the

infinite sum in (3.20) will converge given β :

β Range of λ such that the sum converges

1 [−0.07, 0.07]

2 [−0.94, 0.94]

3 [−2.17, 2.17]

4 [−3.14, 3.14]

5 [−3.7, 3.7]

10 [−4.7, 4.7]

Table 3.3: Values of λ for which the infinite sum in (3.20) will converge given β.

From Table 3.3 it is easy to see that the range of λ for which can be used is very lim-

ited. For this reason it is recommended to use Theorem 9 without representing the term
{

2EA

[

Φ
(√

2λA
1
β

)]

− 1
}

as the infinite sum in (3.19).

Theorem 10. Let X ∼ SGN I (β, λ) and Y = µ+ αX then

E [Y r] =
r
∑

k=0

(

r

k

)

µr−kαk
E

[

Xk
]

with E
[

Xk
]

as defined in Theorem 9.

Proof. Let X ∼ SGN I (β, λ) with PDF (3.8). Consider Y = µ+αX, then Y ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11) and it follows from the binomial theorem (see Definition 15, Appendix B.2)
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that

E [Y r] = E [(µ+ αX)r]

= E

[

r
∑

k=0

(

r

k

)

µr−k (αX)k
]

=

r
∑

k=0

(

r

k

)

µr−k
E

[

(αX)k
]

=

r
∑

k=0

(

r

k

)

µr−kαk
E

[

Xk
]

(3.21)

with E
[

Xk
]

as defined in Theorem 9.

The characteristics (Definitions 22 - 25, Appendix B.1) of random variable Y ∼ SGN I

(

µ, α2, β, λ
)

with PDF fY (y;µ, α, β, λ) as given in (3.11) can be obtained using Theorem 10 and the mo-

ments of random variable X ∼ SGN I (β, λ) with PDF fX (x;β, λ) , as given in (3.8) which are

calculated using Theorem 9.

1st moment

Applying Theorem 10 it follows that

E [Y ] =
1
∑

k=0

(

1

k

)

µ1−kαk
E

[

Xk
]

=

(

1

0

)

µ1−kα0
E
[

X0
]

+

(

1

1

)

µ1−1α1
E [X]

= µ+ αE [X] . (3.22)

Applying Theorem 9 it follows from (3.22) that

E [Y ] = µ+ α
Γ
(

2
β

)

Γ
(

1
β

)

{

2EA

[

Φ
(√

2λA
1
β

)]

− 1
}

where A ∼ Gamma
(

2
β , 1
)

.

2nd moment

Applying Theorem 10 it follows that

E
[

Y 2
]

=

2
∑

k=0

(

2

k

)

µ2−kαk
E

[

Xk
]

=

(

2

0

)

µ2α0
E
[

X0
]

+

(

2

1

)

µ2−1α1
E
[

X1
]

+

(

2

2

)

µ2−2α2
E
[

X2
]

= µ2 + 2µαE [X] + α2
E
[

X2
]

. (3.23)
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Applying Theorem 9 it follows from (3.23) that

E
[

Y 2
]

= µ2 + 2µα
Γ
(

2
β

)

Γ
(

1
β

)

{

2EA

[

Φ
(√

2λA
1
β

)]

− 1
}

+ α2
Γ
(

3
β

)

Γ
(

1
β

)

where A ∼ Gamma
(

2
β , 1
)

.

3rd moment

Applying Theorem 10 it follows that

E
[

Y 3
]

=

3
∑

k=0

(

3

k

)

µ3−kαk
E

[

Xk
]

= µ3 + 3αµ2
E [X] + 3α2µE

[

X2
]

+ α3
E
[

X3
]

. (3.24)

Applying Theorem 9 it follows from (3.24) that

E
[

Y 3
]

= µ3 + 3αµ2
Γ
(

2
β

)

Γ
(

1
β

)

{

2EA1

[

Φ

(√
2λA

1
β

1

)]

− 1

}

+ 3α2µ
Γ
(

3
β

)

Γ
(

1
β

)

+α3
Γ
(

4
β

)

Γ
(

1
β

)

{

2EA2

[

Φ

(√
2λA

1
β

2

)]

− 1

}

where A1 ∼ Gamma
(

2
β , 1
)

and A2 ∼ Gamma
(

4
β , 1
)

with A1 and A2 independently generated.

4th moment

Applying Theorem 10 it follows that

E
[

Y 4
]

=

4
∑

k=0

(

4

k

)

µ4−kαk
E

[

Xk
]

= µ4 + 4αµ3
E [X] + 6α2µ2

E
[

X2
]

+ 4α3µE
[

X3
]

+ α4
E
[

X4
]

. (3.25)

Applying Theorem 9 it follows from (3.25) that

E
[

Y 4
]

= µ4 + 4αµ3
Γ
(

2
β

)

Γ
(

1
β

)

{

2EA1

[

Φ

(√
2λA

1
β

1

)]

− 1

}

+ 6α2µ2
Γ
(

3
β

)

Γ
(

1
β

)

+4α3µ
Γ
(

4
β

)

Γ
(

1
β

)

{

2EA2

[

Φ

(√
2λA

1
β

2

)]

− 1

}

+ α4
Γ
(

5
β

)

Γ
(

1
β

)

where A1 ∼ Gamma
(

2
β , 1
)

and A2 ∼ Gamma
(

4
β , 1
)

with A1 and A2 independently generated.

These derived moments are then used in Definitions 22 - 25, Appendix B.1 to arrive at

expressions for the characteristics of random variable Y.
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Remark. If the term EA

[

Φ
(√

2λA
1
β

)]

where A ∼ Gamma
(

r+1
β , 1

)

in Theorem 9 is calculated

using numerical integration as

EA

[

Φ
(√

2λA
1
β

)]

=

∫ ∞

0
Φ
(√

2λA
1
β

)

fA (a) da

=

∫ ∞

0
Φ
(√

2λA
1
β

) 1

Γ
(

r+1
β

)a
r+1
β

−1 × e−ada (3.26)

the moments of X ∼ SGN I (β, λ) with PDF (3.8) can be calculated without generating random

numbers. For a similar approach see Section 3.3.

3.8 Comparison of Method 1, Method 2 and the AR algorithm

In this section Method 1 and Method 2 (as respectively discussed in Section 3.6 and Section 3.7)

are used to approximate the characteristics of the SGN I

(

µ, α2, β, λ
)

with PDF (3.11), and are

compared with the results obtained using the AR algorithm in Section 3.5.

3.8.1 Numerical results

Table 3.4 summarises the sample statistics of each simulation run in Section 3.5. Note that Table

3.4 presents the same results as in Table 3.2, however, the time taken is included to compare with

other methods. Random samples are drawn from X ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11) using

the AR algorithm as discussed in Section 3.5. The number of iterations of the AR algorithm is

predefined and once the algorithm terminates, the sample statistics of the “accepted samples”

are calculated. Note that the sample sizes (i.e. number of samples that are accepted in AR

algorithm) are not equal - this is due to the nature of the AR algorithm resulting in a different

number of “accepted samples” given a certain parameter structure.

Note - in the tables below:

• “Est.” is used as an abbreviation for “estimated”;

• “Sim.” is used as an abbreviation for “simulated”;

• “std.” is used as an abbreviation for “standard deviation”;
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Time taken (seconds) Sample size Est. mean Est. std. Est. skewness Est. kurtosis

Sim.1 0.109 13883 2.0079664 1.9645431 0.4353946 0.2824671

Sim.2 0.094 12000 1.6660456 1.5412058 -0.322299 -0.251794

Sim.3 0.11 15735 -2.188361 2.1220783 -0.017579 -0.211116

Sim.4 0.11 5347 1.1362277 0.8546721 0.9116042 0.5684229

Table 3.4: Results using methodology in Section 3.5.

Table 3.5 summarises the approximation of sample statistics of each simulation using the Method

1 discussed in Section 3.6.

Time taken (seconds) Est. mean Est. std. Est. skewness Est. kurtosis

Sim.1 33.362 2.0152464 1.9807983 0.4566053 0.318235

Sim.2 22.545 1.6714532 1.5454452 -0.310153 -0.307261

Sim.3 20.018 -2.216299 2.1088914 -0.010097 -0.200622

Sim.4 10.545 1.128395 0.8528525 0.9856522 0.848758

Table 3.5: Comparison of results using Method 1 in Section 3.6.

Table 3.6 summarises the approximation of sample statistics of each simulation using the

Method 2 discussed in Section 3.7.

Time taken (seconds) Est. mean Est. std. Est. skewness Est. kurtosis

Sim.1 0.094 2.0176304 1.9822128 0.4529445 0.3026684

Sim.2 3.017 1.672128 1.5472937 -0.308348 -0.309481

Sim.3 4.094 -2.209192 2.1098642 -0.012971 -0.206271

Sim.4 0.047 1.1275587 0.8535873 0.9893243 0.8622352

Table 3.6: Comparison of results using Method 2 (with random number generation) in Section

3.7.

Table 3.7 summarises the approximation of sample statistics of each simulation using the

Method 2 discussed in Section 3.7 the difference from Table 3.6 being that the term EA

[

Φ
(√

2λA
1
β

)]

where A ∼ Gamma
(

n+1
β , 1

)

in Theorem 9 is calculated using numerical integration on SAS 9.4.

The results are obtained instantaneously with time taken less than 0.001 seconds across all

simulations.
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Time taken (seconds) Est. mean Est. std. Est. skewness Est. kurtosis

Sim.1 <0.001 2.018506 1.9813211 0.4538256 0.3050503

Sim.2 <0.001 1.672798 1.5465694 -0.308567 -0.306072

Sim.3 <0.001 -2.209958 2.1090619 -0.013814 -0.206734

Sim.4 <0.001 1.1274775 0.8536946 0.9887343 0.8615734

Table 3.7: Comparison of results using Method 2 (with numerical integration) in Section 3.7.

The results in (3.7) obtained are similar to Table 3.5 and Table 3.6 barring Simulation 4.

The AR algorithm yielded only 5347 sample in Simulation 4. The AR algorithm was run again

with a higher number of iterations and yielded the following results which are more consistent

with the results summarised in Table 3.5 and Table 3.6:

Time taken (seconds) Sample size Est. mean Est. std. Est. skewness Est. kurtosis

Sim.4 0.219 14946 1.1219374 0.8543913 1.0017251 0.8611195

Table 3.8: Improved results using methodology in Section 3.5 for Simulation 4

3.8.2 Discussion

• The AR algorithm generates a random sample from X ∼ SGN I

(

µ, α2, β, λ
)

with PDF

(3.11). The characteristics are directly calculated from this sample. This method is ex-

ceptionally quick, however, it must be noted that the AR algorithm cannot draw appro-

priate samples from X ∼ SGN I

(

µ, α2, β, λ
)

given a certain parameter structure. For

example, if
(

µ = 0, α2 = 2, β = 5, λ = −5
)

, the AR algorithm is unable to sample from

X ∼ SGN I

(

µ, α2, β, λ
)

. For this reason it is sometimes necessary to use either Method 1

or Method 2 to approximate the characteristics of the SGN I

(

µ, α2, β, λ
)

distribution.

• Method 1 (see Section 3.6) applies a particular function (unique for each characteristic, see

(3.13)) to a random sample from X∗ ∼ GN
(

µ, α2, β
)

with PDF (3.2) (using Theorem 8).

Each function is then averaged over the number of samples taken in order to approximate

the characteristics of X ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11).

• Method 2 (see Section 3.7) is applied in two ways:

– Method 2a applies a particular function (unique for each characteristic, see (3.14))

to a random sample from a specific gamma distribution with parameters depend-

ing on the characteristic being approximated. Each function is then averaged over
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3.9. VISUAL COMPARISON OF METHOD 1 AND METHOD 2 71

the number of samples taken in order to approximate the characteristics of X ∼
SGN I

(

µ, α2, β, λ
)

with PDF (3.11).

– Method 2b uses numerical integration (see 3.26) to avoid generating random numbers

to calculate characteristics of X ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11).

• It is important to note that in Method 1 and Method 2a the number of samples taken

increases until the sample average of the corresponding function converges according to a

specified stopping criterion which is described in Section 3.9

• As can be inferred by the tables, the results provided Method 2a and Method 2b converge

considerably faster than those provided by Method 1.

• Using Method 2b performed exceptionally well results being obtained instantly. However,

it must be noted numerical integration may not converge for certain parameter structures.

For example, the numerical integration does not yield results when approximating the

characteristics of SGN I

(

µ, α2, β, λ
)

where
{

µ = 0, α2 = 4 , β = 2, λ = −27
}

.

• Therefore in Section 3.9, Method 1 and Method 2a will be compared.

3.9 Visual comparison of Method 1 and Method 2

Figures 3.14 - 3.17 compare Method 1 and Method 2 (using random number generation, not

numerical integration) formulated in Section 3.6 and Section 3.7 respectively. The metric that

will be used to compare the two methods will be the absolute change in the approximated

characteristics over an iteration. As the program executes, the 4 approximated characteristics

at iteration i are written into a vector, say ai. Similarly, the approximated characteristics at

iteration i+1 are written into a vector, say ai+1. The absolute sum of the elements of [ai+1, − ai]

is calculated. This provides a scalar metric that decreases in magnitude as the approximated

characteristics converge in value. A stopping criterion is satisfied if the absolute change in the

approximated characteristics over an iteration is less than a predefined threshold which is set to

0.0005 in this study and is represented by dashed line in Figures 3.14 - 3.17.

The plots below display the absolute change in approximated characteristics versus n, the

number of random variates used to approximate the characteristics. This gives an indication of

the efficiency and stability of the competing methods.
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Figure 3.14: Simulation 1 - Parameter set:
(

µ = 0, α2 = 4, β = 2, λ = 25
)

Figure 3.15: Simulation 2 - Parameter set:
(

µ = 0, α2 = 25, β = 4, λ = 10
)
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Figure 3.16: Simulation 3 - Parameter set:
(

µ = 0, α2 = 25, β = 3, λ = −3
)

Figure 3.17: Simulation 4 - Parameter set:
(

µ = 0, α2 = 4, β = 1, λ = 5
)

The plots shows that Method 2 consistently outperforms Method 1 and is more stable than

the latter. Method 2 also achieves the stopping condition before Method 1 in every simulation

i.e. Method 2 approximated characteristics converge faster than those in Method 1.
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3.10 Stochastic representation of SGN I distribution

After noting in Section 3.5 that the AR algorithm cannot draw appropriate samples from

SGN I

(

µ, α2, β, λ
)

for certain parameter structures, it was undertaken to investigate a more

stable sampling scheme that generates random variates from X ∼ SGN I

(

µ, α2, β, λ
)

with PDF

(3.11). Following a similar approach to that of Hasanalipour [19], a stochastic representation is

developed that is useful for generating random numbers from a SGN I

(

µ, α2, β, λ
)

distribution.

Contrary to the AR method, this stochastic representation is able to draw random samples from

X ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11) for any valid parameter structure.

Lemma 2. Let X and Y be independenet random variables with respective PDFs fX (x) and

fY (y) both symmetric about zero. If W = −λY then

P [X +W < 0] = P [X − λY < 0]

= P [X < λY ]

=
1

2
.

Proof. Consider the random variable W = −λY with PDF fW (w).

Case 1: λ 6= 0. For one symmetric random variable Y , we have

P [W ≥ w] = P [−λY ≥ w]

= P

[

Y ≤ −w

λ

]

= P

[

Y ≥ w

λ

]

= P

[

W

−λ
≥ w

λ

]

= P [W ≤ −w] .

Therefore, since P [W ≥ w] = P [W ≤ −w] we have shown that fW (w) is symmetric about 0.

Let Z = X +W and using the convolution of marginal PDFs we obtain

fZ (z) = fX+W (z)

=

∫

R

fX (z − w) fW (w) dw

=

∫

R

fX (− (z − w)) fW (−w) dw[3]

=

∫

R

fX (−z + w) fW (−w) dw. (3.27)

[3] Since X and W are symmetric random variables around zero.
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Let t = −w then dt
dw = −1 and it follows from (3.27) that

fZ (z) =

∫

R

fX (−z − t) fW (t) | − 1|dt

=

∫

R

fX (−z − t) fW (t) dt. (3.28)

Let t = w then dt
dw = 1 and it follows from (3.28) that

fZ (z) =

∫

R

fX (−z −w) fW (w) dw

= fX+W (−z)

= fZ (−z) .

Therefore, we have shown the Z = X + W = X − λY is a symmetric random variable around

zero and it follows that

P [Z < 0] = P [X − λY < 0]

= P [X < λY ]

=
1

2
.

Case 2: λ = 0

P [Z < 0] = P [X − 0Y < 0]

= P [X < 0]

=
1

2
.

since X is symmetric random variables around zero.

Theorem 11. Let U ∼ GN (β) with PDF φ∗ (x;β) as given in (3.1), and U1 ∼ N (0, 1) with U

and U1 independent. If

X = U whenever U1 ≤
√
2λU

then X ∼ SGN (β, λ) with PDF (3.8).

Proof. Let X = U |
{

U1 ≤
√
2λU

}

. Then

P [X ≤ x] = P

[

U ≤ x|
{

U1 ≤
√
2λU

}]

=
P
[

U ≤ x,U1 ≤
√
2λU

]

P
[

U1 ≤
√
2λU

] . (3.29)
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Now

P

[

U ≤ x,U1 ≤
√
2λU

]

=

∫ x

u=−∞

∫

√
2λu

u1=−∞
φ∗ (u;β)φ (u1) du1du

=

∫ x

−∞
φ∗ (u;β)

(

∫

√
2λu

u1=−∞
φ (u1) du1

)

du[1]

=

∫ x

−∞
φ∗ (u;β) Φ

(√
2λu

)

du. (3.30)

[1] Since U and U1 are independent.

Since fU (u) and fU1 (u1) are both symmetric about zero applying Lemma 2 it follows that

P

[

U1 ≤
√
2λU

]

=
1

2
(3.31)

Then using (3.30) and (3.31) in (3.29) it follows that

P [X ≤ x] =

∫ x
−∞ φ∗ (u;β) Φ

(√
2λu

)

du

0.5

=

∫ x

−∞
2φ∗ (u;β) Φ

(√
2λu

)

du.

Applying a standard statistical result (Theorem 13, Appendix B.2) it follows that the PDF is

d

du

∫ x

−∞
2φ∗ (u;β) Φ

(√
2λµ

)

du = 2φ∗ (u;β) Φ
(√

2λu
)∣

∣

∣

x

−∞

= 2φ∗ (x;β) Φ
(√

2λx
)

− lim
k→−∞

(

2φ∗ (k;β) Φ
(√

2λk
))

= 2φ∗ (x;β) Φ
(√

2λx
)

− 0

= 2φ∗ (x;β) Φ
(√

2λx
)

which is the PDF fX (x;β, λ) as given in (3.7).

Corollary 10. If U ∼ GN (β) with PDF φ∗ (·;β) as given in (3.1) and U1 ∼ N (0, 1) with U

and U1 independent. If

Y = µ+ αU whenever U1 ≤
√
2λU

then Y ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11).

Since there is readily available software that can generate normal distributed random numbers

and the sampling scheme in Section 3.1.4 can be used to generate generalised normal random

numbers. Theorem 11 and Corollary 10 provide a representation to easily generate random

numbers from a SGN I distribution.
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3.10. STOCHASTIC REPRESENTATION OF SGN I DISTRIBUTION 77

3.10.1 Visualisation of SGN I sampling scheme derived in Section 3.10

(a) Parameter set:
(

µ = 0, α2 = 2, β = 10, λ = 2
)

(b) Parameter set:
(

µ = 0, α2 = 9, β = 5, λ = 2
)

(c) Parameter set:
(

µ = 0, α2 = 2, β = 5, λ = 2
)

(d) Parameter set:
(

µ = 0, α2 = 2, β = 3, λ = −4
)

Figure 3.18: Histograms of realised random samples of size 10 000 taken from X ∼
SGN I

(

µ, α2, β, λ
)

with the corresponding theoretical PDF (3.11), overlaid for different values

of µ, α2, β and λ.

Figure 3.18 shows histograms of the random samples taken from X ∼ SGN I

(

µ, α2, β, λ
)

using the stochastic representation in Corollary 10 with the corresponding theoretical PDF (3.11)

overlaid.
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78 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

3.11 Convergence of sample statistics of the SGN I distribution

Consider a random variable X ∼ SGN I

(

µ, α2, β, λ
)

with PDF (3.11). The estimated character-

istics (i.e. expected value, standard deviation, skewness and kurtosis) of the distribution of X are

plotted against the number of random variates that are sampled to estimate the characteristics,

say n, to investigate the convergence of using the Method 2 described in Section 3.7.

Figures 3.19 - 3.22 show the sample estimate of a particular characteristic of the SGN I

(

µ, α2, β, λ
)

versus increasing n which ranges from n = 1000 to n = 100 000. The dotted center line of each

represents the mean level of that particular characteristic over the whole simulation.

The parameter values that are used in Simulation 3 in Section 3.5.2 are used in this section.

Figure 3.19: The expected value of SGN I

(

µ = 0, α2 = 25, β = 3, λ = −2
)

distribution for vary-

ing sample size n.
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3.11. CONVERGENCE OF SAMPLE STATISTICS OF THE SGN I DISTRIBUTION 79

Figure 3.20: The standard deviation of SGN I

(

µ = 0, α2 = 25, β = 3, λ = −2
)

distribution for

varying sample size n.

Figure 3.21: The skewness of SGN I

(

µ = 0, α2 = 25, β = 3, λ = −2
)

distribution for varying

sample size n.
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80 CHAPTER 3. SKEW GENERALISED-NORMAL TYPE I DISTRIBUTION

Figure 3.22: The kurtosis of SGN I

(

µ = 0, α2 = 25, β = 3, λ = −2
)

distribution for varying sam-

ple size n.

As can be seen in the figures, the convergence of the characteristics of the as calculated using

Method 2 in Section 3.5.2 are stable and converge to a mean level as indicated by the dotted line.

These graphs give an indication of how many random numbers are required to be generated in

the corresponding stochastic representations to have confidence in your estimates. For example,

in all the figures, there is not a significant improvement in convergence (the fluctuations around

the mean level of the characteristic do not have a decreasing variance) for n > 60 000. Therefore,

it would be sufficient to have taken n = 60000 as the number of random numbers required to

be generated in the corresponding stochastic representations to be confident in the estimates of

the characteristics.

3.12 Summary

In this chapter, the GN distribution 3.1 is defined and the skewing methodology, as laid out

in Proposition 1, Section 1.2, is applied to this distribution. This results in a skew-symmetric

version of the GN distribution. The effect of the parameters β and λ, on the characteristics

of SGN I distribution is investigated. An acceptance-rejection (AR) method, which samples

directly from the SGN I distribution, is employed to approximate the characteristics of the SGN I

distribution. Thereafter, two methods, which do not sample directly from the SGN I distribution,
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3.12. SUMMARY 81

are developed to approximate the characteristics of the SGN I distribution and are compared.

The drawback of the AR algorithm is highlighted and an alternative stochastic sampling scheme

is employed to sample directly from the SGN I distribution.
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Chapter 4

Generalising the extensions of the

skew-normal distribution

A new skew generalised-normal type II distribution is presented in Section 4.1. In Section 4.2, the

generalised Balakrishnan skew normal type I distribution is generalised by replacing the normal

PDF used in these equations with the generalised normal distribution as defined in Section 3.1.

In Section 4.3, the beta skew-normal distribution is generalised by using the PDF and CDF of a

SGN I distribution in the definition of a beta generated distribution [22].

4.1 Skew generalised-normal type II distribution

In this section, using the same notation defined in Section 1.2, Proposition 1, the case where

f0 = φ∗, G0 = Φ∗, where φ∗ (x;β) represents the PDF defined in (3.1), Φ∗ (x;β) represents

the standard generalised normal CDF defined in (3.3), and where w (x) = λx for λ ∈ R is

investigated. The use of the generalised normal distribution with PDF φ∗ (x;β) as defined in

(3.1) as the symmetric base PDF is illustrated in the following structure. Unlike Figure 2.6, the

skewing mechanism here is function of the CDF of the generalised normal distribution.

Figure 4.1: The symmetric base PDF and skewing mechanism

The following definition is now obtained:

Definition 9. A random variable X has the skew generalised-normal type II distribution if its

82
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4.1. SKEW GENERALISED-NORMAL TYPE II DISTRIBUTION 83

PDF is given by

fX (x;β, λ) = 2φ∗ (x;β) Φ∗ (λx;β) , x ∈ R (4.1)

where β ∈ R
+ and λ ∈ R. This is denoted by X ∼ SGN II (β, λ).

Remark. This normalisation constant of 2 in Definition 9 follows from Lemma 2.

Corollary 11. A random variable Y has the SGN II distribution with location µ ∈ R and scale

α ∈ R
+ if its PDF is given by

fY (y;µ, α, β, λ) = 2
αφ

∗ (y−µ
α ;β

)

Φ∗ (λ
(y−µ

α

)

;β
)

, y ∈ R (4.2)

where β ∈ R
+ and λ ∈ R. This is denoted by Y ∼ SGN II

(

µ, α2, β, λ
)

.

Proof. Let X ∼ SGN II (β, λ) with PDF (4.1). Consider the random variable Y = µ + σX,

where the location and scale parameters are denoted µ ∈ R and α ∈ R
+ respectively.

If y = µ+ αx then x = u−1 (y) = y−µ
α . Then d

dyu
−1 (y) = 1

α , and it follows that

fY (y;µ, α, β, λ) = fX
(

u−1 (y) ;λ
)

∣

∣

∣

∣

d

dy
u−1 (y)

∣

∣

∣

∣

= 2φ∗ (u−1 (y) ;β
)

Φ∗ (λu−1 (y) ;β
)

∣

∣

∣

∣

d

dy

(

u−1 (y)
)

∣

∣

∣

∣

= 2φ∗
(

y − µ

α
;β

)

Φ∗
(

λ

(

y − µ

α

)

;β

) ∣

∣

∣

∣

1

α

∣

∣

∣

∣

=
2

α
φ∗
(

y − µ

α
;β

)

Φ∗
(

λ

(

y − µ

α

)

;β

)

.

Corollary 12. When µ = 0, α =
√
2 and β = 2 the SGN II distribution simplifies to the SN

distribution.

Proof. Using (4.2)

fY

(

y; 0,
√
2, 2, λ

)

=
2√
2

2

2Γ
(

1
2

)e
−
∣

∣

∣

y−0√
2

∣

∣

∣

2 ∫ λy
√

2

−∞

2

2Γ
(

1
2

)e−|t|2dt

=
2√
2π

e−
y2

2

∫ λy√
2

−∞

1√
π
e−t2dt

= 2φ (y)

∫ λy
√

2

−∞

1√
2π

e−t2
√
2dt

= 2φ (y)

∫
λy
√

2

−∞

1√
2π

e
−
(√

2t√
2

)2√
2dt. (4.3)

Let w =
√
2t with dw

dt =
√
2. Then, the upper limit of the integral becomes

√
2 λy√

2
= λy and it

follows from (4.3) that

fY (y;µ, α, λ) = 2φ (y)

∫ λy

−∞

1√
2π

e
−
(

w√
2

)2

dw

= 2φ (y) Φ (λy)
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84CHAPTER 4. GENERALISING THE EXTENSIONS OF THE SKEW-NORMAL DISTRIBUTION

which is the PDF of the SN distribution with PDF (2.1).

4.1.1 SGN II PDF

Figure 4.2 and Figure 4.3 depict the PDF of the SGN II

(

µ, α2, β, λ
)

distribution as given in

(4.2), for varying parameter values.

(a) SGN II PDF (b) SGN II skewing mechanism

Figure 4.2: The SGN II PDF (4.2) and skewing mechanism, 2Φ∗ (λ
(x−µ

α

)

;β
)

, for varying α and

arbitrary µ = 0, β = 5 and λ = 2.

(a) SGN II PDF (b) SGN II skewing mechanism

Figure 4.3: The SGN II PDF (4.2) and skewing mechanism, 2Φ∗ (λ
(x−µ

α

)

;β
)

, for varying λ and

arbitrary µ = 0, α = 3 and β = 5.

Remarks

1. Comparing Figure 3.5b and Figure 4.2b it is observed that β now has an effect on the

skewing mechanism of the distribution. For increasing β, the skewing window (see Figure

2.2) becomes narrower. Comparing Figure 3.5a and Figure 4.2a it is observed that for
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4.1. SKEW GENERALISED-NORMAL TYPE II DISTRIBUTION 85

increasing β, the resulting skewness is obtained by multiplying the original symmetric

GN PDF (3.2) by a value in the interval (0, 2) over a narrower range of x resulting in a

skew-symmetric PDF with its peak attaining a higher probability;

2. Comparing Figure 3.8b and Figure 4.3b it is observed that β and λ jointly have an effect

on the skewing mechanism of the distribution. In particular, the same β leads to slightly

narrower skewing window (see Figure 2.2). Comparing Figure 3.5a and Figure 4.2a it is

observed that the effect of this is that the SGN II PDF (4.2) has peaks attaining a higher

probability than that of the SGN I PDF (3.11) for the same parameter structure.

4.1.2 Stochastic representation of SGN II distribution

Theorem 12. Let U ∼ GN (β) and U1 ∼ GN (β) be independent. If

X = U whenever U1 ≤ λU

then, X ∼ SGN II (β, λ).

Proof. If X = U wheneverU1 ≤ λU then

P [X ≤ x] = P [U ≤ x| {U1 ≤ λU}]

=
P [U ≤ x,U1 ≤ λU ]

P [U1 ≤ λU ]
. (4.4)

Now

P [U ≤ x,U1 ≤ λU ] =

∫ x

u=−∞

∫ λu

u1=−∞
φ∗ (u;β)φ∗ (u1;β) du1du

=

∫ x

−∞
φ∗ (u;β)

(∫ λu

u1=−∞
φ∗ (u1;β) du1

)

du

=

∫ x

−∞
φ∗ (u;β) Φ∗ (λu;β) du. (4.5)

Since U and U1 are both symmetric about zero, applying Lemma 2 it follows that

P [U1 ≤ λU ] =
1

2
. (4.6)

Then using (4.5) and (4.6) in (4.4) it follows that

P [X ≤ x] =

∫ x
−∞ φ∗ (u;β) Φ∗ (λu;β) du

0.5

=

∫ x

−∞
2φ∗ (u;β) Φ∗ (λu;β) du.
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86CHAPTER 4. GENERALISING THE EXTENSIONS OF THE SKEW-NORMAL DISTRIBUTION

Applying a standard statistical result (Result 13, Appendix B.2) it follows that the PDF is

fX (x;β, λ) =
d

du

∫ x

−∞
2φ∗ (u;β) Φ (λµ) du

= 2φ∗ (u;β) Φ∗ (λµ;β)|x−∞

= 2φ∗ (x;β) Φ∗ (λx;β)− lim
k→−∞

(2φ∗ (k;β) Φ∗ (λk;β))

= 2φ∗ (x;β) Φ∗ (λx;β)− 0

= 2φ∗ (x;β) Φ∗ (λx;β)

which is the PDF fX (x;β, λ) as given in (4.1).

Corollary 13. Let U ∼ GN (β) and U1 ∼ GN (β) be independent. If

Y = µ+ αU whenever U1 ≤ λU

then X ∼ SGN II

(

µ, α2, β, λ
)

.

Proof. The proof is similar to that of Theorem 12.

4.1.3 Visualisation of SGN II sampling scheme derived in Section 4.1.2

Figure 4.4 displays the histograms of realised random samples of size approximately 10 000

taken from X ∼ SGN II

(

µ, α2, β, λ
)

with the corresponding theoretical PDF (4.2), overlaid for

different values of µ, α2, β and λ.
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4.2. BALAKRISHNAN SKEW GENERALISED-NORMAL 87

(a) Parameter set:
(

µ = 0, α2 = 2, β = 5, λ = 2
)

(b) Parameter set:
(

µ = 0, α2 = 25, β = 5, λ = 2
)

(c) Parameter set:
(

µ = 0, α2 = 9, β = 5, λ = 4
)

(d) Parameter set:
(

µ = 0, α2 = 9, β = 3, λ = −4
)

Figure 4.4: Histograms of realised random samples of size 10 000 taken from X ∼
SGN II

(

µ, α2, β, λ
)

with the corresponding theoretical PDF (4.2), overlaid for different values of

µ, α2, β and λ.

Figure 4.4 shows histograms of the random samples taken from X ∼ SGN II

(

µ, α2, β, λ
)

using the stochastic representation in Corollary 13 with the corresponding theoretical PDF (4.2)

overlaid.

4.2 Balakrishnan skew generalised-normal

Consider the generalised Balakrishnan skew-normal distribution as in (2.14). The generalised

normal distribution with PDF φ∗ (x;β) as defined in (3.1) is now used as the symmetric base

PDF. The skewing mechanism remains a function of the CDF of the normal distribution, but

with adjustment as indicated in Figure 1.4. The following definition is then obtained:
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88CHAPTER 4. GENERALISING THE EXTENSIONS OF THE SKEW-NORMAL DISTRIBUTION

Definition 10. A random variable X has the generalised Balakrishnan skew generalised-normal

distribution if its PDF is given by

fX (x;n, β, λ1, λ2) = cn (β, λ1, λ2)φ
∗ (x;β) Φn

(

λ1x
√

1
2
+λ2x2

)

, x ∈ R (4.7)

where n ∈ Z
+, β ∈ R

+, λ1 ∈ R, λ2 ∈ R
+ and

cn (β, λ1, λ2) =
1

∫

R
φ∗ (x;β) Φn

(

λ1x
√

1
2
+λ2x2

)

dx

=
1

EB5

[

Φn

(

λ1B5
√

1
2
+λ2B2

5

)]

where B5 ∼ GN (β) with PDF (3.1). This is denoted by X ∼ GBSN ∗
1 (n, β, λ1, λ2).

Corollary 14. A random variable Y has the generalised Balakrishnan skew generalised-normal

distribution with location parameter µ ∈ R and scale parameter α ∈ R
+ if its PDF is given by

fY (y;µ, α, n, β, λ1, λ2) = cn(µ,α,β,λ1,λ2)
α φ∗ (y−µ

α ;β
)

Φn

(

λ1(y−µ)
√

α2

2
+λ2(y−µ)2

)

, y ∈ R (4.8)

where n ∈ Z
+, β ∈ R

+, λ1 ∈ R, λ2 ∈ R
+ and

cn (µ, α, β, λ1, λ2) =
1

∫

R

1
αφ

∗ (y−µ
α ;β

)

Φn

(

λ1(y−µ)
√

α2

2
+λ2(y−µ)2

)

dy

=
1

EB6

[

λ1(B6−µ)
√

α2

2
+λ2(B6−µ)2

]

where B6 ∼ GN
(

µ, α2, β
)

with PDF (3.2).

This is denoted by Y ∼ GBSN ∗
1

(

µ, α2, n, β, λ1, λ2

)

.

Proof. Let X ∼ GBSN ∗
1 (n, β, λ1, λ2) with PDF (4.7). Consider the random variable Y = µ+αX,

where the location and scale parameters are denoted µ ∈ R and α ∈ R
+ respectively.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



4.2. BALAKRISHNAN SKEW GENERALISED-NORMAL 89

If y = µ+ αx then d
dyu

−1 (y) = d
dy

(y−µ
α

)

= 1
α giving

fY (y;µ, α, n, β, λ1, λ2) = fX
(

u−1 (y) ;β, λ1, λ2

)

∣

∣

∣

∣

d

dy
u−1 (y)

∣

∣

∣

∣

=
1

∫

R
φ∗ (u−1 (y) ;β) Φn

(

λ1u−1(y)
√

1
2
+λ2(u−1(y))2

)

∣

∣

∣

d
dy (u

−1 (y))
∣

∣

∣
dy

φ∗ (u−1 (y) ;β
)

× Φn





λ1u
−1 (y)

√

1
2 + λ2 (u−1 (y))2





∣

∣

∣

∣

d

dy

(

u−1 (y)
)

∣

∣

∣

∣

=
φ∗ (y−µ

α ;β
)

∫

R
φ∗ (y−µ

α ;β
)

Φn

(

λ1( y−µ
α )

√

1
2
+λ2( y−µ

α )
2

)

∣

∣

1
α

∣

∣ dy

Φn





λ1

(y−µ
α

)

√

1
2 + λ2

(y−µ
α

)2





∣

∣

∣

∣

1

α

∣

∣

∣

∣

=
1
αφ

∗ (y−µ
α ;β

)

∫

R

1
αφ

∗ (y−µ
α ;β

)

Φn

(

λ1(y−µ)
√

α2

2
+λ2(y−µ)2

)

dy

Φn





λ1 (y − µ)
√

α2

2 + λ2 (y − µ)2





=
cn (µ, α, β, λ1, λ2)

α
φ∗
(

y − µ

α
;β

)

Φn





λ1 (y − µ)
√

α2

2 + λ2 (y − µ)2





where

cn (µ, α, β, λ1, λ2) =
1

∫

R

1
αφ

∗ (y−µ
α ;β

)

Φn

(

λ1(y−µ)
√

α2

2
+λ2(y−µ)2

)

dy

=
1

EB6

[

Φn

(

λ1(B6−µ)
√

α2

2
+λ2(B6−µ)

)]

which gives the required result.

Corollary 15. If µ = 0, α =
√
2 and β = 2 in (4.8) the GBSN ∗

1 (µ, α, n, β, λ1, λ2) distribution

reduced to the GBSN 1 distribution with PDF (2.14).

4.2.1 GBSN ∗
1 PDF

Figures 4.5 - 4.8 depict the PDF of the GBSN ∗
1 (µ, α, n, β, λ1, λ2) as given in (4.8) and associated

skewing mechanism, for varying parameter values.
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90CHAPTER 4. GENERALISING THE EXTENSIONS OF THE SKEW-NORMAL DISTRIBUTION

(a) GBSN ∗
1PDF (b) GBSN ∗

1 skewing mechanism

Figure 4.5: The GBSN ∗
1 PDF 4.8 and skewing mechanism,

cn (µ, α, β, λ1, λ2) Φ
n

(

λ1(x−µ)
√

α2

2
+λ2(x−µ)2

)

, for varying λ1 and arbitrary µ = 0, α =
√
2,

n = 2, β = 1 and λ2 = 0.

(a) GBSN ∗
1PDF (b) GBSN ∗

1 skewing mechanism

Figure 4.6: The GBSN ∗
1 PDF 4.8 and skewing mechanism,

cn (µ, α, β, λ1, λ2) Φ
n

(

λ1(x−µ)
√

α2

2
+λ2(x−µ)2

)

, for varying λ1 and arbitrary µ = 0, α =
√
2,

n = 2, β = 4 and λ2 = 0.
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4.2. BALAKRISHNAN SKEW GENERALISED-NORMAL 91

(a) GBSN ∗
1 PDF (b) GBSN ∗

1 skewing mechanism

Figure 4.7: The GBSN ∗
1 PDF 4.8 and skewing mechanism,

cn (µ, α, β, λ1, λ2) Φ
n

(

λ1(x−µ)
√

α2

2
+λ2(x−µ)2

)

, for varying λ2 and arbitrary µ = 0, α =
√
2,

n = 2, β = 4 and λ1 = 2.

(a) GBSN ∗
1 PDF (b) GBSN ∗

1skewing mechanism

Figure 4.8: The GBSN ∗
1 PDF 4.8 and skewing mechanism,

cn (µ, α, β, λ1, λ2) Φ
n

(

λ1(x−µ)
√

α2

2
+λ2(x−µ)2

)

, for varying n and arbitrary µ = 0, α =
√
2, β = 4,

λ1 = 2 and λ2 = 0.

Remarks

1. Since we have fixed α =
√
2, the skewing mechanism corresponding to the GBSN ∗

1 distri-

bution with PDF 4.8 is identical to that of the skewing mechanism corresponding to the

GBSN 1 distribution with PDF (2.17) in Section 2.5.3. The comments with respect to the

skewing mechanism are thus identical to those outlined in Section 2.5.3.
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92CHAPTER 4. GENERALISING THE EXTENSIONS OF THE SKEW-NORMAL DISTRIBUTION

2. Comparing Figures 4.5a and 4.6a it is clear that by increasing β, the PDF of the GBSN ∗
1

distribution as given in (4.8) exhibits shorter/lighter tails.

4.3 The beta skew generalised-normal

One mechanism to generate flexible distributions is to use the kernel of the beta distribution as

the generator distribution and compound with the CDF of another distribution as in Mameli [22].

Let F (·; θ) be a CDF indexed with parameter θ ∈ Θ and corresponding PDF f (·; θ) , termed

the baseline distribution. The CDF of the beta generated distribution can be constructed using

G (x; θ, a, b) =

∫ F (x;θ)

0
ua−1 (1− u)b−1 du.

Applying the Leibniz integral rule [26] we get

g (x; θa, c) =
1

B (a, b)
f (x; θ)F (x; θ)a−1 (1− F (x; θ))b−1

where B (a, b) denotes the complete beta function (see Definition 15, Appendix B.1). It is

proposed to set the baseline distribution function as the CDF of SGN I

(

µ, α2β, λ
)

distribution.

Definition 11. A random variable X has the beta skew generalised-normal distribution with

location parameter µ ∈ R and scale parameter α ∈ R
+ if its PDF is given by

fX (x;µ, α, β, λ, a, b) = 1
B(a,b)F (x;µ, α, β, λ)a−1 (1− F (x;µ, α, β, λ))b−1 f (x;µ, α, β, λ) , x ∈ R

(4.9)

where F (x;µ, α, β, λ) refers to the CDF of the SGN I

(

µ, α2, β, λ
)

distribution with PDF (3.11),

β ∈ R
+, λ ∈ R

+ and a, b ≥ 1. This is denoted by Y ∼ BetaSGN
(

µ, α2, β, λ, a, b
)

.

Remark. The restriction on the parameters a and b in Definition 11 i.e. a, b ≥ 1 ensures than

the BetaSGN PDF as in (4.9) is unimodal.

Corollary 16. Let µ = 0, α =
√
2, β = 2 in the BetaSGN PDF (4.9). Then the BetaSGN

distribution reduced to the standard BetaSN distribution with PDF (2.21)

Proof. It follows from (4.9) that

fX (x;µ, α, β, λ, a, b) =
1

B (a, b)
F
(

x; 0,
√
2, 2, λ

)a−1 (

1− F
(

x; 0,
√
2, 2, λ

))b−1
f
(

x; 0,
√
2, 2, λ

)

=
1

B (a, b)

(∫ x

−∞
f
(

x; 0,
√
2, 2, λ

)

dx

)a−1(

1−
(∫ x

−∞
f
(

x; 0,
√
2, 2, λ

)

dx

))b−1

×f
(

x; 0,
√
2, 2, λ

)

(4.10)
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4.3. THE BETA SKEW GENERALISED-NORMAL 93

Applying Corollary 9 if follows from (4.10) that

fX (x;µ, α, β, λ, a, b) =
1

B (a, b)
F
(

x; 0,
√
2, 2, λ

)a−1 (

1− F
(

x; 0,
√
2, 2, λ

))b−1
2φ (x) Φ (λx)

=
1

B (a, b)

(∫ x

−∞
2φ (x)Φ (λx) dx

)a−1

×
(

1−
(∫ x

−∞
2φ (x) Φ (λx) dx

))b−1

2φ (x) Φ (λx)

=
1

B (a, b)
F (x;λ)a−1 (1− F (x;λ))b−1 f (x;λ)

where F (x;λ) is the CDF of SN distribution with PDF f (x;λ) (2.1).

This is the PDF of the standard BetaSN with PDF (2.21) and the proof is complete.

4.3.1 BetaSGN PDF

Figure 4.9 and Figure 4.10 depict the PDF of the BetaSGN
(

µ, α2, β, λ, a, b
)

distribution i.e.

fX (x;µ, α, λ, a, b) as given in (4.9), for varying parameter values.

Figure 4.9: The BetaSGN PDF (4.9) for

varying β and arbitrary µ = 0, α2 =
√
2,

λ = 2, a = 1 and b = 1.

Figure 4.10: The BetaSGN PDF (4.9) for

varying β and arbitrary µ = 0, α2 =
√
2,

λ = 2, a = 2 and b = 1.

Remarks

1. It is important to note that the construction of the BetaSN and BetaSGN distributions

only allow a symmetric PDF if a = b and λ = 0.

2. In Figure 4.9 and Figure 4.10 it is noted that for β > 2 the BetaSGN PDF (4.9) has peaks

attaining a higher probability than those of the BetaSN PDF as in (2.20).

3. In Figure 4.9 and Figure 4.10 it is noted that for β < 2 the BetaSGN PDF (4.9) has peaks

attaining a lower probability than those of the BetaSN PDF as in (2.20).
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94CHAPTER 4. GENERALISING THE EXTENSIONS OF THE SKEW-NORMAL DISTRIBUTION

Figure 4.11: The BetaSGN PDF (see (4.9))

for varying λ and arbitrary µ = 0, α2 =
√
2,

β = 4, a = 2 and b = 1.

Figure 4.12: The BetaSGN PDF (see (4.9))

for varying λ and arbitrary µ = 0, α2 =
√
2,

β = 4, a = 2 and b = 3.

Remarks

1. It is important to note that the construction of the BetaSN and BetaSGN distributions

only allow a symmetric PDF if a = b and λ = 0.

2. Comparing Figure 2.10 and Figure 4.11 it is noted that for λ = 0, a > b and β > 2 more

of the mass of the BetaSGN PDF (4.9) lies to the right of x = 0 compared to that of the

BetaSN PDF (2.20).

3. Similarly, comparing Figure 2.11 and Figure 4.12 it is noted that when λ = 0, a < b and

β > 2 more of the mass of the BetaSGN PDF (4.9) lies to the left of x = 0 compared to

that of the BetaSN PDF (2.20).

4.4 Summary

In this chapter, extensions of distributions in Chapter 2 are presented. The skew generalised-

normal type II (SGN II) distribution is defined and a stochastic representation is derived. The

skewing mechanism associated with SGN II distribution is compared to that of the SGN I dis-

tribution. The GBSN ∗
1 and BetaSGN distributions are defined and compared with their coun-

terparts in Chapter 2.
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Chapter 5

Application

In this chapter, distribution fitting to real world data along with approximating binomial prob-

abilities are proposed as applications of our new results. The focus is on the SGN I distribution

only.

5.1 Fitting to data

Here the usefulness of the proposed SGN I distribution in fitting to real-world data is illustrated.

An Australian athletes data set containing various measurement on athletes specialising in dif-

ferent sports is used [29]. The variable of interest is the caliper measurement obtained from each

athlete, which provides an indication of body-fat percentage.

5.1.1 Assessing the suitability of distributions

It is vital to perform a test on whether a distribution is a candidate for fitting to a particular

data set. The Kolmogorov-Smirnov (K − S) goodness-of-fit test (see Definition 26, Appendix

B.1) is performed to assess the suitability of fitting the SGN I distribution to this data set. The

standard critical values of the K−S statistic do not apply when any parameters of the candidate

distribution (SGN I in this case) are estimated from the data. Hence, a Monte Carlo approach

must be used instead to construct an appropriate test. We propose the following algorithm to

find critical values of the K−S statistic. For our purposes we take the null hypothesis, H0, that

the data are from a SGN I distribution.

Algorithm:

1. Fit the SGN I distribution to the original data using maximum likelihood estimation;

2. Calculate the K − S distance, d∗, between the data and the fitted SGN I distribution;

95
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96 CHAPTER 5. APPLICATION

3. Run a bootstrap re-sampling from the original data 500 times and fit the SGN I distribution

again;

4. Calculate K − S distance, di, between the bootstrapped data and the fitted SGN I distri-

bution;

5. Repeat steps 3− 4 M times to obtain the set d = {d1, d2, · · · , dM};

6. Calculate the (1− α)th sample quantiles q1−α of dM at levels of significance:

α = 0.01, 0.05, 0.1;

7. If d∗ < q1−α the null hypothesis cannot be rejected at α level of significance and there is

not enough evidence to suggest that the data are not from a SGN I distribution. If this is

the case, the K − S test indicated that the SGN I distribution is a suitable candidate to

fit to the data;

Using the above algorithm, an approximate p− value can also be obtained as the proportion of

time the elements in dM are greater than d∗.

The test is performed with M = 500. The test statistic is calculated as d∗ = 0.1174142. The

critical values at different levels of significance are presented in Table 5.1.

Level of significance, α Critical value, q1−α

0.01 0.138527

0.05 0.145027

0.1 0.1562062

Table 5.1: Simulated critical values of the K − S goodness of fit test at various levels of signifi-

cance.

Since d∗ < q1−α for α = 0.01, 0.05, 0.1 and the approximate p − value is calculated as

0.545109, the null hypothesis, that the data are from a SGN distribution, cannot be rejected.

Therefore it is concluded that the SGN distribution is a suitable candidate to fit to this data

set.

5.1.2 Distribution fitting

The following distributions are fitted to the caliper measurement obtained from each athlete:

• the normal distribution, N
(

µ, σ2
)

;

• SN
(

µ, σ2, λ
)

distribution with PDF fX (x;µ, σ, λ) as given in (2.2);
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5.1. FITTING TO DATA 97

• SGN I

(

µ, α2, β, λ
)

with PDF fX (x;µ, α, β, λ) as given in (3.11);

• GBSN 1

(

µ, σ2, n, λ1, λ2

)

with PDF fX (x;µ, σ, n, λ1, λ2) as given in (2.17)

Methodology

1. The method of maximum likelihood was used for the fitting of all distributions;

2. In particular, to fit the SGN I

(

µ, α2, β, λ
)

distribution, let x1, · · · , xm be a random sample

of size m from SGN I

(

µ, α2, β, λ
)

and maximise the likelihood function given by

L
(

µ, α2, β, λ
)

=

(

2

α

)m m
∏

i=1

φ∗
(

xi − µ

α
;β

)

Φ

(√
2λ

(

xi − µ

α

))

using well-known optimisation techniques (see Nelder–Mead method) in SAS 9.4.

3. The location and scale parameters of N
(

µ, σ2
)

distribution are respectively set as the

sample mean and sample standard deviation of the data;

4. The location and scale parameters of the of SN
(

µ, σ2, λ
)

distribution with PDF (2.2) are

set as the maximum likelihood estimates of the respective shape and scale parameters of

the N
(

µ, σ2
)

distribution. A histogram of the data is obtained and it was concluded that

the data was positively skewed (see Figure 5.1). Therefore an arbitrary positive value of λ

is chosen as an initial value. The fitting of the SN
(

µ, σ2, λ
)

distribution with PDF (2.2)

can be repeated using various positive values of λ to test the sensitivity of the initial values

on the maximum likelihood estimates.

5. The location and scale parameters of the of SGN I

(

µ, α2, β, λ
)

distribution are set as

the maximum likelihood estimates of the respective location and scale parameters of the

SN
(

µ, σ2, λ
)

distribution. The initial value of the shape parameter β is set to two. Care

needs to be taken in setting the initial value of the skewness parameter λ as a positive λ

does not necessarily imply that the resulting SGN I

(

µ, α2, β, λ
)

PDF as in (3.11) will be

positively skewed (see Figure 3.9). It is therefore recommended to set the initial value of

λ to zero.

6. The adequacy of the fit of the four distributions was assessed by the BIC and AIC infor-

mation criteria (see Definition 27 and Definition 28, Appendix B.1).
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98 CHAPTER 5. APPLICATION

Results

µ̂ σ̂2 α̂2 β̂ λ̂ λ̂1 λ̂2 n̂ AIC BIC

N 22.96 2.862 - - - - - - 1001.336 997.336

SN 19.97 4.132 - - 2.313 - - - 986.199 980.199

SGN I 20.80 - 3.8422 1.381 1.074 - - - 984.349 976.349

GBSN I 19.76 4.2882 - - - 2.535 1.092 1.1613677 989.820 979.820

Table 5.2: AIC and BIC criteria obtained for each of the fitted distributions

As a visual assessment of goodness of fit, the estimated PDFs of the four distributions and

the empirical histogram are plotted in Figure 5.1.

Figure 5.1: Empirical histogram of data with overlaid fitted PDFs

The results in Table 5.2 identify the SGN I

(

µ, α2, β, λ
)

distribution with PDF (3.11) as the

best fit for the given data.

5.2 Approximating the binomial distribution

Consider a random variable X ∼ Binomial (n, p) with PDF as given in Definition 17, Appendix

B.1. A normal distribution with expected value np and variance np(1 − p) is usually used to

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



5.2. APPROXIMATING THE BINOMIAL DISTRIBUTION 99

approximate the binomial distribution when n is large or when p is close to 0.5 (in which case

the binomial distribution PDF is approximately symmetric). However, it is well known that

the fX (x;n, p) (Definition 17, Appendix B.1) is not symmetric for p 6= 0.5 and exhibits a non-

negligible degree of skewness for both large and small values of p. It is therefore of interest to

consider approximating the binomial distribution using the SN (as done by Chang et. al.) [12]

and SGN I distributions in order to account for the skewness present.

5.2.1 Methodology

The methodology adopted is vastly different than what is done in [12].

1. Let X ∼ Binomial (n, p) with PDF fX (x;n, p) as given Definition 17, Appendix B.1;

2. Let the classic normal approximation to the binomial distribution be A ∼ N
(

µ̂ = np, σ̂2 = np (1− p)
)

with PDF fA (a; µ̂, σ̂) and calculate d = max0≤i≤n |fX (i;n, p)− fA (i; µ̂, σ̂)|;

3. Let the SN approximation be B ∼ SN
(

µ̂, σ̂2, λ̂
)

with PDF fB

(

b; µ̂, σ̂, λ̂
)

as in (2.2) with

estimated parameters numerically minimising the maximum distance between fX (x;n, p)

and fB

(

b; µ̂, σ̂, λ̂
)

(2.2) (i.e minimising d = max0≤i≤n

∣

∣

∣fX (i;n, p)− fB

(

i; µ̂, σ̂, λ̂
)∣

∣

∣);

4. Let the SGN I approximation be C ∼ SGN I

(

µ̂, α̂2, β̂, λ̂
)

with PDF fC

(

c; µ̂, α̂, β̂, λ̂
)

as in

(3.11) with estimated parameters numerically minimising the maximum distance between

fX (x;n, p) and fC

(

c; µ̂, α̂, β̂, λ̂
)

(3.11) (i.e minimising d = max0≤i≤n

∣

∣

∣
fX (i;n, p)− fC

(

i; µ̂, α̂, β̂, λ̂
)∣

∣

∣
);

5. The initial values in the optimisation algorithm used to estimate the parameters of the SN
approximation are {µ, σ, λ} =

{

np,
√

np(1− p, 0
}

. λ is set zero so that the optimisation

algorithm begins with a symmetric distribution.

6. The initial values in the optimisation algorithm used to estimate the parameters of the

SGN I approximations {µ, α, β, λ} =
{

np,
√

np(1− p, 2, 0
}

. β is set to two and λ is set to

zero so that the optimisation algorithm begins with a symmetric distribution with normal

tail behavior.

7. In Step 5 and Step 6, the parameters are set in this way to ensure that the algorithm used

does not favour any distribution over another.

8. The approximation error is calculated for i = 0, · · · , n as

(a) fX (i;n, p)− fA (i; µ̂, σ̂) for the N distribution;

(b) fX (i;n, p)− fB

(

i; µ̂, σ̂, λ̂
)

for the SN distribution and

(c) fX (i;n, p)− fC

(

i; µ̂, α̂, β̂, λ̂
)

for the SGN I distribution.
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100 CHAPTER 5. APPLICATION

5.2.2 Results

Case 1: n = 30, p = 0.95

Table 5.3 and Figure 5.2 summarise the results obtained when the N , SN (see (2.2)) and SGN I

(see (3.11)) are used to approximate X ∼ Binomial (30, 0.95):

µ̂ σ̂2 α̂2 β̂ λ̂ d

N 28.5 0.19372 - - - 0.06289

SN 28.624 1.2322 - - 0.140 0.01944

SGN I 29.672 - 2.0832 1.696 -1.702 0.01165

Table 5.3: d obtained for each of the distributions approximating the Binomial (30, 0.95) distri-

bution

(a) N , SN (2.2) and SGN I (3.11) PDFs approximating

fX (x; 30, 0.95).

(b) Approximation error

Figure 5.2: N , SN (2.2) and SGN I (3.11) approximations to Binomial (30, 0.95) distribution.

Case 2: n = 20, p = 0.05

Table 5.4 and Figure 5.3 summarise the results obtained when the N , SN (see (2.2)) and SGN I

(see (3.11)) distributions are used to approximate X ∼ Binomial (20, 0.05):
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5.2. APPROXIMATING THE BINOMIAL DISTRIBUTION 101

µ̂ σ̂2 α̂2 β̂ λ̂ d

N 1 0.9752 - - - 0.11668

SN 0.318 1.0712 - - 0.365 0.03296

SGN I 1.777 - 2.2642 5.332 -2.180 0.01020

Table 5.4: d obtained for each of the distributions approximating the Binomial (20, 0.05) distri-

bution.

(a) N , SN (2.2) and SGN I (3.11) PDFs approximating

fX (x; 20, 0.05).

(b) Approximation error

Figure 5.3: N , SN (2.2) and SGN I (3.11) approximations to Binomial (20, 0.05) distribution.

It is observed that using the SGN I distribution to approximate a binomial distribution with

p either large or small results in a overall more accurate approximation compared to both the

N and SN distributions. This is due to the SGN I having two parameters, i.e. β and λ, adding

flexibility in accounting for skewness (see Section 3.3 and Section 3.4) of the binomial distribution

exhibited when p is large or small. In both cases above, the SGN I resulted in the minimum d,

and by this measure it is conclude that the SGN I distribution outperforms both the N and SN
distributions in approximating a binomial distribution with p either large or small.
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Chapter 6

Conclusion and future work

In Chapter 1 the use and importance of skew-symmetric distributions is motivated and the mech-

anism that is used to introduced skewness into a symmetric distribution is defined. In Chapter 2

the existing skew-normal distribution and its characteristics are revisited. A existing stochastic

representation of the skew-normal distribution is revisited and some existing generalisations of

the skew-normal model are presented. In Chapter 3 the basic characteristics and a stochastic

representation of the generalised normal distribution is derived. The skew generalised-normal

type I distribution is then defined and the effect of changing certain parameters of this distri-

bution is examined. An acceptance-rejection algorithm is employed to sample from the skew

generalised-normal type I distribution and shortfalls of this approach are noted. Two meth-

ods which approximate the characteristics of the skew generalised-normal type I distribution

are derived and compared using comprehensive numerical study. Given the shortfalls of the

acceptance-rejection algorithm, it was then undertaken to derive a new stochastic representation

for the skew generalised-normal type I distribution. In Chapter 4 the skew generalised-normal

type II distribution is defined and a stochastic representation is derived. The skewing mech-

anism associated with skew generalised-normal type II distribution is compared to that of the

skew generalised-normal type I distribution. The Balakrishnan skew generalised-normal and beta

skew generalised-normal distributions are defined. In Chapter 5 a distribution fitting application

is presented and it is found that the skew generalised-normal type I distribution was the best fit

for the given data. A second application which involves the approximating the binomial distri-

bution using the normal-, skew-normal- and skew generalised-normal type I distribution is also

presented. It is determined the the skew generalised-normal type I distribution outperforms the

normal and skew-normal distributions in approximating skewed binomial distributions.

102
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6.1. FUTURE WORK 103

6.1 Future work

There are opportunities for future research based on this study:

• Abtahi et. al. [1] introduced a unified skew-normal distribution that replaces the skewing

mechanism with a data-driven kernel density estimate. It would be possible to use the

generalised normal distribution to extend the unified skew-normal distribution to a unified

skew generalised-normal distribution.

• Another possible idea for future work is to extend the skewing mechanism to the elliptical

class. For this, the following definition along with a practical lemma is proposed.

Definition 12. A random variable Y has the skew elliptical generalised-normal distribution

with location parameter µ, scale parameter α and shape parameter β if its PDF is given by

fY (y;µ, αβ, λ) =
2

α
φ∗
(

y − µ

α
;β

)

ΦE

(√
2λ

y − µ

α

)

where α, β ∈ R
+, λ ∈ R and ΦE (·) is the CDF of an elliptically contoured distribution [2]. This

is denoted by Y ∼ SEGN
(

µ, α2, β, λ, g
)

.

Lemma 3. Let Y ∼ SEGN
(

µ, α2, β, λ, g
)

then

fY (y;µ, αβ, λ) =
2

α
φ∗
(

y − µ

α
;β

)∫ ∞

0
W (t)ΦN(0,t−1)

(√
2λ

(

y − µ

α

))

dt (6.1)

where β ∈ R
+, λ ∈ R and ΦN(0,t−1) is the CDF of a N

(

0, t−1
)

distribution and where W (·) is a

weighting function on (0,∞) .

Proof. Follows from Theorem 17, Appendix B.2 together with (3.9).

The following table shows the weighting function, W (·) , for three particular skewed distri-

butions that can be explored within this context.

Distribution W (t)

SGN I (see Chapter 3) δ (t− 1) - Dirac delta function

SGNTν
ν( νt

2 )
ν
2−1

2Γ( ν
2 )e

νt
2

SGN Sinusoidal
(−1)

2(β−1)
(β+1) sin( t

2)

Γ( β
2 ) cos(

βπ
4 )(2t)

β
2
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104 CHAPTER 6. CONCLUSION AND FUTURE WORK

In conclusion it may be of interest to use the generalised normal distribution as the symmetric

base and extending skewing mechanism to the elliptical class to further enhance the skewing

mechanism’s flexibility (see Proposition 1, Section 1.2).
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Appendix A

Notation and symbols used

Symbol Meaning

R real number

R
d d−dimensional real space

R
+ positive real number

Z
+ positive integer

E [·] expectation operator

EU [·] expectation with respect to random variable U

P [·] probability operator

PDF probability density function

CDF cumulative distribution function

MGF moment generating function

γ1 skewness

γ2 kurtosis

Γ (·) gamma function

γ (·) incomplete gamma function

B (a, b) complete beta function

Table A.1: Abbreviation/symbol with corresponding meaning
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109

Symbol Distribution

N normal distribution

SN skew-normal distribution

BetaSN beta skew-normal distribution

GN generalised normal distribution

SGN I skew generalised-normal type I distribution

BetaSGN beta skew generalised-normal distribution

SGN II skew generalised-normal type II distribution

φ (·) PDF of the standard normal distribution

Φ (·) CDF of the standard normal distribution

φ∗ (·) PDF of the standard generalised normal type I distribution

Φ∗ (·) CDF of the standard generalised normal type I distribution

GBSN 1 Generalised Balakrishnan skew-normal type I distribution

GBSN ∗
1 Balakrishnan skew generalised-normal distribution

Table A.2: Abbreviation/symbol and corresponding distribution
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Appendix B

Definitions and results

B.1 Definitions

Definition 13. The inverse Mills ratio is defined as m (x) = φ(x)
Φ(x) for x ∈ R, where φ (·) and

Φ (·) denote the standard normal PDF and CDF respectively [7].

Definition 14. The cumulant generating function, KX (t), of a random variable X is defined

as the logarithm of the moment generating function of X:

KX (t) = logEX

[

etX
]

= logMX(t)

Note that dn

dtnKX (t)
∣

∣

t=0
is the nth central moment of the distribution of X [7].

Definition 15. The complete beta function denoted by B (a, b), is defined as

B (a, b) =

∫ 1

0
ta−1 (1− t)b−1 dt

where a, b ∈ R
+ [10].

Definition 16. A random variable W has the gamma distribution if its PDF is given by

fW (w) = ba

Γ(a)w
a−1e−bx, w > 0 (B.1)

where a, b ∈ R
+ . This is denoted by W ∼ Gamma (a, b) [10].

Definition 17. A random variable X has the binomial distribution if its PDF is given by

fX (x) =
(n
x

)

px (1− p)n−x , x ∈ {0, · · · , n} (B.2)

where n ∈ Z
+ and p ∈ [0, 1] . This is denoted by X ∼ Binomial (n, p) [10].
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B.1. DEFINITIONS 111

Definition 18. The gamma function, Γ (·) , is defined as

Γ (z) =

∫ ∞

0
tz−1e−tdt

where z ∈ R
+ [10].

Definition 19. The incomplete gamma function, γ (·) , is defined as

γ (a, z) =

∫ z

0
ta−1e−tdt

where a, z ∈ R
+ [10].

Definition 20. The sign function of x ∈ R is defined as [2]

sign (x) =



























−1 if x < 0,

0 if x = 0,

1 if x > 0.

Definition 21. The kth moment of a random variable X with PDF fX (x) is defined as [10]

E

[

Xk
]

=

∫

R

xkfX (x) dx.

Definition 22. The expected value of a random variable X with PDF fX (x) is defined as [10]

E [X] =

∫

R

xfX (x) dx

Definition 23. The variance of a random variable X with PDF fX (x) is defined as [10]

var [X] = E
[

X2
]

− (E [X])2

Definition 24. The skewness of a random variable X with PDF fX (x) is defined as [10]

skewness (X) = γ1 =
E
[

X3
]

− 3E [X]E
[

X2
]

+ 2 (E [X])3

(var [X])
3
2

Definition 25. The kurtosis of a random variable X with PDF fX (x) is defined as [10]

kurtosis (X) = γ2 =
E
[

X4
]

− 4E [X]E
[

X3
]

+ 6 (E [X])2 E
[

X2
]

− 3 (E [X])4

(var [X])2
− 3

Definition 26. Given n data points y1, · · · , yn, the one sample Kolmogorov-Smirnov (K − S)

distance, d, is defined as the maximum distance between , FYi
(yi) , the CDF of the theoretical

distribution assumed and F̂Yi
(yi), the empirical distribution function of the data

d = max
1≤i≤n

∣

∣

∣
FYi

(yi)− F̂Yi
(yi)

∣

∣

∣
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112 APPENDIX B. DEFINITIONS AND RESULTS

Definition 27. The Akaike information criterion (AIC) is defined as

AIC = 2k − 2 ln L̂

where L̂ is the maximised value of the likelihood function of the model and k is the number of

estimated parameters.

Definition 28. The Bayesian information criterion (AIC) is defined as

BIC = ln (n) k − 2 ln L̂

where L̂ is the maximised value of the likelihood function of the model and k is the number of

estimated parameters and n is the number of data points.

B.2 Results

Theorem 13. Consider random variable X. Let f (x) and F (x) denote the PDF and CDF of

X then

f (x) =
d

dx
F (x)

wherever the derivative exists [10].

Theorem 14. As stated in [10], let X be a random variable with PDF fX (·) and consider

the transformation Y = u (X) . Suppose also that the function u (x) is not one-to-one over

A = {x|fX (x) > 0}. If it is possible to partition A into disjoint subsets A1, A2, · · · such that

u (x) is one-to-one over each Aj then for each y in the range of u (x) ,the equation y = u (x) has

a unique solution xj = wj (y) over the set Aj and

fY (y) =
∑

j

fX (wj (y))

∣

∣

∣

∣

d

dy
wj (y)

∣

∣

∣

∣

.

Theorem 15. The binomial theorem states that it is possible to expand any power of (x+ y)

into a sum of the form

(x+ y)n =
∑n

k=0

(n
k

)

xn−kyk =
n
∑

k=0

(

n

k

)

xkyn−k

where
(n
k

)

= n!
k!(n−k)! is a specific positive integer known as a binomial coefficient [10].

Theorem 16. The CDF of a standard normal random variable can be represented as

Φ (x) =
1

2
+

1√
2π

∞
∑

k=0

(

−1
2

)k
x2k+1

k! (2k + 1)
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B.2. RESULTS 113

Proof. Consider

Φ (x) =
1

2
+

1

2
erf

(

x√
2

)

=
1

2
+

1

2

2√
π

∞
∑

k=0

(−1)k
(

x√
2

)2k+1

k! (2k + 1)

=
1

2
+

1√
2π

∞
∑

k=0

(

−1
2

)k
x2k+1

k! (2k + 1)

Theorem 17. If X is an elliptical random variable with parameters µ and σ2 and PDF denoted

fX (x) then there exists a weighting function W (·) defined on (0,∞) such that

fX (x) =

∫ ∞

0
W (t) fN (µ,t−1σ2) (x) dt

where fN (µ,t−1σ2) (·) denotes the PDF of a normal random variable with parameters µ ∈ R
+ and

t−1σ2 ∈ R
+ [13].

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix C

Code

C.1 Chapter 2

C.1.1 The theoretical characteristics of the SN (µ, σ2, λ) distribution with

PDF fX (x;µ, σ, λ) as given in equation (2.2)

proc iml;

start charactersistics(lambda) global(mu, sigma);

delta = lambda/sqrt(1+lambda**2);

pi = constant(’pi’);

expected = mu + delta*sigma*sqrt(2/pi);

std = sqrt((sigma**2)*(1-(2/pi)*delta**2));

var = ((sigma**2)*(1-(2/pi)*delta**2));

third = 0.5*(4-pi)*(delta*sqrt(2/pi))**3;

fourth = 2*(pi-3)*(delta*sqrt(2/pi))**4;

skewness = third/((1-(2/pi)*delta**2)**(3/2));

kurtosis = fourth/((1-(2/pi)*delta**2)**(4/2));

ans = lambda||expected||std||skewness||kurtosis;

return (ans);

finish;

*Parameters;

sigma = 1;

mu = 0;

***********;
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C.1. CHAPTER 2 115

lambdaVec = do(-10,10,0.1)‘;

do i = 1 to nrow(lambdaVec);

lambda = lambdaVec[i];

ans = ans//charactersistics(lambda);

end;

create plot from ans; append form ans; close;

quit;

C.1.2 Generation of variates with a SN (µ, σ2, λ) distribution with PDF fX (x;µ, σ, λ)

as given in equation (2.2)

proc iml;

*Parameters;

n=10000;

lambda =2;

mu = 2;

sigma2 = 2;

sigma = sqrt(sigma2);

************;

*Simulatation of SN random variates;

u1 = rannor(j(n,1,0));

u2 = rannor(j(n,1,0));

data = mu + sigma#((lambda#abs(u1)+u2)/sqrt(1+lambda##2));

*Theoretical PDF;

xDomain = do(-8,8,0.05)‘;

density = (2/sigma)#PDF(’normal’, ((xDomain-mu)/sigma))#CDF(’normal’, lambda#((xDomain-mu)/sigma));

density = xDomain||density;

************;

create data from data; append from data; close;

create theoretical from density; append from density; close;

quit;

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



116 APPENDIX C. CODE

C.2 Chapter 3

C.2.1 Generation of variates with a GN (µ, α2, β) distribution with PDF fX (x;µ, α, β)

as given in equation (3.1)

proc iml;

seed = 0;

start GND_pdf (x) global(mu, alpha, beta);

pdf = (beta/(2#alpha#gamma(1/beta)))#exp(-(abs((x-mu)/alpha))##beta);

return pdf;

finish;

*Parameters*;

beta = 3;

mu = 0;

alpah2 = 2;

alpha = sqrt(alpah2);

******************************;

*Theoretical PDF*;

xDomain = do(-8, 8, 0.1)‘;

pdf = GND_pdf(xDomain);

plot = xDomain||pdf;

create pdf from plot; append from plot; close;

*Simulation of SGN random variates*;

n=10000;

u = ranuni(j(n,1,seed));

loc1 = (u>0.5);

loc2 = -(u<0.5);

s = loc1 + loc2;

y = rangam(j(n,1,seed+1),1/beta);

x = mu+s#(alpha#(y)##(1/beta));

create data from x; append from x; close;

quit;
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C.2. CHAPTER 3 117

C.2.2 The characteristics of the SGN I (µ, α
2, β, λ) distribution using numerical

integration for varying λ

proc iml;

*Function that will be integrated to obtain moments;

start fx(x) global(beta, lambda, mu, alpha,moment);

return( (x##moment)#beta/(alpha*gamma(1/beta))#(exp(-((abs(x)-mu)/alpha)##beta))

#CDF(’NORMAL’,((x-mu)/alpha)#lambda#sqrt(2)) );

finish;

*Numerical integration;

start EX(w);

limits = -10||10;

call quad(w, "fx", limits);

return(w);

finish;

*Parameters*;

beta = 5;

mu = 0;

alpha2 = 9;

alpha = sqrt(alpha2);

************;

start CharacteristicsOfSGN (characteristic) global(moment);

do moment = 1 to 4;

temp = temp||EX(w);

end;

ExpectedX = temp[,1];

ExpectedX2 = temp[,2];

ExpectedX3 = temp[,3];

ExpectedX4 = temp[,4];
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118 APPENDIX C. CODE

stdDev = (ExpectedX2 - ExpectedX##2)##0.5;

skewness = (ExpectedX3 - 3#ExpectedX#ExpectedX2+2#ExpectedX##3)/stdDev##3;

kurtosis = (ExpectedX4 - 4#ExpectedX#ExpectedX3

+6#(ExpectedX##2)#ExpectedX2-3#ExpectedX##4);

kurtosis = (kurtosis/stdDev##4) - 3;

characteristic = ExpectedX||stdDev||skewness||kurtosis;

return (characteristic);

finish;

a = -10; b = 10; step = 0.05;

col = do(a,b,step)‘;

do lambda = a to b by step;

result = result//CharacteristicsOfSGN(characteristic);

end;

result = col||result;

create result from result; append from result; close;

quit;

C.2.3 The characteristics of the SGN I (µ, α
2, β, λ) distribution for varying λ

using Method 2

proc iml;

seed = 0;

*Parameters********;

mu=0;

beta = 1;

alpha2 = 2;

alpha = sqrt(alpha2);

********************;
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C.2. CHAPTER 3 119

start characteristics(lambda) global(mu,alpha,beta,seed);

num=1000000;

Expected = j(4,1,.);

do n = 1 to 4;

y = rangam(j(num,1,seed+1),(n+1)/beta);

x = (y##(1/beta))#lambda;

Func = cdf(’normal’,x*sqrt(2))[:];

if mod(n,2)=0 then do;

Expected[n] = Gamma((n+1)/beta)/Gamma(1/beta);

end;

if mod(n,2)^=0 then do;

Expected[n] = (Gamma((n+1)/beta)/Gamma(1/beta))#(2#Func-1);

end;

end;

ExpectedX = mu + alpha#Expected[1];

ExpectedX2 = mu##2 + 2#mu#alpha#Expected[1] + (alpha##2)#Expected[2];

ExpectedX3 = mu##3 + 3#alpha#(mu##2)#Expected[1]

+ 3#(alpha##2)#mu#Expected[2] + (alpha##3)#Expected[3];

ExpectedX4 = mu##4 + 4#alpha#(mu##3)#Expected[1] + 6#Expected[2]#(alpha#mu)##2

+ 4#Expected[3]#(alpha##3)#mu + Expected[4]#alpha##4;

stdSS = (ExpectedX2 - ExpectedX##2)##0.5;

skew = (ExpectedX3 -3#ExpectedX#ExpectedX2+2#ExpectedX##3)/stdSS##3;

kurtosis = (ExpectedX4 - 4#ExpectedX#ExpectedX3

+6#(ExpectedX##2)#ExpectedX2-3#ExpectedX##4);

kurtosis = kurtosis/stdSS##4 -3

result = lambda||ExpectedX||stdSS||skew||kurtosis;

return(result);

finish;

lambdaVec = do(-10,10,0.01)‘;;
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120 APPENDIX C. CODE

do i = 1 to nrow(lambdaVec);

lambda = lambdaVec[i];

ans = ans//characteristics(lambda);

end;

print ans;

create data from ans; append from ans; close;

quit;

C.2.4 The range of skewness attainable by SGN I (µ, α
2, β, λ) distribution

proc iml;

seed = 1;

beta = 2.5;

start Func(param) global (beta, seed);

lambda = param[1];

num = 100000;

Expected = j(3,1,.);

do n = 1 to 3;

y = rangam(j(num,1,seed+1),(n+1)/beta);

x = (y##(1/beta))#lambda#sqrt(2);

Func = cdf(’normal’,x)[:];

if mod(n,2)=0 then do;

Expected[n] = Gamma((n+1)/beta)/Gamma(1/beta);

end;

if mod(n,2)^=0 then do;

Expected[n] = (Gamma((n+1)/beta)/Gamma(1/beta))#(2#Func-1);

end;

end;

ExpectedX = Expected[1];
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C.2. CHAPTER 3 121

ExpectedX2 = Expected[2];

ExpectedX3 = Expected[3];

stdSS = (ExpectedX2 - ExpectedX##2)##0.5;

skew = (ExpectedX3 -3#ExpectedX#ExpectedX2+2#ExpectedX##3)/stdSS##3;

return ( skew );

finish;

con = {-50, 50};

p = {0};/* initial guess for solution */

opt = {1,1};

call nlpnms(rc, result, "Func", p, opt, con);

print result;

quit;

C.2.5 Acceptance-rejection sampling from the SGN I (µ, α
2, β, λ) distribution

proc iml;

start fx(x) global(beta, lambda, mu, alpha);

return( beta/(alpha#gamma(1/beta))#(exp(-(abs(x-mu)/alpha)##beta))

#CDF(’NORMAL’,((x-mu)/alpha)#lambda#sqrt(2)) );

finish;

start gx(x,N,c);

return( fx(x)/(c*(1/(2*N))) );

finish;

seed=1;

*Parameters;

mu=0;
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122 APPENDIX C. CODE

alpha=2;

beta = 2;

lambda = 25;

alpha2 = (alpha**2);

*#####################;

*Theoretical PDF;

x = do(-12,12,0.01)‘;

f1 = fx(x);

plot = x||f1;

create plot from plot[colname = {’x’ ’fx’}];

append from plot; close;

*#####################;

*AR method;

optn = {1,0};

init = 6;

call nlpnra(rc, max, "fx", init, optn);

y_max = fx(max);

N = 12;

c = 2*N*fx(max);

*Number of iterations of the AR algorithm;

num=70000;

u = ranuni(j(num,1,seed));

ustar = ranuni(j(num,1,seed+1));

y = -N + (2*N)*ustar;

gy = gx(y,N,c);

mat = u||y||gy;

loc1 = loc(mat[,1]<=mat[,3]);

loc2 = loc(mat[,1]>mat[,3]);
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accept = y[loc1]||mat[loc1,3]||u[loc1]#y_max;

reject = y[loc2]||mat[loc2,3]||u[loc2]#y_max;

call sort(accept);

call sort(reject);

n=nrow(accept[,1]); * number of random variates generated;

mean = (accept[,1])[:];

var = std(accept[,1]);

skewness = skewness(accept[,1]);

kurtosis = kurtosis(accept[,1]);

print ’Analysis of SGN variates generated using AR method’;

print ’sample size = ’ n;

print mean var skewness kurtosis;

time1 = time();

timeTaken = time1-time0;

print timeTaken;

create accept from accept[colname = {’yaccept’ ’accept’ ’u1’}];

append from accept; close;

create reject from reject[colname = {’yreject’ ’reject’ ’u2’}];

append from reject; close;

quit;

C.2.6 The characteristics of the SGN I (µ, α
2, β, λ) distribution using Method

1 derived in Chapter 3.6

proc iml;
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seed = 1;

*Parameters*;

mu = 0;

alpah2 = 16;

beta = 2;

lambda = 2;

alpha = sqrt(alpah2);

******************************;

n=800000; *number of samples to be drawn;

u = ranuni(j(n,1,seed));

loc1 = (u>0.5);

loc2 = -(u<0.5);

s = loc1 + loc2;

y = rangam(j(n,1,seed+1),1/beta);

x = mu+s#(alpha#(y)##(1/beta));

create data from x[colname={’data’}]; append from x; close;

ExpectedX = (2#(x##1)#cdf(’normal’,sqrt(2)#lambda#(x-mu)/alpha))[:];

ExpectedX2 = (2#(x##2)#cdf(’normal’,sqrt(2)#lambda#(x-mu)/alpha))[:];

ExpectedX3 = (2#(x##3)#cdf(’normal’,sqrt(2)#lambda#(x-mu)/alpha))[:];

ExpectedX4 = (2#(x##4)#cdf(’normal’,sqrt(2)#lambda#(x-mu)/alpha))[:];

stdDev = (ExpectedX2 - ExpectedX##2)##0.5;

skewness = (ExpectedX3 - 3#ExpectedX#ExpectedX2 + 2#ExpectedX##3)/stdDev##3;

kurtosis = (ExpectedX4 - 4#ExpectedX#ExpectedX3

+6#(ExpectedX##2)#ExpectedX2-3#ExpectedX##4)/stdDev##4 -3;

CharacteristicsSGN = ExpectedX||stdDev||skewness||kurtosis;

quit;
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C.2.7 The characteristics of the SGN I (µ, α
2, β, λ) distribution using Method

2 derived in Chapter 3.7 as written in Theorem 9 (random number

generation)

proc iml;

seed = 0;

*Parameters*;

mu = 0;

alpha2 = 16;

beta = 2;

lambda = 2;

alpha = sqrt(alpha2);

******************************;

num=100000; *number of samples to be drawn;

Expected = j(4,1,.);

do n = 1 to 4;

y = rangam(j(num,1,seed+1),(n+1)/beta);

x = (y##(1/beta))#lambda#sqrt(2);

Func = cdf(’normal’,x)[:];

if mod(n,2)=0 then do;

Expected[n] = Gamma((n+1)/beta)/Gamma(1/beta);

end;

if mod(n,2)^=0 then do;

Expected[n] = (Gamma((n+1)/beta)/Gamma(1/beta))#(2#Func-1);

end;

end;

ExpectedX = mu + alpha#Expected[1];

ExpectedX2 = mu##2 + 2#mu#alpha#Expected[1] + (alpha##2)#Expected[2];

ExpectedX3 = mu##3 + 3#alpha#(mu##2)#Expected[1] + 3#(alpha##2)#mu#Expected[2]
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+ (alpha##3)#Expected[3];

ExpectedX4 = mu##4 + 4#alpha#(mu##3)#Expected[1] + 6#Expected[2]#(alpha#mu)##2

+ 4#Expected[3]#(alpha##3)#mu + Expected[4]#alpha##4;

stdDev = (ExpectedX2 - ExpectedX##2)##0.5;

skewness = (ExpectedX3 - 3#ExpectedX#ExpectedX2+2#ExpectedX##3)/stdDev##3;

kurtosis = (ExpectedX4 - 4#ExpectedX#ExpectedX3+6#(ExpectedX##2)#ExpectedX2

- 3#ExpectedX##4)/stdDev##4 -3;

CharacteristicSGN = Expected||stdDev||skewness||kurtosis;

quit;

C.2.8 The characteristics of the SGN I (µ, α
2, β, λ) distribution using Method 2

derived in Chapter 3.7 as written in Theorem 9 (numerical integration)

proc iml;

time0 = time();

seed = 0;

*CHANGE*****************************;

mu = 0;

alpha2 = 4;

beta = 3;

lambda = -27;

alpha = sqrt(alpha2);

******************************;

num=100000;

start function(a) global(x,beta,n,lambda);

term = (n+1)/beta;

func = PDF(’Gamma’, a,term)#CDF(’Normal’,sqrt(2)#lambda#(a##(1/beta)));

return(func);

finish;
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Expected = j(4,1,.);

do n = 1 to 4;

limits = 0 || .P;

call quad(w, "function", limits);

Func = w;

if mod(n,2)=0 then do;

Expected[n] = Gamma((n+1)/beta)/Gamma(1/beta);

end;

if mod(n,2)^=0 then do;

Expected[n] = (Gamma((n+1)/beta)/Gamma(1/beta))#(2#Func-1);

end;

end;

ExpectedX = mu + alpha#Expected[1];

ExpectedX2 = mu##2 + 2#mu#alpha#Expected[1] + (alpha##2)#Expected[2];

ExpectedX3 = mu##3 + 3#alpha#(mu##2)#Expected[1]

+ 3#(alpha##2)#mu#Expected[2] + (alpha##3)#Expected[3];

ExpectedX4 = mu##4 + 4#alpha#(mu##3)#Expected[1] +

6#Expected[2]#(alpha#mu)##2 + 4#Expected[3]#(alpha##3)#mu

+ Expected[4]#alpha##4;

stdSS = (ExpectedX2 - ExpectedX##2)##0.5;

skew = (ExpectedX3 -3#ExpectedX#ExpectedX2+2#ExpectedX##3)/stdSS##3;

kurtosis = (ExpectedX4 - 4#ExpectedX#ExpectedX3

+6#(ExpectedX##2)#ExpectedX2-3#ExpectedX##4)/stdSS##4 -3;

time1 = time();

print time0 time1;

timetaken = time1-time0;

print ’using Gamma’ timetaken ExpectedX stdSS skew kurtosis;
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quit;

C.2.9 The characteristics of the SGN I (µ, α
2, β, λ) distribution using Method

2 derived in Chapter 3.7 as written in (19)

proc iml;

start sumApprox(stop) global(mu, alpha, beta, lambda, seed, n, total);

sum = 0;

do k = 0 to total by 1;

const1 = sqrt(2/constant(’pi’));

kthing = (2#k+1)/beta;

sum1 = (-0.5)##k;

sum2 = Gamma((n+1)/beta + (2#k+1)/beta)/Gamma((n+1)/beta)#((sqrt(2)#lambda)##(2#k+1));

sum3 = fact(k)#(2#k+1);

a = const1#sum1#sum2/sum3;

sum = sum + a;

end;

if abs(a)<0.000001 then print ’converged’; else print "didn’t converge";

return (sum);

finish;

start Method2 (num) global(mu, alpha, beta, lambda, seed, n, stop);

Expected = j(4,1,.);

do n = 1 to 4;

if mod(n,2)=0 then do;

Expected[n] = Gamma((n+1)/beta)/Gamma(1/beta);

end;

if mod(n,2)^=0 then do;

Expected[n] = (Gamma((n+1)/beta)/Gamma(1/beta))#sumApprox(stop);

end;

end;

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



C.2. CHAPTER 3 129

ExpectedX = mu + alpha#Expected[1];

ExpectedX2 = mu##2 + 2#mu#alpha#Expected[1] + (alpha##2)#Expected[2];

ExpectedX3 = mu##3 + 3#alpha#(mu##2)#Expected[1] + 3#(alpha##2)#mu#Expected[2]

+ (alpha##3)#Expected[3];

ExpectedX4 = mu##4 + 4#alpha#(mu##3)#Expected[1] + 6#Expected[2]#(alpha#mu)##2

+ 4#Expected[3]#(alpha##3)#mu + Expected[4]#alpha##4;

stdDev = (ExpectedX2 - ExpectedX##2)##0.5;

skewness = (ExpectedX3 - 3#ExpectedX#ExpectedX2+2#ExpectedX##3)/stdDev##3;

kurtosis = (ExpectedX4 - 4#ExpectedX#ExpectedX3

+6#(ExpectedX##2)#ExpectedX2-3#ExpectedX##4)

kurtosis = (kurtosis/stdDev##4)-3;

characteristicSGN = ExpectedX||stdDev||skewness||kurtosis;

return (characteristicSGN);

finish;

*Parameters;

total=50;

mu = 0;

alpha2 = 1 ;

beta =1;

lambda =0.07;

alpha = sqrt(alpha2);

*************;

ans = Method2(1);

print ans;

quit;

C.2.10 Visual comparison of Method 1 and Method 2 derived in Section 3.6

and Section 3.7 respectively

proc iml;

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



130 APPENDIX C. CODE

start Method1(n) global(mu, alpha, beta, lambda, seed);

u = ranuni(j(n,1,seed));

loc1 = (u>0.5);

loc2 = -(u<0.5);

s = loc1 + loc2;

y = rangam(j(n,1,seed+1),1/beta);

x = mu+s#(alpha#(y)##(1/beta));

ExpectedX = (2#(x##1)#cdf(’normal’,sqrt(2)#lambda#(x-mu)/alpha))[:];

ExpectedX2 = (2#(x##2)#cdf(’normal’,sqrt(2)#lambda#(x-mu)/alpha))[:];

ExpectedX3 = (2#(x##3)#cdf(’normal’,sqrt(2)#lambda#(x-mu)/alpha))[:];

ExpectedX4 = (2#(x##4)#cdf(’normal’,sqrt(2)#lambda#(x-mu)/alpha))[:];

varSS = (ExpectedX2 - ExpectedX##2);

stdDev = (ExpectedX2 - ExpectedX##2)##0.5;

deno = stdDev;

skewness = (ExpectedX3 -3#ExpectedX#ExpectedX2+2#ExpectedX##3)/stdDev##3;

kurtosis = (ExpectedX4 - 4#ExpectedX#ExpectedX3

+6#(ExpectedX##2)#ExpectedX2-3#ExpectedX##4);

kurtosis = (kurtosis/stdDev##4) - 3;

characteristicSGN = ExpectedX||stdDev||skewness||kurtosis;

return (characteristicSGN);

finish;

start Method2 (num) global(mu, alpha, beta, lambda, seed);

Expected = j(4,1,.);

do n = 1 to 4;

if mod(n,2)=0 then do;

Expected[n] = Gamma((n+1)/beta)/Gamma(1/beta);

end;

if mod(n,2)^=0 then do;
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y = rangam(j(num,1,seed),(n+1)/beta);

x = (y##(1/beta))#lambda#sqrt(2);

Func = cdf(’normal’,x)[:];

Expected[n] = (Gamma((n+1)/beta)/Gamma(1/beta))#(2#Func-1);

end;

end;

ExpectedX = mu + alpha#Expected[1];

ExpectedX2 = mu##2 + 2#mu#alpha#Expected[1] + (alpha##2)#Expected[2];

ExpectedX3 = mu##3 + 3#alpha#(mu##2)#Expected[1] + 3#(alpha##2)#mu#Expected[2]

+ (alpha##3)#Expected[3];

ExpectedX4 = mu##4 + 4#alpha#(mu##3)#Expected[1] + 6#Expected[2]#(alpha#mu)##2

+ 4#Expected[3]#(alpha##3)#mu + Expected[4]#alpha##4;

stdDev = (ExpectedX2 - ExpectedX##2)##0.5;

skewness = (ExpectedX3 - 3#ExpectedX#ExpectedX2+2#ExpectedX##3)/stdDev##3;

kurtosis = (ExpectedX4 - 4#ExpectedX#ExpectedX3

+6#(ExpectedX##2)#ExpectedX2-3#ExpectedX##4);

kurtosis = kurtosis/stdDev##4-3

characteristicSGN = ExpectedX||stdDev||skewness||kurtosis;

return (characteristicSGN);

finish;

seed = 1;

*Parameters******************;

mu = 0;

alpha2 = 4;

beta = 2;

lambda = 25;

alpha = sqrt(alpha2);

******************************;

a = 1000; b=2000000; step = 20000;
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sampleSize = do(a,b,step)‘;

t0Method1 = time();

stop1 = 100;

old1 = 100;

do num1 = a to b by step until(stop1 <0.0005);

result1 = Method1(num1);

new1 = abs(result1)[+];

stop1 = abs(new1 - old1);

old1 = new1;

stopSave1 = stopSave1//(num1||stop1);

end;

tMethod1 = time() - t0Method1;

Method1Results = tMethod1||(num1-step)||result1||stop1;

print Method1Results[colname={’time’ ’step’ ’expectedValue’ ’stdDev’ ’skewness’ ’kurtosis’

’stopCondition’}];

t0Method2 = time();

stop2 = 100;

old2 = 100;

do num2 = a to b by step until(stop2 <0.0005);

result2 = Method2(num2);

new2 = abs(result2)[+];

stop2 = abs(new2 - old2);

old2 = new2;

stopSave2 = stopSave2//(num2||stop2);

end;

tMethod2 = time() - t0Method2;

Method2Results = tMethod2||(num2-step)||result2||stop2;

print Method2Results[colname={’time’ ’step’ ’expectedValue’ ’stdDev’ ’skewness’ ’kurtosis’

’stopCondition’}];

if (nrow(stopSave2))<(nrow(stopSave1)) then do;
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a = nrow(stopSave1);

b = nrow(stopSave2);

diff = a - b;

append = j(diff, 1, stopSave2[b,2]);

stopSave2 = stopSave2[,2]//append;

end;

stopSave = (stopSave1||stopSave2)[2:nrow(stopSave1),];

create stopSave from stopSave; append from stopSave; close;

quit;

C.2.11 Generation of variates with a SGN I (µ, α
2, β, λ) distribution with PDF

fX (x;µ, αβ, λ) as given in equation (3.9)

proc iml;

mu = 0;

alpha2 = 2;

beta= 5;

lambda =-4;

alpha = sqrt(alpha2);

start SGN(x) global(mu, alpha, beta, lambda);

return( beta/(alpha#gamma(1/beta))#(exp(-(abs(x-mu)/alpha)##beta))

#CDF(’NORMAL’,((x-mu)/alpha)#lambda#sqrt(2)) );

finish;

start ranGN(seed) global(mu, alpha, beta);

u = ranuni(j(1,1,seed));

loc1 = (u>0.5);

loc2 = -(u<0.5);

s = loc1 + loc2;

y = rangam(j(1,1,seed),1/beta);

x = s#((y)##(1/beta));

return(x);

finish;

*Simulation of SGN random variates;
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do i = 1 to 100000;

uGN = ranGN(0);

uMat = rannor(j((1),1,0));

max = uMat[<>];

cond = sqrt(2)#lambda#uGN;

if max < cond then do;

sample = sample//(uGN#alpha+mu);

end;

end;

*Theoretical PDF;

x = do(-5, 8, 0.05)‘;

SGN = SGN(x);

density = x||SGN;

print (nrow(sample));

create data from sample; append from sample; close;

create pdf from density; append from density; close;

quit;

C.2.12 Examining convergence of sample statistics of the

SGN I (µ, α
2, β, λ) distribution for increasing sample size

proc iml;

start Method2 (num) global(beta, alpha, lambda, mu, seed);

Expected = j(4,1,.);

do n = 1 to 4;

if mod(n,2)=0 then do;

Expected[n] = Gamma((n+1)/beta)/Gamma(1/beta);

end;

if mod(n,2)^=0 then do;

y = rangam(j(num,1,seed),(n+1)/beta);

x = (y##(1/beta))#lambda#sqrt(2);

Func = cdf(’normal’,x)[:];

Expected[n] = (Gamma((n+1)/beta)/Gamma(1/beta))#(2#Func-1);
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end;

end;

ExpectedX = mu + alpha#Expected[1];

ExpectedX2 = mu##2 + 2#mu#alpha#Expected[1] + (alpha##2)#Expected[2];

ExpectedX3 = mu##3 + 3#alpha#(mu##2)#Expected[1] + 3#(alpha##2)#mu#Expected[2]

+ (alpha##3)#Expected[3];

ExpectedX4 = mu##4 + 4#alpha#(mu##3)#Expected[1] + 6#Expected[2]#(alpha#mu)##2

+ 4#Expected[3]#(alpha##3)#mu + Expected[4]#alpha##4;

std = (ExpectedX2 - ExpectedX##2)##0.5;

deno = (ExpectedX2 - ExpectedX##2)##0.5;

skew = (ExpectedX3 - 3#ExpectedX#ExpectedX2+2#ExpectedX##3)/deno##3;

kurtosis = (ExpectedX4 - 4#ExpectedX#ExpectedX3

+6#(ExpectedX##2)#ExpectedX2-3#ExpectedX##4)

kurtosis = (kurtosis/deno##4)-3;

ans = ExpectedX||std||skew||kurtosis;

return (ans);

finish;

seed = 1;

*Parameters*****************************;

beta = 5;

lambda = 2;

mu = 0;

alpha2 = 16;

alpha = sqrt(alpha2);

******************************;

do num = 100 to 100000 by 100;

result1 = result1//(num||Method2(num));

end;

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



136 APPENDIX C. CODE

create data1 from result1; append from result1; close;

quit;

C.3 Chapter 4

C.3.1 Theoretical PDF of SGN II (µ, α
2, β, λ) distribution with PDF fX (µ, α, β, λ)

as given in equation (4.2)

proc iml;

start TrapIntegral(x,y);

N = nrow(x);

dx = x[2:N] - x[1:N-1];

meanY = ( y[2:N] + y[1:N-1] )/2;

return( dx‘ * meanY );

finish;

start ranGN(seed) global(beta);

u = ranuni(j(1,1,seed));

loc1 = (u>0.5);

loc2 = -(u<0.5);

s = loc1 + loc2;

y = rangam(j(1,1,seed),1/beta);

x = s#((y)##(1/beta));

return(x);

finish;

start GND_pdf (x) global(beta);

pdf = (beta/(2#gamma(1/beta)))#exp(-(abs(x))##beta);

return pdf;

finish;

start incompleteGamma(t) global(x,beta);

func = (t##((1/beta)-1))#exp(-t);

return(func);

finish;
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start GND_cdf(w) global(x,lambda,beta);

limits = 0 || abs(x#lambda)##beta;

call quad(w, "incompleteGamma", limits);

w = (1/2)+sign(x#lambda)/(2#Gamma(1/beta))#w;

return(w);

finish;

mu= 0;

alpha2= 2;

alpha = sqrt(alpha2);

beta = 1;

lambdaVec = {-4,-2,0,2,4};

do i = 1 to nrow(lambdaVec);

lambda = lambdaVec[i];

do x = -8 to 8 by 0.01;

pdf = pdf//(((2/alpha)#GND_pdf((x-mu)/alpha)#GND_cdf(w)));

skew = skew//(2#GND_cdf(w));

end;

pdfSave = pdfSave||pdf;

skewSave = skewSave||skew;

free pdf;

free skew;

end;

pdfSave = do(-8,8,0.01)‘||pdfSave;

skewSave = do(-8,8,0.01)‘||skewSave;

create pdf from pdfSave; append from pdfSave; close;

create skew from skewSave; append from skewSave; close;

quit;

C.3.2 Generation of variates with a SGN II (µ, α
2, β, λ) distribution with PDF

fX (x;µ, αβ, λ) as given in equation (4.1.2)

proc iml;

start ranGN(seed) global(beta);
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u = ranuni(j(1,1,seed));

loc1 = (u>0.5);

loc2 = -(u<0.5);

s = loc1 + loc2;

y = rangam(j(1,1,seed),1/beta);

x = s#((y)##(1/beta));

return(x);

finish;

start GND_pdf (x) global(beta);

pdf = (beta/(2#gamma(1/beta)))#exp(-(abs(x))##beta);

return pdf;

finish;

start GND_cdf(w) global(x,lambda,mu,alpha);

limits = -10 || ((x-mu)/alpha)#lambda;

call quad(w, "GND_pdf", limits);

return(w);

finish;

*PARAMETER VALUES;

mu= 5;

alpha = 2;

beta = 1.5;

lambda = 4;

do x = -4 to 10 by 0.05;

pdf = pdf//(x||((2/alpha)#GND_pdf((x-mu)/alpha)#GND_cdf(w)));

end;

*Conditionally sample a skew generalsied normal GN CDF random number;

do i = 1 to 20000;

U = ranGN(0);

uGN = ranGN(0);

cond = lambda#U;

if uGN < cond then do;

sample = sample//(mu + alpha#U);

end;

end;
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quit;

C.3.3 Theoretical PDF of GBSN ∗
1 (k, β, λ1, λ2) distribution with PDF fX (k, β, λ1, λ2)

as given in equation (4.7)

proc iml;

start TrapIntegral(x,y);

n = nrow(x);

dx = x[2:n] - x[1:n-1];

meanY = ( y[2:n] + y[1:n-1] )/2;

return( dx‘ * meanY );

finish;

*Generalised normal PDF;

start GND_pdf (x) global(beta);

pdf = (beta/(2#gamma(1/beta)))#exp(-(abs(x)##beta));

return pdf;

finish;

*Normalising constant;

start cnFunc(x) global(mu,alpha,n,beta, lambda1, lambda2);

return(

(1/alpha)#GND_pdf((x-mu)/alpha)

#(CDF(’NORMAL’, (lambda1#(x-mu))/sqrt(((alpha##2/2)+lambda2#((x-mu)##2)))))##n

);

finish;

*Numerical integration;

start cn(cnVal);

limits = .M||.P;

call quad(cnVal, "cnFunc", limits);

return(cnVal);

finish;
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*Parameters*;

mu = 0;

alpha = sqrt(2);

n=2;

beta = 1;

lambda1 = 2;

lambda2 = 0;

******************************;

x = do(-5, 5, 0.01)‘;

lambda1Vec = {0,1,2,3,4};

do i = 1 to nrow(lambda1Vec);

lambda1 = lambda1Vec[i];

cn = cn(cnVal);

print cn;

skew = skew||((1/cn)

#(CDF(’NORMAL’, (lambda1#(x-mu))/sqrt(alpha##2/2+lambda2#((x-mu)##2))))##n);

BSN = BSN||((1/cn)#(1/alpha)#GND_pdf((x-mu)/alpha)

#(CDF(’NORMAL’, (lambda1#(x-mu))/sqrt(alpha##2/2+lambda2#((x-mu)##2))))##n);

end;

density = x||BSN;

skew = x||skew;

print skew;

create skew from skew; append from skew; close;

create pdf from density; append from density; close;

quit;

C.3.4 Theoretical PDF of BetaSGN (µ, α2, β, λ, a, b) distribution with PDF

fX (µ, α2, β, λ, a, b) as given in equation (4.9)

proc iml;

start SGN_pdf(x) global(mu, alpha, beta, lambda);

fx = 2#beta/(2*alpha*gamma(1/beta))#(exp(-(abs(x-mu)/alpha)##beta))

#cdf(’normal’,lambda#((x-mu)/alpha));

return(fx);
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finish;

start SGN_cdf(w) global(limits);

call quad(w, "SGN_pdf", limits);

return(w);

finish;

*CHANGE*****************************;

beta = 2;

lambda = 2;

mu = 0;

alpha2 = 2;

alpha = sqrt(alpha2);

a = 0.2;

b =0.1;

******************************;

do lambda = 0 to 4;

do x = -8 to 8 by 0.05;

limits = .M||x;

BSGN = BSGN//((1/beta(a,b))#((SGN_cdf(w))##(a-1))

#((1-SGN_cdf(w))##(b-1))#SGN_pdf(x));

end;

density = density||BSGN;

free BSGN;

end;

xRange = do(-8,8,0.05)‘;

density = xRange||density;

create plot from density; append from density; close;

quit;

C.4 Chapter 5

C.4.1 The K − S test to asses the suitability of SGN I (µ, α
2, β, λ) distribution

with PDF fX (x;µ, αβ, λ) as given in equation (3.9) to fit to data

proc iml;
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*Set numer of iterations;

M = 5000;

do i = 1 to M;

use sasuser.aus; read all into x; close;

x = x[,6];

*Calculate d*;

if i>1 then x = sample(x, nrow(x),’Replace’)‘;

*Calculated the Empirial distribution functionl;

call sort(x, 1);

ECDF = do(0, 1, 1/(nrow(x)))‘;

x_ECDF = (x[1]-0.00001#x[1])//x;

*Define the log-likelihood of the SGN distibution;

start LogLikSGN(param) global (x);

mu = param[1];

alpha = param[2];

beta = param[3];

lambda = param[4];

n = nrow(x);

f = log(beta/(alpha#gamma(1/beta))#(exp(-(abs(x-mu)/alpha)##beta))

#CDF(’NORMAL’,((x-mu)/alpha)#lambda#sqrt(2)))[+];

return ( f );

finish;

con = {. 0 0.1 .,

. . . .};

p = {20 5 1 1};/* initial guess for solution */

opt = {1, /* find maximum of function */

0}; /* print a LOT of output */

call nlpnms(rc, result, "LogLikSGN", p, opt, con);

xDomain = x;

SGN = result[3]/(result[2]#gamma(1/result[3]))#
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(exp(-(abs(xDomain-result[1])/result[2])##result[3]))

#CDF(’NORMAL’,((xDomain-result[1])/result[2])#result[4]);

SGN_cdf = 0//(cusum(SGN)/SGN[+]);

*Calculate the K-S distance;

KS = max(abs(SGN_cdf-ECDF));

KS_save = KS_save//KS;

end;

*Calculate critical values and p-value;

p={0.9 0.95 0.99};

call qntl(critical_values , KS_save[2:nrow(KS_save)], p);

test_stat = KS_save[1];

pval1 = (KS_save[2:nrow(KS_save)]>test_stat)[:];

print pval1;

print test_stat critical_values

[rowname={’alpha=0.1’ ’alpha=0.05’ ’alpha=0.01’}];

quit;

C.4.2 Maximum likelihood estimation of parameters of distributions fitted

to data

*NORMAL DISTRIBUTION;

proc iml;

use sasuser.aus; read all into x; close;

x = x[,6];

create data from x; append from x; close;

start LogLikN(param) global (x);

mu = param[1];

alpha = param[2];

n = nrow(x);
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f = log((1/alpha)#PDF(’NORMAL’,((x-mu)/alpha)))[+];

return ( f );

finish;

con = {. 0 ,

. . };

p = {20 5};/* initial guess for solution */

opt = {1, /* find maximum of function */

1}; /* print a LOT of output */

call nlpnms(rc, result, "LogLikN", p, opt, con);

xDomain = do(min(x)-1,max(x)+1,0.01)‘;

density = (1/result[2])#PDF(’NORMAL’,((xDomain-result[1])/result[2]));

N = xDomain||(density);

AIC_N = 2*ncol(result) - (2*(-498.66789));

nData = ncol(x);

BIC_N = log(nData)*ncol(result) - (2*(-498.66789));

print AIC_N BIC_N;

print result;

quit;

*SKEW NORMAL DISTRIBUTION;

proc iml;

use sasuser.aus; read all into x; close;

x = x[,6];

start LogLikSN(param) global (x);

mu = param[1];

alpha = param[2];

lambda = param[3];
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n = nrow(x);

f = log((2/(alpha))#PDF(’NORMAL’,((x-mu)/alpha))

#CDF(’NORMAL’,((x-mu)/alpha)#lambda))[+];

return ( f );

finish;

con = {. 0 . ,

. . . };

p = {20 5 1};/* initial guess for solution */

opt = {1, /* find maximum of function */

1}; /* print a LOT of output */

call nlpnms(rc, result, "LogLikSN", p, opt, con);

print rc;

xDomain = do(min(x)-1,max(x)+1,0.01)‘;

density = (2/(result[2]))#PDF(’NORMAL’,((xDomain-result[1])/result[2]))

#CDF(’NORMAL’,((xDomain-result[1])/result[2])#result[3]);

SN = xDomain||(density);

AIC_SN = 2*ncol(result) - (2*(-490.09936));

nData = ncol(x);

BIC_SN = log(nData)*ncol(result) - (2*(-490.09936));

print AIC_SN BIC_SN;

print result;

quit;

*SKEW GENERALISED NORMAL DISTRIBUTION;

proc iml;

use sasuser.aus; read all into x; close;

x = x[,6];

start LogLikSGN(param) global (x);

mu = param[1];
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alpha = param[2];

beta = param[3];

lambda = param[4];

n = nrow(x);

f = log(beta/(alpha#gamma(1/beta))

#(exp(-(abs(x-mu)/alpha)##beta))

#CDF(’NORMAL’,((x-mu)/alpha)#lambda#sqrt(2)))[+];

return ( f );

finish;

con = {. 0 0.1 .,

. . . .};

p = {20 5 1 1};/* initial guess for solution */

opt = {1, /* find maximum of function */

1}; /* print a LOT of output */

call nlpnms(rc, result, "LogLikSGN", p, opt, con);

xDomain = do(min(x)-1,max(x)+1,0.01)‘;

density = result[3]/(result[2]#gamma(1/result[3]))

#(exp(-(abs(xDomain-result[1])/result[2])##result[3]))

#CDF(’NORMAL’,((xDomain-result[1])/result[2])#result[4]#sqrt(2));

SGN = xDomain||(density);

AIC_SGN = 2*ncol(result) - (2*(-488.17452));

nData = ncol(x);

BIC_SGN = log(nData)*ncol(result) - (2*(-488.17452));

print AIC_SGN BIC_SGN;

print result;

quit;

*GENERALISED BALAKRISHNAN SKEW NORMAL DISTRIBUTION;

proc iml;

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



C.4. CHAPTER 5 147

use sasuser.aus; read all into x; close;

x = x[,6];

start LogLikGBSK(param) global ( x, mu, alpha, n, lambda1, lambda2);

mu = param[1];

alpha = param[2];

n = param[3];

lambda1 = param[4];

lambda2 = param[5];

u = rannor(j(10000,1,2));

fun = ((CDF(’normal’, lambda1#(u)/sqrt(1+lambda2#(u##2))))##n)[:];

cn = 1/fun;

f = log((cn/(alpha)) # PDF(’NORMAL’, (x-mu)/alpha)

#CDF(’NORMAL’, lambda1#((x-mu))/sqrt(alpha##2+lambda2#((x-mu))##2))##n)[+];

return ( f );

finish;

con = {. 0 0 . 0,

. . . . .};

p = {19.97 4.13 1 2.313 0};/* initial guess for solution */

opt = {1, /* find maximum of function */

1}; /* print a LOT of output */

call nlpnms(rc, result, "LogLikGBSK", p, opt, con);

xDomain = do(min(x)-1,max(x)+1,0.01)‘;

mu = result[1];

alpha = result[2];

n = result[3];

lambda1 = result[4];

lambda2 = result[5];

u = rannor(j(100000,1,1));
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fun = ((CDF(’normal’, lambda1#(u)/sqrt(1+lambda2#(u##2))))##n)[:];

cn = 1/fun;

density = (cn/(alpha)) # PDF(’NORMAL’, (xDomain-mu)/alpha)

#CDF(’NORMAL’, lambda1#((xDomain-mu))

/sqrt(alpha##2+lambda2#((xDomain-mu))##2))##n;

GBSN = xDomain||(density);

create GBSN from GBSN;

append from GBSN; close;

AIC_GBSN = 2*ncol(result) - (2*(-489.9097766));

nData = ncol(x);

BIC_GBSN = log(nData)*ncol(result) - (2*(-489.9097766));

print result;

print AIC_GBSN BIC_GBSN;

quit;

C.4.3 Approximating the binomial distribution with N , SN and SGN I dis-

tribution

proc iml;

start SN(param) global (mu, sigma, beta, lambda, seed, p_prob, n);

seed = 1;

mu = param[1];

sigma = param[2];

lambda = param[3];

xDomain = do(0,n,1)‘;

density = (2/sigma)#PDF(’NORMAL’,((xDomain-mu)/sigma))

#CDF(’NORMAL’,((xDomain-mu)/sigma)#lambda);

prob = PDF(’Binomial’, xDomain , p_prob , n);
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dif = max(abs(density-prob));

return ( dif );

finish;

start SGN(param) global (target, mu, alpha,beta,lambda,seed,p_prob,n);

seed = 1;

mu = param[1];

alpha = param[2];

beta = param[3];

lambda = param[4];

xDomain = do(0,n,1)‘;

density = beta/(alpha#gamma(1/beta))

#(exp(-(abs(xDomain-mu)/alpha)##beta))

#CDF(’NORMAL’,((xDomain-mu)/alpha)#lambda);

prob = PDF(’Binomial’, xDomain , p_prob , n);

dif = max(abs(density-prob));

return ( dif );

finish;

n=20;

p_prob=0.05;

con1 = {. 0.1 . ,

. . . };

p1 = {1 0.97 0};/* initial guess for solution */

con2 = {. 0.1 0.1 . ,

. . . .};

p2 = {1 0.97 2 0};/* initial guess for solution */

opt = {0, /* find maximum of function */

1}; /* print a LOT of output */

call nlpnms(rc, result1, "SN", p1, opt, con1);

print result1;

muSN = result1[1];

sigma = result1[2];
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lambdaSN = result1[3];

call nlpnms(rc, result2, "SGN", p2, opt, con2);

print result2;

muSGN = result2[1];

alpha = result2[2];

beta = result2[3];

lambdaSGN = result2[4];

now = do(0,n,1)‘;

binomDens = PDF(’Binomial’, now , p_prob , n);

Ndens = PDF(’Normal’, now , n#p_prob , sqrt(n#p_prob#(1-p_prob)));

SNdens = (2/sigma)#PDF(’NORMAL’,((now-muSN)/sigma))

#CDF(’NORMAL’,((now-muSN)/sigma)#lambdaSN);

SGNdens = beta/(alpha#gamma(1/beta))

#(exp(-(abs(now-muSGN)/alpha)##beta))

#CDF(’NORMAL’,((now-muSGN)/alpha)#lambdaSGN);

diffN = abs(Ndens-binomDens);

diffSN = abs(SNdens-binomDens);

diffSGN = abs(SGNdens-binomDens);

diff = now||diffN||diffSN||diffSGN;

diffNmax = diffN[<>];

diffSNmax = diffSN[<>];

diffSGNmax = diffSGN[<>];

print diffNmax diffSNmax diffSGNmax;

xDomain = do(-n,n+10,0.01)‘;

Ndens = PDF(’Normal’, xDomain , n#p_prob , sqrt(n#p_prob#(1-p_prob)));

SNdens = (2/sigma)#PDF(’NORMAL’,((xDomain-muSN)/sigma))

#CDF(’NORMAL’,((xDomain-muSN)/sigma)#lambdaSN);

SGNdens = beta/(alpha#gamma(1/beta))

#(exp(-(abs(xDomain-muSGN)/alpha)##beta))

#CDF(’NORMAL’,((xDomain-muSGN)/alpha)#lambdaSGN);

print diff;

create diff from diff[colname = {’x’ ’N’ ’SN’ ’SGN’}];
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append from diff; close;

binomDens = now||binomDens;

create binomDens from binomDens; append from binomDens; close;

N = xDomain||Ndens;

create N from N; append from N; close;

SN = xDomain||SNdens;

create SN from SN; append from SN; close;

SGN = xDomain||SGNdens;

create SGN from SGN; append from SGN; close;

quit;

proc export data=diff

outfile="C:\Users\Brett Rowland\Desktop\Full paper\New Binomial pictures\One\diff.csv"

dbms=csv replace;

run;

proc export data=binomDens

outfile="C:\Users\Brett Rowland\Desktop\Full paper\New Binomial pictures\One\binomDens.csv"

dbms=csv replace;

run;

proc export data=N

outfile="C:\Users\Brett Rowland\Desktop\Full paper\New Binomial pictures\One\N.csv"

dbms=csv replace;

run;

proc export data=SN

outfile="C:\Users\Brett Rowland\Desktop\Full paper\New Binomial pictures\One\SN.csv"

dbms=csv replace;

run;

proc export data=SGN

outfile="C:\Users\Brett Rowland\Desktop\Full paper\New Binomial pictures\One\SGN.csv"

dbms=csv replace;

run;
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