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Abstract
Different non-invasive techniques have been used to determine herbivore diet composition from 
faecal samples, including micro-histological analysis of epidermal fragments. This method can 
provide reliable semi-quantitative data through the identification of plant cell structures visualized 
under an optical microscope. However, this method is highly time-consuming and it requires 
significant expertise in microscopic identification. Since micro-histological analysis is based on 
pattern recognition, automated identification and counting of epidermal fragments using artificial 
intelligence (AI) could be used to make this method more time efficient. We developed a software 
application based on an AI model that, appropriately trained, can identify and count epidermal 
fragments from photographed microscope slides. We compared the performance of this model to 
that of visual identification by a trained observer using in vitro mixtures of fragments from two plant
species, Arbutus unedo and Rubia peregrina, with very different epidermal characteristics. Both the 
human observer and the AI model estimated proportions of plant fragments very close to those of 
the original mixtures. In addition, once trained the AI model was over 350 times faster in identifying
and counting fragments compared to a human observer. Our study highlights the potential of AI to 
be applied to the study of herbivore diets for labour intensive pattern recognition tasks.
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Introduction
Knowledge of diet composition is often required in studies on wild herbivores. Diet composition is
most efficiently estimated non-invasively from fecal samples. Several methods have been used for
such purposes, with micro-histological analysis of epidermal fragments being one of the most useful
(e.g. Stewart, 1967; Bartolomé et al., 1995). This well-established method provides reliable semi-
quantitative  data  through  the  identification  of  plant  cell  structures,  mainly  the  epidermis  and
trichomes,  visualized  under  an  optical  microscope.  However,  this  method  requires  significant
expertise in microscopic identification, and it is also highly time-consuming (Holecheck and Gross,
1982).  Other  methods,  such as  near  infrared  reflectance  spectroscopy (NIRS)  (e.g.  Coates  and
Dixon, 2008), quantification of n-alkanes (e.g. Ferreira et al., 2007), isotope stability analysis (e.g.
Codron and Brink, 2007) and genetic meta-barcoding (e.g. Pegard et al., 2009; Espunyes et al.,
2019) have also been used for herbivore diet estimation.  However, many of these techniques are
costly, require advanced laboratory instrumentation, and may not provide direct  quantification of
dietary proportions. No method has managed to provide more accurate information of the dietary
proportion  of  herbivore  diets  than  micro-histological  analysis  (Pareja  et  al.,  2021).  Therefore,
automating the reading of microscopic slides could represent a major advance in the analysis of
herbivore diet composition. 

Since micro-histological analysis is based on pattern recognition, artificial intelligence (AI), in
particular deep learning networks, could be used automate the process of identifying and counting
epidermal fragments in microscope slides. Deep learning has been used to develop efficient models
for object classification, such as Alexnet (Krizhevsky et al., 2012). Although deep learning has seen
a broad range of recent uses in ecological research (Christin et al. 2019, Høye et al 2021), the only
studies  we  are  aware  of  that  have  used  deep  learning  algorithms  for  micro-histological
determination of herbivore diets are both over ten years old (Larcher and Costaguta, 2004; Larcher
et al., 2008).  With recent advances in image processing, deep learning algorithms and computing
power (Bochkovskiy et al. 2020), we believe it is time to re-evaluate the possibility of using deep
learning methods improve the efficiency of micro-histological analysis of herbivore diets.

The aim of this work was to evaluate the speed and accuracy of a deep learning algorithm to
automatically identify and count epidermal plant fragments from photographed microscope slides.
For this purpose, we developed a software application based on the YOLO (You Only Look Once)
algorithm (Redmon et  al.  2016),  which is  a  fast  neural  network-based algorithm that  has  been
widely  used  for  object  detection  and  classification.  We  used  the  current  version  YOLOv5
(https://github.com/ultralytics/yolov5), which has models of great accuracy and speed compared to
other  deep  learning  algorithms.  We developed  our  software  application  to,  once  appropriately
trained, automatically identify and count epidermal fragments in images from microscope slides.
We evaluated  how accurate this software application was in correctly identifying the proportions of
epidermal fragments in samples with mixed cell proportions using in vitro mixed samples of two
plant species selected because of their clear epidermal differences. We also compared the accuracy
and time efficiency of the software to that of a human observer. We used this simple in vitro design
since  it  provided  great  control  of  the  original  mixtures,  which  is  a  requirement  for  a  rigid
assessment of identification accuracy.

Methods
We performed the trial  using two plant species,  Arbutus unedo,  which has polygonally shaped
epidermal cells, and Rubia peregrina, which has lobularly shaped epidermal cells (Fig. 1). The two
species were mixed in different proportions to simulate mixed herbivore diets. An amount of 5 g of
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leaves of each species were dried in an oven at 60ºC until constant weight was obtained, after which
the dried leaf material was ground in a 1 mm cutting mill. With the ground material, four mixtures
were made with different percentage of weight used of each species: Arbutus 5% – Rubia 95% (Mix
1);  Arbutus 25% –  Rubia  75% (Mix 2);  Arbutus 60% –  Rubia 40% (Mix 3) and  Arbutus 90% –
Rubia 10% (Mix 4). 

We prepared 10 microscope slides from each mixture following the method of Stewart (1967)
and modified by Bartolomé et al. (1998). From each mixture, 0.5 g of material was suspended in 3
ml of concentrated HNO3 to allow non-epidermal tissue digestion. The samples were placed in a
water bath at 80˚C for 2 minutes and then diluted with 200 ml of distilled water. This suspension
was sieved through 0.25 mm filter, and the solid filtered material recovered and suspended in 3 ml
of NaClO for 15 minutes, in order to bleach the epidermal fragments. The samples were diluted
again with 200 ml of distilled water and the solid material collected from the 0.25 mm filter. A
sample  of  the  recovered  material  was  spread  in  a  50% aqueous  solution  of  glycerin  over  ten
microscope glass slides, at a density that prevented any significant overlapping of fragments. Cover
slips (24 x 60 mm) were fixed to the slides with DPX varnish (Herter Instruments, Spain). 

We used a Nikon Eclipse Ci-L microscope take photographs of the microscope slides at 100x
magnification. The photographs had a resolution of 5400 x 3958 pixels, and each contained between
1 and 5 epidermal fragments. We took a total of just over 100 photographs of each mixture (101 -
115 per slide), including 170-219 fragments per mixture. Our data consisted of 604 photographs and
1124 epidermal fragments used for training the AI model and an additional 423 photographs taken
to compare the efficiency of the AI algorithm against a human observer (J. Bartolomé Filella). For
the training data, a trained observer identified all epidermal fragments from the photographs and
labeled  each  fragment  to  species  using annotation  tools  in  LabelImg  (v1.8.0,
https://github.com/tzutalin/labelImg). Both the the human observer and the AI model identified and
classed the fragments in each of the 423 evaluation photographs photograph, and the time required
for these tasks were recorded for each method.

The AI model included a set of deep learning algorithms developed for object detection and
classification implemented in the YOLOv5 architecture (https://github.com/ultralytics/yolov5). This
is  a  Python  implementation  of  the  YOLO  system  using  the  Pytorch  framework
(https://pytorch.org/).  Both  YOLOv5  and  Pytorch  are  available  as  open  source  software.  The
YOLOv5 architecture consists of three major components;  a "backbone" which extract features
from images, a "neck" which mixes and combines feature maps from the backbone and make them
available for classification, and finally a "head" which takes prepared features from the neck and
applies box and class prediction steps. The model was based 21.2 million parameters and 2 classes
of objects (i.e. A. unedo and R. peregrina). For ease of use we attached the AI model to a graphic
interface for the Windows operating system.  

The training of the AI model was carried out using classifiers based on deep learning features
targeting micro-anatomical plant traits in the images. This method has a very high accuracy, even
with  high  morphological  variation  of  structures  and  the  presence  of  noise  from  the  image
acquisition (Aono et al., 2021). To further improve the accuracy of the AI model and its robustness
in the image acquisition process, as well as to minimize over fitting in the training process, we used
data augmentation to generate to expand the original 604 images to an augmented data set of 2,416
images. Data augmentation was conducted using the Albumentation libraries proposed by Buslaev
et al. (2020). It consisted of constructing  3 additional versions of each original image where we
randomly  adjusted  blur,  contrast,  hue,  brightness,  horizontal  and  vertical  orientation.  The
augmented datasets was split into a training bin with 2,174 images and a validation bin with 242
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images. The model was trained in 250 epochs and achieved a mean average precision (mAP) of 0.
993. The training was done on a virtual machine in Google Colab Pro with a GPU NVIDIA V100.

Once trained, the accuracy and efficiency of the software was compared to a human observer
using the additional datasets of 423 images that were novel to the model. The AI model predictions
for this comparison were done using a computer with a Intel(R) Core (TM) i7-9750H processor
with a  base frequency of  2.6 GHz and a maximum clock speed of 4.50 GHz (6 cores and 12
threads), a NVIDIA GTX 1660 Ti GPU and 12 GB of RAM.

For both the AI model and the human observer the number of fragments identified for each
species was transformed into a percentage. To provide an estimate of the accuracy of the human
observer and the AI model, we correlated percentages  of  A. unedo estimated from each of these
two methods to those of the original mixtures using Pearson correlation coefficients. To provide an
estimate of how agreement in the estimates provided by the human observer and the AI model we
also correlated the percentages derived from the two methods. We did not correlate the percentages
of  R. peregrina  since it  would have derived identical results.  For each mixture,  we used two
proportion  z-tests  to  evaluate  pair-wise  differences  between the  percentage  of  fragments  of  A.
unedo estimated by the AI model and the percentage in the original mixture, in the percentage of
fragments of A. unedo estimated by the human observer and the percentage in the original mixture,
as well as in the percentage estimated by the AI model and by the human observer. For all statistical
tests, alpha error was set to 0.05.

Results and discussion
Estimates of the proportion of  A. unedo were highly correlated with the original mixtures for both
the human observer (r>0.99, p<0.001) and the AI model (r>0.99, p=0.002). There was also a high
level  of  agreement  between  estimates  from  the  human  observer  and  the  AI  model  (r>0.99,
p<0.001). The error compared to the original mixtures ranged between 1.5% to 9.0% for the AI
model and between 2.0% to 7.0% for the human observer (Table 1). For neither detection method,
none  of  the  estimated  mixtures  deviated  significantly  from the  original  ones,  nor  did  the  two
detection methods deviate significantly from each other. The maximum difference between methods
was 2.6%, observed with the mixture of 90% Arbutus unedo and 10% Rubia peregrina. The time
required for counting and classifying 200 fragments was over 350 times faster for the AI model (35
seconds) compared to the time required for the human observer (3 hours).

Our AI model achieved great accuracy in the identification and counting of epidermal plant
fragments in microscope slides of mixed samples, and gave almost identical results to those from a
human observer. Although we acknowledge that this method would still require the time consuming
steps of sample preparation and taking photographs, which in our case took approximately 4 hours
to  prepare  the  10  microscope  slides,  the  increased  time  efficiency  of  the  AI  model  for  object
detection and identification was substantial, using approximately 0.3% of the time required by the
human  observer.  Although  we  did  observe  some  errors  in  the  estimated  proportions  for  both
methods,  those errors were probably due to the fact that the original mix was made on a weight
basis,  while  the  results  of  the  micro-histological  analysis  were  based  on  fragment  counts.  In
addition,  the  erodability  of  both  species  could  have  been  slightly  different,  which  could  have
accounted for the observed differences between the estimated and real proportions of plants in our
artificial mixtures. However, estimations of the proportions in mixtures of plants with less distinct
cell structures than those used here may obviously give lower accuracy that what we observed. 

Although this design did not include plant fragments that had passed animal digestion tracts
we regard it appropriate for two reasons. First, it allowed us to test the method with very high
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precision since it permitted full control of the original plant mixtures. Second, although the plant
fragments themselves may be influenced by animal digestion, the method rests on identification of
the shape of the cellulose cell walls. These do not generally change shape after passing animal
digestion (Bartolomé et al. 1995). Therefore, we believe that our experimental design provides a
robust  and accurate  test  of  the  suitability  for  using  AI  to  determine animal  diet  using  micro-
histology.

Artificial intelligence has previously been used for plant identification based on digital leaf
images, employing the combination of shape and texture modeling methods (Pankaja and Suma,
2020), although not from micro-anatomical characters. Using neural networks for the identification
of  epidermal  fragments  of  four  different  species,  Larcher  and  Costaguta  (2004)  achieved  an
accuracy of between 62.5 and 87.5%. Our results show that precision can be increased from these
earlier estimates using modern deep learning algorithms. Data augmentation procedures provide an
efficient method to achieve such high precision by allowing the model to be trained on a larger and
more diverse data set that what would be practically possible to generate through physical samples
(Buslaev  et  al.  2020).  Our  study clearly  shows  that  this  methodology offers  great  potential  to
automatically identify and quantify the diversity of plant fragments that appear in fecal samples
improving the study of herbivore diets. 
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Fig. 1 Fragments of  Arbutus unedo (a) and Rubia peregrina (b) at 100 times magnification, with 
the cell structures used for classification clearly visitble.
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Table 1 Percentages of Arbutus unedo and Rubia peregrina in the original mixes (OM), percentages of A. unedo estimated from micro-histological 
analysis by a human observer (Human) and using the AI model (AI), number of identified fragments by the human observer and the AI model in 423 
images used for methodological evaluation, pair-wise comparisons of the deviations from the original mixtures for the human observer (Human-OM) 
and the AI model (AI-OM), as well as pair-wise comparisons between the two estimation methods (AI-Human).  

Percentage* N** Human-OM AI-OM AI-Human

OM Human AI Human AI Diff*** Z P Diff*** Z P Diff*** Z P

Mix 1   5.0% / 95.0%   9.0% / 91.0%   8.2% / 91.8% 149 155  4.0% 0.12   0.406  3.2% 0.04 0.531 -0.8% 1.54 >0.999

Mix 2 25.0% / 75.0% 28.4% / 71.6% 29.5% / 70.5% 170 178  3.4% 0.26   0.701  4.5% 0.10 0.578  1.1% 1.12 >0.999

Mix 3 60.0% / 40.0% 59.0% / 41.0% 58.5% / 41.5% 193 200 -1.0% 1.54 >0.999 -1.5% 0.79 0.943 -0.5% 1.54 >0.999

Mix 4 90.0% / 10.0% 83.6% / 16.4% 81.0% / 19.0% 219 221 -6.4% 0.33   0.250 -9.0% 0.62 0.108 -2.6% 0.39 >0.999

* Percentages of each species in the original mixtures as well as those estimated by the AI model and the human observer.
** Number of fragments identified by the two quantification methods in 423 photograps used for model verification.
***Difference between the AI model and the human observer in estimated percentages of Arbutus unedo.


