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Abstract—The integration of large-scale distributed gen-
erators into active distribution networks (ADNs) will ag-
gravate voltage fluctuations, which can affect the secure
operation of power grids seriously. In this article, we inves-
tigate a cooperated voltage regulation problem of ADNs.
Specifically, we first formulate a two-timescale voltage
regulation problem considering the coordination of vari-
ous hybrid devices while reducing the power loss of the
whole ADNs. Given that the aforementioned problem is
challenging to solve directly, we reformulate it as bilevel
Markov games. Then, we propose a hierarchical multi-agent
attention-based deep reinforcement learning algorithm to
solve them. To be specific, the upper level Markov game
is solved by a discrete multi-actor-attention-critic (MAAC)
algorithm, and the lower level Markov game is solved by a
continuous MAAC algorithm. In addition, the two-timescale
coordination between upper level and lower level agents is
implemented through the information exchange of rewards
during the training process. Simulation results show that
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the proposed algorithm has good effectiveness, robust-
ness, and scalability in voltage regulation.

Index Terms—Active distribution networks (ADNs),
bilevel Markov games, hierarchical multi-agent attention-
based deep reinforcement learning (HMAADRL), hybrid de-
vices, two-timescale voltage regulation.

I. INTRODUCTION

V IGOROUSLY developing renewable energy resources
(RESs) [e.g., photovoltaics (PVs)] in active distribution

networks (ADNs) is a crucial way to achieve carbon peaking and
carbon neutrality goals [1]. However, the ADN operators will
face several challenges due to the uncertainty and intermittency
of RESs. For example, nodal voltages have a high risk of ex-
ceeding their upper voltage limits with the increase of PV plants
in ADNs, which will endanger the safety of the whole power
grid [2]. Therefore, it is imperative to study advanced voltage
regulation approaches for modern ADNs with high-penetrated
PVs.

A. Literature Review

In existing studies, several model-based approaches have
been adopted for coordinated voltage regulation of ADNs.
For example, Li et al. [3] designed a distributed approach for
voltage control combining model predictive control and droop
control method. The designed algorithm improved the voltage
regulation performance through rolling optimization. Huang
et al. [4], developed a different distributed approach for voltage
control using consistent alternating direction multiplier algo-
rithm to realize distributed reactive power control. To deal with
uncertainties in ADNs, Xu et al. [5] proposed a multitimescale
stochastic voltage control method using stochastic programming
(SP). Different from [5], several voltage regulation algorithms
were proposed based on robust optimization [6], [7], [8]. In
addition, Jin et al. [9] proposed a multi-objective optimization
problem for voltage regulation of ADNs with the consideration
of global optimization, user preferences, and local control. Jha
et al. [10] proposed a bilevel volt/Var optimization algorithm,
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where the upper level problem was formulated as a mixed integer
linear programming, and the lower level problem was modeled
as a nonlinear programming. Chowdhury and Kamalasadan [11],
proposed a new second-order cone programming (SOCP)
method for voltage regulation in ADNs. In addition, Zafar et al.
[12] designed a multitimescale voltage control optimization
algorithm to improve the safety of ADNs. Different from [11],
the voltage regulation problem was modeled as a mixed-integer
second-order cone program (MISOCP). Zheng et al. [13],
proposed a dual-timescale cooperative voltage control problem,
and the problem was solved using the column-and-constraint
generation algorithm. Although the above model-based voltage
regulation approaches achieved promising performance, they
still have limitations. First, they need to know the exact model
information and the prior knowledge of uncertain parameters,
which may be challenging to obtain [14]. Second, some of the
conventional model-based approaches (e.g., SP-based voltage
regulation approach) have a heavy computational burden and
their corresponding computation time may be unacceptable
in practice [15].

To this end, several voltage regulation approaches based
on deep reinforcement learning (DRL)/multi-agent DRL
(MADRL) have been developed, which have been applied in
numerous areas, e.g., smart grid [16], [17], smart buildings [18],
[19], electric vehicle charging [20], [21], [22], and manufactur-
ing systems [23]. For example, Wang et al. [24] proposed a deep
deterministic policy gradient-based voltage control method by
coordinating active and reactive power of electric vehicles. Wang
et al. [25] proposed a DRL-based voltage control method by
scheduling energy storage systems. Yang et al. [26] designed a
multitimescale voltage control scheme for ADNs by combining
the data-driven approach with model-based approach. However,
the approach neglects the coordination between upper level
and lower level devices. To overcome the above drawback,
Sun and Qiu [27] proposed a two-stage DRL-based voltage
regulation approach to mitigate the voltage violation. In the
first stage, the optimization problem was formulated as a MIS-
OCP. In the second stage, the multi-agent deep determinis-
tic policy gradient (MADDPG) algorithm was used to solve
the fast-timescale voltage control problem. Liu and Wu [28],
proposed a bilevel DRL-based algorithm for voltage control.
A multidiscrete soft actor–critic (SAC) algorithm was used to
control slow-timescale discrete devices, and the SAC algorithm
was adopted to learn a reliable voltage control policy in fast
timescale. However, the proposed DRL-based voltage regula-
tion algorithm adopted centralized control in both upper and
lower layers. Different from [28], Cao et al. [29] proposed a
different multitimescale voltage control method. The proposed
method used the centralized SAC method to train upper level
agents and used the multi-agent soft actor critic (MASAC)
algorithm to train lower level agents for decentralized volt-
age control. Although the above multitimescale DRL-based
voltage regulation methods have made several advances, they
all adopted the single-agent centralized control method for
discrete devices in slow timescale. When the number of dis-
crete devices increases, the size of their discrete action space

will increase exponentially, which will affect the efficiency of
policy learning. Moreover, existing multitimescale DRL-based
approaches neglect to coordinate more hybrid devices, such
as battery energy storage systems (BESSs) and flexible loads
(FLs), which will limit the voltage regulation potential of the
system.

B. Motivation and Contribution

There are several challenges to achieve the aim of voltage
regulation considering hybrid devices. First, it is difficult to
obtain the accurate model of ADNs. Second, there are several
uncertain parameters. Third, hybrid devices have different regu-
lating timescales. To overcome these challenges, we investigate
a two-timescale coordinated voltage regulation problem (i.e.,
regulate all bus voltages in a safe range and minimize the total
power loss of whole ADNs) considering various controllable
hybrid devices, such as on-load tap changers (OLTCs), capacitor
banks (CBs), PV inverters, static Var compensators (SVCs),
BESSs, and FLs. Moreover, we propose a decentralized voltage
regulation algorithm in both fast timescale and slow timescale
based on hierarchical multiagent attention-based deep reinforce-
ment learning (HMAADRL).

The major contributions of this article are summarized as
follows.

1) By taking discrete, continuous, multitimescale hybrid de-
vices into consideration, we formulate a voltage optimiza-
tion problem of ADNs. Due to the difficulty of solving
such a complex decision-making problem directly, the
optimization problem is further reformulated as bilevel
Markov games.

2) A novel HMAADRL-based voltage regulation algo-
rithm is proposed to solve the above bilevel Markov
games. To be specific, a discrete multi-actor-attention-
critic (DMAAC) algorithm is designed to control
slow-timescale discrete devices. A continuous MAAC
(CMAAC) algorithm is adopted to control fast-timescale
continuous devices. The collaboration of fast-timescale
devices and slow-timescale devices is implemented
through the information exchange of reward during the
training process.

3) Compared with model-based approaches, the proposed
HMAADRL-based voltage regulation algorithm can
achieve the approximate power loss without knowing
precise model information and any prior knowledge of
uncertain parameters. Moreover, compared with the al-
gorithm in [29], the proposed algorithm achieves the
lower power loss while ensuring the voltage safety of all
buses.

The rest of this article is organized as follows. The voltage
regulation problem of the ADN is first formulated in Section
II. Moreover, the optimization problem is further formulated as
bilevel Markov games. In Section III, we propose a HMAADRL-
based algorithm to solve Markov games. In addition, in Sec-
tion IV numerical results are analyzed and compared. Finally,
Section V concludes this article.
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Fig. 1. Typical topology of the ADN.

II. PROBLEM FORMULATION

In this part, the two-timescale voltage regulation problem is
first formulated considering multiple hybrid devices. Then, the
problem is reformulated as bilevel Markov games.

A. Voltage Regulation Problem Formulation

We study a typical radial ADN with N buses, as shown in
Fig. 1. Hybrid devices, such as OLTCs, CBs, SVCs, PV inverters,
BESSs, and FLs are connected to different buses. In addition, the
ADN is divided into k subnetworks for the ease of operations.
Detailed partitioning rules can be found in [30].

This article focuses on finding optimal cooperative voltage
control strategies for hybrid devices without knowing the exact
model of ADNs. Specifically, each day is separated into T time
steps, and each time step consists ofΓ time intervals. In the slow
timescale t ∈ T , OLTCs and CBs are scheduled cooperatively to
minimize the voltage deviations. The switching number of these
discrete devices is also optimized. In the fast timescale τ ∈ Γ ,
smart PV inverters, SVCs, BESSs, and FLs are regulated for fast
voltage fluctuations. In addition, the long-term power losses of
whole ADNs are also minimized by coordinating two-timescale
devices. Formally, we formulate an optimal voltage regulation
problem as follows:

(P1)minC1 + δ1C2 + δ2C3

C1 =

N∑
n=1

T∑
t=1

Γ∑
τ=1

|ΔVn,t,τ |

C2 =

N∑
n=1

N∑
m=1

T∑
t=1

Γ∑
τ=1

PL
n,m,t,τ

C3 =
N∑

n=1

T∑
t=1

Zn,t (1)

s.t.

P PV
n,t,τ + PBESS

n,t,τ − (P Load
n,t,τ +ΔP FL

n,t,τ ) = Vn,t,τ

N∑
m=1

Vm,t,τ (Gn,m cosϑn,m,t,τ +Bn,m sinϑn,m,t,τ ) (2)

QPV
n,t,τ +QSVC

n,t,τ +QCB
n,t −QLoad

n,t,τ=Vn,t,τ

N∑
m=1

Vm,t,τ (Gn,m sinϑn,m,t,τ −Bn,m cosϑn,m,t,τ ) (3)

Vmin ≤ Vn,t,τ ≤ Vmax (4)

ΔVn,t,τ =

⎧⎪⎨
⎪⎩
Vn,t,τ − Vmax, if Vn,t,τ > Vmax

Vn,t,τ − Vmin, if Vn,t,τ < Vmin

0, otherwise

(5)

PL
n,m,t,τ = Gn,m(V 2

n,t,τ + V 2
m,t,τ − 2Vn,t,τVm,t,τ

cosϑn,m,t,τ ) ∀n,m ∈ Nbus (6)

ψn,t ∈ {0, 1, 2, 3, 4, 5} (7)

χn,t ∈ {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} (8)

QCB
n,t = QCB

n ψn,t (9)

V1,t+1,τ = V0,t,τ + χn,tVtap (10)

Zn,t =

⎧⎪⎨
⎪⎩
|χn,t − χn,t−1|, if n ∈ NOLTC

|ψn,t − ψn,t−1|, if n ∈ NCB

0, otherwise
(11)

(P PV
n,t,τ )

2 + (QPV
n,t,τ )

2 ≤ (SPV
n )2 (12)

−PD
n,max ≤ PBESS

n,t,τ ≤ PC
n,max (13)

Bn,t,τ+1 =

{
Bn,t,τ + ηCP

BESS
n,t,τ , P

BESS
n,t,τ ≥ 0

Bn,t,τ +
P BESS

n,t,τ

ηD
, PBESS

n,t,τ ≤ 0
(14)

Bn,min ≤ Bn,t,τ ≤ Bn,max (15)

P FL
n,t,τ,min ≤ P FL

n,t,τ +ΔP FL
n,t,τ ≤ P FL

n,t,τ,max (16)

QSVC
n,min ≤ QSVC

n,t,τ ≤ QSVC
n,max (17)

where (1) represents the objective function, which is the
weighted sum of voltage deviations, power loss, and adjustments
of discrete devices; ΔVn,t,τ indicates the voltage deviations
of bus n that exceeds the safe range in time τ during time t;
PL
n,m,t,τ denotes the power loss through line (n,m), where
Nbus represents bus indexes of the ADN; Zn,t represents the
adjustments of OLTC and CBs, where NOLTC and NCB denote
the set of bus indexes related to OLTCs and CBs, respectively; δ1

and δ2 denote the weighted coefficients used to balance voltage
deviations, power losses, and adjustments of discrete devices;
(2) and (3) represent the power flow equation constraints;P PV

n,t,τ ,
PBESS
n,t,τ , andP Load

n,t,τ are the active power of PVs, BESSs, and loads
linked to a bus n; ΔP FL

n,t,τ is the adjustment amount of FLs;
QPV

n,t,τ , QSVC
n,t,τ , and QCB

n,t represent the reactive power injection
of PVs, SVCs, and CBs connected to n, respectively; QLoad

n,t,τ is
the reactive power demand of load connected to bus n; Gn,m

andBn,m are the real and imaginary part of admittance element
between buses n and m, while ϑn,m,t,τ indicates the voltage
phase difference between buses n and m; (4) and (5) are the
voltage constraints; (6) calculates the power loss [27]. Equations
(7) and (8) denote the set of discrete action for OLTCs and CBs;
(9) calculates the reactive power injection of CBs. QCB

n is the
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capacity of each group of CB n; (10) computes the voltage,
which is dependent on the position of OLTCs; Vtap represents
the difference in voltage between two consecutive OLTC tap
points; ψn,t and χn,t are the positions of CBs and OLTCs in
time step t, respectively; (12) constrains the active and reactive
power range of PVs; (13)–(15) are the dynamic constraints of
BESSs. Bn,t,τ represents the stored energy of BESS n in time
τ during time t. PC

n,max and PD
n,max denote BESSs’ maximum

capacity for charging and discharging, respectively; (16) and
(17) represent the active power constraint of FLs and reactive
power constraint of SVCs, whereQSVC

n,min andQSVC
n,max denote the

minimum and maximum output of SVCs.
The following factors make P1 challenging to solve. First

of all, there are a lot of uncertain parameters, e.g., PV and
load. Second, it may be challenging to obtain the explicit model
information of the practical ADN. Third, hybrid devices have
different regulating timescales. Fourth, there are operational
limitations that are time-coupled in relation to OLTC, BESSs,
and CBs. Finally, there are continuous and discrete decision
variables. To overcome the above challenges, we intend to design
a novel algorithm forP1based on HMAADRL without knowing
accurate line parameters and prior knowledge of uncertainty
parameters. To this end, we reformulate P1 as bilevel Markov
games.

B. Formulation of Bilevel Markov Games

In this article, the coordination of slow-timescale devices
(i.e., OLTCs and CBs) are regarded as upper level Markov
game, whereas the coordination of slow-timescale devices (i.e.,
SVCs, PV inverters, BESSs, and FLs) are regarded as lower
level Markov game. Formally, a Markov Game with L agents
usually includes a set of states S, a set of actions A1, . . .AL,
a state transition function F , and a reward function Rl(1 �
l � L) [16], [31]. In this article, we assume X agents in upper
level Markov game representX controllers of OLTCs and CBs.
Similarly, we assume I agents in lower level Markov game repre-
sent I controllers of subnetworks. The state transition function
is unnecessary because the proposed algorithm is model free.
Therefore, we focus on designing the state, action, and reward
function related to solving P1.

1) Upper-Level Markov Game:
1) State: The states su,CB

x,t of agent x related to

CB in time step t is designed as su,CB
x,t =

(P PV
x,t , P

Load
x,t , QPV

x,t−1, Q
Load
x,t , Vx,t, ϑx,t, ψx,t−1), where

P PV
x,t and P Load

x,t denote the active power injection
of PV and load in its local subnetwork, respec-
tively. Since OLTC can support regulate all bus
voltages, its states in time step t is designed as
su,OLTC
y,t = (P PV

t , P Load
t , QPV

t−1, Q
Load
t , Vt, ϑt, χy,t−1),

where P PV
t and P Load

t are the active power injection of
PV and load demand in all subnetworks, respectively.

2) Action: The action of agent x related to OLTC in time t
is designed as aux,t = χx,t. The action of agent y related
to CB in time t is designed as auy,t = ψy,t.

3) Reward: OLTCs and CBs are responsible for regulating
voltages within acceptable limits [i.e., 0.95–1.05 per unit

(p.u.)] while minimizing the number of discrete device
adjustments. Therefore, the reward of agent x in slow
timescale is designed as

rx,t = −(rx,t,1 + β1rx,t,2) (18)

where rx,t,1 =
∑Γ

τ=1 r
1
i,t,τ denotes the penalty of volt-

ages crossing the safe range at time t. r1
i,t,τ denotes the

penalty of voltages crossing the acceptable limits in time
τ during time t, which is designed in the lower level
Markov game. rx,t,2 = Zx,t denotes the adjustments of
OLTCs and CBs. β1 is the coefficient to balance voltage
deviations and adjustments of OLTCs and CBs.

2) Lower Level Markov Game:
1) State: sli,t,τ is designed as the state of lower level

agent related to subnetwork i (1 ≤ i ≤ I), which
contains seven parts: sli,t,τ = (P PV

i,t,τ , P
Load
i,t,τ , Q

PV
i,t,τ−1,

QLoad
i,t,τ , Vi,t,τ , ϑi,t,τ , Bi,t,τ ), whereQPV

i,t,τ−1 represents the
reactive power injection of PV in subnetwork i in time
τ − 1 during time t.

2) Action: Lower level agent’s actions are designed
as ali,t,τ = (QPV

i,t,τ , Q
SVC
i,t,τ , P

BESS
i,t,τ ,ΔP

FL
i,t,τ ), where QPV

i,t,τ

andQSVC
i,t,τ represent the reactive power output of PVs and

SVCs. PBESS
i,t,τ denotes the charging or discharging active

power of BESSs. ΔP FL
i,t,τ is the scheduling amount of

FLs.
3) Reward: Since both upper and lower level agents are

responsible for voltage regulation together, the penalty
r1
i,t,τ of bus voltages exceeding the safe range is regarded

as a partial reward for both upper level and lower level
agents, where r1

i,t,τ =
∑Ni

n=1 ΔVi,t,τ . Ni represents the
total number of buses in subnetwork i. In addition, the
system power loss PL

t,τ =
∑N

n=1

∑N
m=1 P

L
n,m,t,τ of the

ADN in time τ during time t should be optimized at the
same time. Moreover, since the frequent dispatch of FLs
and excessive use of BESSs will increase the system
cost, the dispatching of BESSs and FLs also needs to
be optimized. Comprehensively consider four parts, the
reward of lower level agent i can be computed by

ri,t,τ = −(r1
i,t,τ + β2P

L
t,τ + ε1P

BESS
i,t,τ + ε2ΔP

FL
i,t,τ )

(19)
where β2, ε1, and ε2 denote the weighted coefficients to
balance voltage deviations, power losses, and dispatched
active power of BESSs and FLs.

III. HMAADRL-BASED VOLTAGE REGULATION ALGORITHM

We propose a HMAADRL-based voltage regulation algo-
rithm to solve the above bilevel Markov games. The proposed
algorithm’s framework is shown in Fig. 2, where three unique
features different from existing DRL-based algorithms can be
identified. First, the proposed algorithm’s framework consists
of two-level MADRL algorithms for slow-timescale and fast-
timescale voltage regulation, respectively. Second, MAAC al-
gorithm is used to train DRL multiple agents in each level. Since
MAAC adopts SAC, attention mechanism, multitask learning,
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Fig. 2. Framework of HMAADRL-based voltage regulation algorithm.

and multi-agent advantage function, it can achieve better perfor-
mance compared with many algorithms, such as MADDPG and
MASAC, in existing works. Third, to accommodate discrete and
continuous devices simultaneously, DMAAC and CMAAC are
designed in two levels, respectively.

A. DMAAC-Based Voltage Regulation Algorithm

In the upper level DMAAC-based voltage regulation algo-
rithm, each agent related discrete device consists of two actor
networks and two critic networks. We define Qy(st, at) as the
centralized action-value function to assess the actions of upper
level agent y. Given a state st and an action at, Qy(st, at) is
described as

Qy(st, at) = E

{ ∞∑
d

γdry,t+d(st, at)

}
(20)

where E is the expectation operator. γ ∈ [0, 1] represents the
discount factor utilized to determine the impact of the current
policy on future long-term rewards. In addition, Qy(s, a;ωy) is
defined to approximate action-value function, where ωy denote
the critic network parameters. Based on temporal-difference
learning, the network parameters ωy are updated by lowering
the subsequent loss function

L(ωy) = E(s,a,s,r)∼M{(Qy(s, a;ωy)

− (ry + γEa∼π(s)Qy(s, a;ωy)))
2} (21)

where Qy(s, a;ωy) denotes the target action-value function.
Note that s, a, s, r belong to M , where M represents the
experience replay buffer that stores past experiences.

Similarly, we define πy(a|s; θy) as the approximate actor
policy function of πy(a|s), where θy are the actor networks’
parameters. Then, θy can be updated by policy gradient method,
which can be calculated by

∇θyJ(θy) = Es,a∼M{∇θy log(π(a |s ; θy)
Qy(s, a;ωy))}. (22)

The core purpose of the policy gradient is to maximize the goal
by moving in the direction of ∇θyJ(θy) by directly adjusting
the strategy’s parameters θy .

To facilitate the performance of training actor networks, SAC
method and attention mechanism are adopted. Incorporating an
entropy element into the policy gradient and learning a soft value
function is the main goal of the SAC approach. Then, (22) can
be rewritten as follows:

∇θyJ(θy) = Es,a∼M{∇θy log(π(a |s ; θy)
(−μ log(π(a |s ; θy)) +Qy(s, a;ωy)− d(s))}

(23)

where μ denotes the temperature parameter that is taken to
equalize the weight between log(π(a|s; θy) and Qy(s, a;ωy).
d(s) is the state-dependent baseline. In addition, the loss function
L(ωy) is accordingly reformulated as follows:

L(ωy) = E(s,a,s,r)∼M{(Qy(s, a;ωy)

− (ry + γEa∼π(s)[Qy(s, a;ωy)

− μ log(π(a |s ; θy))])2} (24)

where π(a|s; θy) is the target policy function whose parameters
of the target actor network are θy .

By introducing an attention mechanism, each agent chooses
whatever information about other agents to focus on when calcu-
lating the action-value function Qy(s, a;ωy) [32]. Qy(s, a;ωy)
is further described as

Qy(s, a;ωy) = fy(gy(sy), ey) (25)

where fy denotes a two-layer multilayer perceptron (MLP);
gy represents a one-layer MLP; ey represents the weighted
contribution of other agents to agent y. ey is designed as follows:

ey =
∑
y 	=z

ξzl(Y gz(sz, az)) (26)

where Y denotes the nonlinear transformation matrix; l is the
activation function; ξz is the attention weight that agent y pays
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for agent z. ξz can be described as

ξz =
exp(fy

T (sy, ay)Ub
TUdfz(sz, az))∑

y 	=z exp(fy
T (sy, ay)Ub

TUdfz(sz, az))
(27)

where Ub and Ud represent the transition matrices.
For the upper level devices, such as OLTCs and CBs, dis-

crete control variables need to be designed. The approximate
actor policy function π(a|s; θ) can be designed as a categorical
distribution. We assume the actor network of upper level agent
x has h-dimensional discrete actions. The “softmax” function
is applied to the output layer, which can normalize the output
value. Then, the categorical distribution C(ah) of these discrete
actions is established. In this sense, the discrete action ax can
be obtained by sampling from C(ah) as follows:

ax = categorical_sample(C(ah)) (28)

where categorical_sample(·) is used to select one expected
discrete action.

B. CMAAC-Based Voltage Regulation Algorithm

Similar to the upper level DMAAC-based voltage regulation
algorithm, each agent related to the continuous device in the
lower level CMAAC-based voltage regulation algorithm also
consists of two actor networks, one of which is the target actor
network. Moreover, each lower level agent contains two critic
networks, one of which is the target critic network. The param-
eter update rule of networks is similar to DMAAC algorithm,
as shown in (20)–(27). While for the continuous action space,
the approximate actor policy function is designed as a Gaussian
distributionN (μ, σ2), where the mean μ and the standard devi-
ation σ2 can be calculated and optimized by the actor network.
Then, the continuous action ai can be obtained by sampling from
N (μ, σ2) as follows:

ai = tanh(sample(N (μ, σ2))) (29)

where tanh(·) is the activation function.

C. Details of the Proposed Algorithm

The proposed HMAADRL-based voltage regulation algo-
rithm contains a centralized algorithm training process and
a decentralized execution process. The collaborative training
process is described in Algorithm 1. At the beginning of the
proposed algorithm, the neural network parameters, i.e., ωu, θu,
ωl, θl are first initialized. Then, these parameters are updated
through E episodes of learning. In slow timescale, the upper
level agents related to OLTC and CBs obtain the states of the
ADN and make actions according to aux,t = πu(sux,t; θ

u
x,t) at

each time step t. Then, the lower level agents get current states
and take actions based on ali,t,τ = πl(sli,t,τ ; θ

l
i,t,τ ). After all

actions of lower level agents are carried out, an instant reward
will be given for each agent, and the ADN environment moves
to the next state of time interval τ . Next, the experience tuple
(sli,t,τ , a

l
i,t,τ , rx,t,τ , s

l
i,t,τ+1) is further stored into the lower level

experience memory Kl
memory. When the length of the buffer

Algorithm 1: Training Process of the Proposed Algorithm.
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Algorithm 2: Execution Process of the Proposed Algorithm.

Kl
memory is greater than the length of the batch size Bsize, the

parameters of lower level neural networks are optimized and
updated based on (21)–(23). At the same time, the lower level
target networks’ parameters are updated by

ωl ← ζωl + (1− ζ)ωl, θ
l ← ζθl + (1− ζ)θl (30)

where ωl and θ
l

represent the parameters of lower level target
networks, and ζ denotes the soft update coefficient.

When Γ time intervals are completed, the upper level agents
get the reward according to (19), and the environment moves
to the next state of time step t. Similar to lower level training
process, the experience tuple (sux,t, a

u
x,t, rx,t, s

u
x,t+1) is also

stored into the upper level experience memory Ku
memory every

one time step. Then, a mini-batch experience sampled from
upper level memory is used to train the parameters of upper
level neural networks when Ku

memory ≥ Bsize. In addition, the
upper level target networks’ parameters are updated by

ωu ← ζωu + (1− ζ)ωu, θ
u ← ζθu + (1− ζ)θu (31)

where ωu and θ
u

represent the parameters of upper level target
networks.

When the proposed algorithm has finished its training proce-
dure, the critic networks are no longer used, and the parame-
ters of actor networks will no longer be updated. The forward
propagation of each actor network is only computed. Therefore,
the complexity of the proposed algorithm depended on the

Fig. 3. IEEE 33-bus test feeder system.

forward propagation. Specifically, three types of computation
(e.g., addition, multiplication, and activation) are engaged in the
forward propagation process. We define Uin, Uhid, and Uout that
represent the total number of neurons in the input, hidden, and
output layer, respectively. Then, the number of addition, multi-
plication, and activation of the first neuron in the first hidden,
is Uin − 1, Uin, and 1, respectively. Therefore, there have been
a total of 2UinUhid computations in the input layer. Similarly,
the total number of computations in the second hidden layer
is 2UhidUhid. The total number of computations in the output
layer is 2UhidUout. Finally, we can compute the total complexity
of the proposed algorithm by 2(UinUhid + UhidUhid + UhidUout).
The detailed execution procedure of the HMAADRL-based
voltage regulation algorithm is introduced in Algorithm 2. To
be specific, the upper level agents calculate actions according
to aux,t = πu(sux,t; θ

u
x,t) and execute them at time step t. Then,

lower level agents get the environmental information based on
the decisions of upper level agents and make corresponding
actions based on ali,t,τ = πl(sli,t,τ ; θ

l
i,t,τ ). When the lower level

agents continuously execute actions of all time slots in Γ , upper
level agents make next actions at time step t+ 1. The algorithm
repeats the aforementioned procedure until the testing phase is
completed.

Remark: It is widely recognized that DRL-based techniques
call for a sizable number of training samples. It is quite difficult
to acquire such samples by directly interacting with the real ADN
system due to the lengthy exploration time and high exploration
expense [33]. A viable option is to create a simulation model of
the real ADN using digital twin technology. Therefore, a digital
twin model related to ADNs can be developed and used for DRL
agents during the actual implementation process.

IV. PERFORMANCE ANALYSIS

A. Simulation Setup

In simulations, the IEEE 33-bus test feeder system embedded
with 1 OLTC, 2 CBs, 9 PVs, 3 SVCs, 1 BESS, and 3 FLs, as
shown in Fig. 3, is employed to evaluate the efficacy of the
proposed algorithm. The desired security scope of voltage is set
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TABLE I
PARAMETERS OF DEVICES IN IEEE 33-BUS TEST FEEDER SYSTEM

Fig. 4. IEEE 141-bus test feeder system.

TABLE II
PARAMETERS OF DEVICES IN IEEE 141-BUS TEST FEEDER SYSTEM

as [0.95, 1.05 p.u.]. Detailed parameters and partition regions
of the ADN can be found in [30]. The PVs and loads data in
2012–2015 are collected from Elia group1 and Portuguese elec-
tricity consumption2 for training, respectively. The data of five
days in the summer of 2012 are used for testing. The capacity and
location of several equipments are given in Table I. Moreover,
the IEEE 141-bus test feeder system [30], as shown in Fig. 4, is
utilized to assess the scalability of the proposed HMAADRL-
based voltage control algorithm. The detailed parameters can be
seen in Table II. The simulation experiment is implemented on a

1[Online] Available: https://www.elia.be/en/grid-data/power-generation/
solar-pv-power-generation-data.

2[Online] Available: https://archive.ics.uci.edu/ml/datasets/ElectricityLoad
Diagrams20112014.

TABLE III
PARAMETERS OF THE PROPOSED ALGORITHM

computer with a 3.50 GHz Intel Core i9-11900 K, a 3090 GPU,
and 128 GB RAM.

In addition, for DMAAC of the proposed algorithm, all actor
networks have similar network architecture. Specifically, one
input layer, one hidden layer with Leaky ReLU activation func-
tions, and one output layer with a softmax activation function
make up the actor networks. In addition, the network architecture
is the same for all critic networks. To be specific, one input layer,
one hidden layer with leaky ReLU activation functions, and one
output layer with a linear activation function make up the critic
network of DMAAC. Similarly, for CMAAC, the network archi-
tecture is the same for all actor and critic networks. Specifically,
one input layer, one hidden layer with linear activation functions,
and one output layer with a ReLU activation function make up
each actor network. Moreover, one input layer, one hidden layer
with Leaky ReLU activation functions, and one output layer with
a linear activation function make up the critic networks. The
detailed parameters of the network are presented in Table III.

B. Benchmarks

Five baselines are designed to compare performance, and they
are as follows.

1) Baseline1 (B1) is the basic scheme without any control
of voltage.

2) Baseline2 (B2) only regulates the upper level devices,
such as OLTCs and CBs, via the proposed algorithm.

3) Baseline3 (B3) uses the droop control strategy as de-
scribed in IEEE Std-1547-2018 [34]. Specifically, the
voltage regulation is realized by controlling the smart PV
inverters’ reactive power output using the droop control
approach.

4) Baseline4 (B4) uses the SAC method to train upper level
agents and uses the MASAC algorithm to train lower level
agents for cooperative voltage control [29].

5) Baseline5 (B5) uses the DQN algorithm to train upper
level agent, which is used to control discrete devices and
uses the model-based SOCP method to control continuous
devices [26].

C. Convergence Analysis

Three learning-based algorithms are trained, and the training
processes of upper level and lower level algorithms are shown
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Fig. 5. Training processes of three learning-based algorithms. (a) B2. (b) B4. (c) Proposed.

Fig. 6. Voltage profiles of 33 buses achieved by different baselines. (a) B1. (b) B2. (c) B3. (d) B4. (e) B5. (f) Proposed.

in Fig. 5. Since B2 controls the upper level discrete devices for
voltage regulation, only the upper level reward curve is given. We
can see that the reward curves of the proposed algorithm are more
stable and have better convergence performance compared with
B4 since the proposed algorithm adopted the attention mecha-
nism in both upper and lower levels. In addition, the upper level
rewards of the proposed algorithm have smaller fluctuations than
B2, and the reason is that B2 only controls discrete devices that
lack resources for coordinated voltage regulation.

D. Performance Analysis

Voltage regulation profiles and average voltage deviations
under different baselines are given in Figs. 6 and 7(a). It can
be observed that the proposed algorithm can regulate all bus
voltages to the desired range compared with B1–B4. The reason

is that B2 and B3 only regulate the upper level discrete devices or
the lower level continuous devices. It is challenging for B2 and
B3 to control the voltage to the safe range when high-penetrated
PVs are connected to the ADN. Although B4 considers all
resources for voltage regulation, its cooperative performance
is unsatisfactory due to the absence of attention mechanism. In
addition, from Fig. 7(b), the proposed algorithm can reduce the
power loss by 27.05% and 7.59% compared with B3 and B4,
respectively. It should be noted that due to the high voltage
amplitudes of B1 and B2, their power losses have not been
compared. Moreover, the control performance of model-based
voltage regulation method B5, is given in Figs. 6(e), 7(a), and (b).
We can see that both B5 and the proposed algorithm can regulate
all bus voltage in the safe range. Furthermore, the relative power
loss gap between the proposed algorithm, and B5 is less than 3%.
However, B5 requires the accurate line parameters of the ADN
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Fig. 7. Comparison results on the IEEE 33-bus test feeder system. (a) Average voltage deviation. (b) Average power loss. (c) Voltage distributions
versus disturbances.

Fig. 8. Comparison results on the IEEE 141-bus test feeder system. (a) Voltage profiles (t=12:00 am). (b) Average voltage deviation. (c) Average
power loss.

TABLE IV
COMPARISON RESULTS FOR DIFFERENT BASELINES

and needs to precisely predict the load and renewable energy
generation information, whereas the proposed algorithm does
not require above information.

In addition, the average adjustment number (AAN) of discrete
devices, the average regulation power (ARP) of BESSs and FLs,
and the average computational time (ACT) of each action during
testing periods are given in Table IV. It is evident that the pro-
posed algorithm has the lowest adjustments of discrete devices.
Meanwhile, the proposed algorithm dispatches less active power
of the BESS and FLs for voltage regulation compared with
B4, which indicates that the proposed algorithm has a strong
synergy ability. Moreover, the average computational time of
the proposed algorithm is much lower than B5 and close to that
of B3, which can meet practical engineering requirements.

E. Robustness Analysis

To evaluate the robustness of the proposed algorithm, we
show the voltage regulation performance in Fig. 7(c), when
20%, 40%, and 60% of line parameter disturbances are injected,
respectively. It can be seen that the proposed algorithm can still
regulate the voltage to a safe range when the disturbance is
increased to 40%. When 60% of line parameter disturbance
is injected, voltage curves slightly cross the safe boundary.
Therefore, the proposed algorithm is robust to line parameter
uncertainties.

F. Scalability Analysis

To further verify the scalability of the proposed algorithm,
voltage regulation performances of different baselines are shown
in Fig. 8, where the IEEE 141-bus test feeder system with
22 PVs is considered. Since solving the voltage regulation
optimization problem in IEEE 141-test feeder system is time-
consuming under the model-based method B5, we just compare
the voltage regulation performance of the proposed algorithm
with B1–B4. We can see that several bus voltages cross the
safe boundary when no control is performed. However, the
proposed algorithm can regulate all bus voltages to a safe
range and has less power loss compared with B3 and B4,
demonstrating the effectiveness and scalability of the proposed
algorithm.
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V. CONCLUSION

This article studied a multitimescale voltage optimization
problem of ADNs considering the coordination of hybrid de-
vices while minimizing the total power loss. Due to the solving
challenges, the problem was reformulated as bilevel Markov
games, and we proposed a HMAADRL-based voltage regulation
algorithm to solve them. The proposed algorithm could achieve
cooperative voltage regulation considering discrete, continuous,
and multitimescale hybrid devices without knowing the exact
model information of ADNs. Simulation results based on IEEE
33-bus test feeder system and IEEE 141-bus test feeder system
showed the effectiveness, robustness, and scalability of the
proposed algorithm.
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