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Abstract
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where the agents seek to satisfy their goal as frequently as possible. The GDPG is 
represented as a concurrent game model and the agents’ objectives are represented by 
LT L[F ] formulas. There are some qualitative objectives which represent the goals of the 
entire group, and some quantitative objectives which represent the individual agents’ 
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which satisfies the qualitative objectives, and also is a  Nash Equilibrium with respect to 
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Keywords: Multi-agent systems, Nash equilibrium, Generalised dining philosophers, 
rational synthesis.
Supervisor : Dr. N. Timm
External Co-supervisor : Prof. V. Goranko
Department : Department of Computer Science
Degree : Master of Science

1

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

mailto:johan.vanrooyen@tuks.co.za


Acknowledgements

I would like to whole-heartedly thank the following people for their support and help
in the completion of this work. It hasn’t been easy, and I am deeply grateful for their
guidance, patience and presence:

• Dr Nils Timm and Prof Valentin Goranko. I could not ask for a more excellent
supervision team;

• My beautiful girls, Rhiannon and Aurora. You are my everything.

2

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 
 
 



Contents

List of Figures iii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7

3 Objectives 18
3.1 Categories of Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Quantifying Starvation and Fairness . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Quantitative Starvation . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Quantitative Fairness . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Collective Acceptability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Strategy Language 26

5 Construction of Automata for Collectively Acceptable Strategy Pro-
files 29
5.1 Translation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 LTL[F] Model Checking for Multiple Agents . . . . . . . . . . . . . . . . 32

5.2.1 Construction of NGBAs for Objectives of Individual Agents . . . 34
5.2.2 Product of NGBAs . . . . . . . . . . . . . . . . . . . . . . . . . . 36

i

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 
 
 



5.3 Payoff profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Strategy and Deviation Automaton Construction . . . . . . . . . . . . . 39

5.4.1 Strategy Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.2 Deviation Automaton . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Nash Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Pulling it All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6.2 Collectively Acceptable Strategy Language . . . . . . . . . . . . . 48

6 Overview of Related Work 50

7 Conclusions 53
7.1 Summary of Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 58

ii

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 
 
 



List of Figures

3.1 Table showing the evaluation of individual, quantitative objectives . . . . 22

4.1 Simple CGM where the agents have multiple choices . . . . . . . . . . . . 27

5.1 The single-agent NGBA, N p
0 , where GDmp = m−0

m
= 1 . . . . . . . . . . . 35

5.2 The single-agent NGBA, N p
1 where GDm = m−1

m
. . . . . . . . . . . . . . 36

5.3 The single-agent NGBA, N p
n where GDm = n−N

n
. . . . . . . . . . . . . . 37

5.4 Relationship between Strategy Words, Computations and Strategy Profiles 40
5.5 Venn Diagram showing the languages of 2 strategy automata, one with

its associated deviation automaton . . . . . . . . . . . . . . . . . . . . . 42
5.6 Relationship between payoff profiles, NGBAs, strategy automata and de-

viation automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Venn Diagram showing the language of a strategy automaton for a given

payoff profile and the languages of deviation automata for all alternatives
for all agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 
 
 



Chapter 1

Introduction

Multi-agent systems [27] comprise agents taking actions in an environment. An environ-
ment is a context in which the agents are acting, and it changes depending on the actions
undertaken. Agents take action to satisfy some pre-defined individual objectives. A run
of a system entails several discrete rounds where all agents take some action on each
time step, and the joint action (called an action profile) affects a deterministic change in
the observable state (known as a configuration) of the system. Thus, for a given system,
many different runs may be possible. A strategy prescribes an action for each agent for
each configuration, and a strategy profile is the mapping of each agent to a strategy.
Strategy synthesis [18] is the problem of finding strategy profiles, such that when the
agents follow these strategies certain properties such as the achievement of all individual
objectives will be satisfied.

To better reason about which runs of the system may occur, it is useful to consider
that the agents are playing a game. [24] Games are either zero-sum, in which there can
only be one winner; or non-zero-sum. In non-zero-sum games, agents’ objectives are not
mutually exclusive, and it is possible for all agents to satisfy their objectives, or to reach
some compromise.

Objectives can be divided into qualitative (Boolean) and quantitative (numeric).
Qualitative objectives refer to simple yes/no propositions that are either satisfied or not
satisfied. The peculiarity of purely qualitative systems is that if two solutions satisfy a
qualitative objective, we can’t distinguish whether one solution is better than the other.

1
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Chapter 1. Introduction 2

Quantitative objectives refer to numeric values (known as payoffs) that are assigned to
runs of games, which agents seek to minimise or maximise. Agents may need to compete,
or co-operate, to achieve their objectives.

Rational agents are “agents that act to achieve their own objectives” [18]. This
dissertation deals with the automated synthesis of collectively acceptable strategies for
systems involving rational agents. A collectively acceptable strategy results in a run
where all of a set of collective objectives are satisfied and the system is in equilibrium
with respect to some individual objectives and a given solution concept - specifically
in a Nash equilibrium. The individual objectives are (assumed to be) quantitative and
collective objectives are qualitative

Temporal logic formulas over sequences of atomic propositions form the basis of
qualitative objectives and functions over the sequences form the basis of quantitative ob-
jectives. A labelling function maps configurations of the game to the logical propositions
that hold when the game is in that configuration.

Part of the process of strategy synthesis is creating a strategy profile which will lead
to satisfaction of the objectives. At each configuration, the agents should be prescribed
an optimal action out of a plurality of possible options. A collective optimal play of a
game with respect to an objective entails finding the strategy profile which provides the
best possible satisfaction of the objectives.

A strategy profile is a Nash Equilibrium [24] if no agent can improve their payoff by
unilaterally deviating from the strategy profile. Nash Equilibrium is essential because
any strategy profile that is not a Nash Equilibrium will be unstable - rational agents
will have an incentive to deviate from the strategy profile. A collectively acceptable
strategy profile is a Nash Equilibrium which additionally satisfies all collective qualitative
objectives.

The classic problem of the Dining Philosophers, [16] is an example problem involving
dynamic, distributed resource allocation. It entails 5 philosophers sitting around a table.
In between each pair of philosophers, there is a fork. Each philosopher will think until
they become hungry, at which time they will attempt to pick up the two adjacent forks,
one after the other. If one of the forks is not available, the philosopher will wait until it
becomes available. When they have 2 forks, they will eat until they are no longer hungry
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Chapter 1. Introduction 3

at which point they will replace the forks on the table and go back into a thinking state.
Solving the problem generally entails finding strategies for the philosophers such that
deadlock and starvation are avoided.

The Generalised Dining Philosophers problem [15] is a generalisation of the dining
philosophers problem, and extends it to include any number of philosophers, any number
of forks, more complicated rules regarding which philosophers can reach each fork, and
how many forks are required before a philosopher can eat. Moreover, the nomenclature
is changed in that philosophers are referred to as agents; forks as resource units; and
eating as the satisfaction of an objective. A play of the GDPG progresses through an
infinite number of discrete steps, in which actions, one per agent, occur in one shot. At
each time step, the allocation of all resources to agents in the game can be precisely
described and is known as a configuration.

GDPG is a useful example of a MAS, used to model resource competition in a dis-
tributed system. Moreover, the problem of finding collectively acceptable strategy pro-
files is not trivial.

The strategies may be subject to some constraints. For instance, agents must always
make the same decision given the same configuration, that is, the choice of actions is
uniform. Such strategies are known as pure strategies. Another assumption made is
about the memory capabilities of agents. If agents have no memory of anything that
has happened in the game, they rely only upon the current configuration of the game to
make decisions. These are known as positional strategies. If the agent has some memory,
finite(or infinite)-memory strategies arise.

The choice of which assumptions are to be made is known as a problem setting,
and this dissertation will present a technique for synthesising strategies in pure problem
settings. For brevity, in this dissertation, the term strategy profile refers to a pure,
positional strategy profile unless otherwise specified.

1.1 Motivation

The study of multi-agent systems facilitates an understanding of how agents, when en-
dowed with certain abilities, will behave when set into a given environment and given
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Chapter 1. Introduction 4

some objectives. This is critical for cases where human control over a system is con-
strained, and agents are not able to receive direct instructions - they need to figure it
out for themselves.

Work of this nature is important as real-world systems may be shown to be analogous
to the generalised dining philosophers problem, and could therefore use the procedures
of this dissertation. For example, a team of autonomous machines may need to col-
lectively explore an alien world. These machines would need to ensure their safety (a
qualitative goal) while minimizing battery usage (quantitative), and completing scientific
exploration goals (perhaps both). Certain goals of the agents may only be possible to
achieve through a collaborative effort.

Moreover, the process of generating the strategy synthesis algorithm is instructive
per se. By developing the mathematical models needed to represent the GDP game in
the required level of abstraction, one discovers well-developed mathematical analogues
for computer concepts, and these techniques can be adapted and refined for other types
of problems too. It is hoped that the algorithm presented in this dissertation can be ex-
tended to solve other problems in addition to finding the collectively acceptable strategy
profiles of GDP games.

1.2 Goals

This dissertation aims to present a procedure for synthesising collectively acceptable
strategy profiles for the generalised dining philosophers game using an automaton-based
approach. The agents of the game all have the goal of satisfying their demand for resource
units and the same individual objective - which is to minimize their maximum waiting
time before reaching their goal. Since agents are assumed to be rational, the strategy
profile must be an equilibrium with respect to the solution concept of Nash equilibrium.
In addition to the individual objectives, there are two collective objectives - the strategy
profiles must not result in starvation of agents (starvation-freedom objective), and all
agents must receive a payoff that is reasonably close to the others’ (fairness objective).

Several technicalities are addressed. Firstly, the temporal logic LTL[F ] **REF**
is explained and the objectives of starvation-freedom and fairness, as well as agents’
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Chapter 1. Introduction 5

individual objective to minimize maximum waiting time, are expressed in this logic.
LTL[F ] is chosen because it can express qualitative and quantitative, as well as

collective and individual objectives. Additionally, a framework for categorising each
objective is provided.

This automaton is then combined with automata for fairness and starvation-freedom
to produce an automaton which only accepts a strategy word if it corresponds to a
collectively acceptable strategy profile of the given GDPG.

Strategy profiles are then reinterpreted as strategy words of ω-regular strategy lan-
guages such that specialised Büchi automata (called strategy automata) can act as ac-
ceptors of strategy words, and consequently, strategy profiles. LTL[F ] model checking
is augmented to produce strategy automata which lead to specified payoff profiles, and
strategy automata which represent unilateral deviations (known as deviation automata).
These automata are then combined using standard Büchi automaton operations to pro-
duce the Nash automaton - an automaton which only accepts a strategy word (strategy
profile) if that strategy profile is a Nash equilibrium.

1.3 Contributions

• A new representation of the GDP game is introduced, which has not been examined
in the literature. This new representation replaces individual resource units with
shared resource bags.

• Strategy profiles are represented as strategy words of a strategy language, thus
making them compatible with automaton-based approaches.

• Qualitative and quantitative objectives are combined to represent individual agent
objectives as well as collective objectives.

• LTL[F ] is extended to account for multiple objectives where each has a different
specified set of satisfaction values which are acceptable.

• Equilibrium synthesis in LTL[F ] model checking is achieved using an automaton-
based approach.
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Chapter 1. Introduction 6

• A procedure for the automatic synthesis of collectively acceptable strategies in
terms of the GDP game is presented and explained.

1.4 Dissertation Outline

• Chapter 2 establishes consistent terminology and provides definitions of key terms
and concepts and the relevant underlying mathematical concepts are briefly pre-
sented.

• Chapter 3 describes a simple framework from the classification of LTL[F ] objec-
tives as either qualitative or quantitative; and individual or collective.

• Chapter 4 defines ω-regular strategy languages which are acceptors of strategy
words which correspond to strategy profiles. This facilitates constructing automata
which function as acceptors of strategic behaviour.

• Chapter 5 covers the automaton-based construction procedure for collectively
acceptable strategy profiles for a given GDPG with specified objectives.

• Chapter 6 explores work related to the GDP game; the quantification of objectives
in similar problems; rational synthesis; and relevant formal logics for qualitative
objectives.

• Chapter 7 provides a summary of the preceding chapters and briefly outlines
future work on this topic.
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Chapter 2

Preliminaries

This section presents the existing work upon which this dissertation depends. The sub-
jects defined include the Generalised Dining Philosophers Game and its related concepts;
some formal models which are used; the temporal logic LTL[F ]; and finally concepts
which describe the strategic behaviour of agents and Nash Equilibrium.

The Generalised Dining Philosophers Game [15] is a generalisation of the Dining
Philosopher’s game. The generalisation makes three changes to the classical problem.
Firstly, the classical game consists of exactly 5 philosophers sitting around a table, the
generalised version deals with an arbitrary number of philosophers. Secondly, in the
classical problem the forks which each philosopher can reach are fixed, whereas, in the
generalisation version, there are more complex rules which govern which philosophers
can reach each fork. Thirdly, in the classical problem, each philosopher must take up
two forks to reach their objective, in the generalised version the philosophers require
an arbitrary number of forks. There is also a shift in nomenclature, philosophers be-
come agents, forks become resource units, and “eating” becomes the satisfaction of an
objective. The definition below is due to [19].

Definition 2.1 (Generalised Dining Philosophers Game (GDPG)). A GDPG, G is a
tuple ⟨Agt, Acc, Bags, d⟩ where:

• Agt = {a1, . . . , an} is a non-empty set of agents.

• Acc : P(Agt) \ ∅ → N is the accessibility function, which maps non-empty subsets

7
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Chapter 2. Preliminaries 8

of agents to natural numbers. Acc(A) is the number of resources that are shared
exclusively by the agents in A.

• Bags = {A ∈ P(Agt) : Acc(A) ̸= 0}. A bag is referred to by the set of agents
which share exclusive access to the resource unit in that bag.

• d : Agt → N is a demand function defining the number of resource units that each
agent needs to carry out its tasks

Each subset of agents has a shared bag of resources which are available only to agents
in the subset. These bags can be empty. Each agent has access to various bags, each of
which is shared with some other group of agents.

The above definition differs from the definition provided in [15] by representing the
resources differently. The original definition includes resource units as discrete atomic
entities and then uses a bipartite accessibility graph to denote which agents could access
which resource units. If agent a1 could access resource unit ri, then there would be an
edge in the accessibility graph connecting these two entities. Definition 2.1 does not deal
with resource units, but rather with resource bags. There is a resource bag for every
subset of agents, and the resources in this bag are only accessible to those agents. The
benefit of this representation is that it treats resources as indistinguishable if they are
accessible to the same set of agents.

To illustrate this, consider a simple example of a GDPG with three agents and three
resource units with are accessible to all agents. In the original definition, these resource
units are all distinct, and there would be actions for each agent taking each resource.
In the modified definition, all three resource units would be in the bag shared by all
agents, and each agent would only have the action of taking from that shared bag. The
particular resource unit which they take is disregarded and resource units accessible to
the same group of agents are considered to be interchangeable and fungible.

As the agents take actions and move resource units around, the game moves through
different configurations. A configuration is a description of the location of all resource
units at a given point in time. For example, after some time, the game configuration
might show that x number of resource units from a bag are allocated to the agent ai,
and so forth.
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Chapter 2. Preliminaries 9

Definition 2.2 (GDPG configuration). Given a GDP game G, a configuration is a
function c, which maps each resource bag to a set of ordered pairs. The first element
of each pair is in Agt ∪ {null}, and the second is in N. The reason for the inclusion of
null is to include a “dummy” agent. Any resource unit which is not allocated to a real
agent is represented as being allocated to the “dummy” agent. Conf is the set of all
configurations of the GDP game.

c : ({Agt ∪ null} × Bags) → N

For example, consider the configuration of a GDP game with three agents and one
shared bag, β which is accessible to all agents:

{((a1, β) → 0), ((a2, β) → 2), ((a3, β) → 1), ((null, β) → 4)}

In the resource bag which is shared by all three agents, zero resource units are allocated
to agent a1, two are allocated to a2, one to a3, and four remain unallocated (allocated
to null).

With this notation is it simple to check some crucial properties of the game, for
example:

• An agent a has reached its demand in c iff ∑
β∈Bags c(a, β) = d(a);

• A bag β is empty if ∑
a∈Agt c(a, β) = |β|;

• A bag β is not empty if ∑
a∈Agt c(a, β) < |β|;

As the agents play the game, they must each take actions at each time period. The
change of configuration that occurs is determined by the joint action of all the actions,
known as the action profile.

Definition 2.3 (Actions). Agents have four types of actions. Given agent a and resource
bag β

• Takea
β describes an agent a taking a free resource from bag β.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 2. Preliminaries 10

• Releasea
β describes an agent a putting a single resource back in resource bag β.

• Releasea
all describes an agent a replacing all their resources in their respective bags.

• Idlea describes an agent, a, which does nothing.

The set of all possible actions is:

Act = {Takea
β : a ∈ β}

∪ {Releasea
β : a ∈ β}

∪ {Releasea
all}

∪ {Idlea}

Definition 2.4 (Action Profile). An action profile is a mapping of agents to actions. It
describes the action taken by each agent at any particular point in the game.

ap : Agt → Act

ACT is the set of all action profiles.

When the agents detect a certain configuration, they must decide which action is to be
taken. This decision is based on a strategy profile which, in general, maps configurations
to action profiles. The strategy profiles dealt with in this dissertation are all pure,
ie. they are all deterministic, thus whenever the term strategy profile is used, a pure
strategy profile is meant. Additionally, strategy profiles can be either positional, finite-
memory, or infinite-memory. In a positional strategy, the decision is based on only the
current detected configuration. In finite- and infinite-memory strategy profiles the choice
depends upon other information which is retained in a finite (or infinite) memory store.

Definition 2.5 (Positional Strategy Profile). A positional strategy profile provides a
mapping of each configuration to exactly one action profile.

sppos : Conf → ACT
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Chapter 2. Preliminaries 11

Memory-based strategy profiles can be represented in one of two ways. Either based
on a transducer or based upon histories. With a transducer-based strategy profile, each
agent has an internal transition system which retains some information about the previ-
ous configurations of the game. The decision about which action profile to take depends
on both the detected configuration and the internal memory state. The exact details of
how these transducers work can be found in [13].

Definition 2.6 (Memory-Based Strategy Profile with Transducer). Given a set of con-
figurations Conf , a set of action profiles, ACT , and a set of internal memory states T ,
a memory-based strategy profile with transducer is:

spmem : (Conf × T ) → (ACT × T )

The strategy profile is finite-memory if |T | is finite, otherwise it is infinite-memory.
Alternatively, memory can manifest in strategy profiles by having a strategy profile

provide a mapping from a sequence of the last few configurations (known as a history)
to an action profile.

Definition 2.7 (Memory-Based Strategy Profile with Histories). Given a set of config-
urations Conf , and a set of action profiles, ACT , a memory-based strategy profile with
Histories is:

spmem : (c ∈ Conf)k → ACT

The strategy profile is finite-memory if k ∈ N and it is infinite memory if k ∈ ∞.

It is taken for granted that these two mechanisms of using memory are equally ex-
pressive and any strategy profile described by one can be converted to the other type. It
is also noted that a positional, finite-memory, and infinite-memory strategy profile might
produce the same behaviour. Instead of dealing with these different types of strategy
profiles, they are dealt with more generally using strategy words and strategy languages,
which are detailed in Chapter 4.

To facilitate the quantification of objectives, it is necessary to depart from logic which
deals exclusively in Boolean values. This is because, in GDPG, agents may have qual-
itative objectives, such as satisfaction of an objective, but also quantitative objectives,
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Chapter 2. Preliminaries 12

such as maximising the frequency of satisfaction. For this purpose, the logic LTL[F ] is
chosen, and the following Definitions 2.8 - 2.11 are due to [2]. A detailed description of
the objectives of agents is given in Chapter 2.

Linear Temporal Logic (LTL) [26] is a modal logic which facilitates reasoning about
how the truth value of logical propositions can change over time in a given system.
LTL[F ] extends LTL by replacing the boolean operators of LTL with arbitrary functions
over [0, 1]. LTL[F ] is a family of logics, each parameterised by a set of functions, F .
Definitions for the syntax and semantics of LTL[F ] are provided.

Definition 2.8 (LTL[F ] syntax). Given a set of atomic propositons, AP and F ⊆ {f :
[0, 1]k → [0, 1]|k ∈ N}, and set of functions over [0, 1]. An LTL[F ] formula is:

• True, False, or p, for p ∈ AP ;

• f(φ1, . . . φk), Xφ1, or φ1Uφ2 for LTL[F ] formulas φ1, . . . , φk, and a function f ∈
F .

LTL[F ] formulas deal with truth values of atomic propositions that change over time.
For this reason, they are evaluated over infinite sequences of sets of logical propositions.

The GDPG does not explicitly include logical propositions to indicate the reaching
of certain configurations, but one can imagine that each configuration has some attached
set of logical propositions, and thus a computation is generated as the game progresses.
Concurrent Game Models (see Definition 2.16) do include these logical propositions, and
for this reason (amongst others), the GDPG will first be converted to an equivalent
CGM.

Definition 2.9 (Computations and suffixes). Given a set of atomic propositions AP ,
a computation is a word π = π0, π1, · · · ∈ (2AP )ω. That is a sequence of sets of atomic
propositions. The suffix πi, πi+1, . . . is denoted πi.

Definition 2.10 (LTL[F ] semantics). LTL[F ] semantics are defined over infinite com-
putations. And are defined thus:
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Chapter 2. Preliminaries 13

Formula Satisfaction value
[[π, True]] 1
[[π, False]] 0

[[π, p]] 1 if p ∈ π0, otherwise 0
[[π, f(φ1, . . . , φk)]] f([[π, φ1]], . . . , [[π, φk]])

[[π, Xφ1]] [[π1, φ1]]
[[π, φ1Uφ2]] maxi≥0{min{[[πi, φ2]], min0≤j≤i[[πj, φ1]]}}

A difference between LTL and LTL[F ] is that the latter treats logical formulas as
functions, which is not immediately compatible with the logical operators of LTL. This
is addressed by re-defining the standard logical operators of ∧, ∨, and ¬, as well as the
LTL operators X, U, F , and G, as functions in LTL[F ] and showing how these functions
retain their intuitive meaning.

Definition 2.11 (LTL operators as LTL[F ] functions). Standard logical operators are
defined as functions in LTL[F ] and used as a shorthand for the corresponding functions.
They are defined as:

• ¬x = 1 − x;

• x ∨ y = max{x, y};

• x ∧ y = min{x, y};

• x → y = max{1 − x, y}.

Furthermore, the inclusion of the U operator from LTL suggests that it is possible to
derive F and G operators. These are defined as:

• [[π, Fφ1]] = maxi≥0{[[πi, φ1]]};

• [[π, Gφ1]] = mini≥0{[[πi, φ1]]};

Note that LTL[F ] for F = {¬, ∨, ∧}, corresponds directly to LTL.
In LTL, the possible evaluations of a formula over a computation are intuitively,

the set {true, false}, however in LTL[F ] there is no single intuitive set of possible
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Chapter 2. Preliminaries 14

evaluations. Instead, the set of possible evaluations must be defined and these values
are known as satisfaction values.

Definition 2.12 (Satisfaction Values). Given an LTL[F ] formula φ and a computation
(or suffix) π, the satisfaction value of φ in π is the value in [0, 1] which represents the
evaluation of φ given the computation π. It is denoted as [[π, φ]]. The set of all possible
satisfaction values of an LTL[F ] formula, φ is denoted as V (φ).

Later in this dissertation, it will be necessary to reason about LTL[F ] formulas and
their characteristics. This is aided by examination of the subformulas which make up
the formula. This set of subformulas is also used in the algorithm presented in Chapter
5.

Definition 2.13 (Closure of an LTL[F ] formula). Given an LTL[F ] formula φ, the
closure of cl(φ), is the set of subformulas of φ.

Definition 2.14 (Consistent functions of an LTL[F ] closure). Given an LTL[F ] formula
φ with closure of cl(φ) and set of possible satisfaction values V (φ), a function g maps
subformulas to satisfaction values g : cl(φ) → V (φ). g is consistent if no two mappings
defined by the function are contradictory.

For example, if (ϕ, 1) ∈ g and (¬ϕ, 1
3) ∈ g then g is not consistent.

Another critical difference between LTL and LTL[F ] is that an LTL has an intuitive
outcome, that is, it is generally expected that an LTL formula evaluates to true. This
intuition does not directly apply to LTL[F ] formulas because they produce one of many
satisfaction values from the interval [0, 1]. Thus, it is necessary to define a predicate
which indicates which satisfaction values can be considered “acceptable”.

Definition 2.15 (LTL[F ] predicates). A predicate P ⊆ [0, 1] is defined as the set of
satisfaction values for a LTL[F ] which are deemed to be acceptable.

Two fundamental models are used for representing the multi-agent systems. First,
the Concurrent Game Model, which is used for modelling how the configuration of a
multi-agent system changes as the agents take collective actions; and second, the Non-
deterministic Generalised Büchi Automaton which is used for LTL[F ] model checking
and synthesis (further elaborated in Chapter 5).
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Chapter 2. Preliminaries 15

A Concurrent Game Model(CGM) [5] is a graph-like structure consisting of states
and transitions which connect these states. Each state represents a configuration of the
game; at a given configuration, the agents take a joint action which affects a change in
the configuration. For each possible joint action, there is a transition which leads to the
configuration which would result if that joint action was taken.

Definition 2.16 (Concurrent Game Model (CGM)). A CGM, M, is a tuple
⟨A, St, Act, av, out, Prop, L⟩ where:

• A is a finite set of agents (players);

• St is a set of states;

• Act is the set of all possible actions. An action profile is a function, ap : Agt → Act,
which maps each agent to an action. AP is the set of all action profiles;

• av : A × St → P(Act) is a mapping which assigns each pair of agent and state
to a set of available actions. These are the actions which the agent can undertake
while in the given state;

• out : St × ActA → St is a mapping of states and available action profiles for that
state to a new successor state. Hence, out is a function which determines what
state to move to, given a certain state and action profile.

• Prop is a set of atomic propositions

• L : St → P(Prop) is a labelling function which maps some atomic propositions to
each state.

Büchi Automata are automata which function as acceptors of ω-regular languages. ω-
regular languages generalise regular languages to infinite-length words. Büchi automata
are used extensively for model checking [17], and the model checking procedure for
LTL[F ] is the basis for the synthesis algorithm developed in Chapter 5. The Non-
deterministic, Generalised Büchi Automaton (NGBA) [2] [28] is a generalisation of Büchi
automata which allows for non-deterministic transition functions, and has modified word
acceptance criteria, which allows languages to be expressed more succinctly.
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Chapter 2. Preliminaries 16

Definition 2.17 (Non-deterministic Generalised Büchi Automaton (NGBA)). Given a
set of atomic propositions AP , an NGBA, A is an tuple ⟨2AP , Q, δ, Q0, α⟩, where:

• 2AP is the alphabet;

• Q is a set of states;

• δ : (Q × 2AP ) → 2Q; a transition function where each state and set of atomic
propositions maps to a set of possible new states;

• Q0 ⊆ Q is the set of initial states;

• α ⊆ 2Q is the set of sets of accepting states - for a run to be accepted, it must visit
a member of each set in α infinitely many times.

A run of A is ρ ∈ Qω such that for all pairs of adjacent entries qi, qi+1 in ρ, qi+1 ∈
δ(qi, σ) for some σ ∈ 2AP ; and q0 ∈ Q0. The sequence of values for σ is a computation
π ∈ (2AP )ω. Intuitively, a run is the series of states of an NGBA which are all connected
by transitions, and a computation is the series of sets of atomic propositions which are
associated with each of the transitions. A computation is accepted if there exists a run
which generates it.

Now that the necessary elements for the evaluation of computations have been de-
fined, we can proceed with the definition of Nash Equilibrium. Firstly, it is necessary
to connect the realm of configurations and actions to the realm of computations. On
a high level, as agents detect different configurations, and memory states change, they
make decisions about actions. As they move through configurations, a computation is
generated. Each strategy profile generates exactly one computation, however, the same
computation can be generated by various strategy profiles.

Definition 2.18 (Computation corresponding to a strategy profile). The computation
generated by the execution of a strategy profile, sp, is denoted as πsp. Conversely, the
set of strategy profiles which generate the computation π is denoted as spπ.

A strategy profile generates a computation, which is then evaluated according to
LTL[F ] formulas, one for each agent. Given an LTL[F ] formula, there is an ordering
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Chapter 2. Preliminaries 17

of the relative value of each strategy profile - some are “better” than others - based on
the evaluation of the LTL[F ] formula over the computation generated by the strategy
profiles. Since each agent has an associated LTL[F ] formula, we can think of this
ordering as describing the “preferences” of individual agents.

Definition 2.19 (Profitable deviation). Given strategy profiles, sp and sp′, and an agent
ai with LTL[F ] objective, φi. sp >ai sp′ if and only if Jπsp, φiK > Jπsp′ , φiK.

A unilateral deviation is a change from one strategy profile to another by altering
the strategy of only a single agent.

Definition 2.20 (Unilateral deviation). Given strategy profiles, sp and sp′, and a set
of agents a1, . . . , an, sp is a unilateral deviation of sp′ for agent ai if and only if, for all
configurations, c, if sp(c) ̸= sp(c), then for all agents, ak ∈ (Agt \ {ai}), sp(c)(ak) =
sp′(c)(ak). That is, assignments of configurations to actions are the same for all agents
except ai. Unilateral deviation by agent ai is denoted as sp /ai sp′ and is symmetric.

A strategy profile is a Nash Equilibrium if there does not exist a profitable unilateral
deviation for any agent.

Definition 2.21 (Nash Equilibrium). Given a GDPG with n agents, each with a corre-
sponding LTL[F ] objective φi, a strategy profile sp is a Nash Equilibrium if there does
not exist some other strategy profile sp′ such that for an agent ai:

• sp′ /ai sp;

• sp′ >φi sp.

That is, there does not exist an alternative strategy profile for which there is an agent
that can unilaterally deviate to that strategy profile and the strategy profile provides an
improved evaluation to that agent.

Identifying Nash Equilibria is one of the major goals of this dissertation, but is not
the only one. In the next chapter, the objectives of agents are developed in greater detail.
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Chapter 3

Objectives

This dissertation deals with different types of objectives. Particularly, quantitative and
qualitative objectives; and collective and individual objectives. This chapter describes
how an LTL[F ] formula φ can be examined and categorised as either qualitative or
quantitative, and as either individual or collective (or constructed to be of the desired
type). The algorithms presented in later chapters describe the procedure by which all
types of objectives can be accounted for. We begin with a high-level understanding
of each of these types of objectives before seeing how they are represented in LTL[F ].
Thereafter, concepts such as fairness, starvation and acceptability are defined clearly in
terms of the LTL[F ].

3.1 Categories of Objectives

A qualitative objective is a temporal logic condition which is either true or false. For
example, an LTL formula when evaluated over a computation π will result in either true,
or false, and nothing else. In the context of strategy profile synthesis, the expectation is
to construct a strategy profile which results in the qualitative objective evaluating to true.
In contrast to this is a quantitative objective, which can evaluate to numerical values. For
example, if an agent receives some points for reaching certain goals, it may be desirable to
maximise the number of points which the agent is awarded. Unlike qualitative objectives,
which just need to be true, quantitative objectives may be expected to be “as much

18
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Chapter 3. Objectives 19

as possible” and we are no longer just concerned with satisfaction of objectives, but
optimisation. An individual objective is an objective which only concerns a single agent.
Collective objectives concern all agents.

We will illustrate how an LTL[F ] formula can fit into any of these categories with a
simple example.

A concurrent game model is modelling a muli-agent system comprising n agents.
The system has distinct states and at each state, the agents take actions which affect
a change in the state of the system. Each state is also associated with a set of logical
propositions which hold while the system is in that state. For each agent, there is an
associated atomic logical proposition which is used in LTL[F ] formulas - p1 for agent a1

and so forth. When p1 holds, agent a1 has satisfied their demand.
An LTL[F ] formula, φ, can now be examined for being individual, coalition-based1,

or collective; and for being qualitative or quantitative. Firstly, the closure of φ can be
constructed and examined. If a proposition pi is in cl(φ), then the formula φ describes
a goal of agent ai. We can say that φ depends upon pi. Thus we can categorize φ as:

• Collective if and only if φ depends upon the propositions associated with all agents;

• Coalition-based if and only if φ depends upon the propositions associated with
more than one, but not all, agents;

• Individual if and only if φ depends upon the propositions associated with only one
agent.

Next, an LTL[F ] formula can be evaluated for quantitative- or qualitative-ness. As
explained in Definition 2.12, LTL[F ] formulas map to a value in [0, 1], known as the
satisfaction value. By induction over an LTL[F ] formula, it is possible to construct the
set of all possible satisfaction values. As was shown with LTL in Definition 2.11, an
LTL[F ] formula, φ, may have V (φ) = {0, 1}, which correspond to the boolean values
false and true. Thus we can categorise an LTL[F ] formula, φ as:

• Qualitative if V (φ) = {0, 1};

1This dissertation does not deal with coalition-based objectives, but they are included above for
completeness
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Chapter 3. Objectives 20

Quantitative Qualitative
Individual Individual

Gf(p1) Fp2

Quantitative Qualitative
Collective Collective∨
pi∈P Gf(pi)

∨
pi∈P Fpi

Table 3.1: Table showing the categorisation of LTL[F ] formulas

• Quantitative otherwise.

Each type of objective can be expressed by placing it into the correct quadrant of
Table 3.1. Each quadrant also contains an example LTL[F ] formula, where p1, p2, and
p3 are the agent objectives and f is an arbitrary function over {0, 0.5, 1}.

3.2 Quantifying Starvation and Fairness

Starvation freedom and fairness are typical requirements for cooperating agents in a
multi-agent system. These concepts are conventionally thought of as qualitative things
- a system is either fair or not; agents starve or they do not. By re-expressing these
concepts using quantitative formulas, it is possible to have a more nuanced representation
of fairness and starvation. We can assert not just that a system is fair/starvation-free,
but provide a metric for exactly how fair/starvation-free it is.

3.2.1 Quantitative Starvation

In qualitative settings, starvation occurs when an agent is never able to reach their
goal. Intuitively, this is insufficient because, in actual scenarios, the timeliness of each
satisfaction event is important. If a process can only access a needed resource once every
100 years, this would be unacceptable; similarly, if a philosopher was only able to eat
after waiting for 100 years, they would starve before their turn arrives.

Only one quantitative operator is required for expressing quantitative starvation -
the scaling operator ∇λ.
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Chapter 3. Objectives 21

Definition 3.1 (Scaling Operator). Let x ∈ [0, 1] be a satisfaction value of an LTL[F ]
formula, and λ ∈ [0, 1] be a scaling parameter, then ∇λx = λ × x. In the context of
evaluating an LTL[F ] formula over a computation π:

Jπ, ∇λφK = λ × Jπ, φK

which has the effect of multiplying the satisfaction value of φ by some fixed value λ ∈
[0, 1].

Next we borrow exponentiation syntax for use in LTL[F ] (where p is an atomic
proposition and X is the Next operator):

Xnp =
n times︷ ︸︸ ︷

X · · · X p

X0p = p

Thereafter we define the operator τn:

τnp = Xnp ∧
n−1∧
i=0

¬X ip

Which is 1 when p is satisfied after waiting for exactly n turns. Finally, τ is combined
with the scaling operator ∇λ to create the discounted future value operator

Definition 3.2 (Discounted Future Value Operator). Given an atomic proposition p

and a threshold value m ∈ N, the discounted future value operator Dmp is:

Dmp = ∇1p ∨
m∨

i=1
∇m−i

m
τip

Note that the usage of ∨m
i=1 ∇m−i

m
is a specific discounting function. But in general,

this approach will work with any monotonically decreasing function over [0, 1].
Dm is a family of operators, parameterised by the threshold value m. The satisfaction

value of Dm is 1 if p is satisfied immediately along a computation and m−i
m

if p is satisfied
by the suffix πi - that is if there is a waiting time of i turns. If the agent must wait more
than m (the threshold value) turns, the satisfaction value of Dm is 0. In the context of
LTL[F ] the operator G corresponds to minimum. Thus, if the atomic proposition p
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∅ ∅ ∅ ∅ {p1, p2} {p1} ∅ {p2} ∅

p1 0 0 0 0 1 1 0 0 0
p2 0 0 0 0 1 0 0 1 0

D5p1
1
5

2
5

3
5

4
5 1 1 0 1

5
2
5

D5p2
1
5

2
5

3
5

4
5 1 3

5
4
5 1 2

5

GD5p1 0 0 0 0 0 0 0 0 0
GD5p2

1
5

2
5

2
5

2
5

2
5

2
5

2
5

2
5

2
5

Figure 3.1: Table showing the evaluation of individual, quantitative objectives

holds when the agent achieves their objective, then GDmp = m−n
m

when n represents their
maximum waiting time. The computation, π, that maximises the satisfaction value of
the formula Jπ, GDmpK, will minimize the maximum waiting time for the agent concerned
with proposition p.

For example, consider the computation π = ∅, ∅, (∅, ∅, {p1, p2}, {p1}, ∅, {p2}, ∅)ω. There
are two agents, a1 and a2 with logical propositions p1 and p2 which represent when the
agents have achieved their respective goals. The individual quantitative objective of each
agent is φi = GDmpi, where m = 5. The table in Figure 3.1 notes the evaluations of
p1, p2, D5p1, D5p2, GD5p1, and GD5p2.

The rows for D5p1 in Figure 3.1 are easiest understood when reading from right to
left. When a cell of the table has the value 1, it means that in the state, the goal is
satisfied. In the cell to the left, representing the moment before, the satisfaction value
of D5p1 is 4

5 - indicating a waiting time of 5 − 4 = 1 and a threshold value of 5. We
can also observe that both agents reach their goal twice during the loop portion of the
computation. By the standards of LTL, the computation is starvation free, because
the condition GFpi holds for both agents. But, with the added nuance of quantitative
starvation, we can see that agent a1 reaches its goal twice consecutively and then must
wait longer than the threshold value of 5 before the next occasion of meeting the goal.
Hence, for agent a1 the computation is unacceptable.
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Chapter 3. Objectives 23

3.2.2 Quantitative Fairness

In a qualitative setting, fairness may refer to computations where all agents can satisfy
their goals infinitely often, however, it does not consider the relative amount of times that
agents can reach their goals. For example, if one agent satisfies their goals every 5 turns,
but another must wait for 500 turns, this is intuitively not fair. Quantitative fairness
facilitates this kind of reasoning by using a function to evaluate how fair a computation
is, and a predicate to decide if this computation is fair enough.

The functions F which parameterise LTL[F ] logic are defined as F ⊆ {f : [0, 1]k →
[0, 1]|k ∈ N} (as shown in Definition 2.8). Any function which maps a vector of values
in [0, 1] to a value in [0, 1], can be included in F . Given a set of agents, Agt, each with
an associated logical proposition φi, fairness is represented by the dispersion function,
with signature, disp : V (φi)|Agt| → [0, 1]. The input of a dispersion function is a vector
of the possible satisfaction values of each agent’s individual objective. Higher values of
the function indicate a higher level of dispersion and hence less fairness. As the vector of
satisfaction values V (φi)|Agt| is in [0, 1]|Agt|, and dispersion functions maps to [0, 1], any
dispersion function can be included in F .

Consider a computation, π, of a system with n agents, each with a corresponding
individual, quantitative LTL[F ] objective, φi and an arbitrary dispersion function disp.
Then if we have an LTL[F ] formula Φ such that Jπ, ΦK = disp(Jπ, φ1K, . . . ). Φ is
a collective, quantitative objective. A fairness objective would then be satisfied by a
strategy profile which leads to a computation π, such that Jπ, ΦK ∈ P , where P ⊆ [0, 1]
is a fairness predicate.

For example, consider the dispersion function range(S) = maxs∈S −mins∈S, where S

is a vector of satisfaction values; range is the difference between the largest and smallest
of the input values. A high value indicates a large gap between the highest and lowest
satisfaction values, which is a less fair outcome. Setting the fairness predicate P = {0}
would indicate a requirement that all agent’s satisfaction values must be the same.
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3.3 Collective Acceptability

The preceding sections laid the groundwork for defining appropriate LTL[F ] formulas
for synthesising strategy profiles in GDPG. Here, the objectives are defined more specif-
ically. A strategy profile which leads to a computation which meets the requirements of
Definition 3.3 is called collectively acceptable.

Definition 3.3 (Collectively Acceptablity). Given a GDPG, G, with n agents, each with
a corresponding atomic logic proposition, pi and the following objectives:

1. For each agent, φi = GDmi
pi, a quantitative, individual objective which represents

the agent’s maximum waiting time. Lower satisfaction values of φi correspond to
higher maximum waiting time, so the satisfaction values should be maximised to
minimize the maximum waiting time.

2. A collective objective Φ = min0≤i≤n{φi}, which represents the lowest satisfaction
value (and hence, highest maximum waiting time) that any agent achieves. A
predicate Ps = (0, 1] is used to ensure that no agent receives a satisfaction value of
zero (ensures that no agent starves);

3. A collective fairness objective Ψ = range([φ1, . . . , φn]). A predicate Pf = [0, i
n
]

ensures that all agents’ satisfaction values are within i
n

of one another for some
arbitrary value i and consequently, the maximum waiting times are within i of one
another.

A strategy profile is collectively acceptable if and only if it leads to a computation π,
where Objectives 2 and 3, above, evaluate to values within their respective predicates;
and is a Nash Equilibrium with respect to Objective 1 (which means that no agent can
unilaterally deviate to achieve a shorter maximum waiting time).

Thus, we can see that LTL[F ] is sufficiently expressive to include formulas for both
qualitative and quantitative objectives, and for individual and collective objectives. By
applying the framework introduced in this chapter, it is possible to create objectives
that suit the requirements of Nash Equilibrium, fairness and starvation-freedom. In
the next chapter, strategy profiles are examined in greater depth and the concept of
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strategy languages is introduced to facilitate automaton-based approaches to strategy
profile synthesis.
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Chapter 4

Strategy Language

The purpose of the algorithm developed in this dissertation is to generate collectively
acceptable strategy profiles for CGMs, as defined in Definition 3.3 using an automaton-
based approach. However, there is no intuitive way to represent strategy profiles in an
automaton-based algorithm. The algorithm of the subsequent Chapter 5 constructs a
Büchi Automaton which acts as an acceptor of strategy words and will only accept if
the strategy word if it corresponds to a strategy profile which produces a collectively
acceptable computation. For this reason, it is necessary to describe the strategy profiles
of the agents as an ω-regular language, defined here as a strategy language. This chapter
briefly explains some of the features of strategy languages and their relationship to
various representations of strategy profiles.

A strategy profile, when enacted by a group of agents, will produce an infinite se-
quence of states and action profiles. At the beginning of the game run, the agents find
themselves in a state. Based on the state the strategy profile prescribes an action pro-
file. The agents then collectively perform the action profile and find themselves in some
resultant state. This continues indefinitely.

Definition 4.1 (Strategy Language). Given a CGM, M, with states St and action
profiles AP , the strategy language of M is LM ⊆ (St × AP )ω. A strategy word is a
word of a strategy language, and the alphabet of a strategy language is all pairs (s, ap)
where s is a state and ap is in action profile. A strategy profile, when enacted by the
agents produces the strategy word such that for all adjacent pairs (s, ap), (s′, ap′), such

26
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Chapter 4. Strategy Language 27

c0start c1 c2

X Y

Z

W

Figure 4.1: Simple CGM where the agents have multiple choices

that Out(s, ap) = s′, and ap ∈ av(s), ap′ ∈ av(s′) for all agents. s′ is the outcome of
enacting action profile ap in state s, and ap and ap′ are available action profiles for their
respectively states.

Note that any sequence of pairs St, AP can be a strategy word, but most strategy
words will not produce a collectively acceptable outcome. In subsequent chapters, strat-
egy automata will be constructed such that only strategy words that produce a precise
outcome are accepted.

Generally, there will be several strategy words which represent an acceptable run of
the CGM with respect to a given agent’s individual objectives, see Figure 4.1. In this
example, which assumes 2 agents, it is assumed that both agents reach their goal at
configuration c2. From c0, they must progress to c1 via action profile X, and similarly
from c1, they must progress to c2 via action profile Y . However, from c2, they can
progress to either c0 or c1 via action profiles W and Z respectively.

It is clear that no matter which strategy profile is followed, the agents will al-
ways reach their goal with a maximum waiting time of 2 turns. The strategy lan-
guage which describes runs of this model is provided by the ω-regular expression L =
(c0, X)(c1, Y )((c2, Z)(c1, Y )|(c2, W )(c0, X)(c1, Y ))ω. The agents must begin with (c0, X),
followed by (c1, Y ). Thereafter, however, they loop forever and for each iteration of the
loop, they must choose between (c2, Z)(c1, Y ) and (c2, W )(c0, X)(c1, Y ). There is an
infinite number of strategy words in this language, and similarly, an infinite number of
strategy profiles which can generate those words.

It is trivial to create a positional strategy profile which produces a word w ∈ L.
{(c0 → X), (c1 → Y ), (c2 → Z)} is such an example. A finite-memory strategy profile
can be created by defining a 2-state memory. Presuming that there is some transition
system which defines transitions between the two memory states, in state 1, the agents
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will choose Z when c2 is detected and in state 2, the agents will choose W when c2 is
detected.

Finally, we will show an infinite memory strategy profile that will produce strategy
words in L. Firstly, for convenience, we can represent the decisions made by the agents
in a more compact form. If they choose (c2, Z)(c1, Y ) it is represented as 0 and if they
choose (c2, W )(c0, X)(c1, Y ) it is represented as 1. Hence we can represent the sequence
of decisions made with a base-2 number. Next, consider some irrational number in base-2
which represents the sequence of decisions made, that is, it can be seen as representing
a strategy profile. Consequently, we see that an infinite amount of memory would be
required to store this strategy profile; and, there are infinitely many such strategy profiles.

Due to the potential intractability of dealing with infinitely large sets, any brute force
algorithm will need bouned memory usage at some point and can only give a weak assur-
ance of collective acceptability. Instead, we will reason about strategy languages. Sets
of perhaps infinitely many strategy words which share particular objective-satisfaction
characteristics will be described with Büchi automata, and instead of directly creating a
strategy profile which is collectively acceptable, a corresponding strategy language will
be produced instead. From the strategy language, strategy profiles can be distilled.

In the next chapter, the strategy automaton and deviation automaton are developed
as acceptors of strategy languages.
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Chapter 5

Construction of Automata for
Collectively Acceptable Strategy
Profiles

Here we begin with the procedure for generating collectively acceptable strategy profiles.
Given a GDPG with n agents, a set of n quantitative individual objectives (one for each
agent), as well as a collective fairness objective and predicate, a collective starvation-
freedom objective and predicate, and a threshold value for starvation, an automaton is
generated which only accepts a strategy word if that word corresponds to a strategy
profile which is collectively acceptable. Thereafter, a finite-memory strategy profile is
distilled from the automaton.

Section 5.1 provides the conversion procedures which are necessary to bring the realm
of GDPG to LTL[F ] model checking. Thereafter LTL[F ] model checking is outlined
in Section 5.2, and some necessary augmentations are explained to account for multiple
agents that have their own objectives, additionally, heuristics for fast construction of
automata in the special case of quantitative starvation are examined. Payoff profiles are
introduced in Section 5.3, and they are subsequently used to guide the construction of
strategy automata and deviation automata, 5.4, and Nash automata 5.5. Finally, the
various threads are pulled together in Section 5.6 to produce an automaton that only
accepts strategy words that correspond to collectively acceptable strategy profiles.

29
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5.1 Translation Procedures

Two conversions are defined in this section. The first translates a GDPG into a corre-
sponding CGM, and the second translates a CGM into a corresponding NGBA appro-
priate for LTL[F ] model checking. While it is possible to translate the GDPG directly
to an NGBA, the intermediary step provides an added measure of generality which will
support future work where it may be possible to apply this procedure to other CGMs.

Definition 5.1 (Translation of GDPG to CGM ). Let G = ⟨Agt, Bags, d, Acc⟩ be a
GDPG with Conf as the set of all configurations in G. Then G can be translated into a
CGM M = ⟨A, St, Act, av, out, Prop, L⟩ where:

• A := Agt

• St := {c : c ∈ Conf}

•

Act = {Takea
β : a ∈ β ∧ β ∈ Bags}

∪ {Releasea
β : a ∈ β ∧ β ∈ Bags}

∪ {Releasea
all : a ∈ Agt}

∪ {Idlea : a ∈ Agt}

• For all pairs of c ∈ St and a ∈ A,

av(c, a) = {Takea
β : a ∈ β ∧ β ∈ Bags ∧ c(β)(null) > 0 ∧ card(c, a) < d(a)}

∪ {Releasea
β : a ∈ β ∧ β ∈ Bags ∧ c(β)(a) > 0 ∧ card(c, a) < d(a)}

∪ {Releasea
all : card(c, a) = d(a)}

∪ {Idlea : card(c, a) ̸= d(a)}

• Given a configuration c, and an allowed action profile ap, the successor c′ is the
new configuration which arises when the agents follow ap while in c. The successor
configuration is defined piecewise. Let out(c, ap) = c′, then for all resource bags,
β:
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⋆ c′(β)(null) = c(β)(null)
− |{a ∈ Agt : ap(a) = Takea

β ∧ |{a′ ∈ Agt : ap(a′) = Takea′
β }| < c(β)(null)}|

+ |{a ∈ Agt : ap(a) = Releasea
β}|

+ ∑
a∈Agt:ap(a)=Releasea

all
c(β)(a)

⋆ And, for all a ∈ Agt :

c′(β)(a) =



c(β)(a) + 1 iff Takea
β = ap(a)∧

|{a′ ∈ Agt : ap(a′) = Takea′
β }| < c(β)(null)

c(β)(a) − 1 iff Releasea
β = ap(a)

0 iff Releasea
all = ap(a)

Each resource bag allocation to null is incremented for all successful Release and
Releaseall actions, and decremented for all successful Take actions and each re-
source bag allocation to an agent is decremented for all successful Release and
Releaseall actions by that agent and incremented for all successful Take actions
by that agent;

• Prop := {pa : a ∈ A}, where each pa is a new atomic proposition introduced for
the CGM;

• For all c ∈ St, L(c) := {pa : a ∈ A, card(a, c) = d(a)}

Definition 5.2 (Translation of a CGM to an NGBA). Given a CGM M = ⟨A, St, Act, av, out, Prop, L⟩,
then M can be translated into a NGBA N = ⟨2AP , Q, δ, Q0, α⟩ where:

• AP := Prop

• Q := St

• For all q ∈ Q and σ ∈ 2AP , δ(q, σ) := {q′ : (∃ap : out(q, ap) = q′) ∧ L(q′) = σ}

• Q0 := Q

• α := {Q}

The first step of the procedure is to convert the given GDPG into the corresponding
NGBA by the translations defined in Definitions 5.1 and 5.2.
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5.2 LTL[F] Model Checking for Multiple Agents

The LTL[F ] model checking procedure takes as input a model and a specification (both
represented as NGBAs) and then produces an output (also an NGBA) which only accepts
a computation if it is a valid computation of the model and it satisfies the specification.
We may wish to ask the questions, “Do all computations satisfy the specification?”,
or “Does there exist a computation which satisfies the specification?”. Strategy profile
synthesis differs in that it asks the question, “What is the strategic behaviour required
to produce a computation which satisfies the specification?”.

In our case, the question is more complicated because the Boolean satisfiability prob-
lem is replaced with the optimisation of some quantitative satisfaction values. Moreover,
we are concerned with the identification of a Nash equilibrium, which cannot be expressed
in the logic LTL[F ]. Because Nash equilibrium cannot be expressed with the logic, some
extra steps are needed to identify this property. Naturally, LTL[F ] model checking can
be of use, but some augmentations are necessary.

In the classic case of LTL[F ] model checking, a model and a LTL[F ] are provided and
converted into corresponding NGBAs. One NGBA only accepts computations that can
arise from a valid run of the model, and the other only accepts computations that provide
a satisfaction value for an LTL[F ] formula that is within a given interval. A necessary
modification of the LTL[F ] model checking procedure, for the procedure presented in
this dissertation, is to have several LTL[F ] objectives, each associated with a distinctive
interval P ∈ [0, 1] - known as a predicate. The output will then be an NGBA which
only accepts computations for which the satisfaction values of each LTL[F ] objective are
within the respective predicate. In LTL model checking, this step is not needed because
the objectives of multiple agents can simply be combined to p1 ∧ p2 ∧ p3 ∧ . . . , however
in conventional LTL[F ] model checking, only one predicate is provided. We begin by
defining a helper function and then proceed with the modified model-checking procedure
as described above.

Definition 5.3 (Predecessor of Satisfation Value). Given an LTL[F ] formula φ, and its
corresponding set of satisfaction values V (φ), for all v ∈ V (φ), the predecessor of v is
Pred(v) = {v′ ∈ V (φ) : v′ > v ∧ ∀v′′ ∈ V (φ) \ {v, v′} : v′′ > v′ → v′′ > v ∧ v′′ < v′ →
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v′′ < v}.

The values of V (φ) are generated by applications of the ∇n−i
n

operator for increasing
integer values of i and a fixed threshold value n, thus the set of satisfaction values form
a finite sequence n

n
, n−1

n
, . . . , 1

n
, 0. A predecessor function is defined such that Pred(v)

will contain the satisfaction value that comes directly before v in the sequence. There is
also the special case where v is the first item in the sequence, in which case Pred(v) = ∅.

Definition 5.4 (Translation of an LTL[F ] formula to an NGBA). An LTL[F ] formula,
φ of the form GDmp, where m is a threshold value, and predicate P can be translated
into an NGBA N P

φ = ⟨2AP , Q, δ, Q0, α⟩, where:

• AP is the set of atomic propositions that occur in φ;

• Q = Cφ, the set of consistent functions with regard to φ;

• Q0 = {q ∈ Q : q(φ) ∈ P};

• For all pairs, q, q′ ∈ Q and propositions, p ∈ AP , δ(q, r) = q′, where:

⋆ q(Dmp) = 1
2 ↔ p = r

⋆ q(Dmp) /∈ {1
2 , 1} ↔ p ̸= r

⋆ q(Dmp) /∈ {0, 1} ↔ q′(Dmp) ∈ Pred(q(Dmp))

⋆ q(Dmp) = 0 ↔ q′(Dmp) = 0 ∨ q′(Dmp) ∈ Pred(0)

⋆ q′(GDmp) ≤ q(GDmp)

• α = {q ∈ Q : {p ∈ AP : q(Dmp = 0)}}. We must always reach all states where
some p are satisfied. In such states, the waiting time is zero.

Note that the predicate, P , is only used to determine the initial states of the NGBA.
For this reason, an NGBA can be generated irrespective of the particular predicate, and
then the initial states are modified to account for different predicates. Thus, generating
these NGBAs for a reasonable number of different predicates does not impose a significant
computational penalty.
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5.2.1 Construction of NGBAs for Objectives of Individual Agents

The construction of NGBAs for the special purpose of synthesising strategies which
avoid quantitative starvation can be simplified. Firstly, it is noted that agent objectives
are individual objectives (see Section 3.1). Given an agent of a GDPG with atomic
proposition p which is satisfied when the agent meets their goal, and a threshold value
m ∈ N and a value, t ∈ N, where, 0 ≤ t ≤ m, then a new type of NGBA, N p

t can be
constructed which will only accept a computation if the agent can always meet their goal
with a maximum waiting time of t. That is, GDmp >= m−t

m
. The construction of this

NGBA is sketched.
The automata N p

t are defined inductively. First, we consider an NGBA which only
accepts words where the waiting time for atomic proposition p to be true is zero - the
agent whose objective is represented by p never waits. N p

0 is represented pictorially
in Figure 5.1 (note that all states of these NGBAs are possible initial states, but to
avoid cluttering the automaton the arrows indicated initial states are omitted). The
automaton only has one state, which has a self-loop labelled with p, and it is defined as:

• 2AP = {{p}, ∅};

• Q = {q : q(GDmp) = 1};

• Transitions δ follow the same restrictions as the construction of the NGBA in
Definition 5.4.

• Q0 = Q;

• α = {{q ∈ Q : q(Dmp) = 1}}.

In Definition 5.4 it was noted that there is an element of α for each atomic proposition.
For this reason, all of these single-agent NGBAs will have α be a set containing only a
single set.

Next, we see an NGBA with 2 states, a computation will be accepted by this NGBA
if the maximum number of the symbol ∅ encountered in a sequence is one, ie. the
maximum waiting time is 1, and GD2p = 1

2 . This NGBA is represented pictorially in
Figure 5.2 and is formally defined as:
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q

{p}

Figure 5.1: The single-agent NGBA, N p
0 , where GDmp = m−0

m = 1

• 2AP = {{p}, ∅};

• Q = {q : q(GDmp) = m−1
m

};

• Transitions δ follow the same restrictions as the construction of the NGBA in
Definition 5.4;

• Q0 = Q;

• α = {{q ∈ Q : q(Dmp) = m−1
m

}}.

Finally, by induction, we can define the NGBA for the general case. N p
t is represented

in Figure 5.3 and is formally defined:

• 2AP = {{p}, ∅};

• Q = {q : q(GDmp) = m−t
m

};

• Transitions δ follow the same restrictions as the construction of the NGBA in
Definition 5.4

• Q0 = Q;

• α = {{q ∈ Q : q(Dmp) = m−t
m

}}.

Since agent objectives are orthogonal, it is possible to construct an NGBA for each
agent objective and a desired maximum waiting time independently. These NGBAs can
then be combined to form a new one which accepts a word iff that word is accepting on
all constituent NGBAs and consequently provides a specified satisfaction value for the
LTL[F ] objective for each agent.
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q1 q2
{p}

{p}

∅

Figure 5.2: The single-agent NGBA, N p
1 where GDm = m−1

m

5.2.2 Product of NGBAs

As we defined an NGBA for each agent and their specified waiting time, these NGBAs
need to be combined into a single NGBA such that the NBGA only accepts a computa-
tion, π, if π results in the specified waiting time for all agents. The NGBA product is
formally defined as:

Definition 5.5 (NGBA product). Given an NGBA N = ⟨2AP , Q, δ, Q0, α⟩ and N ′ =
⟨2AP ′

, Q′, δ′, Q′
0, α′⟩. The product of N and N ′ is N ′′ = ⟨2AP ′′

, Q′′, δ′′, Q′′
0, α′′⟩, where:

• AP ′′ = AP ∪ AP ′;

• Q′′ = Q × Q′;

• Q′′
0 = {(q × q′) ∈ Q′′ : q ∈ Q0 ∧ q′ ∈ Q′

0};

• δ′′ = {((q×q′), l, (q2×q′
2)) : q ∈ Q∧q′ ∈ Q′∧(q, b, q2) ∈ δ∧(q′, b′, q′

2) ∈ δ′∧l = b∪b′};

• α′′ = ⋃
s∈α{(q × q′) ∈ Q′′ : q ∈ s} ∩ ⋃

s′∈α′{(q × q′) ∈ Q′′ : q′ ∈ s′}

The successive application of this definition allows the construction of the product of
arbitrarily many NGBAs.

Using the above, it is possible to construct the NGBAs suitable for the LTL[F ]
model checking procedure. Put simply, if there is an agent a with proposition pa, and
the requirement that their maximum waiting time is ta, then we can construct N pa

ta
. This

is done for all agents and the result is an NGBA for each agent. The product of these
NGBAs can then be taken by application of Definition 5.5 to produce an NGBA that
will only accept a computation π if all agent’s maximum waiting times are adhered to.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 5. Construction of Automata for Collectively Acceptable Strategy Profiles 37

g1 g2 gn−1 gn
∅ {p}

{p}

∅

∅

Figure 5.3: The single-agent NGBA, N p
n where GDm = n−N

n

The main benefit of this process is the “cherry-picking” of exact maximum waiting times
for each agent, which is elaborated in the following section.

5.3 Payoff profiles

At this point, it is necessary to address an ambiguity that has been introduced. In the
opening paragraph of Chapter 5, it was mentioned that for each LTL[F ] objective, there
must be an associated predicate for LTL[F ] to be done, but in Section 5.2, maximum
waiting times were used to construct NGBAs for model checking. These concepts can,
however, be easily linked. Consider for example an agent, with associated atomic propo-
sition p, and the objective φ = GDmp for a threshold m ∈ N. If there is a computation
π where the maximum waiting time is t, then Jπ, φK = m−t

m
. There is a satisfaction value

which corresponds directly to the maximum waiting time.
Furthermore, a predicate can be easily defined which includes only the required sat-

isfaction value. That is, let P = {m−t
m

}, then Jπ, φK = m−t
m

↔ Jπ, φK ∈ P .
Hence, it is possible to create a predicate for each value in V (φ) which facilitates

the selection of exactly one satisfaction value (and exactly one maximum waiting time).
Instead of constructing NGBAs with particular predicates, we construct NGBAs for the
corresponding waiting times. Since this is done for all agents, it is possible to create an
NGBA product which only accepts a computation which results in a specific payoff to
each agent. In other words, there is an NGBA for each possible payoff profile.

Definition 5.6 (Payoff Profile). Given the GDGP with agents Agt and possible satis-
faction values for their objectives, V (φ), a payoff profile, PP , is a mapping of agents to
satisfaction values PP : Agt → V (φ).
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For example, if there are n agents and the set of possible satisfaction values of the
LTL[F ] objectives is {v1, v2, . . . }, then a payoff profile PP is defined as PP (a1) = vi,
PP (a2) = vk, etc.

Definition 5.7 (NGBA Corresponding to a Payoff Profile). Consider a game, G, with n

agents, each with a corresponding individual LTL[F ] objective, φi and a payoff profile
PP . The game is represented as a CGM, M, and the NGBA corresponding to the
CGM is NM. For each agent’s individual objective we construct the NGBA N Pi

φi
where

Pi = {PP (ai)} is the predicate. A satisfaction value is only in Pi if it is exactly the
value assigned to the agent by the payoff profile. Hence, the NGBA corresponding to G
resulting in the payoff profile PP is N P P

G = NM × N P1
φ1 × · · · × N Pn

φn

A benefit of payoff profiles is that for some collective objectives, there is an intuitive
way to look at payoff profiles and assess if computations resulting in the payoff profile
produce satisfaction values within the predicate. For example, consider a scenario where
range (see Section 3.2.2) is chosen as the dispersion function and the predicate is Pf =
{0} - that is, the satisfaction value for each agent’s objective must be the same. Then it
is straightforward to assess a payoff profile for conformance with the fairness objective
and predicate. PP1 would not be fair because range({0, 1}) = 1, but PP2 would be fair
because range({1

2 , 1
2) = 0. Note that Pf is a predicate for the fairness objective and is

defined in addition to the individual agent predicates.
Given a computation π, a collective LTL[F ] objective Φ, where Φ = f(Jπφ1K, . . . , Jπ, φnK)

and f is an LTL[F ] function and each φi is an individual objective of an agent, then it
is possible to evaluate a given payoff profile directly and decide if a computation lead-
ing to that payoff profile would satisfy Φ. For example, consider a collective objective
Φ = min(Jπφ1K, . . . , Jπ, φnK) - the satisfaction value of Φ over a computation is equal
to the lowest individual agent satisfaction value. If this objective has the predicate
P = [1

2 , 1] then we can say that if a payoff profile has in its domain a value less than 1
2 ,

then any computation which results in this payoff profile will not satisfy Φ.
Hence, for a payoff profile PP , if f(PP (a1), . . . , PP (an)) ∈ P (Φ is satisfied) then

all computations, π resulting in PP will have Jπ, ΦK ∈ P .
The main rationale behind using payoff profiles in this way is that the synthesis

procedure presented in this chapter iterates over the set of payoff profiles and then
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synthesises strategy profiles which result in each of these payoff profiles. If a given
payoff profile does not satisfy one of the collective objectives, then we can simply avoid
synthesising strategy profiles for it. If there is a Nash Equilibrium strategy profile which
results in an unsatisfactory payoff profile, we can also disregard it.

At this stage, we can construct the NGBA, N P P
G for each payoff profile. These

NGBAs will be used in the following chapters for the synthesis of Nash equilibrium
strategy profiles.

5.4 Strategy and Deviation Automaton Construc-
tion

As mentioned in Chapter 4, a strategy language can be constructed. Here, we will gen-
erate the strategy language which comprises all words which represent strategy profiles
that result in a computation that produces a specific payoff profile. It is straightforward
to identify if some payoff profile is an improvement for a given agent over some over pay-
off profile, therefore, if strategy language L(S1) contains only strategy words resulting
in payoff profile PP1, and L(S2) contains only strategy words resulting in payoff profile
PP2, then a rational agent following a strategy from S1 will have the incentive to deviate
to a strategy from S2 if the associated payoff profile yields a better satisfaction value.

For example, given the payoff profile PP1 = {(a1, 0), (a2, 1)} and PP2 = {(a1,
1
2), (a2,

1
2)},

it is clear that for agent a1 PP2 yields a higher satisfaction value than PP1, the opposite
is true for a2. Thus, if there are automata S1 and S2 which accepts strategy words which
result in payoff profile PP1 and PP2 respectively (the construction of such automata,
called strategy automata, will be formally defined in Section 5.4.1), then for agent a1, any
strategy word from S2 will yield a higher satisfaction value than any strategy word from
S1. More formally, for all computations π1 and π2 which correspond to a strategy word
in S1 and S2 respectively, we have Jπ2, φ1K > Jπ1, φ1K and Jπ1, φ2K > Jπ2, φ2K, where φ1

and φ2 are the objectives of agents a1 and a2, respectively. Hence for all strategy profiles
derived from S1, sp1, and S2, sp2 the following properties, sp2 >φ1 sp1 and sp1 >φ2 sp2

hold.
A strategy profile, when enacted by a group of agents, generates a computation
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Strategy Profile

Computation Strategy Word

Gene
rat

es Generates

Correspondence

Figure 5.4: Relationship between Strategy Words, Computations and Strategy Profiles

which can be represented as a strategy word. Thus we can say that a computation, π,
corresponds to a strategy word, w, (and vice versa) if they can be derived from the same
strategy profile. This is notated as π=̂w Each strategy profile generates exactly one
strategy word and computation, but, a strategy word or computation can be generated
by more than one different strategy profile, as depicted in Figure 5.4.

5.4.1 Strategy Automata

Because the model-checking automaton is a product of several Buchi automata, each of
the states is a tuple consisting of a state from each of the original automata in the product
composition. One automaton represents the game model, and thus, the first item in the
model checking automaton state tuple is a configuration of the GDPG, the rest are states
of the Buchi automaton representations of the LTL[F ] formulas. Transitions are labelled
by a set of atomic propositions. Hence each transition of the model checking automaton
has the form (ci, n1, . . . ), λ, (cj, m1, . . . ) where ci, cj are configurations, n1, m1 are states
of the NGBA representing the LTL[F ] formula and λ ∈ 2AP .

A helper function is first given, and thereafter the translation procedure from the
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LTL[F ] model checking automaton to a strategy automaton is given.

Definition 5.8 (Implied action profiles function). Given a transition of the model check-
ing automaton, d = (ci, n1, . . . ), λ, (cj, m1, . . . ), and the CGM underlying the model
checking automaton, M, the implied action profile function maps d to all the action
profiles which would lead from the origin configuration of d, to the destination configu-
ration of d.

imp(d) = {ap : out(ci, ap) = cj}

Definition 5.9 (Translation of the model checking automaton to a Strategy Automa-
ton). Given a GDPG with set of configurations Conf , the model checking automa-
ton, N P P

G = ⟨2AP , Q, δ, Q0, α⟩, can be translated into a strategy Automaton SP P
F =

⟨Λ, Q′, δ′, Q′
0, α′⟩, where:

• Λ = Conf × ACT , the set of all pairs of configurations and action profiles;

• Q′ = Q;

• δ′ = ⋃
d∈δ{(q, a, q′) : (q, r, q′) = d ∧ a = imp(d) ∧ r ∈ 2AP };

• Q′
0 = Q0;

• α′ = α.

The strategy automaton is the bridge between speaking of acceptable computations
and strategy profiles. If we begin with the construction of the automaton corresponding
to a specified payoff profile; and apply the above translations, a strategy automaton is
generated whose language characterises strategy profiles which, when enacted by a group
of agents, will result in acceptable computations, and consequently, yield the underlying
payoff profile. It is thus possible at this stage to derive strategy profiles which result in
a specified payoff profile.

From the strategy automata, we can derive strategy profiles which result in specified
payoff profiles, but our ultimate goal is to synthesise Nash equilibrium strategy profiles.
Nash equilibrium is concerned with unilateral deviations by agents, so next we construct
an automaton that will accept any strategy word which can be produced if a given
rational agent can take any action, and not just those that result in the underlying
payoff profile.
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B

D

A

Figure 5.5: Venn Diagram showing the languages of 2 strategy automata, one with its asso-
ciated deviation automaton

5.4.2 Deviation Automaton

In Definitions 2.19, 2.20, for profitable and unilateral deviation, deviation was defined
as a relation between two strategy profiles. However, since a strategy profile has a corre-
sponding strategy word, these definitions can be extended naturally to strategy words.
Given an agent ai with objective φi, and strategy profiles sp and sp′ with corresponding
strategy words w and w′, w is a profitable deviation of w′ for agent ai if sp >φi sp′; and
w is a unilateral deviation of w′ for agent ai if sp /ai sp′.

Note that per the unilateral deviation definition in 2.20, every strategy profile (and
consequently strategy word) is a deviation of itself for all agents. Thus, given a GDPG,
G with an agent ai, if we have an arbitrary set of strategy profiles, A and the set of
unilateral deviations, D = {sp : ∃sp′ : sp /ai sp′}, then A ⊆ D.

In the Venn diagram in Figure 5.7, we can see 3 sets, A, D and B. Sets A and D

are the sets described in the previous paragraph, while B is some other arbitrary set of
strategy profiles. Note that A ∩ B = ∅, but B ∩ D ̸= ∅.

Let us assume that there are two payoff profiles PP1 and PP2. These are the only
possible payoff profiles. The set A contains all strategy profiles which result in PP1 and
B results in all payoff profiles which result in PP2. D would therefore contain all strategy
words which correspond to a strategy profile sp, such that sp /ai sp′ for an agent ai and
sp′ corresponds to a strategy word that is accepted by A. That is, given a strategy word
in D, agent ai will either be receiving the payoff of PP1, or can receive that payoff if
they unilaterally deviate.

Consequently, D\A will accept a strategy word if that word corresponds to a strategy
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profile which does not result in PP1, but agent ai can deviate to achieve PP1, if it has
an incentive to.

(D \ A) ∩ B is all the strategy words which correspond to strategy profiles which
result in payoff profile PP2, but ai can unilaterally deviate to achieve a payoff profile of
PP1.

Moreover we can presume the existence of strategy automata SP P 1
G and SP P 2

G , such
that L(SP P 1

G ) = A and L(SP P 2
G ) = B. A deviation automaton S∆ai

P P1 will be defined such
that L(S∆ai

P P1) = D.
Finally, let PP1(ai) > PP2(ai), that is, agent ai receives a better payoff from strat-

egy words in A than in B. We can make the following assertions about the deviation
behaviour of an arbitrary strategy word w′′.

• if w′′ ∈ A, then ai receives their better payoff when following the strategy profile
corresponding to w′′ and will not deviate.

• if w′′ ∈ (D \ A) ∩ B, then ai is not receiving their best payoff and has an incentive
to deviate to A, moreover, it is possible to unilaterally from the strategy profile
corresponding to w′′ to a strategy profile which corresponds to a word in A.

Now that the formalities of the sets have been addressed, we can proceed to the
construction of the unilateral deviation function and deviation automaton.

Definition 5.10 (Unilateral deviation function). The unilateral deviation function for
agent ai, devai , maps each transition of a strategy automaton to the set of transitions
where ai is possibly deviating, but not such that a new payoff profile arises after the
deviation. devai(c, ap, c′) = {(c, ap′, c′′) : ∀ak ∈ (Agt \ {ai})ap(ak) = ap′(ak) ∧ ap′ ∈
av(c, ai) ∧ out(c, ap′) = c′′}

Definition 5.11 (Construction of Deviation Automaton for an agent corresponding
to a Strategy Automaton). Given a strategy automaton for a payoff profile, SP P

G =
⟨2AP , Q, δ, Q0, α⟩. The deviation automaton for agent ai is a tuple: S∆ai

P P = ⟨2AP ′
, Q′, δ′, Q′

0, α′⟩,
where:

• AP ′ = AP ;
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• Q′ = Q;

• δ′ = ⋃
d∈δ devai(δ);

• Q′
0 = Q0;

• α′ = α.

At this stage, we have addressed profitable and unilateral deviation in the case of
only one deviating agent and two payoff profiles. To reason about Nash equilibria, it is
necessary to extend profitable and unilateral deviation to arbitrary numbers of agents
and payoff profiles.

5.5 Nash Automata

To begin with, given a GDPG, G, an arbitrary payoff profile PP1 is selected as the starting
point in the search for Nash equilibrium. PP1 has an associated strategy automaton,
SP P1

G which only accepts strategy words corresponding to strategy profiles which result
in PP1. There are three steps, firstly, the sets of alternative payoff profiles from PP1

are constructed, secondly, the alternatives are used to construct the Nash automaton for
payoff profile PP1. Finally, we take a step back and define the Nash automaton for the
entire game - an automaton which only accepts a strategy word if that word is a Nash
equilibrium with respect to the individual objectives of each agent.

With the assumption of PP1, each agent in G will have zero or more alternatives.
An alternative payoff profile for an agent is the set of all payoff profiles which result in
a better payoff to that agent.

Definition 5.12 (Alternative Payoff Profiles For An Agent). Given a GDPG with agent
ai, a set of payoff profiles P , and a payoff profile PPi ∈ P , ALT (ai, PP1) = {PPk ∈ P :
PPk(ai) > PP1(ai)}.

If S∆ai
P P1 is the deviation automaton for agent ai from strategy profiles resulting in PP1,

then we can construct the automaton X, such that L(X) = ⋃
P P ∈ALT (ai,P P1) L(S∆ai

P P )
which accepts all strategy words which correspond to a strategy profile from which ai

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 5. Construction of Automata for Collectively Acceptable Strategy Profiles 45

can deviate to any of its alternatives which provide a better payoff than PP1. Next,
we can consider all of the agents, and construct the set of all strategy words which
correspond to strategy profiles from which any agent can deviate to any of its alternatives
which provide a better payoff than PP1. This is, an automaton X such that L(X) =⋃

a∈Agt

⋃
P P ∈ALT (a,P P1) L(S∆a

P P ). Consequently, we can define the Nash automaton for the
payoff profile PP1.

Definition 5.13 (Nash Automaton for Payoff Profile). Given a set of agents Agt from a
GDPG, G, and a payoff profile PP1, the Nash automaton for PP1 is such that L(SP P1

nash) =
L(SP P1

G ) \ ⋃
ai∈Agt

⋃
P P ∈ALT (ai,P P1) L(S∆ai

P P ). This is the set of all strategy words which
correspond to a strategy profile which results in payoff profile PP1 and for which no
agent can deviate to any alternative payoff profile for that agent. Since no agent can
unilaterally and profitably deviate, these strategy words correspond to Nash equilibrium
strategy profiles.

If the Nash automaton for a payoff profile does not contain any words, that does
not mean that there is no Nash equilibrium. Indeed, we must consider all possible
payoff profiles as potential starting points. If we do this, we can define the general Nash
automaton.

Definition 5.14 (Nash Automaton). Given a set of agents Agt from a GDPG, G, and
a set of all possible payoff profiles P , the Nash automaton is constructed such that
L(Snash) = ⋃

P Pi∈P L(SP Pi
nash).

The Nash automaton acts as an acceptor of strategy words which correspond to
strategy profiles that are Nash equilibrium, but Nash equilibrium is not sufficient for
collectively acceptable strategy profiles. The next section combines Snash with automata
for fairness and starvation-freedom to construct an automaton which only accepts a
strategy word if it corresponds to a collectively acceptable strategy profile.

5.6 Pulling it All Together

With all the heavy lifting attended to, the final step is to simply combine the Nash
Automaton with automata which guarantee satisfaction of the collective objectives to
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Figure 5.6: Relationship between payoff profiles, NGBAs, strategy automata and deviation
automata.

produce an automaton which only accepts collectively acceptable strategy words; and
thereafter, to produce a corresponding strategy profile.

5.6.1 Algorithm

Given a GDPG with n agents, each with an associated objective φi, the overall Nash
automaton is constructed by combining the various strategy and deviation automata.

In Figure 5.6, we can see that there are finitely many payoff profiles. More specifi-
cally, there are |Agt||V (φ)| distinct payoff profiles. For each payoff profile, an NGBA N
can be constructed which only accepts a computation if that computation yields exactly
the associated payoff profile. Then, for each of these NGBAs, N there is a strategy
automaton which accepts a strategy word if that strategy word corresponds to a com-
putation accepted by the associated NGBA. Finally, for each strategy automaton S, we
can construct n deviation automata. Altogether there are |Agt||V (φ)| × |Agt| deviation

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 5. Construction of Automata for Collectively Acceptable Strategy Profiles 47

Algorithm 1 Algorithm for construction of Nash automaton
Input: A GDPG G, a set of all payoff profiles P, the set of agents from the
GDPG, Agt

Output: The Nash automaton for G
procedure ConstructNashAutomaton(G, P , Agt) ▷ Constructs the Nash
automaton for a given GDPG

SNash = ∅
for all PP1 ∈ P do

N P P1
G := ModelChecking(G, PP1) ▷ As per Definition 5.7

SP P1
G := MC2SA(N P P1

G ) ▷ As per Definition 5.9
D := ∅
for all ai ∈ Agt do

ALT (PP1, ai) := Alternatives(PP1, ai) ▷ As per Definition 5.12
Dai

:= ∅
for all PP ∈ ALT (PP1, ai) do

N P P
G := ModelChecking(G, PP )

SP P
G := MC2SA(N P P

G )
S∆ai

P P := Deviation(SP P
G ) ▷ As per Definition 5.11

Dai
:= Dai

∪ Sδai
P P

end for
D := D ∪ Dai

end for
SNash := SNash ∪ (SP P1

G \ D)
end for
return SNash

end procedure

automata. The algorithm for the construction of the Nash automaton is Algorithm 1.
The set construction for a Nash automaton for a particular payoff profile can also be

visualised by means of the Venn diagram in Figure **.
In Figure 5.7, we see a large central representing the language of SP P1

G , which contains
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SP P1
G S∆a

P P

S∆a
P P

S∆a
P P

S∆a
P P

S∆a
P P

. . .

S∆a
P P

S∆a
P P

Figure 5.7: Venn Diagram showing the language of a strategy automaton for a given payoff
profile and the languages of deviation automata for all alternatives for all agents.

all strategy words which correspond to a strategy profile which results in payoff PP1.
Each of the surrounding circles shows the language of the deviation automaton for an
alternative for an agent. If a strategy word falls in the overlap between the central
strategy automaton and a deviation automaton, it means that given that strategy word,
there exists a profitable and unilateral deviation for that agent. If a strategy is in the
central circle but none of the overlapping regions, then there does not exist a profitable
and unilateral deviation for any agent.

5.6.2 Collectively Acceptable Strategy Language

To recall, there were 3 requirements - 2 collective objectives which must be satisfied, and
a set of individual objectives which must result in a Nash Equilibrium.

For a game with n agents, a fairness predicate Pf and dispersion function f , and a
set of all payoff profiles P , we can construct the set of all fair payoff profiles. Recall
that a computation π is fair if Jπ, ΦK ∈ Pf . Thus we define the set FAIR = {PP ∈ P :
f(PP (a1), . . . , PP (an)) ∈ Pf}. If PP ∈ FAIR, then for all computations π which result
in PP , we know that f(Jπ, φ1, K, . . . , Jπ, φnK) ∈ Pf . The collective starvation freedom
objective works in much the same way, with its own predicate Ps and function g. Thus
we define the set FREE = {PP ∈ P : g(PP (a1), . . . , PP (an)) ∈ Ps}.
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If the set FAIR contains all payoff profiles which are considered fair, and FREE con-
tains all payoff profiles which are starvation-free. Hence, we can produce Sfair such that
L(Sfair) = ⋃

P P ∈F AIR L(SP P
G ) - a strategy automaton which accepts all strategy words

corresponding to a strategy profile that results in a fair payoff profile, and Sfree, such
that L(Sfree) = ⋃

P P ∈F REE L(SP P
G ) - a strategy automaton which accepts all strategy

words which correspond to strategy profiles resulting in a starvation free payoff profile.
We also have the Nash automaton as defined in the previous section, Snash. Finally, an
automaton which only accepts collectively acceptable strategy words can be expressed
simply as S such that L(S) = L(Sfree) ∩ L(Sfair) ∩ L(Snash).

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 6

Overview of Related Work

The GDPG has been examined from a model-checking perspective, [15] but thus far
there is no existing work that examines the problem of automated synthesis with special
reference to the GDPG. Furthermore, the combination of qualitative and quantitative
goals has not been adapted to the GDPG.

Existing work in synthesis has addressed either the problem of rational synthesis
[18][23], the problem of quantifying what was previously, purely boolean, logical sys-
tems [1][2][4], or the identification of Nash equilibria in automated synthesis problems
[8][3] [23][9]. Much work has also been done on heuristics for strategy synthesis given
intractable problem spaces (for example, chess playing systems) [27]. This dissertation
differs by considering settings that combine automated synthesis, quantification, and
Nash equilibria in the specific context of the generalised dining philosopher’s problem.

Rational synthesis is defined as the automatic construction of a system from a spec-
ification such that the system satisfies the specification [18]. In contrast to synthesis,
rational synthesis models the environment as composed of rational agents, agents acting
to achieve their objectives.

Linear-Time Temporal Logic (LTL) [26][25], is an extension of propositional logic,
which facilitates reasoning about how logical propositions vary over time. LTL objectives
are used to specify qualitative objectives. Computation Tree Logic (CTL) [17] and ATL

[5] extend LTL by considering events that might occur based on actions of agents. In
assessing the satisfaction of objectives, it is necessary to consider how strategic behaviour

50
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amongst coalitions of agents might result in different objectives becoming satisfied.
The combination of quantitative and qualitative objectives is addressed in various

ways. One approach taken is to provide a mechanism for mapping qualitative boolean
objectives to quantitative values. For example, LTL conditions may be satisfied sooner,
rather than later, and a discounting function maps qualitative objectives to numerical
values based on how it takes for these objectives to become satisfied [1]. In addition to
discounting operators, weights and priorities can be assigned to different combinations
of LTL formulas [2].

The mapping of qualitative values to quantitative values can be included directly into
the semantics of the logic used, as in Objective LTL (OLTL) [8], LTL[F ] [3], and SL[F ]
[10]. The logic LTL[F ] is chosen for this dissertation.

Quantification of objectives in the synthesis of strategies can also be achieved using
a mean-payoff game. In a mean-payoff game, each game configuration allocates some
number of points to each agent, the mean of the points gained by agents in a play can
be computed, and agents act to maximise it [4].

When agents pursue quantitative objectives, Nash Equilibrium is a useful tool for
examining and anticipating the actions of agents [8], especially in mean-payoff games [9].
It is also possible to consider cases where the mean payoff is kept strictly within some
pre-defined bound [11], and when agents seek to maximise mean payoff[7]. LTL[F ] lacks
the expressiveness for mean payoff, so instead this dissertation has agents which seek to
minimize maximum waiting time.

Qualitative and quantitative objectives can also be combined as in [21]. This disser-
tation differs in that qualitative objectives are used to specify collective objectives, while
quantitative objectives are used to specify individual objectives.

Nash Equilibrium requires some assumptions to be made about whether or not agents
will deviate in cases when their evaluation is not strictly better. For example, agents
can either be controllable or not [23], or they may deviate even if it results in a slightly
smaller evaluation [20]. This dissertation is restricted to cases where agents receive
strictly better evaluations, as this is the Nash Equilibrium.

The implications of partial observability [12] and external schedulers [6] are explored,
and this dissertation deals with cases of full observability and no external interference
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with the decision of agents. Synthesis can also be flipped by using mechanism design,
where the game is adjusted to produce Nash Equilibria in the game [22].

The complexity of rational synthesis is 2EXPTIME for qualitative LTL objectives
[14]. It is expected that considering quantitative objectives and Nash Equilibrium will
affect the complexity.
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Chapter 7

Conclusions

In this dissertation, a procedure for the automated synthesis of collectively acceptable
strategy profiles for the generalised dining philosopher’s game using an automaton-based
approach was developed. A key feature of this procedure is that there is a combination
of quantitative and qualitative objectives, as well as collective and individual objectives.

7.1 Summary of Conclusions

In the developed procedure, reasoning about quantitative and qualitative objectives is
achieved by observing that the set of LTL formulas is a subset of LTL[F ] if the right
functions F are chosen. Moreover, any LTL[F ] formula which can only map to the
satisfaction values {0, 1} can be interpreted as qualitative. Or, put differently, any
qualitative formula is implicitly also quantitative, but only has two possible satisfaction
values to map to. Additionally, if the goal of each agent is represented by an atomic
logical proposition, then LTL[F ] (and consequently also, LTL) objectives can be either
individual or collective. If the formula representing the objective depends upon all atomic
propositions representing the agents’ goals then it is a collective objective, and if it
depends upon only one proposition, then it is an individual objective.

The agents are given an individual objective which is a quantitative reinterpretation
of the prevention of starvation. Each agent must repeatedly reach their goal before a
waiting time threshold is reached, and the longer their longest waiting time, the worse

53
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their payoff. This objective is defined in LTL[F ]. Furthermore, collective objectives for
fairness and starvation are defined. These objectives are qualitative because they can
only take on satisfaction values of 0 or 1.

The synthesis of strategy profiles does not lend itself immediately to automaton-
based approaches and it is necessary to construct a ω-regular language, where each word
is analogous to a strategy profile. This then allows automata to function as acceptors of
strategy profiles. Strategy languages are defined to facilitate this, and consequently the
LTL[F ] model checking procedure is modified to produce strategy automata which only
accept a strategy word if the strategy profile which corresponds to that strategy word
produces a specified payoff to each agent.

By the construction of the automata described in Chapter 5, it is clear that col-
lectively acceptable strategy profiles for the GDPG can be synthesized by extending
the LTL[F ] model checking procedure. The automaton that results from running the
LTL[F ] model checking procedure is used to produce a strategy automaton - an automa-
ton that accepts all strategy words which match a given payoff profile. Because there
is a one-to-one correspondence between strategy profiles and the words accepted by a
strategy automaton, we can synthesize these strategy languages using automata instead
of thinking directly about strategy profiles.

Using the modified LTL[F ] model checking procedure, we can produce an NGBA for
each possible payoff profile. These NGBAs only accept a computation of the given GDPG
if that computation yields the specified payoff profile. For each of these, we construct
the corresponding strategy automaton for each payoff profile. The strategy automaton
only accepts a strategy word if that strategy word corresponds to a computation which
yields the associated payoff profile.

A further modification to the strategy automaton is done to produce a deviation
automaton for each agent. Unilateral deviation is a relation between two strategy profiles,
however, it can be extended to strategy words. If the strategy automaton accepts a
strategy word that is associated with a strategy profile sp, then a corresponding deviation
automaton for a given agent can be constructed to accept every strategy word that
corresponds to a strategy profile that is a deviation from sp for that particular agent. If,
given a strategy word, w, that is accepted by a deviation automaton for a given agent,
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then that agent could potentially deviate to the strategy profile corresponding to w to
achieve the payoff associated with the deviation automaton. If that payoff is better for
the deviating agent than the payoff offered by sp, then a rational agent will have an
incentive to deviate.

To recap, each payoff profile has an associated strategy automaton, which has an
associated deviation automaton for each agent. We iterate over each of these payoff
profiles. Given a payoff profile, a strategy automaton is constructed; moreover, for each
agent, there is a set of payoff profiles which are improvements for the agent. For each of
these improved payoff profiles, a deviation automaton is constructed. If a strategy word
is accepted by the strategy automaton, but not the deviation automaton, then the agent
cannot deviate. All words which are accepted by the strategy automaton, but none of
the deviation automata are Nash equilibria resulting in the given payoff profile. If this
is done for all payoff profiles, then the union of all Nash equilibria for each payoff profile
will be the set of all Nash equilibrium strategy words - and consequently, the set of all
Nash equilibrium strategy profiles can be deduced.

Hence, the problem of strategy synthesis with respect to the generalised dining
philosopher’s problem with the individual objectives of minimizing maximum waiting
time, and collective objectives of fairness and starvation-freedom is solved algorithmi-
cally. The procedure presented leans heavily upon the established procedure of LTL[F ]
model checking, and consequently shares some of its drawbacks. For example, the usage
of arbitrary evaluation functions is not permitted and only those that can be expressed
using LTL[F ] can be used. This dissertation only dealt with minimizing maximum
waiting time, and more generality would be desirable. The procedure developed here
has the strength of being Buchi automaton-based, so existing software implementations
and algorithms for processing these automata can be used - making the procedure herein
much easier to implement in software.

7.2 Future Work

As this work unfolded, various new ideas and questions arose, that were beyond the
intended scope of this dissertation. These are explained briefly now:
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Formal Proof of Correctness

The procedure proposed in this dissertation is defined but no theorems or proofs are
provided. Rigorous correctness proof of the procedures is necessary.

Iterative Methods

The procedure presented is a complete algorithm which will produce all Nash Equilibria
that exist. However, there may be very many such Nash Equilibria and it may only be
of interest to find one. Some iterative methods could be explored which will generate a
candidate strategy profile, and then through iterative refinement tend towards a Nash
Equilibrium strategy profile.

Heuristics

The algorithm presented requires the LTL[F ] model checking procedure to be completed
several times. Some heuristics may be developed that would prevent the time expense
of repeated runs of LTL[F ] model checking. For example, some NGBAs constructed in
previous steps may be reused or simply adapted in later steps.

Mixed Strategies

The construction procedure presented herein was restricted to the synthesis of pure
strategy profiles, that is, strategies in which the action chosen for a given configuration (or
configuration/memory state) is deterministic. The proposed approach could be extended
to the synthesis of mixed strategies. In a mixed strategy, the decision is stochastic.
Instead of a single action being prescribed, a variety of options are given as well as
the probabilities of each action being chosen. In this case, a solution would involve
calculating what the different probabilities should be to ensure the game satisfies the
specified objectives with the desired probability.
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Applicability To Other Problems

The GDPG is represented as a CGM, which is a common model used for representing
multi-agent systems. Moreover, LTL[F ] is a flexible logic that is well-developed in the
literature. Thus, it may be possible to express other multi-agent system problems using
these formalisms and apply the procedure of this dissertation. For example, processes in
a computer system need to compete for shared resources, and these processes must be
completed within tightly specified time constraints. It is possible that these processes
can autonomously develop resource allocation strategies which are stable and guarantee
maximum waiting times, timeout prevention, and so forth.

Analytic Approaches

It may be possible that there are necessary or sufficient conditions that can be applied
to GDP games that will demonstrate the existence of solutions without the need to
explicitly find these Nash Equilibria strategy profiles.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Bibliography

[1] Shaull Almagor, Udi Boker, and Orna Kupferman. Discounting in ltl. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 424–439. Springer, 2014.

[2] Shaull Almagor, Udi Boker, and Orna Kupferman. Formally reasoning about qual-
ity. Journal of the ACM (JACM), 63(3):1–56, 2016.

[3] Shaull Almagor, Orna Kupferman, and Giuseppe Perelli. Synthesis of controllable
nash equilibria in quantitative objective game. In IJCAI, volume 18, pages 35–41,
2018.

[4] Shaull Almagor, Orna Kupferman, and Yaron Velner. Minimizing expected cost
under hard boolean constraints, with applications to quantitative synthesis. arXiv
preprint arXiv:1604.07064, 2016.

[5] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-
poral logic. J. ACM, 49(5):672–713, sep 2002.

[6] Guy Avni, Thomas A. Henzinger, and Orna Kupferman. Dynamic resource alloca-
tion games. Theoretical Computer Science, 807:42–55, 2020. In memory of Maurice
Nivat, a founding father of Theoretical Computer Science - Part II.
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