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DAU1 c o Pathogenic Escherichia coli Isolated from Gallus gallus
in South Africa Carry Co-Resistance Toward Colistin

and Carbapenem Antimicrobials?

AU2 c Ibrahim Zubairu Hassan, Daniel N. Qekwana, and Vinny Naidoo

AAU3 c bstract

Colistin and carbapenems are critically important antimicrobials often used as a last resort to manage multidrug-
resistant bacterial infections in humans. With limited alternatives, resistance to these antimicrobials is of
concern as organisms could potentially spread horizontally rendering treatments ineffective. The aim of this
study was to investigate co-resistance to colistin and carbapenems among Escherichia coli isolated from poultry
in South Africa. Forty-six E. coli strains obtained from clinical cases of breeder and broiler chickens were used.
In addition to other antibiotics, all the isolates were tested against colistin and carbapenems using broth
microdilution. Multiplex polymerase chain reactions were used to investigate the presence of colistin (mcr-1 to
5) and carbapenem (blaOXA-48, blaNDM-1, and blaVIM) resistance genes. Isolates exhibiting colistin resistance
(>2 lg/mL) underwent a whole-genome sequencing analysis. Resistance to colistin (10.9%) and cefepime
(6.5%) was noted with all colistin-resistant strains harboring the mcr-1 gene. None of the E. coli isolates were
resistant to carbapenems nor carried the other resistant genes (mcr-2 to 5, blaOXA-48, blaNDM-1, and blaVIM). The
mcr-1-positive strains belonged to sequence types ST117 and ST156 and carried virulence genes ompA, aslA,
fdeC, fimH, iroN, iutA, tsh, pic, ast A and set 1A/1B. In conclusion, clinical E. coli strains from chickens in this
study possessed mobile resistance genes for colistin and several other clinically relevant antimicrobials but not
carbapenems. Additionally, they belonged to sequence types in addition to carrying virulence factors often
associated with human extraintestinal pathogenic E. coli infections. Thus, the potential risk of transmitting these
strains to humans cannot be underestimated especially if sick birds are dispatched into the thriving poorly
regulated Cornish hen industry. The need for routine veterinary surveillance and monitoring of antimicrobial
resistance,AU4 c AMU and the importance of strengthening regulations guiding the informal poultry sector remains
important.
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Introduction

Antimicrobial resistance is a major concern with both
veterinary and human bacterial agents not only being

multidrug resistant but also increasingly becoming extreme
drug resistant (Durdu et al., 2019; Klima et al., 2014; Lubbers
and Hanzlicek, 2013; Park et al., 2009; Sweeney et al., 2018;
Walther et al., 2017). This concern has been reported in
Gram-negative superbugs, such as Pseudomonas aeruginosa,
Klebsiella pneumonia, Escherichia coli, and Acinetobacter

baumannii, which are not only major human pathogens but
are also responsive to few antimicrobials, notably colistin
and carbapenems (Cassir et al., 2014; Parchem et al., 2016;
Park et al., 2009). With such limited therapeutic selection,
resistance to these remaining drugs is of concern (Durdu
et al., 2019). While resistance in people would likely arise
from the direct use of antimicrobials, the zoonotic potential
of organisms and their role in transmissible resistance needs
to be considered especially from foodborne microbial
contamination.
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For colistin resistance, concern lies with mobilized colistin
resistance (mcr), which has emerged as a global concern in
both human and animal health sector (Liu et al., 2016; Luo
et al., 2020; Wang et al., 2020a; Xavier et al., 2016; Yin et al.,
2017). Since their first description byAU5 c Liu et al. (2015), 10
different mcr coding genes have been identified (Li et al.,
2020; Luo et al., 2020; Sun et al., 2018; Wang et al., 2020a).

The overuse of colistin in poultry, pig, and calves has been
singled out as a major driver for mcr gene selection and
resistance development (Liu et al., 2016; Luo et al., 2020;
Sun et al., 2018; Trung et al., 2017). Of concern is that the
mcr gene is transferable within and between bacterial species
via plasmid conjugation conferring resistance to an otherwise
known susceptible strain (Liu et al., 2016). Thus, with the
relatively high incidence of these mcr genes among veteri-
nary organisms, it raises the question on the subsequent threat
on human health (Zhang et al., 2016).

Another concern is the increasing incidence of
carbapenemase-producing Enterobacteriaceae from animal
and animal products (Abdallah et al., 2015; Al Bayssari et al.,
2015; Fischer et al., 2012; Köck et al., 2018). While it is not
fully understood how this occurs as carbapenems use is highly
limited in animals due to costs (Madec et al., 2017), the im-
plications of carbapenemase-producing Enterobacteriaceae
in animals are far reaching due to the potential for zoonotic
transmission. In humans, carbapenemases render most peni-
cillins, cephalosporins, and carbapenems ineffective (Doi and
Paterson, 2015; Zmarlicka et al., 2015). Moreover, strains
carrying genes encoding the carbapenemases have been
shown to spread and persist (Abraham et al., 2016; Fischer
et al., 2017) and have tendencies of transferring resistance
genes to other microorganisms (Castanheira et al., 2013).

Of greater concern than the veterinary organisms carrying
resistance to either carbapenems or colistin alone has been
the co-occurrence of mcr-1 and carbapenemase-encoding
genes (blaNDM) in E. coli strains in chicken meat, chicken
ceca, cloaca swabs, and/or feces (Liu et al., 2017; Wang et al.,
2017b; Yao et al., 2016). While not properly characterize, the
co-expression of resistance genes has in part been attributed
to environmental contamination from dogs, flies, and wild
birds (Wang et al., 2017b), highlighting the need for an ho-
listic approach in tackling antimicrobial resistance (AMR).

With both colistin and carbapenems resistance being in-
dividually noted in several apparently susceptible strains
(Apostolakos and Piccirillo, 2018; Fattouh et al., 2016;
Hassan et al., 2021; Karlowsky et al., 2017; Lentz et al.,
2016), a scenario of silent co-resistance gene transfer to hu-
mans and/or animals is a concern. The aim of this study was
to investigate co-resistance to colistin and carbapenems
among E. coli isolated from poultry in South Africa, the
virulence genes carried and their potential risk on human
health. Furthermore, resistance to several other clinically
relevant antibacterial agents was evaluated.

Materials and Methods

Study population and sampling

Ethical approval for this study was obtained from the
University of Pretoria animal ethics committee (V098-17).
The study used biobanked E. coli strains (n = 46) isolated by
Deltamune (Pty) Ltd bacteriology laboratory in 2018 from
unhealthy domestic chicken (Gallus gallus) in Pretoria,

South Africa. Of the isolates, 40 (87%) originated from
breeder hens, whereas the rest (13%, 6/46) were obtained
from broiler birds. Samples were obtained during postmor-
tem evaluation at multiple farm locations from suspected
cases of colibacillosis. Additional information on specific
tissues sampled during postmortem is not accessible; how-
ever, these are typically aseptically collected swab samples
from presenting lesions.

Isolation of E. coli

Samples were processed within 36 h of collection using
standard bacteriological methods, as previously published
(Theobald et al., 2019). In brief, E. coli were isolated on 5%
Oxoid blood tryptose agar and Oxoid MacConkey agar
without salt and crystal violet (Thermo Fisher Scientific,
Hampshire, United Kingdom). Plates were incubated aero-
bically for up to 24 h at 37�C. Single red non-mucoid pre-
sumptive E. coli colonies per sample were subjected to
biochemical test using Kovack’s reagent (Merck, Darmstadt,
Germany), and oxidase reagent (Merck) with Selecta-media
Hugh–Leifson tubes (Thermo Fisher Scientific).

Antibacterial susceptibility testing

Susceptibility was determined using the WalkAway 40 plus
MicroScan machine (Beckman Coulter, Inc., CA) as per in-
structions. Antibiogram was obtained automatically after 18–
24 h of bacterial growth against selected agents (Table 2). For
quality control, E. coli ATCC 25922 and a known colistin-
resistant strain were included in the analysis. All interpretations
were carried out using the EUCAST (European Committee on
Antimicrobial Susceptibility Testing) and CLSI (Clinical and
Laboratory Standards Institute) guidelines of 2019 and 2018,
respectively (CLSI, 2018; EUCAST, 2019).

Multiplex polymerase chain reaction assay

All isolates were subjected to a multiplex polymerase
chain reaction (PCR) to detect the presence of mcr-1 to 5
genes associated with colistin resistance, and the blaOXA-48,
blaNDM-1, and blaVIM genes associated with carbapenem re-
sistance. The gene primer sequences used were as described
by previous researchers (Borowiak et al., 2017; Gonçalves
et al., 2017; Liu et al., 2016; Poirel et al., 2011; Rebelo et al.,
2018; Samuelsen et al., 2011).

Colistin multiplex reaction. MCR-1-positive strain and a
mcr-5 DNA available at the University of Pretoria were used
as positive controls. For every mcr PCR conducted, 12.5 lL
of DreamTaq Green 2 · Master Mix (Thermo Fisher Scien-
tific, Waltham, MA), 6.5 lL of nuclease-free water, 0.5 lL of
each primer solution (10 lM), and a microliter of DNA lysate
were used. The thermocycling condition was maintained at
94�C for 15 min +25 · (94�C for 30 s + 58�C for 90 s + 72�C
for 60 s) +72�C for 10 min, using a MiniAmp Plus Thermal
Cycler (Thermo Fisher Scientific) (Cavaco et al., 2016).

Carbapenem multiplex reaction. For every bla PCR con-
ducted, 12.5lL of 2 · MyTaq HS Master Mix (Bioline, Lon-
don, United Kingdom), 8.5 lL of nuclease-free water, 0.5 lL of
each primer solution (10 lM), and a microliter of DNA lysate
were used. Positive and negative controls were included for all
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runs. The thermocycling condition was maintained at 95�C for
2 min +35 · (95�C for 30 s + 57�C for 40 s + 72�C for 60 s)
+72�C for 3 min. Resulting amplicons were subjected to aga-
rose gel electrophoresis, as described previously.

Whole-genome sequencing

Colistin-resistant isolates were subjected to whole-genome
sequencing using an Illumina MiSeq Technology (Illumina,
Inc., San Diego, CA), as previously described (AU6 c Trung et al.,
2017). Nucleotide sequences were blasted through the Re-
sFinder, PlasmidFinder, and VFDB (Virulence Factor Data-
base) databases to identify antibacterial resistance genes,
plasmids, and virulence factors, respectively, within the
strains (Carattoli et al., 2014; Chen et al., 2016; Chen et al.,
2005; Zankari et al., 2012). Multilocus sequence typing was
also undertaken to characterize strains into sequence types
(ST) using the putative seven housekeeping genes, i.e., adk,
fumC, gyrB, icd, mdh, purA, and recA (Paul et al., 2013;
Wirth et al., 2006).

Data management and analysis

The antibacterial resistance phenotypes of strains were
coded in SPSS (IBM SPSS Statistics for Windows, Version
26.0; IBM Corp, Armonk, NY) with proportions ofAU7 c ABR and

multiple drug resistance (MDR) determined. The b AU8MIC90 of
the various drug compounds tested were extrapolated directly
from the MicroScan machine.

Results

Antibacterial susceptibility

Following antibiogram analysis, almost all (97.8%, 45/46)
strains were resistant to at least one antibacterial drug. E. coli
were resistance to tetracycline (82.2%) and the beta lactams
(ampicillin [63%], ampicillin/sulbactam [60.9%], and pi-
peracillin [57.8%]). Significantly, 10.9% of isolates were
resistance to colistin and 6.5% to the fourth-generation
cephalosporin and cefepime. No carbapenem resistance was
detectable ( b T1Table 1). Multiple drug resistance (MDR) was
noted in 84.8% (39/46, 95% confidence interval 71.1–93.7)
of the E. coli isolates, with two strains being phenotypically
classified as b AU9ESBL producers by the MicroScan.

Multiplex PCR and gel electrophoresis

Following multiplex PCR, five strains demonstrated the
presence of mcr-1 gene ( b F1Fig. 1). These strains represent all
colistin-resistant isolates obtained from this study. None of the
strains carried mcr-2 to 5; blaOXA-48, blaNDM, and blaVIM genes.

Table 1. Antibiotic Resistance Proportion of Clinical Avian Escherichia coli Isolates Obtained

from South Africa in 2018

Drug compounds Estimate (%)
95% CI

MIC90 BPLower–upper

Amikacin 2.2 (1/45) 0.1–11.5 8 >16
Ampicillin 63.0 (29/46) 47.5–76.8 >16 >8
Aztreonam 10.9 (5/46) 3.6–23.6 8 >4
Cefotaxime 47.8 (22/46) 32.9–63.1 8 >2
Cefoxitina 39.1 (18/46) 25.1–54.6 >16 ‡32
Ceftazidime 41.3 (19/46) 27.0–56.8 16 >4
Cefuroxime 47.8 (22/46) 32.9–63.1 >16 >8
Chloramphenicol 11.1 (5/45) 3.7–24.1 >16 >8
Ciprofloxacina 15.2 (7/46) 6.3–28.9 >2 ‡4
Colistin 10.9 (5/46) 3.6–23.6 >4 >2
Doripenema 0.0 (0/45) 0.0–07.9 1 ‡4
Ertapenem 0.0 (0/46) 0.0–07.7 0.5 >0.5
Gentamicin 37.8 (17/45) 23.2–52.5 >8 >4
Imipenem 0.0 (0/46) 0.0–07.7 1 >4
Levofloxacina 8.7 (4/46) 02.4–20.8 4 ‡8
Meropenem 0.0 (0/46) 0.0–07.7 1 >8
Minocyclinea 20.0 (9/45) 9.6–34.6 >8 ‡16
Nalidixic acida 45.7 (21/46) 30.9–61.0 >16 ‡32
Nitrofurantoin 2.2 (1/46) 0.1–11.5 32 >64
Norfloxacin 33.3 (15/45) 19.5–48.0 >1 >1
Piperacillin 57.8 (26/45) 42.2–72.3 >64 >16
Piperacillin/tazobactam 0.0 (0/45) 0.0–07.7 8 >16/4
Tetracyclinea 82.2 (37/45) 67.9–92.0 >8 ‡16
Tigecyclinea 0.0 (0/46) 0.0–07.7 1 >1
Trimethoprim/sulfamethoxazole 30.4 (14/46) 17.7–45.8 >4 >4/76
Tobramycin 6.7 (3/45) 1.4–17.9 4 >4
Cefepime 6.5 (3/46) 1.4–17.9 1 >4
Ampicillin/sulbactam 60.9 (28/46) 45.4–74.9 16 >8/4
Amoxicillin/clavulanate 43.5 (20/46) 28.9–58.9 >16 >8/2

Values in parenthesis (n/N).
aCLSI and EUCAST breakpoints were used for interpretation.
BP, break point; CI, confidence interval; CLSI, Clinical and Laboratory Standards Institute; EUCAST, European Committee on

Antimicrobial Susceptibility Testing; MIC90, minimum inhibitory concentration required to kill 90% of the bacterial population.
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Whole-genome sequencing

Sequencing confirmed the presence of the mcr-1 gene,
together with several other resistance genes and plasmids
(T2 c Table 2), and were in agreement with the phenotypic resis-
tance displayed.

All five strains carried virulence genes coding for the fla-
gella (flgGH, fliIMPG, flhA), enterobactin (entDFSCEBA,
fepACGDB, fes), type I fimbriae (fimBEHGFDCIA), type III

secretion system (espXRLY), curli (csgBDEFG), adhesin
(fdeC), outer membrane protein (ompA), and chemotaxis
regulatory protein (cheY). In addition, some strains possessed
genes coding for heat stable enterotoxin (astA), putative ar-
ylsulfatase (aslA), toxin subunit (set 1A/B), serine protease
precursor (pic), temperature-sensitive hemagglutinin (tsh),
aerobactin, salmochelin receptor, and the shu locus protein.

Discussion

Despite having a very organized poultry industry, South
Africa also has a thriving informal poultry sector where trade
of live birds is poorly regulated (Abolnik, 2007). A common
practice is the trade of spent breeder and layer hens from
commercial farms to the informal township markets where
they are slaughtered and dressed in the open (Abolnik, 2007;
Fourie, 1995). With some local consumer’s preference for
this so-called ‘‘Cornish’’ or ‘‘Rocks’’ hens as source of
poultry meat and about 25 million birds in production at any
given time (Abolnik, 2017), the potential risk of an antibac-
terial resistant strain being transmitted to a human cannot be
underestimated. More so that human contact with some of
these live birds could potentially pose a risk.

Carbapenem and colistin resistance

Unlike studies in China which demonstrated chicken
E. coli lineage co-harboring mcr-1 and carbapenemase re-
sistance genes (Lin et al., 2020; Liu and Song, 2019; Yang

FIG. 1. Gel image of APEC strains carrying the mcr-1
gene (309 bp) following PCR and electrophoresis. APEC,
avian pathogenic Escherichia coli; L, DNA step ladder; N,
negative control; numerals 1–5, positive strains; 6, negative
strain; P, positive control; PCR, polymerase chain reaction.

Table 2. Resistome and Plasmid Content of Avian Pathogenic

Escherichia coli Strains Isolated from Chicken

ID Phenotypic resistance Resistance genes Plasmids
Sequence

types

1 Ampicillin, chloramphenicol,
colistin, tetracycline,
sulfamethoxazole

tet(A), blaTEM-1B, mcr-1.1,
mdf(A), tet(34), aac(3)-Ib,
aadA2, cmlA1, ant(3†)-Ia, sul3,
mef(B), tet(M)

IncFII, ColRNAI, IncFIA(HI1),
Col(MG828), IncHI1B(R27),
IncHI1A, p0111,
IncFIB(AP001918)

7329

2 Colistin, norfloxacin, tetracycline,
trimethoprim,
sulfamethoxazole, minocyclinei

mcr-1.1, ant(3†)-Ia, dfrA14,
mdf(A), tet(34)_1, tet(M),
qnrS1, tet(A)

IncFIA(HI1), IncHI1B(R27),
IncHI1A, IncX1, p0111

155

3 Ampicillin, chloramphenicol,
ciprofloxacin, colistin,
levofloxacin, norfloxacin,
minocycline, nalidixic acid,
nitrofurantoin, piperacillin,
tetracycline, trimethoprim,
sulfamethoxazole,
ampicillin/sulbactam

mcr-1.1, aph(6)-Id, aph(3†)-Ib,
sul2, oqxB, oqxA, tet(B),
ant(3†)-Ia, dfrA14, tet(34),
aph(3¢)-Ia, blaTEM-1B, mdf(A)

Col156, ColpVC, Col(MG828),
Col(MG828), Col(MG828),
IncI2, p0111, IncI1, IncFIA,
IncFIB(AP001918),
IncFIC(FII), IncFII

156

4 Colistin, nalidixic acid,
tetracycline, trimethoprim,
sulfamethoxazole, minocyclinei,
norfloxacini

tet(A), sul3, mcr-1.1, mdf(A),
aph(3†)-Ib, aph(6)-Id, ant(3†)-
Ia, dfrA12, aadA2, sul1

Col(MG828), IncI2,
IncFIB(AP001918), IncHI2A,
IncFIC(FII), IncFII,
IncFIC(FII), IncFII, IncHI2,
TrfA

117

5 Ampicillin, chloramphenicol,
colistin, minocycline,
piperacillin, tetracycline,
trimethoprim,
sulfamethoxazole,
ampicillin/sulbactam,
tobramycini

catA1, ant(3†)-Ia, dfrA17, tet(B),
oqxA, oqxB, sul2, aph(3†)-Ib,
aph(6)-Id, mcr-1.1, blaTEM-1B,
aph(3¢)-Ia, mdf(A), tet(34)

IncFIB(AP001918), IncQ1,
Col156, IncFIC(FII), IncFII,
IncI2

5764

Except for gentamicin, resistance phenotype associated with the specific aminoglycoside resistance gene identified was not tested for.
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et al., 2016), none of the E. coli isolates in this study dem-
onstrated phenotypic nor genetic resistance toward carbape-
nems. This absence of carbapenem resistance supports
information that the carbapenems are not used for production
due to cost. Also, it was important to demonstrate the absence
of resistance since migratory birds and stray dogs have been
implicated in the transmission of resistance (Wang et al.,
2017b). While the co-expression of colistin and carbapenem
resistance was not identified, five colistin-resistant strains
that carried the mcr-1 gene were noted.

This level of colistin resistance was similar to 13.6% (108/
797) reported by Perreten et al. (2016). The observation was
somewhat unexpected as South Africa has a restriction on use
of colistin in the food-producing industry, a policy that came
to effect in 2016. Countries that have implemented a similar
restriction such as China, Portugal, and Great Britain have
shown a decline in prevalence of mcr-1-associated colistin
resistance in <5 years (Duggett et al., 2018; Fournier et al.,
2020; Theobald et al., 2019; Wang et al., 2020b). While more
recent data have now shown a decline in South Africa
(3.61%) (NDoH, 2022), the present high colistin resistance
could be indicative of continued colistin use despite the
current veterinary restriction or due to colistin-resistant or-
ganism circulating in the farms.

Virulence factors and sequence types

WAU10 c GS analysis in the mcr-1-containing strains (n = 5) re-
vealed that these strains possessed several virulence genes
(ompA, aslA, fdeC, csgBDEFG, fimH, iroN, iutA, iucDCBA,
chuVUYWT, shuXAS), known to play key roles in bacterial
serum resistance, invasion of brain microvascular endothelial
cells, adhesion, biofilm formation, iron acquisition, persis-
tence, and evasion of host defense mechanisms (Burkhard
and Wilks, 2007; Chairatana et al., 2015; Connell et al., 1996;
de Lorenzo et al., 1986; Easton et al., 2014; Furrer et al.,
2002; Gophna et al., 2001; Hoffman et al., 2000; Kim, 2001;
Krishnan and Prasadarao, 2012; Müller et al., 2009; Nesta
et al., 2012; Prasadarao et al., 1996; Prigent-Combaret et al.,
2000; Saldaña et al., 2009; Shulman et al., 2018; Suits et al.,
2009; Thompson et al., 1999; Tong and Guo, 2009; Vizcarra
et al., 2016; Warner et al., 1981).

More importantly, some of these strains carried genes (tsh,
aslA, pic) similar to those reported in human extraintestinal
pathogenic E. coli and could potentially have zoonotic im-
plications (Ewers et al., 2007; Habouria et al., 2019; Moulin-
Schouleur et al., 2006; Navarro-Garcia and Elias, 2011;
Ronco et al., 2017). These genes play vital roles in hemolysis
and invasion of the brain microvascular endothelial cells.

The ST117 strain stood out as it carried additional genes
coding for toxins (ast A, set 1A/1B) and hemolysin (tsh). This

AU11 c APEC lineage has frequently been associated with avian
colibacillosis (Cummins et al., 2019; Ronco et al., 2017) and
is being viewed as an emerging human pathogen globally
associated with blood and urinary tract infections (Cummins
et al., 2019; Macesic et al., 2017; Manges and Johnson, 2012;
Mora et al., 2012; Quan et al., 2017; Vincent et al., 2010;
Wang et al., 2017a). Indeed, this sequence type has been
isolated from chicken meat meant for human consumption in
the Netherlands (Kluytmans-Van Den Bergh et al., 2016).

Similarly, another E. coli sequence type (i.e., ST156) often
associated with human infections was identified in the present

study (Bilal et al., 2021; He et al., 2017; Lin et al., 2020;
Rashid et al., 2015). This sequence type has been isolated
from fresh vegetables, human blood stream infections, and
avian fecal swab in China (Lin et al., 2020; Liu and Song,
2019; Yang et al., 2016). Additionally, E. coli ST155 asso-
ciated with human blood stream and urinary tract infections
in Germany and Uganda, respectively, was also identified in
the present study (Decano et al., 2021; Neumann et al., 2020).
Two other rare sequence types (i.e., ST5764 and ST7329)
were identified from a broiler and breeder hen, respectively.

Resistance to other antibacterials

Although the focus of this study was mainly on colistin and
carbapenem resistance, a high proportion (82.2%) of isolates
were resistant to tetracycline, with strains recruited for WGS
possessing several tet genes (tet A, tet B, tet M, and tet 34).
This may be due to the tetracyclines being readily available
for over-the-counter use (Eagar and Naidoo, 2017; Mendel-
son et al., 2018) and being the second most consumed class of
veterinary antimicrobials in b AU12SA, including the use for growth
promotion (SANDH, 2018).

Furthermore, they are widely used for treatment of bac-
terial infections, mycoplasma, chlamydial, and rickettsia
avian diseases (Chopra and Roberts, 2001). Similar high
proportions of tetracycline resistance have also been reported
in other countries, including China, Nigeria, Egypt, Zim-
babwe, and Senegal (Ahmed et al., 2013; Jiang et al., 2011;
Liu et al., 2017; Olarinmoye et al., 2013; Saidi et al., 2012;
Vounba et al., 2018). In contrast, in Europe where more ef-
fective control measures are in place, the prevalence’s of
resistance are much lower (Mesa-Varona et al., 2020; VMD,
2019). From this, it is likely that the over-the-counter avail-
ability of the tetracyclines in South Africa is a major con-
tributor to the resistance seen.

The proportions of isolates resistant to the penicillin’s and
cephalosporin’s were also high due to the blaTEM-1B gene,
which codes for b-lactamase enzymes, and could have re-
sulted from the common use of the cephalosporin’s, partic-
ularly ceftiofur to prevent mortality in day-old chicks
(Agunos et al., 2017; Dutil et al., 2010; Liu et al., 2017). This
higher than expected cephalosporin resistance could present a
problem for humans if transferred through the food chain
(Agunos et al., 2017; Dutil et al., 2010; Vieira et al., 2011),
and potentially necessitate an increase use for last line de-
fense drugs such as carbapenems and/or colistin (Gauzit
et al., 2015; Nordmann and Cornaglia, 2012; Wilson, 2017).

Limitations

The origin of isolates used in this study is limited to one
laboratory source; therefore, the results cannot be extrapo-
lated to entire poultry population in the country due to vari-
ations in drug use patterns. In addition, only strains resistant
to colistin were subjected to whole-genome sequencing.
However, the latter does not preclude any meaningful con-
clusion drawn from strains lacking such analysis as our
phenotypic data were consistent with the WGS results.

Conclusions

The mcr-1 colistin gene is still present in E. coli isolates
from the SA poultry industry, and it is a public health
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concern. More so that some of these positive strains carry
virulence genes similar to those associated with human dis-
eases. The results seem to suggest that carbapenem resis-
tance–associated genes and other colistin resistance
determinants are uncommon among E. coli isolates in the
poultry sector. Of concern is the high prevalence of resistance
to the tetracycline and b-lactam classes of antibiotics, which
could potentially present a problem if transferred through the
food chain to humans. The outcome highlights the need for
routine veterinary surveillance and monitoring of AMR to
curb the spread. In addition, regulations guiding veterinary
use of antimicrobials and practices in the poultry informal
sector must be strengthened.
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