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Abstract—Due to cyber-physical fusion and non-smooth char-
acteristics of energy management, this paper proposes a security
event-trigger based distributed approach to address these issues
with developed smoothing technique. To tackle with non-convex
and non-differentiable issue, a randomized gradient-free based
successive convex approximation is developed to smooth economic
objective function. Due to resilience ability against security
issue, a security event-triggered mechanism based distributed
energy management is proposed to optimize social welfare, which
coordinately controls both power generators and load demand.
The security event-triggered mechanism is designed to reduce
power system security risks, and relieve communication burden
caused by smoothing calculation, the convergence of proposed
distributed algorithm is also properly proved. According to those
obtained results on both IEEE 9-bus and IEEE 39-bus systems, it
reveals that the proposed approach can achieve good convergence
performance and have less security risks than other alternatives,
which also proves that the proposed approach can be a viable
and promising way for tackling with energy management issue
of cyber-physical isolated power system.

Index Terms—isolated power system, distributed energy man-
agement, randomized gradient-free, event-triggered mechanism,
communication burden.
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W ITH the integration of increasing renewable energy
resources and information technologies, energy man-

agement of isolated power system can be a complex cyber-
physical issue [1], which mainly aims to ensure power system
security and maximize economic profit by keeping power
balance between power generation and load demand while
satisfying basic cyber-physical control limits [2]. In past
decades, many optimization approaches have been proposed to
tackle with energy management problems [3]–[7]. In order to
optimize the operation of micro-grid, an energy management
approach is proposed in literature [3] with considering the
feature of solar power output and wind power output. In
literature [5], a robust optimal control approach is designed for
optimization dispatch of hybrid wind/photovoltaic/hydro/ther-
mal power systems, which makes an ideal compromise be-
tween reliability and economy of system dispatch. In [7],
energy management system based on determinism is proposed
according to different functions and divided into two parts:
the central energy management of the smart grid and the
local energy management of the user. The central and local
management systems exchange data and orders via communi-
cation networks. However, those above mentioned methods are
centralized measurements, the centralized methods place strict
requirements on the communication bandwidth, computational
ability and a high level of connectivity and is prone to
be easily threatened with a single point of failure. Instead
of those centralized method, distributed approaches can be
more appropriate for power system control due to its better
scalability, reliability and resilience.

Afterwards, many scholars have proposed various of dis-
tributed optimization algorithms for cyber-physical energy
management problem [8]–[13]. In literature [8], a new coordi-
nated controller is proposed for active power optimization of
multiple generators to calculate optimal active power genera-
tion reference for each generator in distributed network. Liter-
ature [10] develops three coordination laws for optimal energy
generation and energy distribution on both physical flow layer
and cyber communication layer. Literature [12] proposes a
two-layer network and distributed control method to tackle
with power dispatch problem with a top-layer communication
network over a bottom-layer smart grid. Literature [13] studies
the resilient coordinated output regulation problem of a class
of uncertain nonlinear multi-agent systems under denial-of-
service (DoS) attacks. It is the first attempt to investigate the
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cooperative output regulation problem for nonlinear MASs
under DoS attacks, and a novel distributed control scheme
consisting of a resilient distributed observer and a distributed
adaptive controller is proposed. While power-generation side
and demand-side power dispatching are carried out separately
in those above researches, it is more realistic to consider
both of them with distributed energy integration. In [14], a
distributed energy management of micro-grid is proposed to
control both power generation and load demand to achieve
social welfare maximization with consideration of transmis-
sion loss. In [15], a distributed energy management approach
is proposed to maximize social welfare by controlling power
output and system load with considering direct-current power
flow. Literature [16] designs a distributed coordination opti-
mization to tackle with social welfare maximization problem
with taking into account time constraints of wind power
and demands. However, those above distributed optimization
methods require convex and differentiable conditions of cost
function, while some actual cost functions can be corrugated
curves with many non-convex and non-differentiable points.
Though some existing literatures have tackled with some
non-convex or non-differentiable problems [17][18], the issue
with non-convex and non-differentiable problem is seldom
simultaneously solved in existing literatures. In this paper,
a randomized gradient-free based successive convex approx-
imation technique is proposed to smooth the non-convex
and non-differentiable function, which can convert the non-
smooth problem into a convex problem for facilitating convex
optimization.

As it is known that event-driven mechanisms can effectively
save network communication resources. For this reason, a
Zeno-free event-triggered mechanism is designed for each
agent to generate the asynchronous trigger time instants [19].
In this paper, a security event-triggered mechanism is designed
in distributed optimization approach to enhance the resilience
against security issue. In comparison to those existing lit-
eratures [20]–[23], they mainly focus on the event-trigger
mechanisms to reduce communication burden during coordi-
nated optimization to improve optimal control performance,
but few designed mechanisms take power system reliability or
security into consideration. Here, the proposed security event-
trigger mechanism is designed with considering not merely
control performance but also isolated power system security,
which can reduce communication burden as well as ensure the
security of isolated power system. The main contributions of
this paper can be summarized as follows:

1) Instead of merely addressing non-convex or non-
differentiable characteristics of economic cost function
in existing literatures, a randomized gradient-free tech-
nique is developed to address this problem on the basis
of successive convex approximation method, which can
convert a non-convex and non-differentiable issue into
a convex optimization problem without missing extreme
values.

2) Those existing event-triggered mechanisms mainly focus
on the communication burden issue, but they hardly in-
volve the power system security into the event-triggered

mechanisms. Hence, an improved event-triggered mech-
anism based distributed optimization approach is pro-
posed to achieve consistency with well designed security
event-triggered mechanisms, which can enhance opti-
mization performance as well as ensure power system
security.

3) The convergence of the proposed security event-trigger
based distributed energy management algorithm with
successive randomized gradient-free(SE-DEMA-SRGF)
is strictly proved, and its optimal control efficiency is
also verified on both standard IEEE 9-bus and IEEE 39-
bus systems.

The rest of this paper is organized as follows: The problem
formulation is described in Section II, the proposed smoothing
technique is presented in section III. The proposed event-
triggered method is presented in section IV. The simulation
results and conclusion are shown in section V and section VI
respectively.

Fig. 1. The structure of cyber-physical system.

II. PROBLEM FORMULATION OF CYBER-PHYSICAL
ENERGY MANAGEMENT IN ISOLATED POWER SYSTEM

A. Communication Network Model

An isolated power system consists of distributed generators,
and demands, as shown in Fig. 1. It is supposed that an
isolated power system with NG distributed generators and ND
demand loads indexed by 1, 2, . . . ,NG and NG + 1, . . . ,N ,
respectively, where N = NG +ND. A connected undirected
graph G = (V, E) denotes the communication topology of the
network, where V represents the set of N nodes and each
undirected edge {i, j} ∈ E represents a communication link
between nodes i and j. The generator set and demand set
are denoted as VG and VD, respectively, and V = VG ∪ VD.
It can be considered that node j is a neighbor of node i if
{i, j} ∈ E . Besides, the weight of undirected edge between
node i and node j is noted as aij , where 0 ≤ aij ≤ 1 (there is
no link between node i and node j especially when aij = 0).
The matrix of elements aij is named as adjacent matrix A.
For clarity, it is assumed that the communication network is
fixed and connected.
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B. Social Welfare Maximization

In the isolated power system, all power generators and load
demands must be well controlled to maximize total social
welfare, which can be described as the summation of power
generation welfare and load demand welfare. Due to power
balance requirement, the social welfare maximization model
can be expressed as follows:

max J =
∑
i∈VG

WG,i(Pi, ρ) +
∑
j∈VD

WD,j(Pj , ρ) (1a)

s.t.
∑
i∈VG

Pi =
∑
j∈VD

Pj (1b)

Pmin
i ≤ Pi ≤ Pmax

i , i ∈ VG (1c)

Pmin
j ≤ Pj ≤ Pmax

j , j ∈ VD (1d)

where J represents social welfare function, WG,i(·) and
WD,j(·) denote the power generation welfare and demand
welfare respectively, Pi and Pj represent power output of
i ∈ VG th power generator and load demand of j ∈ VDth load
demand, ρ denotes electricity price. Pmin

i and Pmax
i represent

the lower bound and upper bound of ith power generator, Pmin
j

and Pmax
j denote the minimum and maximum load demand

of jth load demand.
1) Generation Welfare: The generation welfare function of

each power generator can be expressed as follows:

WG,i(Pi, ρ) = ρ ∗ Pi − Ci(Pi), i ∈ VG (2)

where Ci(·) represents power generation cost of ith power
generator. In general, the cost function of distributed power
generation can be formulated with non-differentiable and non-
convex effects as follows:

Ci(Pi) =
[
aiP

2
i + biPi + ci +

∣∣di sin
{
ei
(
Pmin
i − Pi

)}∣∣]
(3)

where ai, bi, ci, di and ei are the cost parameters.

Remark 1: As it is presented in (3) that cost function is
both non-convex and non-differentiable, some techniques are
required to polish it especially on those non-differentiable
points, which can be denoted as:

χi ,

{
Pi | Pi = Pmin

i +
kπ

ei
, k ∈ Z

}
(4)

2) Demand Welfare: The demand welfare function of each
load can be expressed as follows:

WD,j(Pj , ρ) = −ρ ∗ Pj + Uj(Pj), j ∈ VD (5)

where Uj(·) represents the utility function of jth load demand.
The utility function on the demand side denoted by Uj(Pj)
describes the satisfaction level of the load power Pj , j ∈ VD.
Usually, the utility function Uj(Pj) satisfies the following
properties [24].

1) The first-order derivative of the utility Uj(Pj) is non-
negative.

2) The second-order derivative of the utility Uj(Pj) is
non-positive, which means the utility function of load
demand will increase as power consumption increases,
and the increasing speed will slow down.

3) Uj(0) = 0, indicating that the satisfaction on the demand
side is zero with no load demand.

Here, the utility function Uj(Pj) can be specifically described
as follows [25]:

Uj (Pj) =

{
−κjP 2

j +$jPj , Pj ≤ $j

2κj

$2
j

4κj
, Pj >

$j

2κj

}
(6)

where κj > 0 and $j are the parameters for the jth load.
Combined with Lagrangian multiplier, the social welfare max-
imization model can be converted into minimization problem
with satisfying power balance and basic limits as follows:

minL(Pi, Pj , λ) =
∑
i∈VG

Ci(Pi)−
∑
j∈VD

Uj(Pj)

+λ(
∑
j∈VD

Pj −
∑
i∈VG

Pi)

Pmin
i ≤ Pi ≤ Pmax

i , i ∈ VG
Pmin
j ≤ Pj ≤ Pmax

j , j ∈ VD

(7)

where λ ≥ 0 represents the Lagrangian multiplier. Due to non-
convex and non-differentiable characteristics of cost function
Ci(·), the equivalent model can not be optimized directly by
any convex optimization approaches before polishing those
non-differentiable points and addressing non-convex charac-
teristics.

III. RANDOMIZED GRADIENT-FREE BASED SUCCESSIVE
CONVEX APPROXIMATION METHOD

In this section, a randomized gradient-free based successive
convex approximation method is proposed to tackled with an
optimization problem which can be generally considered as
follows:

min
x

C(x)

s.t. x ∈ X (8)

where X ⊆ Rn represents the general constraint set which
is convex and closed, C(x) is Lipschitz continuous with
Lipschitz constant LC > 0 and C(x) is a non-convex and non-
differentiable objective function, which can not be optimized
directly by any convex optimization approaches. To address
this problem, a Gaussian-smoothed technique is involved to
transform original function C(x) into a convex and differen-
tiable function. The optimization problem after implementing
Gaussian-smoothed technique can be described as:

min Cµ(x)

s.t. x ∈ X (9)

where Cµ(x) = 1
ω

∫
Rn C(x + µν)e−

1
2‖ν‖

2

dν is the Gaussian
approximation function of C(x), ω =

∫
Rn e

− 1
2‖ν‖

2

dν =

(2π)
n
2 is a smoothing parameter of function Cµ(x), µ ≥ 0 is

a small control parameter, ν is a normally Gaussian random
variable. Then, the gradient of Cµ(x) in (9) can be obtained
as follows:

∇Cµ (x) =

∫
Rn

gµ(x)

(2π)
n
2
νe−

1
2‖ν‖

2

dν (10)



4

where gµ(x) represents the two-sided gradient-free oracle,
which can be described as:

gµ(x) =
C (x+ µν)− C(x− µν)

2µ
ν (11)

To analyze the equivalent gradient of C(x) at non-
differentiable points in (8), the following lemma is provided
to present some crucial properties of the function Cµ(x) and
the random gradient-free oracle gµ(x).

Lemma 1 ( [26]): For problem (8) and (9), it has the follow-
ing characteristics:

1) If C(x) is non-differentiable, then Cµ(x) is differen-
tiable, and it satifies

C(x) ≤ Cµ(x) ≤ C(x) +
√
nµLC

2) The gradient ∇Cµ (x) satisfies

∇Cµ (x) = E [gµ (x)]

3) The random gradient-free oracle gµ(x) satisfies

E [‖gµ(x)‖] ≤ nLC
E
[
‖gµ(x)‖2

]
≤ (n+ 4)2L2

C .

Remark 2: From Lemma 1, it can be noticed that Cµ(x) can
substitute C(x) when µ is a sufficiently small parameter. Thus,
the solution of optimization problem (9) can approximates that
of problem (8), and the gradient of Cµ(x) at non-differentiable
points in (8) can be calculated as follows:

∇Cµ(x) = E
[
C (x+ µν)− C(x− µν)

2µ
ν

]
(12)

After smoothing the non-differentiable points of C(x), a
successive convex approximation technique is used to address
the non-convex objective function Cµ(x) in the reformulated
optimization problem (9). In the formula (9), a convex surro-
gate function C̃µ(x;xk) can be used to replace the non-convex
function Cµ(x) at each iteration k. Thus, the problem (9) at
iteration k can be reformulated as follows:

min C̃µ(x;xk)

s.t. x ∈ X (13)

where C̃µ(x;xk) represents the convex surrogate function of
Cµ(x) at current iteration xk, which is a convex function that
closely approximates the original function in a neighborhood
of xk. this paper use a series of convex surrogate functions
to iteratively approximate the original objective function and
obtain the optimal solution. In addition, the surrogate function
also satisfies some conditions, which can be presented in the
following Assumption.

Assumption 1 ( [27]): The key assumptions on the choice of
the surrogate function are described as follows:

1) C̃µ(x;xk) is strongly convex in x, ∀xk ∈ X .
2) C̃µ(x;xk) is continuously differentiable in terms of x,
∀xk ∈ X .

3) Function value consistency: C̃µ(xk;xk) = Cµ(xk),
∀xk ∈ X .

4) Gradient consistency: ∇C̃µ(xk;xk) = ∇Cµ(xk), for
any xk ∈ X at which Cµ(x) is differentiable.

5) Upper-bound: C̃µ(x;xk) ≥ Cµ(x),∀(x, xk) ∈ X .

Here, a strongly convex surrogate function is taken to approx-
imate the non-convex function, it can be described as:

C̃µ(x;xk) = Cµ(xk) +∇Cµ(xk)
(
x− xk

)
+ β(x− xk)2

(14)

where β > 0 is a sufficiently large constant to satisfy
the item 5) of Assumption 1. The main idea of proposed
smoothing technique is to approximate non-differentiable and
non-convex function with convex surrogate functions at those
non-differentiable and non-convex points, which have been
shown in Fig. 2, and the pseudo code of proposed randomized
gradient-free based successive convex approximation tech-
nique is presented in Algorithm 1.

Algorithm 1: Randomized gradient-free based succes-
sive convex approximation technique

Input: C(x), X , ε
Output: x∗

1 Initialization: Select x0 ∈ X and choose a step size
δ ∈ (0, 1] at iteration k = 0 randomly.

2 while x̄(xk)− xk < ε do
3 1.Select the surrogate function C̃µ(x;xk) based on

Assumption 1.
4 2.Compute x̄(xk) = arg min

x∈X
C̃µ(x;xk).

5 3.Update xk+1 according to:

xk+1 = xk + δ
(
x̄(xk)− xk

)
6 4. Set k = k + 1.
7 end

Fig. 2. The successive convex approximation of Cµ(x).

IV. SECURITY EVENT-TRIGGER BASED DISTRIBUTED
ENERGY MANAGEMENT APPROACH

Due to power system security and communication burden
issue, a security event-trigger based distributed energy man-
agement approach is proposed to address these problems. On
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the basis of consensus based energy management algorithm
(CEMA), a security event-triggered mechanism is designed
with considering both power supply deviation and commu-
nication burden caused by above smoothing technique, which
can ensure the isolated power system security as well as reduce
communication complexity.

A. Distributed optimization with smoothing approximating
technique

Combined with above polishing techniques on non-convex
and non-differentiable characteristics, local cost function Ci(·)
can be converted into a convex and differentiable equivalent
which can be described as Ci,µi(·). Then the derivation of
local objective function can be calculated as follows:{

∂L(λ)
∂Pi

= ∇Ci,µi(Pi)− λ
∂L(λ)
∂Pj

= −∇Uj (Pj) + λ
(15)

Define λi as the increment cost of each power generator which
can be denoted as:

λi = ∇Ci,µi(Pi), i ∈ VG (16)

Define λj as the increment utility of demand load which can
be denoted as:

λj = ∇Uj (Pj)

=

{
−2κjPj +$j , Pj ≤ $j

2κj
and j ∈ VD

0, Pj >
$j

2κj
and j ∈ VD

(17)

For converting centralized problem (7) into a distributed
version, it can be decomposed into N sub-optimization prob-
lems combined with (16) and (17) considering power balance
requirement between power generation and load demand as
follows:

min fi(Pi, λi) = Ci,µi(Pi)− λiPi
s.t. Pmin

i ≤ Pi ≤ Pmax
i , i ∈ VG (18)

min fj(Pj , λj) = λjPj − Uj(Pj)
s.t. Pmin

j ≤ Pj ≤ Pmax
j , j ∈ VD (19)

If each variable Pl, l ∈ V minimizes above two optimiza-
tion problems and the power balance constraint (1b) is also
satisfied, then all λ can reach consensus which means the
optimization problem (1) has been solved. Here, a distributed
optimization with gradient descent can be described as:

λk+1
i = λki +

∑
j∈V

aij(λ
k
j − λki )− ϕk∇fi(λki ) (20)

where aij denotes the (i, j)th nonnegative element of doubly
stochastic weighting matrix A, it means the weight information
between node i and its neighbor j, ϕk represents the step
size, and ∇fi(λki ) is the derivation of objective function
fi(λ

k
i ). Generally, traditional distributed energy management

approach can achieve the optimal scheme with above iteration
algorithm, the periodical communication based method has
low optimization efficiency and also lacks of considering
power system security.

B. Security event-triggered based distributed optimization
method

In order to reduce both security risk and communication
burden, a security event-triggered mechanism is designed here.
Combined with event-triggered communication and power
supply security, the iterative updating formula of increment
cost of each power generator or the increment utility of
demand load can be presented as follows:

λk+1
i = λki +

∑
j∈V

aij(λ̃
k
ji − λki )− ϕk ∂fi(Pi, λi)

∂λki
+ γζki , i ∈ V.

(21)

where λ̃kji represents the state that node j sends to its neighbor
node i at the last triggering time, which can be expressed as:

λ̃kji =

{
λkj , k ∈ k = kOpt ∪ kSec
λ̃k−1ji , otherwise

(22)

where k denotes the set of all event-triggering times. Due
to the electronic protection device, the supply security must
be very strictly satisfied within the feasible domain at each
iteration. Hence, the event-triggering time set consists of opti-
mization performance event-trigger time set kOpt and security
deviation event-trigger time set kSec as:
kOpt = {k||λkj − λ̃kji| ≥ Eki ,∀j ∈ V}
kSec = {k||P kj +

∑
s∈Vj,G

P ks −
∑

s∈Vj,D
P ks | ≥ εsecj ,∀j ∈ VG}

or = {k||
∑

s∈Vj,G
P ks − P kj −

∑
s∈Vj,D

P ks | ≥ εsecj ,∀j ∈ VD}

(23)

where Eki and εseci denote optimization performance and sys-
tem security event-trigger thresholds, Vj,G and Vj,D represent
the generator and demand neighbor set of jth node. γ and ζki
in (21) denotes the proportional feedback gain which satisfies
0 < γ < 1 and the local generation and load deviation of node
i at time k, respectively. Generally, arbitrary agent j exchanges
information with other agent without triggering events as:
|λkj − λ̃kji| ≤ Eki ∀i ∈ V, k ∈ N
|P kj +

∑
s∈Vj,G

P ks −
∑

s∈Vj,D
P ks | ≤ εsecj , j ∈ VG

|
∑

s∈Vj,G
P ks − P kj −

∑
s∈Vj,D

P ks | ≤ εsecj ,∀j ∈ VD
(24)

Meanwhile, to ensure the convergence of (21), the following
assumptions must be satisfied:

Assumption 2 ( [28]): If {i, j} ∈ E , aij > τ , aii = 1 −∑
j∈V\{i} aij > τ , where τ ∈ (0, 1). If {i, j} /∈ E , aij = 0.

Since A is a doubly stochastic weighting matrix, it satisfies
aij = aji and

∑N
i=1 aij = 1,

∑N
j=1 aij = 1, ∀i, j ∈ V .

Assumption 3: ϕk > 0 is a step size that decays exponentially
and satisfies

∞∑
k=0

ϕk =∞,
∞∑
k=0

(ϕk)2 <∞.
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Assumption 4: Eki , i ∈ V satisfies the following properties.

Eki ≤ Ek, lim
k→∞

Ek = 0,

∞∑
k=0

(Ek)2 <∞.

Remark 3: Assumption 2, 3, and 4 respectively indicate how
the weight matrix A, iteration step and event-trigger threshold
are selected, which can be convenient to ultimately converge to
the optimal value. Since the network topology is a connected
graph, assumption 2 is reasonable. The common form of
iteration step size and event-trigger threshold is c

(k+a)b
where

a, c are positive constants and 0.5 < b ≤ 1, in which
assumptions 3 and 4 are also reasonable.

Moreover, the generation power P ki , i ∈ VG can be updated
according to the following iteration.

P k+1
i = arg min

Pi∈Pi

[Ci,µi(Pi)− λk+1
i Pi], i ∈ VG (25)

Since Ci,µi(Pi) is non-convex, (25) can be tackled with
Algorithm 1 in Section III. Then, the load demand P kj , j ∈ VD
can be updated according to the following iteration.

P k+1
j = arg min

Pmin
j ≤Pj≤Pmax

j

[λk+1
j Pj − Uj(Pj)], j ∈ VD (26)

The optimal solution of (26) can be calculated as:

P k+1
j =


$j−λk+1

j

2κj
, Pmin

j ≤ $j−λk+1
j

2κj
≤ Pmax

j

Pmin
j , Pmin

j >
$j−λk+1

j

2κj

Pmax
j , Pmax

j <
$j−λk+1

j

2κj

(27)

In order to balance power generation and load demand,
the total deviation requires to converge. Then, the control
parameter ζk+1

i (i ∈ VG) and ζk+1
i (j ∈ VD) of local

generation and load deviation of node i and node j at step
k can be deduced as follows respectively.{

ζk+1
i =

∑
s∈V aisζ

k
s + (P ki − P

k+1
i ), i ∈ VG

ζk+1
j =

∑
s∈V ajsζ

k
s + (P k+1

j − P kj ), j ∈ VD
(28)

where ais and ajs also denote nonnegative elements of doubly
stochastic weighting matrix A. The main procedures of SE-
DEMA-SRGF have been presented as pseudo code in Algo-
rithm 2.

C. The convergence and optimality analysis

For further analysis on convergence and optimality of pro-
posed SE-DEMA-SRGF, Theorem 1 is presented as follows
to ensure the convergence and optimality of algorithm 2.

Theorem 1: Suppose above mentioned assumptions and con-
ditions hold, then it has following properties as:

1) For all i ∈ V , limk→∞
∥∥λki − λ̄k∥∥ = 0, where λ̄k is the

average value of all nodes i, i ∈ V .
2) limk→∞

[∑
j∈VD P

k
j −

∑
i∈VG P

k
i

]
= 0.

3) For all i ∈ V , limk→∞ P ki = P ∗i , where P ∗i is the
optimal power of each node i ∈ V .

Proof : The following crucial Lemmas involving the proof
of Theorem 1 are presented as follows:

Algorithm 2: The pseudo of the SE-DEMA-SRGF
Input: A, Ci(Pi) ,i ∈ VG, Uj(Pj),j ∈ VD, εa and εb
Output: λi(k), Pi(k), i ∈ V

1 Initialization: Set initial value λ0i and λ0j as:{
λ0i = E[

Ci(Pmin
i +µiν)−Ci(P

min
i −µiν)

2µi
ν], i ∈ VG

λ0j = ∇Uj
(
Pmax
j

)
, j ∈ VD

(29)

Set P 0
i = 0 and ζ0i = 0, i ∈ V .

2 while
∣∣λki − λk−1i

∣∣ < εa or
∣∣ζki ∣∣ < εb do

3 1. Update λk+1
i according to (21).

4 2. Update P k+1
i according to (25) solved by

Algorithm 1 and and P k+1
j according to (27).

5 3. Update ζk+1
i and ζk+1

j according to (28).
6 end

Lemma 2 ( [29]): Combined with Assumption 2, for all i, j ∈
V and k, t ∈ N with k ≥ t, it can obtain

∣∣∣[Ak−t+1
]
ij
− 1
N

∣∣∣ ≤
1
ηη

k−t, where η = 1− τ
4N 2 .

Lemma 3 ( [30]): Suppose {ϑk} is a positive scalar sequence.

1) If limk→∞ ϑk = 0, 0 < η < 1, then

lim
k→∞

k∑
t=0

ηk−tϑt = 0

2) If
∑∞
k=0 ϑ

k <∞, 0 < η < 1, then

∞∑
k=0

k∑
t=0

ηk−tϑt <∞

Proof 1: It mainly focuses on the convergence analysis of
λi, i ∈ V in formula (21) referring to [28]. Firstly, the event-
trigger deviation term ekji can be described as:

ekji = λ̃kji − λkj (30)

Then, formula (21) can be rewritten as follows:

λk+1
i =

∑
j∈V

aijλ
k
j + γζki +

∑
j∈V

aije
k
ji − ϕk

∂fi(Pi, λi)

∂λki
, i ∈ V.

(31)

By referring to the handling skills of [31] and [32], both As-
sumption 3 and Assumption 4 hold, it is assumed that the third
and fourth terms on the right of equation (31) can be ignored
after iteration k̄. Then, the update rule of λi, i ∈ V is similar
to [14], then it can obtain that limk→∞ ζki = 0 by referring
to the proof of [14]. Let êkij =

∑
j∈V aij(e

k
ji − ekij) + γζki ,

therefore, the formula (21) can be rewritten as follows:

λk+1
i =

∑
j∈V

aijλ
k
j + êkij − ϕk

∂fi(Pi, λi)

∂λki
, i ∈ V. (32)

Combined with the average vector λ̄k = 1
N
∑N
i=1 λ

k
i , then,
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λ̄k+1 can be described as:

λ̄k+1 = λ̄k +
1

N

N∑
j=1

êkji −
ϕk

N

N∑
j=1

∂fj(Pj , λj)

∂λkj
(33)

Define Rki = êkij − ϕk ∂fi(Pi)

∂λk
i

as a consensus interference.
According to formula (24), (30) and Assumption 4, it can
obtain as: ∥∥ekij∥∥ ≤ Ek ∀i ∈ V, k ∈ N (34)

Since limk→∞ ζki = 0, ζki is bounded and it denotes ζk,max
i

as the upper bound of ζki , i ∈ V , and limk→∞ ζk,max
i = 0.

Then, it satisfies
∥∥êkij∥∥ ≤ 2Ek +γζk,max

i . Thus, it can obtain:∥∥Rki ∥∥ ≤ 2Ek + γζk,max
i + Pmax

i ϕk, i ∈ V (35)

Let Rk,max
i = 2Ek+γζk,max

i +Pmax
i ϕk. Combined with basic

inequality, it can obtain:

(Rk,max
i )2 ≤ 8(Ek)2 + 4γ2(ζk,max

i )2 + 4(Pmax
i )2(ϕk)2

(36)

According to Assumption 3 and Assumption 4, Rk,max
i satis-

fies the following:

lim
k→∞

Rk,max
i = 0,

∞∑
k=0

(Rk,max
i )2 <∞ (37)

By introducing Rki , formula (32) can be rewritten as follows:

λk+1
i =

∑
j∈V

aijλ
k
j +Rki , i ∈ V. (38)

Then, formula (33) can be rewritten as follows:

λ̄k+1 = λ̄k +
1

N

N∑
j=1

Rkj , i ∈ V. (39)

It utilizes doubly stochastic matrix A to rewrite formula (38)
and (39) into the other two forms as follows:

λk+1
i =

N∑
j=1

[Ak+1]ijλ
0
j +

k−1∑
t=0

N∑
j=1

[Ak−t]ijR
t
j +Rki (40)

λ̄k+1 =λ̄(0) +
1

N

k−1∑
t=0

N∑
j=1

Rtj +
1

N

N∑
j=1

Rkj (41)

Furthermore, it can make a difference between above two
equations and take the Euclidean norm as follows:∥∥λk+1

i − λ̄k+1
∥∥

≤
N∑
j=1

∣∣∣∣[Ak+1
]
ij
− 1

N

∣∣∣∣ ∥∥λ0j∥∥+
1

N

N∑
j=1

∥∥Rkj ∥∥
+

k−1∑
t=0

N∑
j=1

∣∣∣∣[Ak−t]ij − 1

N

∣∣∣∣ ∥∥Rtj∥∥+
∥∥Rki ∥∥ (42)

According to Lemma 2 and formula (35), it can obtain:

∥∥λk+1
i − λ̄k+1

∥∥ ≤ηk−1 N∑
j=1

∥∥λ0j∥∥+ 2Rk,max
i

+
N
η

k−1∑
t=0

ηk−t−1Rt,max
i (43)

Since η ∈ (0, 1), it can obtain limk→∞ ηk = 0. According to
formula (37), take the limit on both sides of formula (43) at
the same time, it can obtain lim supk→∞

∥∥λk+1
i − λ̄k+1

∥∥ ≤
N
η lim supk→∞

∑k−1
t=0 η

k−t−1Rt,max
i . Therefore, according to

Lemma 3, it can be concluded that limk→∞
∥∥λki − λ̄k∥∥ = 0.

The remaining part of proof about Theorem 1 can be referred
to [14] and [27]. �

V. CASE STUDY

For verifying performance of proposed method, it is im-
plemented on both IEEE 9-bus and IEEE 39-bus systems.
IEEE 9-bus system consists of 3 generators and 6 loads, the
parameters of power generators and demand loads are shown
in Table I and Table II, and the communication network of
generators and loads is depicted by the red lines in Fig. 3.
IEEE 39-bus system consists of 10 generators and 18 loads,
the communication network of generators and loads is depicted
by the red lines in Fig. 4, those related data details about
generators and loads can be referred in [14]. It is worth
noting that both in the IEEE 9-bus and IEEE 39-bus systems,
generation units are considered as thermal units with non-
convex generation cost functions.

1# 2#

3#

4#

5#

6#

7# 8#

9#

7

8 9

Power line

Generator Load

Communication link

4

6

5

1 2

3

G1 G2

G3

Fig. 3. IEEE 9-bus test system.

A. The performance of SE-DEMA-SRGF on IEEE 9-bus sys-
tem

The convergence curve of λki for each bus is shown in Fig.
5, and it can achieve the optimal price λ∗ = 6.84 (it can
be considered as electricity price ρ after calculation) within
50 iterations. In Fig. 6, the deviation parameter ζi of each
bus is presented, it can be seen that local mismatch power
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TABLE I
PARAMETERS OF GENERATORS

Generator ai($/h) bi($/MWh) ci
(
$/MW2h

)
di($/h) ei(rad/MW) Pmin

i (MW) Pmax
i (MW)

1 0.0064 5.56 30 100 0.062 60 339.69
2 0.0056 4.32 25 120 0.06 25 479.1
3 0.0072 6.6 25 140 0.058 28 290.4

2
6

1

9

8

7

4

15

24 28

21

26

25

14

16

11

13

18

17

23

27

19

3

12 20

5

22

10

Fig. 4. IEEE 39-bus test system.

TABLE II
PARAMETERS OF LOADS

Load $j($/MWh) κj($/h) Pmin
j (MW) Pmax

j (MW)

4 18.43 0.0545 40 306.31
5 13.17 0.0877 35 593.8
6 15.46 0.0547 29 137.19
7 10.03 0.1041 45 595.4
8 8.45 0.087 56 162.17
9 15.38 0.0984 12 165.1

between generators and loads can converge well to zero within
80 iterations, which also means that power balance constraint
can be properly satisfied. The convergence performance of
generators power and load demand are shown in Fig. 7,
where load demand is considered as negative power output
to distinguish from generators power for simplicity. From Fig.
7, it is clearly seen that the generated power and the load
demand can eventually converge to the optimal solution. It
compares the optimal solution of social welfare maximization
between SE-DEMA-SRGF and CEMA in literature [14]. The
comparison results are shown in Fig. 8, it can be noticed
that the obtained total social welfare is 2668.83 by SE-
DEMA-SRGF, which is very close to the optimal value 2669,
while CEMA method converges to 2920.05, which has large
deviation from optimal value.

Inspired by [15], in order to show the advantages of pro-
posed event-triggered scheme over other alternatives, compar-
isons of communication number are made between the event-
triggered and periodic communication which is presented in
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Fig. 5. The convergence of λ for each node.
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Fig. 6. The convergence of deviation control parameter ζ.
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Fig. 7. The convergence of generators power and load demand.

Fig. 9. As it is shown in Fig. 9, the communication number can
be tremendously reduced when adopting the proposed event-
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Fig. 8. The comparison with other method on social welfare.

triggered mechanism. According to Fig. 10, the proposed secu-
rity event-triggered mechanism can ensure smaller disturbance
of total power mismatch in comparison to mere communi-
cation event-triggered based distributed energy management
approach with successive randomized gradient-free (DEMA-
SRGF). In addition, to verify the safety of the event-triggered
mechanism proposed in this paper, the convergence curve of
the power balance deviation for node 9 is presented in Figure.
11. As shown in the results, the traditional event-triggered
mechanism only considers the difference between the current
state and the state at the last triggering moment, which may
lead to safety hazards. However, SE-DEMA-SRGF can avoid
this issue. For further analysis on triggering time, λ1 is taken
as the typical case to show triggering times which are shown
in Fig. 12, where it can be clearly seen that security event-
triggered mechanism mainly occurs in first 50 iterations, and
it seldom occurs after convergence.
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Fig. 9. Comparisons of communication number during coordination among
different nodes.

B. The performance of SE-DEMA-SRGF under IEEE 39-bus
system

To illustrate the scalability of SE-DEMA-SRGF, the pro-
posed method is also implemented on IEEE 39-bus system.
The convergence of λi, Pi, ζi and triggering time is shown
in Fig. 13, where it shows that SE-DEMA-SRGF still has
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Fig. 10. The power mismatch during coordinated optimization
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Fig. 12. The triggering time of λ1.

an excellent performance on IEEE 39-bus system. It also
compares the optimal solution of social welfare maximiza-
tion between SE-DEMA-SRGF and CEMA. The comparison
results are shown in Fig. 14, it can be noticed that the obtained
total social welfare is 7931.89 by SE-DEMA-SRGF, which is
very close to the optimal value 7930, while CEMA method
converges to 8211.46, which has large deviation from optimal
value. Meanwhile, the proposed event-triggered schemes can
still reduce the communication numbers tremendously which
can be seen in Fig. 15, and the total power mismatch has
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Fig. 13. The convergence of λi, Pi, ζi and triggering time.

Fig. 14. The comparison with other method on social welfare.
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Fig. 15. Comparisons of communication number during coordination among
different nodes.

smaller disturbance in comparison to other event-triggered
mechanisms in Fig. 16, which can better ensure the power
supply security of isolated power system. As in the previous
set of experiments, the convergence curve of the power balance
deviation for node 28 is presented in Figure 17. It can be seen
that SE-DEMA-SRGF can effectively avoid the problem of
a certain node’s power balance deviation exceeding a safety
threshold. According to obtained results on two test systems,
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Fig. 16. The total power mismatch during coordinated optimization
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Fig. 17. The comparison with traditional methods on power balance deviation.

it can reveal that the proposed method can tackle with energy
management problem of cyber-physical isolated power system
well with both reducing communication burden and ensuring
system security.

VI. CONCLUSION

Due to cyber-physical fusion and non-differentiable non-
convex characteristics of energy management of isolated
power system, this paper proposes a security event-triggered
mechanism based distributed optimization approach with suc-
cessive randomized gradient-free technique to address this
problem. According to both theoretical analysis and simulation
results, some merits can be concluded as: (1) Randomized
gradient-free based successive convex approximation method
can deduce a convex and smooth equivalent for replacing
economic objective function, which can provide an accurate
objective function for seeking global optima. (2) The secu-
rity event-triggered mechanism based distributed optimization
method can ensure power system security well and also
reduce communication burden caused by smoothing calcula-
tion. However, the current work lacks of reasonable strategy
against cyber-physical coordinated attack, the future work is
to design a resilient distributed energy management strategy
under cyber-physical coordinated attack.
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