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Abstract 

In this work, the solution of Riesz space fractional partial differential equations of parabolic 
type is considered. Since fractional-in-space operators have been applied to model anomalous 
diffusion or dispersion problems in the area of mathematical physics with success, we are 
motivated in this paper to model the standard Brownian motion with the fractional order 
operator in the sense of the Riesz derivative. We formulate two viable, efficient and reliable 
high-order approximation schemes for the Riesz derivative which incorporated both the left- 
and right-hand sides of the Riemann-Liouville derivatives. The proposed methods are analyzed 
for both stability and convergence. Finally, the methods are used to explore the dynamic 
richness of pattern formation in two important fractional reaction-diffusion equations that are 
still of recurring interest. Experimental results for different values of the fractional parameters 
are reported. 
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1. Introduction 

The idea of fractional calculus is not a new topic, it is as old as the known integer order 
differentiation and integration [5], [25], [40], [54], [58]. In recent years, fractional derivative 
has been successfully applied to formulate many useful models in physics [37], [38], hydrology 
and geo-hydrology [6], [10], [29], [30], chemistry and system biology [1], [64], and finance 
[18], [55], [59], [62]. Specifically, fractional calculus has been used to describe different 
physical or natural phenomena which arise in the applicable areas of science include but not 
limited to diffusion processes [14], [32], pattern formation processes [2], [11], [46], [47], [53], 
signal processing [17], water wave movement [31], viscoelastic mechanisms [33], reaction-
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diffusion model involving subdiffusion and superdiffusion processes [11], [46], [48], [53], 
among several others that are classified in [3], [4], [15], [23], [56]. 

Most scientific results in applied mathematics, physics and engineering fields have shown that 
these fractional order problems are more reliable, accurate and adequate than the known 
classical or standard order models, due to the known fact that derivatives and integrals with 
fractional orders give room for description of memory effects and hereditary behavior of 
various substances in physics, engineering and applied sciences [7], [37], [54]. This forms the 
basis for most vital information of the models with fractional or non-integer order when 
compared with integer-order cases, in which such effects are completely neglected or missing. 
In the area of mathematical physics, fractional-in-space derivatives are used to formulate 
anomalous dispersion or diffusion, where a particle diffuses or distributes at inconsistent rate 
with the standard Brownian motion model [9], [38], [43], [54]. Specifically, the formulation of 
the Riesz fractional operator involves both the left- and right- hand sides of the known 
Riemannâ€“Liouville fractional derivatives [65]. 

Different numerical techniques have been suggested for various special fractional differential 
equations in a bid to seek for their analytical solutions, such methods include the spectral 
collocation method, Fourier transform method, integral transformation, variable separable 
method, Adomian decomposition method, and many others that are classified in [22], [52], 
[54]. However, the analytical findings of most fractional differential equations cannot be 
ascertained due to their nonlinear and nonlocal nature. Most of fractional differential equations 
do not have an analytical solutions or in some cases the exact solutions are too involving to be 
useful. For these reasons, most physical and real-life models in applied sciences and 
engineering are solved numerically. So it becomes very important to formulate a good 
numerical method which is capable of handling fractional differential equations. 

It is widely known that the Riesz fractional operator plays an important role in characterizing 
anomalous diffusion, owing to successful applications to subdiffusive, superdiffusive and 
evolution problems [40], [54]. It is regarded as an effective tool for studying nonlocal and 
memory effects in physics, engineering and applied sciences. Based on research findings, the 
Riesz fractional definition was derived from the chaotic kinetics [57], [65]. Fractional laplacian 
operators are known to arise naturally in the study of partial differential equations (PDEs) 
which are related to anomalous diffusion, where the fractional-order operator is known to have 
played an important role which is similar to that of the classical order Laplacian operator for 
ordinary diffusion [37], [39]. By replacing the Brownian motion of particles with Lévy flights 
[34], one gets a fractional reaction-diffusion equation expressed in terms of the fractional 
Laplacian operators [26], [27], [49] of orders 0 < β ≤ 1 or 1 < β ≤ 2, given as 

              (1.1) 

where  is a known function, u = u(x, y, t) which represents the chemical or biological 
species at time t, in the x – and y – positions, is assumed to be smooth and continuous up to 

certain orders, D > 0 is the diffusivity constant,  is the fractional Laplacian 
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operator of order β in one dimension. If β ∈ (0, 1], we have subdiffusion process, but if β ∈ 
(1, 2] one obtains the superdiffusion problem. The term F(u,t) is nonlinear kinetics which 
accounts for all the local reactions. The Riesz fractional derivative with order β is defined by 
 

              (1.2) 
 

Where  and  stand for the left and right hand side of the Riemann-Liouville 
derivatives which are expressed in the form: 

            (1.3) 
 

respectively, and . In a similar manner, the left- and right hand side Riemann-
Liouville fractional integral operators of order 1 < β < 2 defined by 

                      (1.4) 
 
where Γ(⋅) denoted the Euler's Gamma function expressed as 
 

 

Many authors have proposed different numerical schemes for solving the Riesz fractional 
differential equation of the form (1.1). For example, Zhang and Liu [67] suggested the 
fundamental and basic solutions of the Riesz-space fractional partial differential equations 
(RFPDE) in space and time, subject to the periodic conditions. In a similar development, a 
Galarkin based finite element approximation technique with symmetric property was 
developed in [68] to solve RFPDE. Different methods based on the Fourier spectral techniques 
was introduced and applied for numerical integration of the Riesz fractional-in-space reaction-
advection-diffusion problems in one and high dimensions [16], [50], [53], and references 
therein. 
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The remaining parts of this paper are organized as follows. In Section 2 we briefly present a 
tour of some existing numerical methods which have been used to approximate the Riesz 
fractional operator. The nature of problem introduced in (1.1) permits the use of different 
numerical techniques in space and time, as a result, we are proposing higher-order numerical 
methods based of difference operators on a finite domain for the approximation of the Riesz 
fractional derivative in space. We also discuss convergence of this method in Section 3. 
Applicability of the suggested numerical technique is tested in 4 on various practical problems 
arising in physics and applied sciences. Conclusion is given in the last section. 

2. Preliminaries 

In this section, we provide some of the definitions and related results, as well as the existing 
numerical approximation techniques for the Riesz fractional derivative [44]. 

Definition 2.1 

Let u(x) be a smooth function defined on (a, b) ⊆ ℝ, the left- and right-sided Riemann-Liouville 
fractional order γ derivatives are defined by [25], [28], [58]. 

                        (2.5) 

And 

            (2.6) 
 
respectively, with m ∈ ℤ+ satisfying m − 1 ≤ γ < m. 

Definition 2.2 

The Fourier transform of u(x) defined on ℝ is [25]. 

  (2.7) 

And the inverse Fourier transform is defined as 

            (2.8) 
 
The inner product of τ and x is denoted by τ ⋅ x here. 

Definition 2.3 

The Fourier transform of the left- and right-sided Riemann-Liouville fractional derivatives of 
order γ in the interval (a, b) = (−∞, +∞) are [28]. 

              (2.9) 

And 
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             (2.10) 
 
respectively. Here, m − 1 < γ < m ∈ ℤ+,  i2 = − 1 and u(k)(x) for k = 0,1,2, …, m − 1 vanish as x 
→ ± ∞. 

According to Samko et al. [58] The Riesz derivative with a minus sign is defined as 

               (2.11) 

which has the equivalence Fourier transform 

              (2.12) 
 
According to [21], [40], [54]. 

 
 
one writes 
 

 (2.13) 

The γ−th order Riesz derivative for a smooth function u(x) on interval (a, b) ⊆ ℝ is expressed 
as [12], [28]. 

             (2.14) 

where , for γ ≠ 1, 3, …. 
 

Next, we consider the Fourier transform as one of the properties of the Riesz operator. Let a 

suitably smooth function , then 

             (2.15) 
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By using the information in (2.14) in conjunction with formulae (2.9) and (2.10) leads to 

                        (2.16) 
Bear in mind that 
 

 
 
Therefore, 
 

         (2.17) 
 
where eiθ = cos θ + i sin θ (Euler's formula) can be applied. 

Lemma 2.4 

Assume β > 0, and function u(x, t) ∈ L1(ℝ) with respect to x, then the Fourier transform of the 
Riesz fractional operator is given as [54]. 

 

with  being the Fourier transform of u(p,t) w.r.t x, then 
 

 
 
Next, we follow the Ortigueira [41], [42] proposed fractional centered finite difference method 
for β > − 1, 
 

              (2.18) 
 
It is also proved that 
 

 
 
Where 
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The fractional centered difference operator illustrated above is often regarded as the 
generalized second-order centered difference operator 
 

 
 
It was reported in [41] that the associated generating coefficient ωk

(β) arising from (2.18) are 

either or  for ∣z ∣ < 1, which implies, 
 

 
or 
 

 
 

It is obvious that  for k ≥ 2, and  for k < − 1, so for fixed β ∈ (1, 2), 
one obtains 
 

 
 
and 
 

 

In this part, a quick report some of the existing numerical approximation techniques for the 
Riesz derivative is presented. To start with, we define the mesh points xj = a + jh,  j = 0,1,2, 
…, J, and tk = kℏ, k = 0,1,2, …, K, where h = (b − a)/J and ℏ = T/K, h and ℏ denote the spatial 
step-size and temporal step-size, respectively. 

For every β, (1 < β < 2) the left- and right- side of the Riemann-Liouville derivatives 
corresponds to the left- and right-hand-side of the Grüwald-Letnikov (GL) fractional 
derivatives, respectively under certain conditions. The left and right GL operators are 
respectively defined as [19], [25], [54]. 
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                       (2.19) 

where 
 

 

The Riesz fractional derivative has been discretized by the following methods. 

Based upon the Grünwald-Letnikov standard technique, using the definition in (1.2) and the 
assumption above, the first order approximation to the Riesz operator is given as 

 (2.20) 

The authors in [35] suggested a better version of the standard Grünwald-Letnikov method 
which was labeled as the Shifted Grünwald-Letnikov approximation scheme for the left and 
right (LR) Riemann-Liouville fractional derivatives in which the issue of numerical instability 
with the formal was circumvented, as: 

           (2.21) 

The improved first-order method of approximation is given as: 
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By applying the novel L2 scheme, the left- and right- Riemann-Liouville operators of order 1 < 
β < 2 are expressed as 

 (2.22) 

Therefore, the first-order method for the LR Riemann-Liouville fractional order operators [63]. 

 (2.23) 

where ds
(β) = (s + 1)2−β − s2−β, for s = 0,1,2, …, j − 1 or s = 0,1,2, …, J − j − 1. 

By using the definition in (1.2) and above formulas, we obtain 
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 (2.24) 

In [41], a fourth-order centered finite difference formula was constructed to approximate the 
Riesz operator as: 

           (2.25) 

with equivalence relation [13]. 
 

             (2.26) 

The second-order approximations based on the shifted and weighted Grünwald-Lentikov 
methods for the L-R Riemann-Liouville (R-L) derivatives are [61]: 

       (2.27) 

where 
 

 

ρ1 and ρ2 are integers to be chosen arbitrarily. 
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Also, the third-order Shifted Grünwald-Lentikov schemes for the discretization of the L-R RL 
fractional derivatives are 

 (2.28) 

Where 
 

            (2.29) 

where ρ1, ρ2 and ρ3 are arbitrary integers. 

Finally, we presents the type I and II fractional-order centered differences definitions which 
was proposed by Ortigueira (2006, 2021) as follows. 

Definition 2.5 

Let β > − 1, h ∈ ℝ+, and u(t) being a complex variable function on (−∞, ∞). The type I fractional 
difference is defined by [41], [42]. 

            (2.30) 
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With β = 2M and , the above equation transforms into 
 

              (2.31) 
 
called 2 M order centered difference operator. 

Definition 2.6 

The type II fractional difference operator is defined by [41], [42]. 

            (2.32) 

With β = 2M + 1, we have 
 

            (2.33) 
 
But if M = 0, we have a particular case 
 

               (2.34) 

3. Numerical techniques for the Riesz operator 

In this section, we formulate higher-order approximation schemes for the Riesz fractional 
diffusion equation as described in (1.1). 

3.1. Fourth-order difference scheme 

By adopting the Taylor's expansion, we have 

                     (3.35) 

            (3.36) 
 
which when simplified results to 
 

            (3.37) 
 
Next, we substitute for (3.37) in (3.35) to have 
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                      (3.38) 
 
From above equation and (1.1), one obtains 
 

 (3.39) 
 
Take uj

k to be approximation solution of u(xj, tk). We substitute 
 

    (3.40) 
 
Into (3.39) and neglecting the higher other terms to obtain the difference method 
 

 (3.41) 
 
with 
 



14 
 

 
 
The above difference scheme transforms into matrix form 
 

 (3.42) 
 
where I denotes the identity matrix of size (J − 1) × (J − 1), 
 

 
 
and 
 

 

In what follows, we check the stability and convergence of the suggested scheme (3.42). 

Theorem 3.1 

The numerical scheme (3.42) is unconditionally stable. 
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Proof. From (3.42), we let , and denote its numerical and exact 

solutions by un and un, respectively. Note that the matrix is invertible, which means 
its error equation can be obtained in the form 

                 (3.43) 

where ℰn = un − un, and . From above equation, we get 

               (3.44) 

Next, we give the following lemma. 

Lemma 3.2 

(see [66]). Let be a definite positive matrix of order J – 1. Then for any ϵ ≥ 0, the following 
inequalities are satisfied. 

 

and 

 
 
By applying Lemma 3.2 and (3.44), one obtains 
 

 
 
which implies that 
 

 
 
which shows that schemes (3.42) and its equivalence (3.41) are unconditionally stable. 

Theorem 3.3 

The local truncation error (LTE) analysis of method (3.41) for numerical approximation of the 

Riesz reaction-diffusion model (1.1) at (xj, tk) is given as , and the difference 
scheme is convergence of order if there exists C > 0 such that 

 

Proof. To begin with, we define the LTE at point (xj, tk) as 
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 (3.45) 

By applying the Taylor'sexpansion, one gets 
 

         (3.46) 

From eqs. (3.40), (3.46), we have 

 (3.47) 

Finally, we substitute (1.1) into (3.47) to obtain the LTE 
 

 
 
In the case of convergence, we let δj

k = u(xj, ts). It directly follow from (3.41) and (3.45) that 
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 (3.48) 
 
Let dk = (δ1

k, δ2
k, …, δJ−1

k)T and , so that (3.48) can have matrix representation of the form 
 
 

            (3.49) 
 
In addition, we can have 
 

         (3.50) 
 
By using the results of Theorem 3.3 and Lemma 3.2, we have 
 

 (3.51) 
 
The combination of (3.50) and (3.51) leads to 
 



18 
 

 (3.52) 
 

where . Bear in mind that kξ ≤ Kξ = T, we have. 
 

 

Theorem 3.4 

Assume u ∈ C7(ℝ) with all derivatives up-to the seventh-order are in L1(ℝ). Then 

            (3.53) 

as ℏ → 0 and is the Riesz fractional operator for which β ∈ (0, 1) and β ∈ (1, 2] which 
correspond to sub-diffusive and super-diffusive processes, respectively. 

Proof. Assume 

             (3.54) 

By applying the Fourier transformation expressed as [53]. 
 

 
 
then (3.54) becomes 
 

 
(3.55) 
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Bear in mind that the coefficients ηk
(β) for k ∈ ℤ satisfy , so 

that the relation above can be written as 
 

           (3.56) 
 
Again, based on Taylor's expansion, one obtains the relation of the function sin(ξℏ/2) at center 
ξ = 0 as 
 

 (3.57) 
 
By substituting for (3.57) in (3.56), one obtains 
 

     (3.58) 
 
It should be recalled that since u ∈ C7(ℝ), there exists C0 > 0 (a constant) such that 
 

                (3.59) 
 
Hence, from eqs. (3.58), (3.59), we have 
 

              (3.60) 
 
where C = ℂC0 does not depend on ξ. This implies that the inverse Fourier transform of the 

function  holds for all β ∈ (0, 1) and β ∈ (1, 2]. By using (3.60) and taking the inverse 
Fourier transform of (3.55) leads to 
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             (3.61) 
 

Therefore, . 

 

3.2. Improved fourth-order alternating direction implicit method of Crank-Nicolson type 

In this segment, we modify a high-order centered difference method for two-dimensional Riesz 
space fractional reaction-diffusion equation. To achieve this, we define to be a finite domain 

which satisfy  and 0 ≤ t ≤ T. next, we utilize a uniform grid points 

(xi, yj, ts), and are the spatial grid sizes in x– and y– directions, 
respectively, with partitions xi = xL + iΔx, yj = yL + jΔy for i = 0,1,2, …, P, j = 0,1,2, …, Q, and 
Δt = T/N is the time-step with partition tn = nΔt for n = 0,1,2, …, N, where P, Q and N are all 
positive integers. 

By applying the modified fractional centered difference operator to discretize the Riesz 
derivatives, and based on Theorem 3.4, we obtained the following discretization schemes 

 (3.62) 

similarly, 
 

 (3.63) 
 
Next, we assume ui, j(t) = u(xi, yj, t) for i = 1, 2, …, P − 1 and j = 1, 2, …, Q − 1 subject to the 
zero-flux boundary conditions, the two-dimensional Riesz space fractional reaction-diffusion 
eq. (1.1) is resolved in time to a system of ODEs by applying the eqs. (3.62), (3.63) to have 
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 (3.64) 
 
and for the sake of simplicity, we let θ = i − k − τ and ϑ = j − k − τ, so that 
 

 (3.65) 
 
For computational convenience, the two operators above can be denoted as 
 

 
 
A Crank-Nicolson version of finite difference equation for the 2D Riesz space fractional 
reaction-diffusion eq. (1.1) can be formulated by substituting the improved version of fractional 
centered difference approximations into the given differential equation at time as 

as  [60]. 
 

            (3.66) 
 
At this stage, we can rearrange eq. (3.66) and rewrite it in the form 
 

 (3.67) 
 

where ℐ denotes the identity operator, and . By ignoring the higher-order 
terms, the fractional difference scheme (3.67) becomes 
 

     (3.68) 
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In order to implement the scheme, we follow the strategy adopted in [52] by denoting a solution 
computed at intermediate time as u∗, to obtain 
 

        (3.69) 

Theorem 3.5 

The alternating direction implicit Crank-Nicolson (ADICN) scheme (3.68) formulated to 
discretize the Riesz fractional eq. (1.1) is consistent with a truncation error of order 

. 

Proof. It should be noted that we utilized the second order centered finite difference scheme 
for the temporal direction. We employ the result in Theorem 3.4 to write the accuracy in spatial 
directions as 

 (3.70) 

So the ADICN scheme is second-order accurate in time and fourth-order accurate in space. 

Theorem 3.6 

The ADICN method defined by (3.68) for solving the 2D Riesz fractional eq. (1.1) is 
unconditionally stable. 

Before going to the application section, there is need to test the accuracy and applicability of 
the proposed scheme. As a result, we consider the following Riesz fractional diffusion equation 

                     (3.71) 

where 
 

 (3.72) 

subject to the initial condition u(x,0) = 0 and zero-flux boundary conditions. It is not difficult 
to see that the analytic solution of the Riesz fractional eq. (3.71) is u(x, t) = t2β+1x4(1 − x)4. 
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We give numerical results in the L∞-norm error 

 

where uj and  are numerical and exact solutions, respectively. Numerical results are given 
with x ∈ [0, 1], Du = 0.50 and simulation time t = 1.00 for some values of β ∈ (1, 2]. The 
comparison between the exact and numerical solutions, as well as convergence in space is given 
in Fig. 1. The surface plots with different values of β is presented in Fig. 2. In Table 1, we 
further demonstrate the accuracy and effectiveness of the numerical method by reporting the 
relative error for different instances of simulation time and fractional power index β, as 
indicated in the table caption. 
 

 

Fig. 1. Numerical results showing; (a,c) the accuracy of the proposed scheme, the upper-, middle-, and 
lower-plots correspond to β = 1.50,1.70,1.90, respectively. (b,d) convergence in space for different 
values of β. Upper and lower rows corresponds to numerical schemes (3.42) and (3.68), respectively. 
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Fig. 2. Surface plots for numerical solution of (3.71) for different β as showing in the captions. 

Table 1. Numerical solution of the Riesz space fractional eq. (3.71) showing the relative error and 
computational time results for different instances of β and final time t with Du = 0.850 and N = 80. 

 

     

4. Applications and results 

In this section, numerical examples are presented with different kinetics. We utilized the fourth-
order difference schemes proposed in Section 3 for the approximation of the Riesz derivatives. 
The improved exponential time-differencing Runge-Kutta method of order four as suggested 
in [24] is used to advance in time. All the computational experiments are carried out in Matlab 
R2019a on a PC equipped with an Intel Core i7 CPU, 4.0 GHz with 16.0 Gbyte of RAM under 
Windows 10 software. 

4.1. Riesz-space model with Turing patterns 

We first consider the integer-order reaction-diffusion system which was proposed by Barrio et 
al. [8], but modeled with the Riesz fractional operator as 

            (4.73) 
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where Du and Dv are the diffusion coefficients of u and v species at time t and position x, 
respectively. These coefficients indicate a conservation relation between the two chemical 
products [8], [51]. The key interaction parameters in (4.73) are r1 and r2 as each favors the 
formation of stripes and spots or dot-like patterns, respectively. Another key parameter which 
plays an important role in the simulation process is the fractional index β. Variation of this 
parameter can lead to various Turing's patterns. The parameters a,b and c are related to 
production and depletion of chemicals. The classical form of model (4.73) has been used 
mainly to study pattern formation in reaction-diffusion systems. In addition, it has been used 
to study transitions between fish patterns that go from stripes to spots, for example, the 
pseudoplatystoma fish species [51]. 

For numerical results to mimic some of these physical behaviors, we fix the parameters at Du 
= 2.322e − 03, Dv = 0.0045, a = 0.899, b = − 0.91, c = − 0.899, r1 = 3.5 and r2 ∈ [0, 2]. In the 
experiment, parameter β is allowed to be varied. For all the experiments in one and two 
dimensions, we utilized the Matlab random initial conditions. The one-dimentional results with 
variation of r2 is given in Fig. 3, with evidence of spatiotemporal and chaotic oscillations as r2 
increases. Evidence of Turing patterns are shown in Fig. 4, Fig. 5, Fig. 6. It was observed that 
when r2 → 0, the simulation experiments gives stripes or spiral-like structures, but the 
dynamics transform from stripes or spirals as r2 ≫ 0. Finally, in Fig. 6, as β → 1, we obtained 
a more bold and pronounced patterns. 

 

Fig. 3. One-dimensional results of (4.73) showing the evolution of species in space. With fixed β = 1.55 
and r2 = 0,2.25 we obtain both spatiotemporal and chaotic behaviors of species, respectively. 
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Fig. 4. Two-dimensional surface plots for model (4.73). The upper and lower rows correspond to r2 = 
0 and r2 = 1.57, respectively. The fractional parameter is fixed at β = 1.63. Simulation runs for N = 100 
and final time t = 50. 



27 
 

 

Fig. 5. Two-dimensional snapshots for model (4.73). The upper and lower rows correspond to r2 = 
0.005 and r2 = 2.50, respectively. The formation of Turing stripes and spots patterns are noticeable. 



28 
 

 

Fig. 6. Snapshots for model (4.73) in 2D with β = 1.87. Turing stripes and spots patterns are 
evident(4.75) 

4.2. Riesz-space model with labyrinthine patterns 

One of the most interesting and noticeable group of patterns that arise naturally in system of 
catalytic reactions are growing labyrinthine patterns [20], [36], [45]. Labyrinthine patterns 
provide a beautiful pattern formation scenarios at the neighborhood of the equilibrium state. 
Structures of this form have been studied in different gradient systems such as ferrofluids, 
turbulence, garnet layers, and block copolymers, see [20] and references therein. Beginning 
from a non-axisymmetric initial condition strongly curved portions spread more faster and the 
pattern lengthens. Regions of high concentrations repel, so from the periodicity of the domain, 
the patterns turn inward until an equilibrium is achieved. 

The Riesz-space fractional reaction-diffusion equations for this example take the form 
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              (4.74) 

where u and v are the scalar real fields which denote the activator and inhibitor, respectively. 
Parameter ϵ > 0 is the ratio between the time scales associated with the two fields. Models of 
this type have extensively been studied in the context of excitable media where 0 < ϵ < 1, D ≥ 
0 is the ratio between the two diffusion coefficients, that is, D = Du/Dv. When D ≫ 1, a stable 
labyrinthine patterns is known to arise from the FitzHugh-Nagumo type reaction diffusion 
equations. For the parameters α1 > 0 and α0, we choose α0 and α1 in such a way that the model 
has two stable uniform steady states, namely, the points E− = (u−, v−) and E+ = (u+, v+) which 
correspond to a down and an up states, respectively. The variation of parameters α0, α1, β ∈ 
(1, 2), D lead one from one regime to another. In the experiment, we utilize the homogeneous 
boundary conditions pinned at the extremes of domain size x, y ∈ [−L, L] with L = 100, and the 

following initial conditions. Here, is obtained from, u− which is the smallest 
real root of the cubic α1u3 + u(1 − α1) − α0 = 0. It is obvious that the solution of u(x, y, t) and 
v(x, y, t) of (4.74) depend on the five parameters α0, α1, ϵ, D and β, but we will avoid displaying 
this dependence unless we specifically wish to address it. Also, it should be mentioned that 
other patterns apart from those ones displayed in Fig. 7, Fig. 8 are obtainable, depending on 
the choice of other parameters. Here, only fractional parameter β is varied with time. In Fig. 7, 
we display the distribution of the two chemical species for some values of β as reported in the 
Caption for time t = 5000. Other parameters are fixed as Δt = 0.1, N = 128, α0 = − 0.1, α1 = 2, 
ϵ = 0.05, and D = 4. Having observed that the distribution of u and v are almost similar as 
shown in Fig. 7, we continue our analysis by reporting only the distribution of u – species. In 
Fig. 8, we obtained the numerical results in rows 1–4 with β = [1.58,1.76,1.88,1.98]. The 
distributions in column 1 are obtained with t = 100,200, column 2 with t = (300, 400, 600, 800), 
while the last column depicts the result with final simulation time t = 10,000 [53]. 
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Fig. 7. Surface distribution of system (4.74) in 2D with different instances of β. The upper-, middle-, 
and lower-rows correspond to β = 1.98,1.76,1.94, respectively. 
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Fig. 8. Two-dimensional distribution of u-species for the Riesz fractional activator-inhibitor model 
(4.74) for different values of β and final simulation time. 

Applicability and accuracy of the suggested scheme is further investigated when applied to a 
system of eqs. (4.74) by reporting the maximum error computed at some specific points in the 
experiment. To check the convergence we fix the parameters and simulate the experiment with 
a gold-standard run computed with Δt = 10−5, with increasing time (t) and step-size (h) and β 
= 1.90 to obtain the following results. 
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            (3.42) 

            (3.68) 

5. Conclusion 

In this work, two higher-order numerical techniques for the approximation of the Riesz 
fractional-order operator have been considered. The formulation, analysis, and convergence of 
these methods are well examined. We choose to illustrate the numerical algorithms using a 
couple of non-trivial examples from the literature on reaction-diffusion equations. Hence, the 
method is tested on two important Riesz space fractional reaction-diffusion models. In the first 
example, we observe the Turing stripes and spots patterns arising from the BVAM model, it 
was also observed that pattern generation in classical order models are similar to the fractional-
order cases. In the second example, we consider the Labyrinthine patterns evolved from the 
special case of the FitzHugh-Nagumo type of reaction-diffusion system. It is worth mentioning 
that other behavioral patterns are obtainable for these equations in other parameter regimes 
than those used in this paper. 
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