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Abstract

Laboratory experiments as well as some field essays have revealed that the intracellular bacterium
Wolbachia, deliberately introduced in Aedes spp female mosquitoes, drastically reduces their vec-
tor competence for dengue virus and, also, other mosquito-borne viral diseases. However, female
mosquitoes infected with Wolbachia still need to ingest human blood while male mosquitoes, either
wild or Wolbachia-carrying, do not bite people. As such, Wolbachia-carrying females may transmit the
virus to people during blood-feeding, even though with far less probability than the wild ones. There-
fore, massive releases of Wolbachia-carrying females may increase both the nuisance and the epidemi-
ological risk among human residents. With the goal of exploring in depth the practical aspects of sex-
biased releases, we introduce in this paper a simple sex-structured model of Wolbachia invasion that
brings forward the possibility of developing male-biased release strategies of Wolbachia-carriers lead-
ing to Wolbachia invasion. Thanks to this model, we study at length the minimal amount of mosquitoes
necessary to complete this task, according to the relative sex-ratio of the released mosquitoes and the
release schedule. We also pay attention to the estimate of the time needed to achieve the ultimate
population replacement.

Keywords: Wolbachia symbiont, sex-structured model, population replacement, Aedes spp, male-biased
releases.

1 Introduction

Vector-borne diseases are an important factor threatening the health of the world. Among them, dengue

fever is the most challenging one in places where its principal vector, Aedes aegypti, is abundant. In-

deed, Aedes females need blood-feeding by human blood (preferably) to maturate their eggs before de-

posit. During these blood meals, the dengue virus may be passed from an infected female vector to a
∗Corresponding author, pierre-alexandre.bliman@inria.fr.
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susceptible human host, or from an infected human to a susceptible female vector, giving rise to trans-

mission cycle. For that reason, vector control has become an essential issue in many countries where

dengue is endemic or circulating, and even in countries where Aedes spp, like Aedes albopictus and

Aedes polynesiensis are either established (like in Southern Europe and South Pacific, respectively),

or invading new places. Note also that Aedes albopictus is the primary vector of Chikungunya, while

Aedes polynesiensis is the primary vector of Lymphatic filariasis. In addition, through travels, human

mobility has increased the risk of vector-borne diseases outside endemic areas.

In the 1950s and later, the primary tool to control adult mosquitoes was adulticide. We know now

that this was a great mistake, as mosquitoes became more and more resistant, leading to an arms

race between mosquitoes and chemical companies. At such a point, only very few insecticides are now

authorized (only deltamethrin in France, for instance), if they have not become somehow ineffective in

some places. Moreover the use of adulticides, which are not species-specific, is quite detrimental to

biodiversity.

Larvicides have been developed later, to target mosquitoes at the larvae stages in breeding sites.

However, while very efficient in laboratory conditions, their impact in the field can be fairly limited

because many breeding sites are not accessible. Bacillus thuringiensis israelensis, also called Bti, is

the most well-known larvicide. This biological pesticide has recently raised concerns regarding its

safety for crops, aquatic ecosystems, and other possible adverse side effects [1].

In front of these drawbacks, species-specific, autocidal control methods were suggested, like the

Sterile Insect Technique (SIT). The latter is a relatively old biological control technique, newly used

against several agricultural pests and also against some mosquito species, including Aedes spp. It

relies on mass releases of sterilized males (usually treated by ionizing radiation), which transfer sterile

sperm to the wild females with which they mate, resulting in unviable offspring, and gradual decay

of the targeted population. It is also possible to sterilize mosquito males using Wolbachia bacteria

[2]. However, whatever the sterilization technique, SIT, while conceptually very simple, is complex to

conduct in the field and at an industrial scale. The main objective, in general, is a drastic decrease

in the population size or elimination. While elimination can be helpful in some places, in other sites,

the drastic reduction of the targeted mosquito population may favor the settlement of other mosquito

species even more detrimental than the initial one. Whence the interest in replacing the wild mosquito

population with a new population bearing a reduced vectorial capacity.

Biologists have shown that such an operation is possible. Indeed, laboratory experiments have re-

vealed that the intracellular bacterium Wolbachia, deliberately introduced in A. aegypti, A. albopictus

or A. polynesiensis female mosquitoes, drastically reduces the vector competence of the mosquito for
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dengue virus and other mosquito-borne viral diseases. In particular, focusing on dengue, Wolbachia de-

creases the virulence of the dengue infection by increasing the (extrinsic) incubation period or blocking

the virus [3–7]. Wolbachia is only transmitted maternally from a female to her offspring. Cytoplasmic

incompatibility (CI) occurs when a female uninfected by Wolbachia is inseminated by an infected male,

resulting in inviable eggs. This grants a reproduction advantage to infected females against uninfected

ones, facilitating the Wolbachia spread (see Table 1, page 6).

The establishment of the bacterium has been initially envisioned through the release of whole pop-

ulations, with approximately equal proportions of male and female infected mosquitoes. However, just

like the uninfected ones, the infected females are responsible for nuisance biting. They may also partic-

ipate in disease transmission in case of faulty treatment, loss of complete cytoplasmic incompatibility,

etc. It was shown in [8] that releasing sterile females can increase the basic reproduction number, i.e.,

R0 ≫ 1, and thus ignite an epidemic. Of course, the same disturbing effect may occur with any im-

plementation of the replacement method, and this is why reducing the amount of Wolbachia-carrying

females in the releases is necessary. Minimizing the numbers of females introduced during the release

period should indeed be considered a desirable goal.

Several models have been developed to study release strategies for population replacement, see for

instance the references [9–20] for models with no sex structure, and [21–28] for sex-structured models.

Apart from integral equations in [23], most sex-structured models found in the literature use ordinary

differential equations, namely 4-dimensional [22, 25, 26], 5-dimensional [28] or 6-dimensional [24, 27],

according to the way they account for the aquatic phases1. As is the case (by construction) for the

models without sex-structure, most sex-structured models consider introduction of mixed (males and

females) infected population. Only few studies paid specific attention to the effects of different release

sex-ratios. They showed that Wolbachia establishment can indeed occur through releases composed

mainly of male mosquitoes [23,24,28]. Reference [23] has been apparently the first to establish such a

possibility, comparing strategies with equal sex-ratio release and with 95% male release. Reference [28]

considered constant, continuous, releases and provided an analysis of the subregions of the parameter

space where replacement is unsuccessful, possibly successful or always succesful2. Last, [24] studied

the effects of initial releases with different sex proportions, and considered continuous releases with

equal sex-ratio and with no female strategies.

Our aim in the present paper is to explore more in depth the realization of sex-biased releases, not

only from a mathematical point of view, but also from a more practical perspective. More precisely, we
1Some of the contributions cited introduce supplementary equations to model dengue epidemic spread in human population.

This aspect is not considered here.
2Assuming absence of competition at aquatic and adult phases, the model employed in [28] may yield unbounded trajectories.
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seek to estimate the minimal amount of Wolbachia carriers necessary to complete Wolbachia invasion,

according to the relative sex ratio of the released mosquitoes. We consider impulsive releases, more

realistic than continuous ones, and also investigate a feature quite important in practice: the time

needed to achieve population replacement, according to the release schedule. For this, a simple sex-

structured 4-dimensional ODE model is introduced below, extending the model in [29]. It allows to

model and study the release process, and to investigate different male/female compositions capable of

achieving successful infection by Wolbachia.

The paper is organized as follows. In Section 2, we build a sex-structured model describing the dy-

namics of wild and Wolbachia-carrying mosquitoes and provide some general analysis results. Then,

in Section 3, we study the existence of steady states for the model, according to some threshold pa-

rameters. The stability/instability properties of these steady states are studied in Section 4. Finally,

in Section 5, we provide numerical simulations to study release scenarios and discuss the results. We

focus especially on the minimal amount of mosquitoes necessary to achieve replacement, according to

the relative sex-ratio of the released mosquitoes and to the schedule of the releases, and on estimating

the time needed to achieve the population replacement. Last, concluding remarks are given in Section

6.

2 Formulation of the model

In 2019, Bliman et al. [29] have proposed a simple sex-structured model that describes the population

dynamics of wild adult mosquitoes. This model relies on the following basic assumptions:

(i) All females are equally able to mate.

(ii) After only one mating, a female remains fertile all her life.

Let Mn(t) and Fn(t) denote the densities of wild male and female mosquitoes at each day t ≥ 0. Us-

ing these variables, the mathematical formulation of the bidimensional model proposed in [29] is the

following: 
dMn

dt
= rnρnFne

−σ(Mn+Fn) − µnMn,

dFn

dt
=
(
1− rn

)
ρnFne

−σ(Mn+Fn) − δnFn,

(1a)

(1b)

where rn ∈ (0, 1) denotes the primary sex ratio, ρn > 0 expresses the mean number of eggs produced

by a single wild female on average per day, and µn, δn > 0 represent the natural mortality rates of wild

male and female insects, respectively. The exponential term in (1) models the direct and/or indirect

competition effect at different stages (larvae, pupae, adults), through the parameter σ > 0. In this
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context, a smaller value of σ implies that a larger fraction of eggs may survive to adulthood, and a

larger value expresses a stronger competition and/or the presence of fewer breeding sites, so that σ

plays the role of a carrying capacity parameter.

Let us now suppose that, besides the population of wild mosquitoes Pn(t) := Mn(t) + Fn(t), another

population Pw(t) := Mw(t) + Fw(t) of mosquitoes transinfected with Wolbachia symbiotic bacterium is

present in the same locality. Notably, Mw(t) and Fw(t) define the numbers (or densities) at each day

t ≥ 0 of Wolbachia-carrying male and female insects, respectively.

To model the reproduction and interaction of both mosquito populations, it is worthwhile to recall

[30,31] that under favorable climatic conditions

• Wolbachia symbiotic bacterium is maternally inherited, i.e., it is transmitted from the Wolbachia-

carrying female to all her offsprings;

• the presence of Wolbachia in the mosquito cells induces a particular reproductive phenotype of

cytoplasmic incompatibility (CI3)

Based on these two distinctive features illustrated in Table 1, we now proceed to formulate a four-

dimensional sex-structured model that describes the population dynamics of wild and Wolbachia-car-

rying mosquitoes:



dMn

dt
=rnρn

FnMn

Mn + γMw
e−σ(Mn+Fn+Mw+Fw) − µnMn,

dFn

dt
=
(
1− rn

)
ρn

FnMn

Mn + γMw
e−σ(Mn+Fn+Mw+Fw) − δnFn,

dMw

dt
=rwρwFwe

−σ(Mn+Fn+Mw+Fw) − µwMw

dFw

dt
=
(
1− rw

)
ρwFwe

−σ(Mn+Fn+Mw+Fw) − δwFw.

(2a)

(2b)

(2c)

(2d)

In the above formulation, the parameters bearing the subscript ‘w’ refer to the Wolbachia-carrying

population and their meanings are similar to the parameters bearing the subscript ‘n’ that are included

in the original bidimensional system (1), which corresponds to non-infected mosquitoes. In Eqs. (2a)-

(2b), the positive parameter γ ≤ 1 denotes the mating competitiveness of Wolbachia-carrying male

mosquitoes that can be altered by some Wolbachia strains. Furthermore, the recruitment terms in

(2a)-(2b) include only the successful matings of wild females Fn (i.e., those leading to production of the

viable offspring), which occur with a probability Mn

Mn + γMw
.

3The CI phenotype ensures the absence of viable offspring originated from matings between uninfected females and Wolbachia-
carrying males.
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Table 1: Illustration of the maternal transmission and the CI reproductive phenotype induced by Wol-
bachia.

Mosquito offspring
Adults Wolbachia-infected ♀ Uninfected ♀

Wolbachia-infected ♂ Infected Inviable eggs
Uninfected ♂ Infected Uninfected

Remark 1. It is worthwhile to point out that the dynamical system (2) bears some resemblance with the

sex-structured model introduced by Campo-Duarte et al. [21]. However, there is a principal difference

laying in the definition of the recruitment terms or “birth functions”. Namely, the recruitment terms in

(2) agree with the Ricker-type model studied in [29], whereas the recruitment terms employed in [21] stem

from the harmonic-type “birth functions” that have been originally introduced in [32] for discrete-time

models.

System (2) can be written in the vector form as

dX

dt
= f(X), X :=

(
Mn, Fn,Mw, Fw

)
,

where the vector field f :=
(
f1(X), f2(X), f3(X), f4(X)

)
represents the right-hand side of the ODE sys-

tem (2) and can be easily deduced.

Also, let us denote by X(t;X0) the solution of (2) engendered by the initial condition

X0 :=
(
Mn(0), Fn(0),Mw(0), Fw(0)

)
.

If the initial condition X0 ∈ R4
+ then it is easy to see that X(t;X0) ∈ R4

+ for all t ≥ 0. In effect, since

dMn

dt

∣∣∣∣
Mn=0

= 0,
dFn

dt

∣∣∣∣
Fn=0

= 0,
dMw

dt

∣∣∣∣
Mw=0

≥ 0,
dFw

dt

∣∣∣∣
Fw=0

= 0,

the positive invariance of R4
+ becomes obvious and it holds that X(t;X0) ≥ 0 for all t ≥ 0 whenever

X0 ∈ R4
+.

Moreover, we have the following result related to the uniform ultimate bound of all solutions to the

system (2), expressed in terms of the norm ∥X∥1 := Mn + Fn +Mw + Fw in R4
+.

Proposition 1. The set

Ω :=
{
X =

(
Mn, Fn,Mw, Fw

)
∈ R4

+ : ∥X∥1 ≤ P̂
}
, P̂ :=

1

σ
ln

(
max{ρn, ρw}

min{µn, δn, µw, δw}

)
(3)

is an attracting set. In other words, for any initial condition X0 ∈ R4
+,

lim
t→+∞

dist(X(t;X0),Ω) = 0, that is lim sup
t→+∞

∥X(t;X0)∥1 ≤ P̂ . (4)
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Proof. First, we note that along the trajectories of (2) it holds that

d∥X∥1
dt

≤
(
ρnFn + ρwFwρ)e

−σ∥X∥1 −min{µn, δn, µw, δw}∥X∥1

≤
(
max{ρn, ρw}e−σ∥X∥1 −min{µn, δn, µw, δw}

)
∥X∥1.

For any trajectory and any t ≥ 0, one thus has ∥X(t;X0)∥1 ≤ x(t), where x is the solution of the

comparison system
dx

dt
= max{ρn, ρw}

(
e−σx − e−σP̂

)
x, x(0) = ∥X0∥1.

As the latter converges towards P̂ except if ∥X0∥1 = 0, one deduces (4). ■

For subsequent use, let us define the four following quantities:

QM
n :=

rnρn
µn

, QF
n :=

(
1− rn

)
ρn

δn
, QM

w :=
rwρw
µw

, QF
n :=

(
1− rw

)
ρw

δw
. (5)

These positive constants represent the basic offspring numbers related to the four sub-populations of

mosquitoes. It is worthwhile to recall that the basic offspring number expresses an average number

of descendants produced by one individual during his/her lifespan in the absence of intraspecific com-

petition. Thus, QM
n (resp. QF

n ) denotes the average number of wild male (resp. female) descendants

produced by one wild male (resp. female) mosquito during his (resp. her) lifespan. The definitions

of QM
w and QF

w are interpreted likewise for the Wolbachia-carrying sub-population of male and female

insects.

3 Existence of equilibrium points

The equilibrium points of (2) are the nonnegative solutions of the following system of algebraic equa-

tions: 

0 =rnρn
FnMn

Mn + γMw
e−σ(Mn+Fn+Mw+Fw) − µnMn,

0 =
(
1− rn

)
ρn

FnMn

Mn + γMw
e−σ(Mn+Fn+Mw+Fw) − δnFn,

0 =rwρwFwe
−σ(Mn+Fn+Mw+Fw) − µwMw,

0 =
(
1− rw

)
ρwFwe

−σ(Mn+Fn+Mw+Fw) − δwFw.

(6a)

(6b)

(6c)
(6d)

The existence of nonnegative solutions of (6) is closely related to the values of basic offspring num-

bers introduced in (5), and their coordinates can be expressed in terms of QM
n , QF

n , Q
M
w , and QF

w . The

latter is summarized by the following result.

Theorem 1. The dynamical system (2) admits exactly the following nonnegative equilibria.

• The trivial equilibrium point E0 := (0, 0, 0, 0) exists regardless of the values of QM
n , QF

n , Q
M
w , and

QF
w .
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• A fully non-infected equilibrium point En :=
(
M ♯

n, F
♯
n, 0, 0

)
exists if and only if QF

n > 1, and its

positive coordinates are

M ♯
n =

QM
n

QM
n +QF

n

1

σ
lnQF

n , F ♯
n =

QF
n

QM
n +QF

n

1

σ
lnQF

n . (7)

• A fully infected equilibrium point Ew :=
(
0, 0,M ♯

w, F
♯
w

)
exists if and only if QF

w > 1, and its positive

coordinates are

M ♯
w =

QM
w

QM
w +QF

w

1

σ
lnQF

w , F ♯
w =

QF
w

QM
w +QF

w

1

σ
lnQF

w . (8)

• A strictly positive coexistence equilibrium point Ec :=
(
M c

n, F
c
n,M

c
w, F

c
w

)
exists if and only if QF

n >

QF
w > 1 and its coordinates can be expressed as

M c
n =

γ

σ∆c
QM

n QM
w QF

w lnQF
w ,

F c
n =

γ

σ∆c
QF

nQ
M
w QF

w lnQF
w ,

M c
w =

1

σ∆c
QM

n QM
w

(
QF

n −QF
w

)
lnQF

w ,

F c
w =

1

σ∆c
QM

n QF
w

(
QF

n −QF
w

)
lnQF

w ,

(9a)

(9b)

(9c)

(9d)

where

∆c := QM
n

(
QF

n −QF
w

)(
QM

w +QF
w

)
+ γQM

w QF
w

(
QM

n +QF
n

)
. (10)

In general terms, Theorem 1 states that system (2) may admit one, two, three or four equilibria

depending on the underlying positive values of QF
n and QF

w . Figure 1 summarizes the results of Theorem

1 by displaying five regions (I–V) in the positive quadrant of the
(
QF

n , Q
F
w

)
-plane that admit one, two,

three or four nonnegative equilibria. Namely, when QF
n ≤ 1 and QF

w ≤ 1, only the trivial equilibrium

E0 exists (see Region I in Figure 1). Two nonnegative equilibria E0 and En (resp. E0 and Ew) exist

when QF
n > 1 ≥ QF

w (resp. QF
n ≤ 1 < QF

w), which corresponds to the Region II (resp. Region III). When

1 < QF
n ≤ QF

w (Region IV), three nonnegative equilibria E0,En, and Ew exist, while 1 < QF
w < QF

n

(Region V) ensures existence of four nonnegative equilibria E0,En,Ew, and Ec.

Proof. (Theorem 1). Clearly, the trivial equilibrium E0 ∈ Ω is a solution of the algebraic system (6), and

it exists for any positive values of QM
n , QF

n , Q
M
w , and QF

w . This equilibrium corresponds to the extinction

of all sub-populations of mosquitoes. Notice that for any solution
(
Mn, Fn,Mw, Fw

)
of the system (6), it

holds that

Mn = 0 ⇔ Fn = 0 and Mw = 0 ⇔ Fw = 0.
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II

V

III

Q 
!

IV

Q"
!

1

1

0

I

Figure 1: Existence of nonnegative equilibria of the system (2): only the trivial equilibrium E0 exists in
the Region I (uncolored), two equilibria (E0 and either En or Ew) exist in the Regions II and III, respec-
tively (red- and blue-colored), three equilibria E0,En, and Ew exist in the Region IV (green-colored),
and four equilibria E0,En,Ew, and Ec exist in the Region V (yellow-colored).

In the absence of Wolbachia-infected sub-populations (Mw = Fw = 0), the positive coordinates

M ♯
n, F

♯
n of the fully non-infected equilibrium En are solutions of the bidimensional sub-system 0 =rnρnF

♯
ne

−σ
(
M♯

n+F ♯
n

)
− µnM

♯
n,

0 =
(
1− rn

)
ρnF

♯
ne

−σ
(
M♯

n+F ♯
n

)
− δnF

♯
n.

(11a)

(11b)

From (11b), we get
δn(

1− rn
)
ρn

= e−σ
(
M♯

n+F ♯
n

)
< 1,

which requires

QF
n =

(
1− rn

)
ρn

δn
> 1 (12)

for obtaining a feasible (positive) solution that fulfills

M ♯
n + F ♯

n =
1

σ
lnQF

n .
(13)

From (11a), we then deduce
F ♯
n

M ♯
n

=
µn

rnρn
eσ
(
M♯

n+F ♯
n

)
=

QF
n

QM
n

. (14)

Finally, from the relationships (13) and (14), we have(
1 1

−QF
n QM

n

) (
M ♯

n

F ♯
n

)
=

(
1

σ
lnQF

n

0

)
, (15)

meaning that M ♯
n, F

♯
n are in one-to-one correspondence with the solutions of (15). Moreover,

∆n := det

∣∣∣∣ 1 1
−QF

n QM
n

∣∣∣∣ = QM
n +QF

n ̸= 0.
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Therefore, when (12) holds, linear system (15) has a unique solution (7) that can be obtained directly

by Cramer’s rule.

Similarly, in the absence of non-infected sub-populations (Mn = Fn = 0), the positive coordinates

M ♯
w, F

♯
w of the fully infected equilibrium Ew are solutions of the bidimensional sub-system 0 =rwρwF

♯
we

−σ
(
M♯

w+F ♯
w

)
− µwM

♯
w,

0 =
(
1− rw

)
ρwF

♯
we

−σ
(
M♯

w+F ♯
w

)
− δwF

♯
w.

(16a)

(16b)

This system is formally identical to (11), and its unique positive solution
(
M ♯

w, F
♯
w

)
renders the explicit

expressions (8) for M ♯
w and F ♯

w under the condition

QF
w =

(
1− rw

)
ρw

δw
> 1. (17)

Let us now establish the conditions for existence of the strictly positive equilibriumEc =
(
M c

n, F
c
n,M

c
w, F

c
w

)
.

From (6d), we have
1

QF
w

=
δw(

1− rw
)
ρw

= e−σ
(
Mc

n+F c
n+Mc

w+F c
w

)
< 1, (18)

which requires (17) to be fulfilled together with

M c
n + F c

n +M c
w + F c

w =
1

σ
lnQF

w .
(19)

Also, from (6c) we have
F c
w

M c
w

=
µw

rwρw
eσ
(
Mc

n+F c
n+Mc

w+F c
w

)
=

QF
w

QM
w

, (20)

and from (6b) we get

1

1 + γ
M c

w

M c
n

=
δn(

1− rn
)
ρn

eσ
(
Mc

n+F c
n+Mc

w+F c
w

)
=

QF
w

QF
n

⇒ QF
n

QF
w

= 1 + γ
M c

w

M c
n

, (21)

so we obtain then

M c
n + γM c

w =
QF

n

QF
w

M c
n and M c

w =
QF

n −QF
w

γQF
w

M c
n. (22)

Thus, because of (17), the existence of a strictly positive equilibrium requires to impose the condition

QF
n > QF

w > 1. (23)

Under this condition and using (21), one gets from (6a) that

F c
n

M c
n

=
µn

rnρn
eσ
(
Mc

n+F c
n+Mc

w+F c
w

) (
1 + γ

M c
w

M c
n

)
=

QF
w

QM
n

QF
n

QF
w

=
QF

n

QM
n

. (24)

Finally, from equations (19), (20), (22), and (24), we have
1 1 1 1
0 0 QF

w −QM
w

QF
n −QF

w 0 −γQF
w 0

QF
n −QM

n 0 0



M c

n

F c
n

M c
w

F c
w

 =


1

σ
lnQF

w

0
0
0

 . (25)
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Thus, the coordinates M c
n, F

c
n,M

c
w, and F c

w of Ec are in one-to-one correspondence with the positive

solutions of linear system (25). Furthermore, the determinant of this linear system (25) is exactly ∆c

given by (10), that is,

∆c :=

∣∣∣∣∣∣∣∣
1 1 1 1
0 0 QF

w −QM
w

QF
n −Qw 0 −γQF

w 0
QF

n −QM
n 0 0

∣∣∣∣∣∣∣∣
=QM

n (QF −QF,w) (QM,w +QF,w) + γQM,wQF,w (QM +QF ) ,

and it is strictly positive under the condition (23). Therefore, linear system (25) has a unique solution(
M c

n, F
c
n,M

c
w, F

c
w

)
that matches (9) and can be obtained by direct application of Cramer’s rule. ■

Remark 2. It can be verified that every possible equilibrium point pertains to the absorbing setΩ, defined

in (3), together with the positive constant P̂ . Clearly,
∥∥E0

∥∥ = 0 meaning that E0 ∈ Ω. For the boundary

equilibrium En and bearing in mind that QF
n > 1 together with formula (4), we have

∥∥En

∥∥ = M ♯
n + F ♯

n + 0 + 0 =
1

σ
lnQF

n =
1

σ
ln

((
1− rn

)
ρn

δn

)
≤ P̂ ,

meaning that En ∈ Ω. Similar rationale can be used to show that Ew ∈ Ω when QF
w > 1. Finally, when

1 < QF
w < QF

n we have

∥∥Ec

∥∥ = M c
n + F c

n +M c
w + F c

w =
1

σ
lnQF

w =
1

σ
ln

((
1− rw

)
ρw

δw

)
≤ P̂ ,

which implies Ec ∈ Ω.

4 Stability properties

Stability properties of the dynamical system (2) are naturally related to the values of QF
n and QF

w that

define the existence of its nonnegative equilibria (see Theorem 1 and Figure 1). The overview of the

situation is given in the following statement.

Theorem 2. The stability properties of the equilibrium points exhibited in Theorem 1 are as follows.

• When the extinction equilibrium E0 is the only equilibrium of system (2), it is globally asymptotically

stable (GAS). It is otherwise unstable.

• When the fully non-infected equilibrium En exists, it is locally asymptotically stable (LAS) if QF
n >

QF
w and is unstable if QF

n < QF
w .

• When the fully infected Ew exists, it is locally asymptotically stable (LAS).

• When the coexistence equilibrium Ec exists, it is unstable.

11



Using Figure 1, the results of Theorems 1 and 2 may be summarized as follows. When QF
n ≤ 1

and QF
w ≤ 1, only the trivial equilibrium E0 exists, and it is GAS (see Region I in Figure 1). When

QF
n > 1 ≥ QF

w , two nonnegative equilibria E0 and En exist, with E0 unstable and En LAS (Region II).

When QF
n ≤ 1 < QF

w , two nonnegative equilibria E0 and Ew exist, with E0 unstable and Ew LAS (Region

II). When 1 < QF
n ≤ QF

w (Region IV), three nonnegative equilibria E0,En, and Ew exist, with E0 and En

unstable and Ew LAS. Last, when 1 < QF
w < QF

n (Region V) four nonnegative equilibria exist E0,En,Ew,

and Ec, with E0 and Ec unstable and En and Ew LAS.

Notice that Theorem 2 does not assess the possibility of global asymptotic stability of En when this

equilibrium is the only one to exist, in addition to E0. The same remark applies to Ew. Indeed, such

situations are of no practical interest here, as they presuppose that one of the two populations is not

viable.

For sake of readability, the proof of Theorem 2 is decomposed in four steps, Propositions 2, 3, 4 and

5 below, which treat respectively the cases of E0,En,Ew and Ec.

To perform the stability analysis of all possible nonnegative equilibria of the system (2), let us define

for future use the Jacobian matrix of the system (2)

J(X) :=
∂f(X)

∂X
=


J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44

 (26)

where X =
(
Mn, Fn,Mw, Fw

)
, f =

(
f1(X), f2(X), f3(X), f4(X)

)
represents the right-hand side of (2),

and the precise expressions for Jij , i, j = 1, 2, 3, 4 are provided in Appendix A. The Jacobian matrix J is

defined in every point of R4
+ except in E0.

Our study will commence by analyzing the stability properties of the trivial equilibrium E0, which

exists for all positive values of basic offspring numbers QF
n and QF

w defined by (5). In this context, we

formulate the following result.

Proposition 2. If QF
n ≤ 1 and QF

w ≤ 1, the trivial equilibrium E0 = (0, 0, 0, 0) is GAS. If QF
n > 1 or

QF
w > 1 (see Regions II, III, IV, and V in Figure 1), the trivial equilibrium E0 is unstable but there always

exists a trajectory converging to E0, meaning that E0 is not a repeller.

Proof. Let QF
n ≤ 1. From the equation (2b) it is obtained that

dFn

dt
≤ δn

(
QF

n e
−σ(Mn+Fn+Mw+Fw) − 1

)
Fn ≤ δn

(
QF

n e
−σFn − 1

)
Fn.

Let ε > 0. There exists α > 0 such that Fn ∈ [0, ε] implies e−σFn ≤ 1 − αFn. Therefore, as long as

Fn < ε and QF
n ≤ 1, one has

dFn

dt
≤ δn

(
QF

n e
−σFn − 1

)
Fn ≤ −δn

(
1−QF

n + αQF
nFn

)
Fn ≤ −αδnQ

F
nF

2
n ,

12



implying that Fn converges to 0, and so does Mn. A similar rationale can be used to prove that Fw

converges to 0whenQF
w ≤ 1 and so doesMw. Altogether, we have proved that, under the conditionsQF

n ≤

1 and QF
w ≤ 1 (Region I in Figure 1), the trajectories of the system (2) engendered by any nonnegative

initial conditions converge to E0. This implies that E0 is GAS when QF
n ≤ 1 and QF

w ≤ 1.

Note that J(E0) is not defined. However, the division by zero can be avoided by applying the technique

proposed in [21]. Let us first evaluate the Jacobian matrix for Mn = ϵ > 0, Fn = Mw = Fw = 0 and then

examine its limit when ϵ → 0+. According to the expressions provided in Appendix A, we have

J(ϵ, 0, 0, 0) =


−µn rnρne

−σϵ 0 0
0

(
1− rn

)
ρne

−σϵ − δn 0 0
0 0 −µw rwρwe

−σϵ

0 0 0
(
1− rw

)
ρwe

−σϵ − δw

 ,

and the eigenvalues of this upper-triangular matrix are located on its main diagonal. As ϵ → 0+, these

eigenvalues become

λ0
1 = −µn, λ0

2 = δn
(
QF

n − 1
)
, λ0

3 = −µw, λ0
2 = δw

(
QF

w − 1
)
.

Notably, λ0
1 < 0 and λ0

3 < 0 while the signs of λ0
2 and λ0

4 are defined by QF
w and QF

w . Namely, QF
n > 1

(resp. QF
w > 1) implies that λ0

2 > 0 (resp. λ0
4 > 0). The latter ensures instability of E0 when QF

n > 1 or

QF
w > 1 (i.e., outside the Region I given in Figure 1).

The presence of two negative eigenvalues, λ0
1 < 0 and λ0

3 < 0, implies that E0 is not a repeller. Fur-

thermore, the system trajectories engendered by Mn(0) > 0, Fn(0) = 0,Mw(0) > 0, Fw(0) = 0 converge

to E0 even though it holds that QF
n > 1 and QF

w > 1. ■

It is worthwhile to highlight that Proposition 2 is biologically meaningful. Recall that QF
n ≤ 1 (resp.

QF
w ≤ 1) expresses that one wild (resp. Wolbachia-carrying) female mosquito produces on average at

most one female descendant during her lifespan. Under such assumption(s), it is expected that the

wild (resp. Wolbachia-carrying) mosquito population will be eventually driven toward extinction, i.e.,

to
(
Mn, Fn

)
= (0, 0) (resp. to

(
Mw, Fw

)
= (0, 0)). Thus, if QF

n ≤ 1 and QF
w ≤ 1 are fulfilled simultane-

ously, then E0 is the only reachable equilibrium, and it corresponds to the extinction of both mosquito

populations. Alternatively, if QF
n > 1 and QF

w ≤ 1 (resp. QF
n ≤ 1 and QF

w > 1) are fulfilled, Theorem

1 establishes the existence of another equilibrium En (resp. Ew) in the Region II (resp. Region III)

presented in Figure 1. The latter induces instability of E0 and encourages persistence of one mosquito

population.

Let us now examine the stability properties of the fully non-infected equilibrium En =
(
M ♯

n, F
♯
n, 0, 0

)
defined by (7), which exists only if QF

n > 1.

13



Proposition 3. When QF
n > 1, the fully non-infected equilibrium En =

(
M ♯

n, F
♯
n, 0, 0

)
is LAS if QF

n >

QF
w > 1 or QF

n > 1 ≥ QF
w (Regions II and V in Figure 1), and it is unstable if QF

w ≥ QF
n > 1 (Region IV in

Figure 1).

Proof. First, we assume that QF
n > 1 holds for the parameters of the model (2). Let Jn

ij , i, j = 1, 2, 3, 4

denote the entries of J(En). Using the expressions for Jij provided in Appendix A, it is easy to deduce

that

Jn
31 = Jn

32 = Jn
41 = Jn

42 = Jn
43 = 0.

Therefore, J(En) admits the following structure:

J(En) =

An
(2×2) Bn

(2×2)

On
(2×2) Cn

(2×2)



=



−µn

(
1 +

QM
n lnQF

n

QM
n +QF

n

)
µn

QM
n

QF
n

(
1− QF

n lnQF
n

QM
n +QF

n

)
Jn
13 Jn

14

−δn
QF

n lnQF
n

QM
n +QF

n

−δn
QF

n lnQF
n

QM
n +QF

n

Jn
23 Jn

24

0 0 −µw Jn
34

0 0 0 δw

(
QF

w

QF
n

− 1

)


.

To show that En is LAS in the Regions II and V given in Figure 1, it suffices to prove that all

eigenvalues λn
i , i = 1, 2, 3, 4 of J(En) have negative real part under the condition QF

n > QF
w > 1. Given

the block structure of J(En), its eigenvalues are the eigenvalues of the blocks An
(2×2) and Cn

(2×2).

To define the signs of two eigenvalues of An
(2×2), let us recall that λn

1 and λn
2 have strictly negative

real parts if and only if the trace of An
(2×2) is strictly negative while its determinant is strictly positive.

Effectively,
trace An

(2×2) = − µn

(
1 +

QM
n lnQF

n

QM
n +QF

n

)
− δn

QF
n lnQF

n

QM
n +QF

n

< 0,

detAn
(2×2) = µnδn

QF
n lnQF

n

QM
n +QF

n

[
1 +

QM
n lnQF

n

QM
n +QF

n

+
QM

n

QF
n

− QM
n lnQF

n

QM
n +QF

n

]
= µnδn

QF
n lnQF

n

QM
n +QF

n

(
QM

n +QF
n

)
QF

n

= µnδn lnQ
F
n > 0.

Therefore, as long as QF
n > 1, we have ℜ(λn

1 ) < 0 and ℜ(λn
2 ) < 0.

The eigenvalues λn
3 < 0 and λn

4 < 0 of the upper-triangular block Cn
(2×2) are located on its main

diagonal:

λn
3 = −µw < 0, λn

4 = δw

(
QF

w

QF
n

− 1

)
.

14



Notably, λn
4 < 0 if QF

n > QF
w (with either QF

w ≤ 1 or QF
w > 1 ) and En is LAS under this condition, i.e., in

the Regions II and V given in Figure 1. However, if QF
w > QF

n > 1, we have that λn
4 > 0, meaning that

En becomes unstable in the Region IV of Figure 1. ■

To establish the stability properties of the fully infected equilibrium En =
(
0, 0,M ♯

w, F
♯
w

)
defined by

(8) that exists only if QF
w > 1, we formulate and prove the following result.

Proposition 4. When QF
w > 1, the fully infected equilibrium Ew =

(
0, 0,M ♯

w, F
♯
w

)
is LAS regardless of

the positive value of QF
n , that is, in Regions III, IV, and V plotted in Figure 1.

Proof. First, we assume that QF
w > 1 holds for the parameters of the model (2). Let Jw

ij , i, j = 1, 2, 3, 4

denote the entries of J(Ew). Using the expressions for Jij provided in Appendix A, it is easy to deduce

that

Jw
12 = Jw

13 = Jw
14 = Jw

21 = Jw
23 = Jw

24 = 0.

Therefore, J(Ew) admits the following structure:

J(Ew) =

Aw
(2×2) Ow

(2×2)

Bw
(2×2) Cw

(2×2)



=



−µn 0 0 0

0 −δn 0 0

Jw
31 Jw

32 −µw

(
1 +

QM
w lnQF

w

QM
w +QF

w

)
µw

QM
w

QF
w

(
1− QF

w lnQF
w

QM
w +QF

w

)

Jw
41 Jw

42 −δw
QF

w lnQF
w

QM
w +QF

w

−δw
QF

w lnQF
w

QM
w +QF

w


.

To show that Ew is LAS whenever it exists (i.e., in the Regions III, IV, and V given in Figure 1), it

suffices to prove that all eigenvalues λw
i , i = 1, 2, 3, 4 of J(Ew) have negative real part under the condition

QF
w > 1 and regardless of the value of QF

n . Given the block structure of J(Ew), its eigenvalues are the

eigenvalues of the blocks Aw
(2×2) and Cw

(2×2). Clearly, the eigenvalues of Aw
(2×2) are always negative, that

is,

λw
1 = −µn < 0, and λw

2 = −δn < 0.

Furthermore, λw
3 and λw

4 have negative real parts if and only if the trace of Cw
(2×2) is strictly negative
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while its determinant is strictly positive. In fact,

trace Cw
(2×2) = − µw

(
1 +

QM
w lnQF

w

QM
w +QF

w

)
− δw

QF
w lnQF

w

QM
w +QF

w

< 0,

det Cw
(2×2) = µwδw

QF
w lnQF

w

QM
w +QF

w

[
1 +

QM
w lnQF

w

QM
w +QF

w

+
QM

w

QF
w

− QM
w lnQF

w

QM
w +QF

w

]
= µwδw

QF
w lnQF

w

QM
w +QF

w

(
QM

w +QF
w

)
QF

w

= µwδw lnQF
w > 0.

Thus, we have ℜ(λw
3 ) < 0 and ℜ(λw

4 ) < 0 as long as QF
w > 1. Therefore, Ew is LAS whenever it exists

and regardless of the value of QF
n . ■

From Propositions 3 and 4 we conclude that both En and Ew are LAS in the Region V (see Figure

1) where it holds that QF
n > QF

w > 1, while Region IV (where QF
w ≥ QF

n > 1) contains only one locally

asymptotically stable equilibrium Ew together with two unstable equilibria E0,En. Both conclusions

are quite meaningful from a biological standpoint. When it holds that QF
n > 1 and QF

w > 1 (Regions

IV and V in Figure 1), both mosquito sub-populations (with and without Wolbachia) are regarded as

naturally persistent, meaning that one female insect produces more than one female descendant during

her lifespan, and that each sub-population will persist at the low density (or in the absence) of the other.

However, the relationship QF
w ≥ QF

n > 1 implies that a Wolbachia-infected female is capable of

producing more female descendants than a non-infected female. Additionally, the CI reproductive phe-

notype enables Wolbachia-infected females to produce viable offspring after mating with non-infected

males, while non-infected females fail to produce viable offspring after mating with Wolbachia-infected

males. In other words, under the condition QF
w ≥ QF

n > 1 (Region IV in Figure 1), Wolbachia-infected

insects benefit not only from their CI-enabled reproductive advantage but also exhibit a better indi-

vidual fitness QF
w ≥ QF

n . In this case, the outcome of the inter-species competition is strongly biased

towards the survival of Wolbachia-infected sub-population together with an ultimate extinction of the

non-infected sub-population.

On the other hand, the condition QF
n > QF

w > 1 implies that a non-infected female has a better

individual fitness (higher fertility and/or longevity) than an infected one whenever there are sufficient

males to mate with. However, the reproductive fitness of non-infected females can be jeopardized by

the relative scarcity (or low frequency) of non-infected males. Notably, at lower frequencies of non-

infected male insects, the probability of matings between non-infected females and infected males be-

comes higher and so does the probability of producing inviable offspring. Therefore, a lower individual

fitness of Wolbachia-infected females (QF
n > QF

w) can be compensated by the CI-phenotype granting

them the capability to produce viable and Wolbachia-infected descendants after mating with either in-

fected or non-infected males. In this case, the dynamical system (2) exhibits bistability (both boundary
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equilibria En and Ew are LAS in Region V given in Figure 1), and the outcome of the inter-species com-

petition depends on the frequency of Wolbachia infection in the total mosquito population. The latter

fully agrees with previous results obtained for other models of Wolbachia invasion formulated either in

terms of the infection frequency [10,17,18] or competitive population dynamics [9,11–15,20,21].

As stated in Theorem 1, Region V also contains the strictly positive equilibrium Ec besides E0 (which

is unstable) and En,Ew (that are LAS). The following result describes the stability properties of the

strictly positive equilibrium Ec that exists only in Region V where QF
n > QF

w > 1.

Proposition 5. The strictly positive equilibriumEc =
(
M c

n, F
c
n,M

c
w, F

c
w

)
defined by (9) is always unstable

whenever it exists.

Proof. As stated by Theorem 1, Ec exists only if QF
n > QF

w > 1 (i.e., in the Region V given in Figure 1).

To prove its instability, it is sufficient to show that J(Ec) has at least one strictly positive eigenvalue. In

this context, let us recall that det J(Ec) =
4∏

i=1

λc
i , where λc

i , i = 1, 2, 3, 4 denote the eigenvalues of J(Ec).

Therefore, showing that det J(Ec) < 0 would imply the presence of one (or three) positive eigenvalues of

J(Ec), and the instability of Ec will be proven.

To evaluate the components Jc
ij , i, j = 1, 2, 3, 4 of the Jacobian matrix J(Ec), let us first express the

coordinates F c
n, F

c
w of Ec in terms of M c

n,M
c
w,

F c
n =

QF
n

QM
n

M c
n, F c

w =
QF

w

QM
w

M c
w, (27)

and then make use of the relationships

M c
n

M c
n + γM c

w

=
QF

w

QF
n

, e−σ(Mc
n+F c

n+Mc
w+Fw) =

1

QF
w

, (28)

derived from (18), (21). Having performed some heavy calculations (presented in Appendix A), we obtain

J
(
M c

n,
QF

n

QM
n

M c
n,M

c
w,

QF
w

QM
w

M c
w

)
= (29)



−µn

(
QF

w

QF
n

+ σM c
n

)
µn

(
QM

n

QF
n

− σM c
n

)
−µn

(
γ
QF

w

QF
n

+ σM c
n

)
−µnσM

c
n

δn
QF

n

QM
n

(
1− QF

w

QF
n

− σM c
n

)
−δn

QF
n

QM
n

σM c
n −δn

QF
n

QM
n

(
γ
QF

w

QF
n

+ σM c
n

)
−δn

QF
n

QM
n

σM c
n

−µwσM
c
w −µwσM

c
w −µw

(
1 + σM c

w

)
µw

(
QM

w

QF
w

− σM c
w

)
−δw

QF
w

QM
w

σM c
w −δw

QF
w

QM
w

σM c
w −δw

QF
w

QM
w

σM c
w −δw

QF
w

QM
w

σM c
w


and

det J
(
Ec
)
= µnδnµwδwσM

c
w

[
−γ

QF
w

QF
n

(
QF

n

QM
n

+ 1

)
−
(
1− QF

w

QF
n

)(
QF

w

QM
w

+ 1

)]
.

Let us recall that Ec exists only if QF
n > QF

w > 1 (see Region V in Figure 1). Therefore, det J
(
Ec
)
< 0

and Ec is always unstable whenever it exists. ■
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According to Proposition 5, the coexistence of both mosquito sub-populations cannot be sustained.

From a biological standpoint, this conclusion is consensual with the so-called principle of competitive

exclusion induced by the frequency-dependent Allee effect [33] which basically states that only one

of two species competing for the same resources, including mating opportunities, should ultimately

survive and persist. Notably, the results exhibited by Theorem 1 are compatible with the outcomes

obtained for other models of Wolbachia invasion where perfect maternal transmission and complete CI

are assumed [9,11–15,19–21].

5 Numerical simulations and discussion

We now present several simulations in order to illustrate the previous theoretical results and discuss

the release scenarios, taking into account the epidemiological status of the place where the replacement

needs to occur. We stress that no epidemiological dynamic is envisioned here, a complete study of this

subject of key importance will be provided in a further article.

Two important features must be taken into account: first, the Wlb-mosquito4 production capacity

necessary to produce a unique initial release or several releases, typically every week or every two

weeks; second, the epidemiological status at the place and time where the releases are to be done:

clearly, if an epidemic is ongoing or if the place is located in an endemic area, the release of numerous

Wlb-females will increase the basic reproduction number R0, and thus boost the epidemic, so that it

seems preferable to release moreWlb-males than Wlb-females. On the contrary, releasing females is

less challenging in an inter-epidemic period. However, the inhabitants may complain about the increase

of nuisance due to female bites, so that, again, the release of more Wlb-males than Wlb-females seems

to be a better choice. In this regard, we remind that various approaches have been developed or are

under development for the sex-separation of the Aedes mosquito at the egg stage, see [34] and references

therein.

For the subsequent simulations, we consider the parameter values taken from [29,30] and summa-

rized in Table 2, page 19. In this table, the factor 0.9 used in the Wlb-parameters values reflects the

fitness reduction of Wlb-mosquitoes [30].

With the parameter values taken from [29], we have QM
n ≈ 56.87 and QF

n ≈ 75.83. At equilibrium, the

wild mosquito population is En =
(
M ♯

n, F
♯
n, 0, 0

)
with M ♯

n ≈ 5.194× 103 and F ♯
n ≈ 6.925× 103 individuals

per hectare (ha). For Wlb-mosquitoes, the basic offspring numbers are lower, i.e., QM
w ≈ 46.07 and

QF
w ≈ 61.42.

4Here and in the sequel, the term Wlb- refers to mosquitoes infected by the wMel strain of Wolbachia.
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Figure 2: Minimal release ratios of Wlb-mosquitoes to ensure convergence to Ew for different initial
weekly release(s) scenarios

5.1 Minimum released quantities

Since 1 < QF
w < QF

n , we are in the case of Region V (see Fig. 1, page 9), where two stable equilibria

En and Ew exist, meaning that both fully uninfected and fully infected populations alone are viable.

Thus, being in the basin of attraction of Ew or En will depend on the release size(s) and periodicity.

As a general remark, releasing larger quantities of infected mosquitoes induces faster replacement,

however this trend is limited by the natural mortality of the wild mosquitoes present at the beginning

Table 2: Parameters of the entomological model (2) borrowed from [29,30]

Parameter Value Description Unit
rn = rw 0.5 adult sex ratio -
ρn 4.55 fecundity of wild female mosquitoes day−1

ρw 4.55× 0.9 fecundity of Wlb-carrying female mosquitoes day−1

µn 0.04 natural mortality rate for wild male mosquitoes day−1

δn 0.03 natural mortality rate for wild female mosquitoes day−1

µw 0.04/0.9 natural mortality rate for Wlb-carrying male mosquitoes day−1

δw 0.03/0.9 natural mortality rate for Wlb-carrying female mosquitoes day−1

γ 1 mating competitiveness of Wlb-carrying mosquitoes -
σ 3.57× 10−4 inter-individual competition parameter Ind−1
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Figure 3: Minimal release ratios of Wlb-mosquitoes to ensure convergence to Ew for different initial
semi-monthly release(s) scenarios

of the campaign5. To explore this feature, Figs. 2, 3 and 4 show the minimal release ratios of Wolbachia-

carrying males and females necessary to realize successful invasion. These curves have been obtained

numerically, through repeated simulations of system (2).

In Fig. 2, page 19, we consider either a unique release or 2, 5, and 10 consecutive weekly releases,

while Figs. 3 and 4 on pages 20 and 21 exhibit similar results for semi-monthly and monthly releases,

respectively. The four curves at each figure provide the minimal quantities of Wlb-females and Wlb-

males to be released in order to reach equilibrium Ew, in each of the four situations. Here and below,

these quantities are expressed as proportions of the wild female and male equilibrium values F ♯
n,M

♯
n.

Notice that the total released sizes may be obtained easily by multiplying the nominal values by the

number of releases.

One observes that, for a unique release, replacement occurs with the release of a quantity of Wlb-

females as small as 29% of the equilibrium size of the wild females per ha, that is 2 082 Wlb-females

per ha, and no Wlb-males at all. Another option is to release 20% of Wlb-females and at least 60% of

Wlb-males, that is, 1 385 Wlb-females and 3 117 Wlb-males per ha. If the area to treat is very large, like
5This may be seen easily from system (2), which implies dMn

dt
≥ −µnMn, dFn

dt
≥ −δnFn, therefore imposing a limitation to

the extinction speed of the uninfected population.
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Figure 4: Minimal release ratios of Wlb-mosquitoes to ensure convergence to Ew for different initial
monthly release(s) scenarios

thousands of hectares, this requires the production of a vast amount of Wlb-mosquitoes.

Smaller releases over 10 consecutive weeks are also possible; for instance, only 3% of Wlb-females

and 10% of Wlb-males (compared to the respective equilibrium levels), that is, 208 Wlb-females and 520

of Wlb-males per hectare. It is also possible to consider even smaller Wlb-female releases, like 1%, and

35% of Wlb-males.

Since the lifespans of wild and Wlb-mosquitoes are supposed to be longer than a week (up to a

month), we also displayed in Fig. 3, page 20 and Fig. 4, page 21 similar computations, obtained with

semi-monthly and monthly releases. They provide resembling results.

5.2 Minimum replacement time

While it seems better to perform male-biased releases from the epidemiological point of view, it

is also essential to assess the time of the population replacement for the different ratios of males and

females considered. In the sequel, we assume by convention that the population replacement is achieved

satisfactorily when Fn +Mn < 1.

In Fig. 5, page 22, we show results corresponding to weekly releases. The explored range of values
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Figure 5: Minimal time (in days) to reach Ew for different weekly release(s) scenarios

includes all proportions of released Wlb-females between 0 and 100% and Wlb-males between 0 and

200% (relative to the wild mosquito equilibrium values). The red level-set curve in each of these figures

indicates when one year time is needed to reach the population replacement.

For all simulations, the quickest treatment duration appearing on the figures (achieved with the

largest release, that is 100% Wlb-females and 200% Wlb-males) is about 292 days. If the production

capacity is sufficient, then the one-release strategy is feasible, achieving replacement in less than a year.

Otherwise, our simulations show that we can adapt the release strategy in order to realize replacement

in less than a year with releases of manageable size. For instance, if a constraint is to release an

amount of Wlb-females smaller, say than 5%, then 5 weekly releases with at least 50% of Wlb-males

or 10 weekly releases with at least 21% of Wlb-males are sufficient to reach replacement in less than a

year (see Fig. 5, (the last lower charts).

Fig. 6, page 23 and Fig. 7, page 24 show similar results with semi-monthly and monthly releases.

However, while increasing the number of weekly or semi-monthly releases yields some improvements in
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Figure 6: Minimal time (in days) to reach Ew for different semi-monthly release(s) scenarios

terms of time, Figs. 7(c) and 7(d) show clearly that, for monthly releases, there is no gain in performing

10 releases rather than 5 releases: there is no subsequent improvement of the time needed to go from

En to Ew. This result is not surprising: it simply shows that after the first five releases, the replacement

is sufficiently advanced such that additional releases are no more necessary.

5.3 Discussion

Our simulations show flexibility in determining the release strategy to treat large areas: the latter

can be adapted to account for the time needed for mass rearing of Wlb-mosquitoes or possible failures

in the weekly production. This is quite important from a practical point of view.

From the theoretical point of view, choosing the proportion of Wlb-females and Wlb-males to release

seems relatively simple. However, from a practical standpoint, it is not, for it requires implementing a

sex separation process. The latter, in general, is not that simple. For mosquitoes, sex separation can
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Figure 7: Minimal time (in days) to reach Ew for different monthly release(s) scenarios

be related to the size differences at the pupal stage (female pupae are larger than male pupae) or take

advantage of the fact that male mosquitoes also develop faster than females. This feature has to be

considered for real applications. The balance between releasing either the emerging Wlb-mosquitoes

without completing sex separation or the prior sex separation has to be studied, taking into account the

epidemiological risk and the cost of sex separation at a large scale.

As identified by J.Z. Farkas et al. [22]6 two effects make it possible to reduce the number of released

females in the male-biased strategies: ‘First, releasing a large number of males causes a high frequency

of incompatible matings and so reduces the size of the resident (uninfected) population. Second, the

high frequency of infected males means that infected females have a strong relative fitness advantage’.

Our results also show that, for a monthly releases strategy, increasing the number of initial Wlb-

mosquitoes releases is not beneficial in terms of replacement time. Using Mark-Release-Recapture pe-
6This paper is concerned with Wolbachia infection of populations of mosquitoes carrying West Nile virus, but this comment

remains accurate in the present context.

24



riodically, it could be possible to estimate a (rough) ratio between wild mosquitoes and Wlb-mosquitoes

and thus to determine if replacement is happening or not. The same experiments could also be used to

change the amount of Wlb-mosquitoes to release, for semi-monthly or monthly releases strategies, in

order to optimize the total amount of Wlb-mosquitoes.

6 Conclusions

In this paper, we studied a generic sex-structured full Wolbachia replacement model that describes the

interaction between a wild and a Wolbachia-carrying Aedes population. Our first contribution has been

the definition and analysis of a simple sex-structured model capable of achieving extensive simulations

with the releases bearing any arbitrary sex ratio. Then, following [23, 24, 28], our analysis confirmed

that, even if the Wolbachia-carrying population has lower individual fitness than the wild population,

the CI-reproductive phenotype grants an advantage to drive the system from a wild population to the

Wolbachia-carrying population, provided that a suitable release strategy is considered. Furthermore,

varying the quantities of male and female mosquitoes per release is a realistic option, and the proposed

model allows us to assess the outcomes of male-biased releases.

The simulations presented here have shown that replacement is achievable within the same time

span, while reducing substantially the amount of Wolbachia-carrying females through adequate re-

leases of Wolbachia-carrying males. Therefore, male-biased strategies are more advisable to reduce

the epidemiological risk without increasing the nuisance caused by the female bites, especially when a

vector-borne disease virus such as dengue virus is circulating.

Last but not least, we also have shown that the strategies consisting of several releases every week,

every two weeks, or every month are efficient when appropriately sized, and can be helpful for field

releases in large areas, when the capacity for production of Wolbachia-carrying mosquitoes is limited.

In order to optimize the amount of Wlb-mosquitoes in the initial (semi-)monthly releases, a closed-loop

control or a mixed-loop control approach, like in [12,29,35], could be considered.

Of course, field trials would be more than welcome to test the different release strategies. As a

further development, we plan to couple the proposed replacement model with an epidemiological model

of dengue transmission to study the impact of mosquito population replacement on the epidemiological

risk of the host population in different conditions and for different Wolbachia strains. Also, it seems

important to consider the seasonal variations of climate (precipitation and temperature) for the proper

design of release strategies [36].
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Appendix A: Jacobian matrix evaluated in Ec and its determi-
nant

The components Jij , i, j = 1, 2, 3, 4 of the Jacobian matrix (26) are given by the following expressions:

J11 =
∂f1
∂Mn

= rnρnFn

γMw − σMn

(
Mn + γMw

)(
Mn + γMw

)2 e−σ(Mn+Fn+Mw+Fw) − µn,

J12 =
∂f1
∂Fn

= rnρn
Mn(1− σFn)

Mn + γMw
e−σ(Mn+Fn+Mw+Fw),

J13 =
∂f1
∂Mw

= −rnρn
MnFn

(
γ + σ

(
Mn + γMw

))
(
Mn + γMw

)2 e−σ(Mn+Fn+Mw+Fw),

J14 =
∂f1
∂Fw

= −rnρn
σMnFn

Mn + γMw
e−σ(Mn+Fn+Mw+Fw),

J21 =
∂f2
∂Mn

=
(
1− rn

)
ρnFn

γMw − σMn

(
Mn + γMw

)(
Mn + γMw

)2 e−σ(Mn+Fn+Mw+Fw),

J22 =
∂f2
∂Fn

=
(
1− rn

)
ρn

Mn(1− σFn)

Mn + γMw
e−σ(Mn+Fn+Mw+Fw) − δn,

J23 =
∂f2
∂Mw

= −
(
1− rn

)
ρn

MnFn

(
γ + σ

(
Mn + γMw

))
(
Mn + γMw

)2 e−σ(Mn+Fn+Mw+Fw),

J24 =
∂f2
∂Fw

= −
(
1− rn

)
ρn

σMnFn

Mn + γMw
e−σ(Mn+Fn+Mw+Fw),

J31 =
∂f3
∂Mn

= −rwρwσFwe
−σ(Mn+Fn+Mw+Fw) =

∂f3
∂Fn

= J32,

J33 =
∂f3
∂Mw

= −rwρwσFwe
−σ(Mn+Fn+Mw+Fw) − µw,

J34 =
∂f3
∂Fw

= −rwρw(1− σFw)e
−σ(Mn+Fn+Mw+Fw),

J41 =
∂f4
∂Mn

= −
(
1− rw

)
ρwσFwe

−σ(Mn+Fn+Mw+Fw) =
∂f4
∂Fn

= J42 =
∂f4
∂Mw

= J43,

J44 =
∂f4
∂Fw

=
(
1− rw

)
ρw(1− σFw)e

−σ(Mn+Fn+Mw+Fw) − δw.

Using the expression (27), (28) we proceed to evaluate the components Jc
ij , i, j = 1, 2, 3, 4 of J(Ec),

whose values are given in the formulas (9). In the subsequent computations, are used repeatedly the

values of M c
n + F c

n + M c
w + F c

w given in (19) and the value of M c
n + γM c

w given in (22), as well as the

properties expressed in identities (20), (21) and (24).
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Jc
11 = rnρn

QF
n

QM
n

M c
n

γ
QF

n −QF
w

γQF
w

M c
n − σ

(
M c

n

)2QF
n

QF
w(

M c
n

QF
n

QF
w

)2

QF
w

− µn =
rnρn
QM

n

(
QF

n −QF
w − σQF

nM
c
n

)
QF

n

− µn

=
rnρn
µn

µn

QM
n

(
1− QF

w

QF
n

− σM c
n

)
− µn = µn

(
1− QF

w

QF
n

− σM c
n − 1

)
= −µn

(
QF

w

QF
n

+ σM c
n

)
;

Jc
12 = rnρn

QF
w

QF
n

(
1− σ

QF
n

QM
n

M c
n

)
1

QF
w

=
rnρn
µn

µn

QM
n

(
QM

n

QF
n

− σM c
n

)
= µn

(
QM

n

QF
n

− σM c
n

)
;

Jc
13 = − rnρn

(
QF

w

QF
n

)2
QF

n

QM
n

(
γ + σ

QF
n

QF
w

M c
n

)
QF

w

= −rnρn
µn

µn

QM
n

QF
w

QF
n

(
γ + σ

QF
n

QF
w

M c
n

)
= − µn

(
γ
QF

w

QF
n

+ σM c
n

)
;

Jc
14 = − rnρn

QF
w

QF
n

QF
n

QM
n

σM c
n

QF
w

= −rnρn
µn

µn

QM
n

σM c
n = −µnσM

c
n;

Jc
21 =

(
1− rn

)
ρn

QF
n

QM
n

M c
n

γ
QF

n −QF
w

γQF
w

M c
n − σ

(
M c

n

)2QF
n

QF
w(

M c
n

QF
n

QF
w

)2

QF
w

=

(
1− rn

)
ρn

QF
n

(
QF

n −QF
w − σQF

nM
c
n

)
QM

n

=

(
1− rn

)
ρn

δn

δn
QM

n

(
1− QF

w

QF
n

− σM c
n

)
= δn

QF
n

QM
n

(
1− QF

w

QF
n

− σM c
n

)
;

Jc
22 =

(
1− rn

)
ρn

QF
w

QF
n

(
1− σ

QF
n

QM
n

M c
n

)
1

QF
w

− δn =

(
1− rn

)
ρn

δn

δn
QF

n

(
1− σ

QF
n

QM
n

M c
n

)
− δn

= δn

(
1− σ

QM
n

QF
n

M c
n − 1

)
= −δn

QF
n

QM
n

σM c
n;

Jc
23 = −

(
1− rn

)
ρn

(
QF

w

QF
n

)2
QF

n

QM
n

(
γ + σ

QF
n

QF
w

M c
n

)
QF

w

= −
(
1− rn

)
ρn

δn

δn
QM

n

(
γ
QF

w

QF
n

+ σM c
n

)
= − δn

QF
n

QM
n

(
γ
QF

w

QF
n

+ σM c
n

)
;

Jc
24 = −

(
1− rn

)
ρn

QF
w

QF
n

QF
n

QM
n

σM c
n

QF
w

= −
(
1− rn

)
ρn

δn

δn
QM

n

σM c
n = −δn

QF
n

QM
n

σM c
n;

Jc
31 = − rwρwσ

QF
w

QM
w

M c
w

1

QF
w

= −rwρw
µw

µw

QM
w

σM c
w = −µwσM

c
w = Jc

32;

Jc
33 = − rwρwσ

QF
w

QM
w

M c
w

1

QF
w

− µw = −rwρw
µw

µw

QM
w

σM c
w − µw = −µw

(
1 + σM c

w

)
;

Jc
34 = rwρw

(
1− σ

QF
w

QM
w

M c
w

)
1

QF
w

=
rwρw
µw

µw

QF
w

(
1− σ

QF
w

QM
w

M c
w

)
= µw

(
QM

w

QF
w

− σM c
w

)
;

Jc
41 = −

(
1− rw

)
ρwσ

QF
w

QM
w

M c
w

1

QF
w

= −
(
1− rw

)
ρw

δw

δw
QM

w

σM c
w = −δw

QF
w

QM
w

σM c
w = Jc

42 = Jc
43;

Jc
44 =

(
1− rw

)
ρw

(
1− σ

QF
w

QM
w

M c
w

)
1

QF
w

− δw =

(
1− rw

)
ρw

δw

δw
QF

w

(
1− σ

QF
w

QM
w

M c
w

)
− δw

= δw

(
1− σ

QF
w

QM
w

M c
w − 1

)
= −δw

QF
w

QM
w

σM c
w.
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Let us now introduce some useful repeating patterns that appear in the above formulas:

A :=
QF

w

QF
n

, B :=
QF

n

QM
n

, C :=
QF

w

QM
w

, D := σM c
n, E := σM c

w. (A-1)

Using these patterns, the Jacobian matrix (29) evaluated in Ec can be written as

J
(
Ec

)
=


−µn

(
A+D

)
µn

(
1

B
−D

)
−µn

(
γA+D

)
−µnD

δnB
(
1−A−D

)
−δnBD −δnB

(
γA+D

)
−δnBD

−µwE −µwE −µw

(
1 + E

)
µw

(
1

C
− E

)
−δwCE −δwCE −δwCE −δwCE


To compute the determinant of J

(
Ec

)
, one may proceed as follows.

det J
(
Ec

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

−µn(A+D) µn

(
1

B
−D

)
−µn(γA+D) −µnD

δnB(1−A−D) −δnBD −δnB(γA+D) −δnBD

−µwE −µwE −µw(1 + E) µw

(
1

C
− E

)
−δwCE −δwCE −δwCE −δwCE

∣∣∣∣∣∣∣∣∣∣∣∣

= − δwC

µw

∣∣∣∣∣∣∣∣∣∣∣∣

−µn(A+D) µn

(
1

B
−D

)
−µn(γA+D) −µnD

δnB(1−A−D) −δnBD −δnB(γA+D) −δnBD

−µwE −µwE −µw(1 + E) µw

(
1

C
− E

)
µwE µwE µwE µwE

∣∣∣∣∣∣∣∣∣∣∣∣
(by multiplication of the 4th row by − µw

δwC
)

= − δwC

µw

∣∣∣∣∣∣∣∣∣∣∣∣

−µn(A+D) µn

(
1

B
−D

)
−µn(γA+D) −µnD

δnB(1−A−D) −δnBD −δnB(γA+D) −δnBD

−µwE −µwE −µw(1 + E) µw

(
1

C
− E

)
0 0 −µw

µw

C

∣∣∣∣∣∣∣∣∣∣∣∣
(by addition of the 3rd row to the 4th one)
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=
δwC

µw

δnB

µn

∣∣∣∣∣∣∣∣∣∣∣∣∣

−µn(A+D) µn

(
1

B
−D

)
−µn(γA+D) −µnD

µn(A+D − 1) µnD µn(γA+D) µnD

−µwE −µwE −µw(1 + E) µw

(
1

C
− E

)
0 0 −µw

µw

C

∣∣∣∣∣∣∣∣∣∣∣∣∣
(by multiplication of the 2nd row by − µn

δnB
)

=
δwC

µw

δnB

µn

∣∣∣∣∣∣∣∣∣∣∣∣

−µn
µn

B
0 0

µn(A+D − 1) µnD µn(γA+D) µnD

−µwE −µwE −µw(1 + E) µw

(
1

C
− E

)
0 0 −µw

µw

C

∣∣∣∣∣∣∣∣∣∣∣∣
(by addition of the 2nd row to the 1st one)

=
δwC

µw

δnB

µn

∣∣∣∣∣∣∣∣∣∣∣∣∣

−µn

(
1 +

1

B

)
µn

B
0 0

µn(A− 1) µnD µn(γA+D) µnD

0 −µwE −µw(1 + E) µw

(
1

C
− E

)
0 0 −µw

µw

C

∣∣∣∣∣∣∣∣∣∣∣∣∣
(by subtracting the 2nd column from the 1st one)

=
δwC

µw

δnB

µn

∣∣∣∣∣∣∣∣∣∣
−µn

(
1 +

1

B

)
µn

B
0 0

µn(A− 1) µnD µn(γA+D + CD) µnD
0 −µwE −µwE(1 + C) µw

(
1
C − E

)
0 0 0 µw

C

∣∣∣∣∣∣∣∣∣∣
(by adding the 4th row multiplied by C to the 3rd one)

Given the fact that all constants are positive, see (A-1), the sign of det J(Ec) is the sign of the 3 × 3

determinant that appears after developing with respect to the 4th row, that is

∣∣∣∣∣∣∣∣
−µn

(
1 +

1

B

)
µn

B
0

µn(A− 1) µnD µn(γA+D + CD)
0 −µwE −µwE(1 + C)

∣∣∣∣∣∣∣∣
= µwE

∣∣∣∣∣∣∣∣
−µn

(
1 +

1

B

)
µn

B
0

µn(A− 1) µnD µn(γA+D + CD)
0 −1 −(1 + C)

∣∣∣∣∣∣∣∣
= µwE

∣∣∣∣∣∣∣∣
−µn

(
1 +

1

B

)
µn

B
0

µn(A− 1) 0 µnγA
0 −1 −(1 + C)

∣∣∣∣∣∣∣∣
(by addition of the 3rd row multiplied µnD by to the 2nd one)

The coefficient µwE is positive, so the sign of det J(Ec) is the sign of the determinant that appears
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in the previous formula. The computation of the latter yields∣∣∣∣∣∣∣∣
−µn

(
1 +

1

B

)
µn

B 0

µn(A− 1) 0 µnγA
0 −1 −(1 + C)

∣∣∣∣∣∣∣∣ = − µ2
nγA

(
1 +

1

B

)
+ µ2

n(A− 1)
1

B
(1 + C)

= µ2
n

1

B

(
− γA(B + 1) + (A− 1)(C + 1)

)
.

Thus, we have

det J(Ec) =
δwC

µw

δnB

µn

µw

C
µwEµ2

n

1

B

(
− γA(B + 1) + (A− 1)(C + 1)

)
= µnδnµwδwE

(
− γA(B + 1)− (1−A)(C + 1)

)
.

Finally, using the patterns defined by (A-1) we obtain

det J
(
Ec
)
= µnδnµwδwσM

c
w

[
−γ

QF
w

QF
n

(
QF

n

QM
n

+ 1

)
−
(
1− QF

w

QF
n

)(
QF

w

QM
w

+ 1

)]
< 0

whenever Ec exists, that is, whenever it is fulfilled that

QF
n > QF

w > 1.
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