## SUPPORTING INFORMATION

Oviposition by the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) on five citrus types in a laboratory

Charmaine D. Theron ${ }^{1}$, Zanthé Kotzé ${ }^{1}$, Aruna Manrakhan ${ }^{2}$ and Christopher W. Weldon ${ }^{1, *}$
${ }^{1}$ Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
${ }^{2}$ Citrus Research International, Nelspruit, South Africa

* Corresponding author: cwweldon@zoology.up.ac.za

Table S1. Ethogram of sexually mature, mated female B. dorsalis displayed on five ripe citrus types and a positive control under undamaged and damaged conditions.

| Behaviour | Description |
| :---: | :---: |
| Walking | Forwards, backward or circular locomotion on the fruit using legs. |
| Tasting | Extension and retraction of mouthparts to and from the surface of fruit. This may happen while the female is walking. |
| Feeding <br> Grooming | Fly appeared to imbibe fruit juice from a puncture of the fruit surface. Use of either the fore legs to clean the head area, or the hind legs to clean the abdomen, wings and ovipositor. |
| Stationary <br> Wing beating (Shimmy) | No observable movement by fly on the fruit for two seconds or longer. Rapid elevation and depression of wings while simultaneously, rapidly moving side-ways, similar to calling displayed by males. |
| Probing | Full extension of ovipositor, abdomen raised above the head. The abdomen curved towards the body to position the ovipositor perpendicular to the fruit surface before being forced downward. This would occur multiple times, successively. This behaviour was present even when females made use of a hole intentionally made in the fruit. Probing did not always result in oviposition since females were not always able to penetrate the fruit skin. |
| Oviposition | After probing, the ovipositor (aculeus) remained positioned in a hole, submerged up to the oviscape, in the fruit and the female remained in this position. This behaviour lasted from a few seconds up to a few hours. During oviposition females would rotate in a circular motion, using the ovipositor as a pivot point. |
| Ovipositor dragging (marking) | The focal female was observed to walk in random patterns with the aculeus tip extended on the surface of the fruit. |
| Aggression | Females would engage in head-butting and chasing each other around the fruit. Aggression during oviposition entailed head-butting, and would not necessarily result in the female leaving the oviposition site. |

Table S2. Significant indicator compounds per fruit type. Significance level recorded as $p<0.05$.

| Fruit | Compounds | Indicator value | $p$-value |
| :---: | :---: | :---: | :---: |
| Eureka lemon | $\beta$-Bisabolene | 0.967 | 0.005 |
|  | $\beta$-Pinene | 0.840 | 0.005 |
|  | Benzenemethanol | 0.756 | 0.005 |
|  | Citronellyl acetate | 0.756 | 0.005 |
|  | Tetradecane | 0.756 | 0.005 |
|  | Zingiberene | 0.756 | 0.010 |
|  | $\alpha$-Thujene | 0.739 | 0.005 |
|  | Paracymene | 0.736 | 0.020 |
|  | 2,5-Hexanediol | 0.655 | 0.015 |
|  | 2,6-Octadienoic acid | 0.655 | 0.020 |
|  | Butanoic acid | 0.655 | 0.010 |
|  | cis- $\alpha$-Bisabolene | 0.655 | 0.020 |
|  | Citronellol | 0.655 | 0.020 |
|  | endo-Borneol | 0.655 | 0.020 |
|  | $\alpha$-Bergamotene | 0.651 | 0.020 |
|  | Bicycloheptane | 0.632 | 0.025 |
| Nadorcott mandarin | Epoxylinalol | 0.971 | 0.005 |
|  | E,E- $\alpha$-Farnesene | 0.913 | 0.005 |
|  | cis-1,5-Cyclodecadiene | 0.707 | 0.005 |
|  | L-carveol | 0.707 | 0.015 |
|  | trans-p-Mentha-1(7),8-dien-2-ol | 0.690 | 0.010 |
|  | Octane | 0.684 | 0.025 |
|  | 2-Decenal | 0.664 | 0.010 |
| Glen Ora navel orange | $\alpha$-Fenchene | 0.775 | 0.005 |
|  | Artemisia triene | 0.738 | 0.005 |
|  | 1,3-Benzenedimethanamine | 0.652 | 0.020 |
|  | Mentha-1,4,8-triene | 0.619 | 0.030 |
|  | Tetradecanal | 0.605 | 0050 |
|  | $\beta$-Fenchene | 0.562 | 0.030 |
| Delta Valencia orange | Dodecanal- $\beta$-Pinene | 0.707 | 0.015 |
|  | Nonyl aldehyde | 0.651 | 0.025 |
| Star ruby grapefruit | Acetic acid | 0.784 | 0.005 |
|  | trans-Linalool oxide | 0.782 | 0.005 |
|  | trans-Dihydrocarvone | 0.754 | 0.005 |
|  | $\alpha$-Humulene | 0.753 | 0.005 |
|  | $\beta$-Saelinene | 0.749 | 0.010 |
|  | $\alpha$-Copaene | 0.748 | 0.010 |
|  | $\alpha$-Guaiene | 0.707 | 0.005 |
|  | Cadine-1,4-diene | 0.707 | 0.005 |
|  | Nootkatone | 0.702 | 0.010 |
|  | $\alpha$-Muurolene | 0.685 | 0.035 |


| Isopulegol | 0.671 | 0.010 |
| :--- | :--- | :--- |
| $\beta$-Eudesmol | 0.612 | 0.045 |
| $\Upsilon$-Selinene | 0.612 | 0.025 |
| $(+$ )-(R)- $\rho$-Mentha-1,8(10)-dien-9-ol | 0.612 | 0.025 |

Table S3. Significant indicator compounds by varying fruit ripeness. Significance level recorded as $p<0.05$.

| Degree of ripeness | Compounds | Indicator value | $\boldsymbol{p}$-value |
| :--- | :--- | :---: | :---: |
| Green | $\beta$-Eudesmol | 0.667 | 0.02 |
|  | cis-1,5-Cyclodecadiene | 0.577 | 0.04 |
|  | Ethanol | 0.577 | 0.05 |
| Colour Break | 6-Octen-1-ol | 0.548 | 0.035 |
| Ripe | 2-Cyclohexen-1-one | 0.603 | 0.04 |
| Over Ripe | Camphor | 0.807 | 0.010 |
|  | Valencene | 0.773 | 0.020 |
|  | 1,4-Hexadiene | 0.707 | 0.025 |
|  | $\alpha$-Bergamotene | 0.700 | 0.010 |
|  | Verbenol | 0.679 | 0.025 |
|  | $\beta$-Farnesene | 0.653 | 0.045 |

Table S4. Number of replicates (from $\mathrm{n}=10$ ) with stings (eggs) detected in citrus types at four stages of ripeness after exposure to five gravid female B. dorsalis under no-choice conditions (undamaged or damaged) in a laboratory. Ripe Golden Delicious apples were used as a control.

| Undamaged |  |  | Damaged |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fruit type | Green | Colour <br> break | Ripe | Over <br> ripe | Green | Colour <br> break | Ripe | Over <br> ripe |
| Apple |  |  | $\mathbf{3}$ |  |  |  | $\mathbf{2}$ |  |
| Delta | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Eureka | 0 | 0 | $\mathbf{2}$ | 0 | 0 | 0 | $\mathbf{5}$ | $\mathbf{4}$ |
| Glen Ora | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 |
| Nadorcott | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 |
| Star | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 |
| Ruby | 0 |  |  |  |  |  |  |  |

Table S5. Number of replicates (from $\mathrm{n}=10$ ) with stings (eggs) detected in citrus types at four stages of ripeness after exposure to five gravid female B. dorsalis under choice conditions (undamaged or damaged) in a laboratory. Ripe Golden Delicious apples were used as a control.

| Undamaged |  |  | Damaged |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fruit type | Green | Colour <br> break | Ripe | Over <br> ripe | Green | Colour <br> break | Ripe | Over <br> ripe |
| Apple |  |  | 0 |  |  |  | $\mathbf{1}$ |  |
| Delta | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 |
| Eureka | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Glen Ora | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Nadorcott | 0 | 0 | 0 | 0 | $\mathbf{2}$ | 0 | 0 | 0 |
| Star | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ruby | 0 |  |  |  |  |  |  | 0 |

Figure S1. First order Markovian analyses showing the probability of transition from one behaviour to another by gravid female B. dorsalis on (a) damaged and (b) undamaged apple (all types pooled). Transitions with $\mathrm{P} \geq 0.10$ are indicated by solid lines, and those with $0.09 \geq \mathrm{P} \geq 0.03$ are indicated with dashed lines. Values in parentheses indicate frequencies of each behaviour observed.

b)


