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Abstract 

Machine-learning algorithms may require large numbers of reference samples to train 

depending on the spatial and spectral heterogeneity of the mapping area. Acquiring these 

reference samples using traditional field data collection methods is a challenge due to time 

constraints, logistical limitations, and terrain inaccessibility. The aim of study was to assess 

how parametric, nonparametric, and spectral matching image classifiers can be used to generate 

a large number of accurate training samples from minimal ground control points to train 

machine-learning algorithms for mapping the invasive pompom weed using 30 m DESIS 

hyperspectral data. Three image classifiers, namely, maximum likelihood classifier (MLC), 

support vector machine (SVM) and spectral angle mapper (SAM) were selected to represent 

each of the three types of image classifiers under investigation in this study. Results show that 

the SAM, MLC and SVM classifiers had pixel-based classification accuracies of 87%, 73% 

and 67% for the pompom-containing pixels class, respectively. Furthermore, an independent 

field verification for the SAM classification was conducted yielding a 92% overall mapping 

accuracy for the pompom-containing pixels class. A total of 4 000 pompom-containing and 

8 000 non-pompom-containing training samples were generated from an SAM classification 

that was trained using only 20 endmembers. Overall, this study presents a potential solution 

strategy that has significant implications for generating large numbers of reference training 

samples for mapping invasive alien plants from new generation spaceborne hyperspectral 

imagery using machine-learning algorithms.  
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1. Introduction 

Internationally, there has been increasing efforts by the ecological science community to report 

on the status of biological invasions and to implement initiatives aimed at minimising their 

impacts on biodiversity (McGeoch et al., 2010). This is for achieving the targets aimed at 

reducing their negative impacts on global change (Tittensor et al., 2014). In South Africa, 

reporting on the status of biological invasions at country level, particularly the spatial 

distribution of invasive alien plants (IAPs), is intended to aid in policy formulation for their 

effective management (Wilson et al., 2018). Globally, there is a scarcity of accurate 

information on the spatial distribution of IAPs and such geospatial information is necessary for 

planning their effective management and for minimising their negative environmental impacts 

(Kganyago et al., 2018). Remote sensing has been shown to be an effective tool for collecting 

the necessary IAPs spatial information (Müllerová et al., 2013). This spatial information is 

mainly derived from remotely sensed data using image classifiers (Mafanya et al., 2017). These 

image classifiers mainly include parametric, nonparametric, and spectral matching algorithms. 

In particular, parametric image classifiers are either distance-based or probabilistic and their 

aim is to characterize an image feature space from which classes can be separated using 

similarity thresholds (Perumal and Bhaskaran, 2010; Silva et al., 2013). In contrast, 

nonparametric image classifiers learn directly from the training samples whereby an optimal 

boundary between classes is determined (Maxwell et al., 2018). On the other hand, spectral 

matching algorithms use error metrics and constraints to determine the existence of a spectral 

match between reference spectra and an unknown spectrum (Dennison et al., 2004). 

The assessment of parametric and nonparametric image classifiers for mapping IAPs from 

hyperspectral data is usually conducted to determine the best performing classifier in realising 

a certain mapping objective (Bachmann et al., 2002; Rajapakse et al., 2006; Skowronek et al., 

2018). There are numerous examples of studies that assessed the performance of the 

aforementioned image classifiers. In particular, for parametric classifiers, Underwood et al., 

(2003) assessed the mapping accuracy of the maximum likelihood classifier (MLC) using three 

different hyperspectral data processing methods for detecting the invasive iceplant 

(Carpobrotus edulis) and jubata grass (Cortaderia jubata) from Airborne Visible/ Infrared 

Imaging Spectrometer (AVIRIS) data. Hamada et al., (2007) assessed the distance-based 

parallelepiped classifier for detecting the invasive tamarisk species (Tamarix spp.)  from very 

high spatial resolution (0.5 m) hyperspectral data in riparian habitats of Southern California, 

USA. Their findings indicated that the parallelepiped classifier yielded the most accurate and 
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reliable tamarisk classification products. On the other hand, for nonparametric classifiers, 

Narumalani et al., (2006) assessed the mapping accuracy of the iterative self-organizing data 

(ISODATA) algorithm against the spectral angle mapper (SAM) in identifying salt cedar 

(Tamarix spp.) in Lake Meredith, Texas. In their study, validation procedures revealed 76% 

and 83% mapping accuracies for the ISODATA and SAM algorithms, respectively.  Moreover, 

Lawrence et al., (2006) assessed the mapping accuracies of the random forest (RF) algorithm 

for classifying leafy spurge (Euphorbia esula L.) and spotted knapweed (Centaurea maculosa 

Lam.) in North American rangelands. They reported an overall mapping accuracy of 86% 

which was a substantial improvement in accuracy compared to single classification trees. 

Correspondingly, the support vector machine (SVM) classifier was used to detect the noxious 

weed Carduus nutans (musk thistle) in its different phenological stages using AISA 

hyperspectral imagery (Mirik et al., 2013). In addition, Sabat-Tomala et al., (2020) assessed 

the SVM against the RF in identifying Solidago spp, Calamagrostis epigejos, and Rubus spp. 

from HySpex airborne hyperspectral imagery in Malinowice, Poland. The assessment of 

spectral matching algorithms for mapping IAPs using hyperspectral data is usually done in 

comparison with other image classifiers. For instance, Ustin et al., (2002) compared the SAM 

and MLC classifiers for mapping the invasive Arundo donax (giant cane) yielding overall 

accuracies of 91% and 98% for the SAM and MLC, respectively.  

High quality training samples are essential for large-scale supervised landcover mapping 

(Huang et al., 2020). Moreover, best practices in image classification suggest that supervised 

image classifiers require a certain minimum number of reference samples to train and this 

number depends on the type of the algorithm being utilised (Huang et al., 2002). For parametric 

classifiers, the ‘rule of thumb’ is that the minimum number of reference training samples should 

be 10 times the number of variables under study (Maxwell et al., 2018). For nonparametric 

classifiers, however, there is no consensus in literature regarding the recommended minimum 

number of reference training samples and this number may depend on the size and spatial 

variability of the mapping area and (or) the algorithm to be utilised for image classification 

(Huang et al., 2002). For example, Sabat-Tomala et al., (2020) tested 30, 50, 100, 200 and 300 

reference training pixels per class and found that fewer reference training pixels resulted in 

lower mapping accuracies for both SVM and RF algorithms. Meaning large numbers of 

accurate training samples are necessary for training machine-learning (ML) algorithms (Yu et 

al., 2022). The requirement of large numbers of accurate training samples has also been 

demonstrated in the application of deep convolutional spectral-spatial networks on 
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hyperspectral images. For instance, the spectral-spatial residual network (SSRN) and the fast 

and dense spectral-spatial convolutional network (FDSSC) achieved accuracies higher than 

98%, when the number of training samples was more than 800 but achieved less than 90% 

when the number of training samples was 200 (Wang et al., 2019).  In general, machine-

learning algorithms may require hundreds to thousands of reference samples to train depending 

on the spatial and spectral heterogeneity as well as the size of the mapping area (Huang et al., 

2002). For instance, Melgani and Bruzzone (2004) used 4757 training and 4588 validation 

samples to achieve valid and effective SVM classification results from hyperspectral remotely 

sensed imagery. Moreover, for convolutional neural networks (CNNs), Chen et al., (2019) used 

6090 training samples for assessing the performance of a Fletcher-Reeves CNN (F-R CNN) 

against a traditional CNN model. However, acquiring thousands of accurate reference training 

samples using traditional field data collection methods such as the Global Navigation Satellite 

System (GNSS), may be impractical due to time constraints, logistical limitations, and terrain 

inaccessibility (Fang et al., 2020; Huang et al., 2021).  

The efforts at assessing parametric, nonparametric, and spectral matching algorithms to 

determine the best performing image classifiers for mapping IAPs have been made. Hence the 

current study assessed the mapping accuracies of SAM, MLC and SVM algorithms for 

generating thousands of accurate samples for training machine-learning algorithms to map the 

invasive Campuloclinium macrocephalum (Less.) DC (commonly known as ‘pompom weed’) 

in a heterogeneous urban landscape using hyperspectral imagery from the recently 

commissioned DESIS sensor. The machine-learning algorithms and the deep learning CNN 

approaches are employed in subsequent pompom mapping experiments in this series of case 

studies because ML allows for the migration of training samples to sites not previously visited 

while CNNs can also better handle intra-class spectral variability and spatial heterogeneity 

during image classification for plant species specific mapping (Huang et al., 2020; Hu et al., 

2022). Overall, this study presents a potential solution strategy that could have significant 

implications in generating large numbers of accurate training samples for mapping IAPs in 

heterogenous environments from new generation spaceborne hyperspectral imagery using 

machine-learning algorithms. 
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2. Study area and species description 

2.1.Study area 

The chosen study area is located south of Pretoria, the capital city of South Africa, which is 

situated in Gauteng, the most densely populated province (~785/km2) of the country (Figure 

1b). At the center of the study area is Centurion, which is a highly developed urban area 

characterized by a dense spatial distribution of commercial and residential buildings (Figure 

1a). Furthermore, in the south-east part of the study area is the Rietvlei Nature Reserve (shown 

using a green boundary) that includes the Rietvlei Dam and adjacent undisturbed protected 

grasslands and wetlands (Figure 1a). The study area is a heterogeneous urban landscape in 

terms of land use and land cover types and is characterised by industrial areas, wastelands, 

highway roads, rail tracks as well as aviation restricted military zones. The total study area is 

about 393 km2 with a measured average elevation of about 1 500 m above mean sea level. The 

study area falls within the summer rainfall region of South Africa with a minimum winter (July) 

rainfall amount of 6 mm and a maximum summer (January) rainfall amount of 128 mm (Kruger 

and Nxumalo, 2017). The area is characterised by a warm temperate climate with winter  and 

summer average temperatures of 11 °C and 22 °C, respectively (Kruger and Shongwe, 2004).   

 

Figure 1: a) Orthorectified Google Earth image of the study area showing both developed urban 

areas and open grasslands and b) location of the study area relative to Pretoria and the provinces 

that surround the Gauteng province. 
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2.2. Species description 

Pompom weed (Campuloclinium macrocephalum (Less.) DC) belongs to the daisy family 

(Asteraceae) and is native to Central and South America (Gitonga et al., 2015). The plant is an 

erect perennial herb with bright fluffy pink pom-pom like flowerheads on green stems that can 

grow as tall as 1.3 m high (McConnachie et al., 2011). In terms of phenology, the flowering 

season of the pompom weed starts in Spring (October) and senescence is in Autumn during 

April (Goodall et al., 2011). In terms of spatial distribution, pompom weed occurs in 7 out of 

the 9 provinces of South Africa. The pompom weed is an established invasive species in the 

Gauteng province, where the study area is located and an emerging weed in Mpumalanga, 

Limpopo, North West, KwaZulu-Natal, Free State and Eastern Cape provinces (Goodall, 

2011). In particular, the provinces that surround the Gauteng Province (Figure 1b) are affected 

by pompom weed invasion. This is because these provinces are home to grassland and savanna 

biomes and pompom weed has been reported to invade mostly grasslands and open savannas 

(Goodall et al., 2011). In terms of spread pathways, the pompom  weed spreads mainly through 

wind dispersal and is thought to be also transferred by motor vehicles through pollens in mud 

stuck on car wheels (Goodall, 2016). Humans, together with freely ranging animals are also 

thought to be carriers of pompom weed seeds through human behaviour of flower picking as 

well as seeds trapped on animal fur (McConnachie et al., 2011). 
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3. Datasets, image classification and validation methods 

3.1. Methodology workflow 

Represented in Figure 2 below is the methodology followed in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Workflow for generating and validating large numbers of training samples for 

mapping the invasive pompom weed using field data and DESIS hyperspectral imagery.  
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3.2.Training and validation data 

Ground control points (GCPs) were recorded using a Global Navigation Satellite System 

(GNSS) operated in Real Time Kinematic (RTK) mode.  The RTK connection was achieved 

through the South African TrigNet network of 63 continuously operating GNSS base stations 

that are spread throughout the country to provide RTK corrections to roving GNSS receivers 

in real time (Hedling et al., 2000). To obtain high precision GNSS positions, operational 

tolerances were set to 2 mm and 3 mm for the horizontal and vertical observables, respectively. 

A total of 150 GCPs were recorded as reference points that contain pompom weed. Precautions 

were taken to ensure that each GCP was taken at the center of a pompom weed cluster larger 

than 10 m x 10 m in size as opposed to isolated weeds. In addition, 250 reference points that 

do not contain pompom weed were collected from Google Earth imagery. Priori knowledge 

was used to collect reference points that do not contain pompom weed on the basis that 

pompom weed invades grasslands and therefore the non-pompom-containing GCPs were 

collected on targets such as buildings, tar roads, water bodies, sport fields and golf courses. 

These data were then split into training and validation datasets for the SAM, MLC and SVM 

classification methods. For the SAM classification, a set of 20 reference points was used to 

create input endmembers while 130 points were withheld for validation. For the MLC and 

SVM classifications, reference data were divided into 70% and 30% training and validation 

data, respectively, where 105/150 pompom reference points were used for training and 45/150 

pompom-containing points were used for validation in a 70:30 ratio. In addition, 175/250 non-

pompom-containing points were used for training the non-pompom class and 75 non-pompom 

containing points were used for validating MLC and SVM classifications while no non-

pompom endmembers were required for the SAM classification. 

3.3. DESIS hyperspectral data 

3.3.1. Data description 

The hyperspectral data was obtained from the German Aerospace Center (abbreviated as DLR 

in the German name) through a Teledyne Brown Engineering (TBE) tasking request of the 

DESIS hyperspectral sensor on-board the International Space Station (ISS). The DESIS sensor 

was launched in 2018 and is a pushbroom imaging spectrometer with 1024 across track pixels 

of 30 m spatial resolution at nadir from an ISS altitude of 400 km (Alonso et al., 2019). The 

instrument is spectrally sensitive over the visible and near infrared (VNIR) wavelengths of the 

electromagnetic spectrum and measures 235 spectral bands between 400 and 1000 nm at a 
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spectral resolution of 2.55 nm (Müller et al., 2016).  The DESIS hyperspectral sensor was 

tasked to obtain imagery over the study area on 15 March 2020 corresponding to the late 

flowering season of the pompom weed (Goodall et al., 2011). 

3.3.2. Data pre-processing  

Data were pre-processed to product level 2A as per European Space Agency (ESA) product 

definitions prior to delivery. The pre-processing involved; (1) spectral resampling through band 

binning, (2) radiometric calibration from Top of Atmosphere (TOA) radiance to ground surface 

reflectance and, (3) geometric calibration through earth positioning and orthorectification 

(Müller et al., 2016). For spectral resampling, an on-board programmable band binning was 

applied using a scale factor of 4 to aggregate the raw 235 spectral bands into 60 bands of 10.21 

nm bandwidth as outlined in Müller et al., (2016). For the radiometric calibration, the gain and 

offset values of 0.0001 and 0.0 were applied to scale image digital numbers (DNs) to surface 

reflectance values between 0.0 and 1.0 using the ENVI software radiometric calibration tool 

(ENVI version 5.5., Exelis Visual Information Solutions, Boulder, Colorado). The delivered 

tiled data was then mosaicked and cropped to the 393 km2 study area vector for image 

classification.  

3.4. Description of the image classification methods 

3.4.1. Spectral angle mapper image classification 

The SAM method was selected to represent the spectral matching algorithms in this study 

because SAM has been extensively assessed for mapping a variety of IAPs from spaceborne 

hyperspectral imagery (Ustin et al., 2002, Narumalani et al., 2006, Lawrence et al., 2006, 

Sahithi et al., 2019; Kazmi et al., 2021). The SAM method exploits target object spectral 

properties to identify similar objects in hyperspectral data cubes. In particular, the reflectance 

spectrum of the target object is used to classify unknown pixels by determining the similarity 

between the reflectance spectrum of the target and that of an unknown image pixel (Kruse et 

al., 1993). This is achieved by treating the reference target reflectance spectrum, referred to as 

the endmember,  and the unknown pixel reflectance spectrum as vectors in an n-dimensional 

space where n is equal to the number of image bands in a hyperspectral data cube (Nidamanuri 

and Zbell, 2011). The spectral angle between the reference target spectrum and the reference 

spectrum of the unknown pixel is calculated by taking the arc cosine of the dot product of the 

reference spectrum and the unknown spectrum. The SAM determines the similarity of an 

unknown spectrum u to a reference spectrum r by applying the following equation; 
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where nb is the number of bands (Kruse et al., 1993) . The smaller the spectral angle, the higher 

the similarity between the reference target reflectance spectrum and the reflectance spectrum 

of the unknown pixel. During the SAM classification, pixels further away from the reference 

spectrum vector than a specified maximum angle threshold in radians are not classified (Kutser 

and Jupp, 2006). In this study, the maximum threshold angle between the endmember spectrum 

vector and the unknown pixel spectrum vector used was 0.1 radians as applied in (Dennison, 

Halligan and Roberts, 2004).  For training, a set of 20 target reference spectra endmembers 

were extracted from 20 pompom-containing pixels that were digitized as regions of interest 

(ROIs) in the ENVI software based on 20 GNSS-RTK observed GCPs. Endmembers were 

extracted directly from the hyperspectral data cube because research has shown that 

endmembers extracted directly from imagery perform best as opposed to in situ or laboratory-

derived endmembers (Jiang, van der Werff and van der Meer, 2020). The DESIS image-derived 

spectral plots of the 20 samples used as endmembers to train the SAM are shown in Figure 3b 

with Figure 3a showing the hyperspectral data cube of the Rietvlei Dam, parts of Rietvlei 

Nature Reserve and the surrounding urban area.  
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Figure 3: a) Hyperspectral data cube for a subset of the Rietvlei Nature Reserve and the 

surrounding urban area and b) Spectral plots of the 20 samples used as SAM endmembers.  

3.4.2. Maximum likelihood image classification 

The MLC method was selected to represent parametric classifiers in this study because MLC 

has been previously compared to the SAM method for mapping IAPs from hyperspectral 

imagery (Ustin et al., 2002; Miao et al., 2011). The MLC method is based on the Bayes’ 

theorem and holds that the probability (P) that a pixel with mean vector (ω) belongs to class i 

is given by; 

P(ω| )P( )
P( |ω) = 

P(ω)

i i
i              (2) 

where P(ω|i) is the likelihood function, P(i) the probability that class i belongs in the image 

being considered and P(ω) is the probability that ω is observed (Dougherty, Newell and Pelz, 

1992). Thus, a theoretical pixel x is assigned to class i using the following decision rule; 

x i   if P( |ω) > P( |ω) for all i j j i           (3) 

meaning pixel x is the element of class i given that the probability of pixel x belonging to class 

i is greater than the probability of pixel x belonging to class j where i is not j (Strahler, 1980).  

Moreover, the MLC algorithm assumes that the digital numbers of a class in the image bands 

are normally distributed and calculates the probability of each pixel belonging to that class 

(Yang et al., 2011). The classifier considers the mean and covariance vectors of the training 

areas and subsequently each class is characterised by a mean vector and a covariance vector. 

Each image pixel is then assigned to the class for which it has the highest probability of 

membership (Silva et al., 2013). During the MLC classification, pixels whose probability of 

membership is below a specified probability threshold are left unclassified (Foody et al., 1992). 

In this study, the classification probability threshold was set to 0.95. The training of the 

supervised MLC was done using 105 pompom-containing 30 x 30 m ROIs for the pompom 

class and 175 non-pompom-containing 30 x 30 m ROIs for the non-pompom classes. 

Furthermore, validation was done using 45 pompom-containing 30 x 30 m ROIs and 75 non-

pompom containing 30 x 30 m ROIs, meaning that a 70:30 training: validation ratio was used 

for the MLC classification.  
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3.4.3. Support vector machine image classification 

The SVM is a machine-learning classification method derived from statistical learning theory 

and separates classes by maximizing the margin between them using a hyperplane decision 

surface (Mountrakis et al., 2011). The SVM was selected to represent nonparametric machine 

learning algorithms in this study because SVM has a low sensitivity to high dimensionality and 

been previously assessed for species-specific mapping of IAPs from spaceborne hyperspectral 

data (Melgani and Bruzzone, 2004; Mirik et al., 2013; Sahithi et al., 2019; Sabat-Tomala et 

al., 2020). The classification problem in SVM involves defining this optimal decision surface 

(Zhu and Blumberg, 2002). The aim is to develop a model which predicts the target values of 

the test data using finite training data. Support vectors are the training data points that constrain 

the width of the hyperplane margin (Oommen et al., 2008). Given a training set of instance-

label pairs (xi,yi), i = 1,…,l where l is the number of samples, 
N

ix R  is an N-dimensional 

space and,  1, 1
l

y − is class labels in the binary classification, the support vector machines 

require the solution of the following optimization problem; 

w, ,
min

b 
      

1

1
w w + 

2

l
T

i

i

C 
=

            (4) 

subject to constraints, 

φ(x ) )(w 1i i i

T by +  −   0i  ,    i = 1, …,N          (5) 

where training vectors xi are mapped into a high dimensional space (i.e. l – 1 dimensions) by 

the function φ ,   indicates the distance of incorrectly classified points to a non-linear 

hyperplane and C is the penalty parameter (Kavzoglu and Colkesen, 2009). In this study, the 

penalty parameter was set to 50 to optimize the trade-off between forcing rigid hyperplane 

margins and allowing training errors. Moreover, the kernel function used was the radial basis 

function (RBF) because of its inherent high model convergence speed and ability to produce 

accurate results (Zhu and Blumberg, 2002; Kavzoglu and Colkesen, 2009). The RBF kernel 

function is defined as follows; 

 ( ) ( )2K  ,     ||   ||   ,    0i j i jx x exp g x x g= − −                                                                          (6) 

where g is the kernel function parameter. During the SVM classification, pixels whose 

probability of membership is below a specified classification probability threshold are left 
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unclassified. In this study, the classification probability threshold was set to 0.95, consistent 

with the MLC classification. The training of the supervised SVM was done using 105 pompom-

containing 30 m x 30 m ROIs for the pompom class and 175 non-pompom-containing 30 x 30 

m ROIs for the non-pompom class. Furthermore, the validation was done using 45 pompom-

containing 30 x 30 m ROIs and 75 non-pompom-containing 30 x 30 m ROIs, meaning that a 

70:30 training: validation ratio was used for the SVM classification, consistent with the MLC 

classification.  

3.5. Accuracy assessment 

3.5.1. Pixel-based accuracy assessment 

For the SAM classification, the pixel-based accuracy assessment used 130 withheld pompom-

containing reference pixels to assess whether a reference pixel was classified as pompom-

containing or misclassified. For the MLC and SVM classifications, 45 withheld reference 

pixels as per the 70:30 training: validation ratios were assessed as to whether they match pixels 

classified as pompom-containing or were misclassified. A table was then drawn up to count 

the number of correctly classified and misclassified reference pixels, respectively. Pixel-based 

accuracy assessment can be biased or can unfairly underestimate the accuracy of image 

classification in remote sensing (Foody, 2008). In addition to the pixel-based accuracy 

assessment, this study adopted region-based accuracy assessment procedures as outlined in the 

subsections below.  

 

3.5.2. Region-based accuracy assessment 

Qualitative region-based accuracy assessment that is based on visual interpretation is a widely 

used classification validation method (Costa et al., 2018). The region-based accuracy 

assessment compared the classification results of the SAM classifier with the classification 

results of the MLC and SVM methods. Firstly, a hotspots map based on high density pompom 

classifications was generated for the SAM classifier. A set of 8 regions consisting of 4 circles 

(named C1, C2, C3 & C4) and 4 ellipses (named E1, E2, E3 & E4) were created around the 

high-density pompom classification regions to compute the number of pixels classified as 

pompom-containing by the respective classifiers within these hotspots. The area of pixels 

classified as pompom-containing within these 8 regions was calculated to assess the area 

percentage of pixels classified as pompom-containing within these hotspots for each classifier. 

However, these area percentages lacked a spatial component as they did not show which pixels 
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were classified as either pompom-containing or non-pompom-containing in agreement with 

the SAM. This study then analysed the regions of classification agreement between SAM and 

MLC as well as between SAM and SVM both quantitatively and qualitatively using image 

differencing.  

3.5.3. Analysis of classification regions of agreement 

To add a spatial component to the area percentages calculated in 3.4.1 and to map classification 

regions of agreement between the SAM and MLC as well as SAM and SVM, use of image 

differencing was made. Two difference images were generated by subtracting the classification 

images of MLC and SVM from the SAM classification image. Moreover, to further investigate 

the level of agreement between SAM classification results and the classification results of MLC 

and SVM, the 8 hotspots were cropped out of the difference images and juxtaposed next to 

each other at the same scale and resolution. This allowed for qualitative analysis of the 

classification regions of agreement. In addition to the qualitative analysis, area percentages of 

the regions of agreement between SAM classification results and classification results of the 

MLC and SVM classifiers were calculated. As part of this quantitative analysis, area 

percentages of mutually exclusive classification results where the SAM classified pixels as 

pompom-containing while the classifier in comparison classified those pixels as non-pompom-

containing were calculated. The subsection below outlines an independent verification survey 

that was conducted post-classification. 

3.6. Generation of training samples 

The SAM classified image consisted of the pompom-containing and the non-pompom-

containing pixels classes, as class 0 and Class 1, respectively. The output raster was split into 

two based on colour values (i.e., binary classification of class 0 ‘pompom containing’ and class 

1 ‘non-pompom-containing’ where RGB values were (0,0,0) for class 0 and (255,255,255) for 

class 1. To generate the training samples for the pompom-containing pixels class, the SAM 

pompom-containing pixels raster (i.e., class 0) was vectorised into 30 m x 30 m square 

polygons as per spatial resolution of the DESIS hyperspectral imagery. Since machine-learning 

training datasets are usually administered in point-form as reference GCPs, centroids for each 

30 m x 30 m square polygon were generated to create the same number of points as the number 

of input pixels. For the non-pompom-containing class, the class 1 raster was vectorised and 

then the resultant polygons were merged into one super-polygon to form the non-pompom-

containing pixels superclass. A set of 8000 random points that are, at least, 100 m apart were 
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then generated to create non-pompom-containing training samples for subsequent machine-

learning classifications. The next subsection describes the verification methods used for the 

generated pompom-containing and non-pompom containing training samples, respectively.  

3.7.Verification of training samples 

For the pompom-containing pixels class, an in-situ GNSS/RTK verification survey was 

conducted in areas that were not previously visited during the initial collection of reference 

GCPs. In particular, the Rietvlei Nature Reserve and surrounding areas within the study area 

were used to select 50 pixels classified as pompom-containing. The centroids of the selected 

pixels were visited verify whether there was pompom weed at those selected sites. This 

verification involved staking out to the position of each pixel of interest and checking whether 

there is pompom weed as per SAM classification results or there has been an error of 

commission.  It should be noted that this verification survey was conducted in early September, 

a time which coincides with widespread wildfires in South Africa (Forsyth et al., 2010). As a 

result of wildfires, some areas within the study area could not be used for the pompom-

containing training samples verification as grass in those regions was burnt out.  

For verifying the non-pompom-containing training samples, a grid of 28 4 m X 4 m tiles over 

and around the study was generated. Subsequently, four non-pompom-containing training 

pixels were picked proximal to the four corners and one at the centre (i.e., 5 points per tile) 

totalling 140 training samples for validation. The 140 samples were then verified in Google 

Earth Pro by zooming to each point to confirm whether it belongs to the non-pompom 

containing pixels class. Priori knowledge was used to assess whether a point belongs to the 

non-pompom-containing pixels class. For instance, points falling on the Rietvlei Dam, highway 

roads, private golf courses, building rooftops, industrial buildings, open-cast mines and 

residential estates were, without doubt, deemed as belonging to the non-pompom containing 

pixels class whereas points falling in open grasslands could not be verified as belonging to the 

non-pompom-containing pixels class. The next section presents and discusses the study 

findings focusing on accuracy assessment, the classification agreement between SAM and the 

MLC and SVM methods, results of the generation of training samples as well as the results of 

the verification of the resultant training samples. 
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4. Results and Discussion 

4.1. Pixel-based accuracy assessment  

Results of the pixel-based accuracy assessment indicated that the SAM method had 87% 

classification accuracy for the pompom-containing pixels class (Table 1). This assessment was 

based on 130 withheld pompom-containing reference pixels where 17 pixels (i.e. 13%) were 

misclassified (Table 1). In addition, the MLC and SVM methods had 73% and 69% pompom 

classification accuracies and misclassification of 27%and 31%, respectively. It is worth noting 

that all the utilized classifiers had 0% commission error for the pompom class but this could 

be attributed to the fact that the 250 non-pompom-containing pixels were deliberately collected 

over targets that are known to be spectrally dissimilar to the pompom weed (i.e. buildings, tar 

roads, water bodies, sport fields and golf courses). It should also be noted that all the 250 non-

pompom-containing pixels were used for the SAM commission error assessment whereas only 

75 non-pompom-containing pixels were used for the MLC and SVM commission error 

assessments. These findings suggest that the SAM classification had the highest pixel-based 

classification accuracy. In comparison, Ustin et al., (2002) obtained 91% and 98% overall 

classification accuracies for mapping the invasive Arundo donax using SAM and MLC, 

respectively. The high accuracies obtained in Ustin et al., (2002) could be attributed to the fact 

that high spatial resolution airborne AVIRIS data (~4 m) were used compared to the spaceborne 

30 m DESIS spatial resolution used in this study. Subsequent analysis uses the SAM 

classification as a reference in comparison to the classification results of the two remainder 

classifiers (i.e. MLC and SVM).  

Table 1: Pixel-based accuracy assessment results for the SAM, MLC and SVM classification 

methods 

  Number of reference pixels Classified pixels Percentage Misclassified pixels Percentage 

SAM 130 113 86,92 17 13,08 

MLC 45 33 73,33 12 26,67 

SVM 45 31 68,89 14 31,11 
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4.2. Region-based accuracy assessment 

4.2.1. SAM high density pompom-containing classification regions 

The 8 hotspots (circles C1, C2, C3& C4 and ellipses E1, E2, E3& E4) are superimposed on a 

Sentinel 2 colour image of the study area in Figure 3a. The results in Figures 3b, 3c and 3d 

show pompom classification results for the SAM, MLC and SVM methods, respectively, with 

the 8 hotspots superimposed. The SAM classification results in Figure 3b showing dense 

clusters of pompom-containing pixels in ellipses E1, E2, E3& E4 are interesting as these 

regions were not visited during the initial reference data collection and had to be verified using 

E1, E2, and C4 during an independent verification survey. Results in Figure 3c show that the 

MLC classified few pixels as pompom-containing within these hotspots except for circle C3 

and ellipse E4. However, results in Figure 3c show that the SVM classified many pixels as 

pompom-containing pixels all over the entire study area, especially around wet grassy areas 

and rivers. When taking into consideration only ellipse E4, it is observable that the SAM and 

MLC methods agree within this region whereas the SVM classified very few pixels as 

pompom-containing within ellipse E4. In addition to the visual analysis, area percentages of 

pixels classified as pompom-containing by the respective classifiers within these regions are 

presented and discussed in subsection 4.2.2 below.   

 

Figure 4: a) Sentinel 2 backdrop image with the 8 hotspots superimposed, b) SAM 

classification, c) MLC classification and d) SVM classification.  
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4.2.2. Area calculations within SAM high density pompom classification regions 

Results in Table 2 were generated by calculating the area of pixels classified as pompom-

containing in Figures 4b, 4c and 4d within the 8 SAM hotspots. Table 2 shows that SAM 

classified pompom-containing pixels within these regions with area percentages ranging from 

7.79% for C3 to 57.37% for C4. However, the MLC method area percentages ranged from 

0.72% for E2 (SAM had 12.09%) to 6.04% for E4 (SAM had 17.64%). On the contrary, the 

SVM method area percentages ranged from 5.20% for E4 (SAM had 17.64%) to 33.00% for 

C1 (SAM had 9.27%). This demonstrates very large differences between the SAM and SVM 

classifications. Moreover, the MLC method had a classification area percentage of 0.77% for 

C4 as opposed to 57.37% and 22.41% for the SAM and SVM methods, respectively. The high 

percentage of SAM classified pompom-containing pixels in region C4 is observable from 

Figure 4b as a dense classification of black pixels. However, C4 contains very few black pixels 

in Figure 4c for the MLC classification. Contrarily, C4 contains a fair number of black pixels 

in Figure 4d for the SVM classification which could be attributed to the wetlands in and around 

C4 and the proximity to a water body that is located south-east of C4. These quantitative 

differences within the 8 SAM hotspots mean that neither MLC nor SVM can be used to verify 

the SAM classification results. The area percentages in Table 2 are presented using a bar graph 

in Figure 5 to further contrast the differences in the classification results of the utilised image 

classifiers. 

Table 2: Area percentages for SAM, MLC and SVM classification methods 

 
SAM MLC SVM 

ID Total Area (m2) Area (m2) Percentage Area (m2) Percentage Area (m2) Percentage 

C1 3078918 285300 9,27 103500 3,36 1016100 33,00 

C2 1946145 325800 16,74 42300 2,17 308700 15,86 

C3 8014694 624600 7,79 484200 6,04 802329 9,98 

C4 2216647 1271700 57,37 17100 0,77 496800 22,41 

E1 9374620 2887200 30,80 64800 0,69 2592043 27,65 

E2 2508141 303300 12,09 18000 0,72 225953 9,01 

E3 1681234 483300 28,75 78300 4,66 607075 36,11 

E4 4627248 816300 17,64 288900 6,24 240765 5,20 
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4.2.3. Area percentages within the 8 SAM high pompom density classification 

hotspots 

The results in Table 2 were plotted on a bar graph to highlight the differences in the 

classification of pompom-containing pixel percentages by the respective classification methods 

as shown in Figure 5 below. It is observable from Figure 5 that the pompom-containing pixels 

were classified differently by these methods except for region C3 where all the respective area 

percentages were comparable. Moreover, the high SAM classification area percentage in C4 

was not reciprocated by the MLC and SVM methods. In general, the MLC method classified 

low area percentages of pompom-containing pixels in regions C4, E1 & E2 (i.e. less than 1%) 

as observable in Figure 4c and Figure 5. The poor detection of pompom-containing pixels by 

the MLC could be attributed to the fact the training data used was insufficient as only 105 

GCPs of 30 m2 pixels totaling an area of 3.15 km2/ 393 km2 was used because in general, MLC 

is a robust classifier for mapping IAPs from hyperspectral imagery provided sufficient training 

data (Ustin et al., 2002; Lawrence et al., 2006). In contrast, the SVM produced higher area 

percentages than the SAM in regions C1 and E3 even though these circles and ellipses were 

generated based on SAM high pompom density classification regions. Again, the high SVM 

area percentages can be attributed to the fact that both C1 and E3 are in or close to wetlands 

and riparian areas. In addition to the insufficient training data, the poor classification accuracy 

by the SVM in this study can be attributed to the fact that SVM uses a pattern vector to classify 

objects based on pattern recognition including texture whereas the pompom weed does not 

form patterns as planned structures such as building structures do (Mountrakis et al., 2011). 

Instead, the pompom weed, due to its bright pink colour, gives a distinct spectral signature, 

hence the SAM method performed best for classifying pompom-containing pixels in this study.  
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Figure 5: Quantitative differences in pompom classification area percentages for the SAM, 

MLC and SVM methods across the C1-C4 circles and E1-E4 ellipses of SAM high pompom 

density classification.  

4.3.  Classification regions of agreement 

4.3.1. Qualitative analysis 

Results in Figure 6a is the difference image between SAM and MLC classifications whereas 

Figure 6b shows the difference image between SAM and SVM classifications. The white areas 

are regions of classification agreement and therefore the SAM and MLC generally agreed more 

than the SAM and SVM classifications as there is more white areas in Figure 6a than there is 

in Figure 6b. The black areas are pixels classified as pompom-containing by the SAM but not 

the classifier in comparison. The grey areas are regions classified as pompom-containing by 

the classifier in comparison but classified as non-pompom-containing by the SAM. It is 

observable from Figure 6a that the SAM method generally classified more pixels as pompom-

containing than MLC as depicted on the bar graph in Figure 5 and this observation is consistent 

with the low classification percentages of pompom-containing pixels classified by MLC in 

subsection 4.2. However, the SVM classified more pixels as pompom-containing than SAM in 

Figure 6b, as depicted by large grey areas especially in and around rivers and wetlands. In 

general, there is fewer grey areas in Figure 6a than there is in Figure 6b meaning that the MLC 

rarely classified pixels as pompom-containing that were not classified as such by the SAM 

method. Finally, the SAM high density classification regions of circles and ellipses were 
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juxtaposed in Figures 6c and 6d for a clearer qualitative analysis to show the level of agreement 

or disagreement within these regions. The results in Figures 6c and 6d show that the MLC and 

SVM classifications were not qualitatively similar to the SAM classification within the 8 

hotspots. The overall study area classification agreement results were quantitatively 

summarised using Tables 3 and 4 as presented and discussed in the next subsection.  

 

Figure 6: a) Difference image between SAM and MLC, b) difference image between SAM and 

SVM, c) juxtaposed regions for the SAM vs MLC difference image and d) juxtaposed regions 

for the SAM vs SVM difference image.  

4.3.2. Quantitative analysis 

In addition to the visual qualitative analysis of the classification agreement, area calculations 

were done for the white regions of agreement, black SAM classification and grey MLC or SVM 

classifications as shown in Figures 6a and 6b in subsection 4.3.1 above. Results in Table 3 

show that the SAM and MLC classifications agreed in 94% pixels of the total study area of 393 

km2. It should be noted that this agreement was both for pompom-containing and non-

pompom-containing pixels. Consistent with the qualitative analysis, the MLC only classified 

0.22% of the study area as pompom-containing that was not classified as such by the SAM. 

However, SAM classified 5% of the study area as pompom-containing that was not classified 

as such by the MLC.  
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Table 3: Area percentages for the regions of agreement between SAM and MLC.  

  

Spectral Angle Mapper vs. Maximum Likelihood 

Area (m2) Percentage (%) 

Region of agreement  370 895 410 94,30 

SAM classification  21 528 900 5,47 

MLC classification 874 700 0,22 

Total 393 299 010 100 

 

Results in Table 4 show that the SAM and SVM classifications agreed in 75 % of pixels of the 

entire study area for both pompom and non-pompom classes. Unlike the MLC, SVM classified 

an area percentage of 21% as pompom-containing pixels that was not classified as such by the 

SAM method. In turn, the SAM also classified an area percentage of 4% as pompom-containing 

that was not classified as such by the SVM. These major differences are observable in Figures 

5 and 6b. In general, the SVM classified many pixels as pompom-containing than both SAM 

and MLC but this can be attributed to commission errors committed by the SVM in wet grassy 

areas such as wetlands and riparian areas. The results in Tables 3 and 4 show that the MLC and 

SVM classifications were not quantitatively similar to the SAM classification within the 8 

hotspots. Results of an independent SAM verification survey are discussed in subsection 4.4 

below.  

Table 4: Area percentages for the regions of agreement between SAM and SVM.  

  

Spectral Angle Mapper vs. Support Vector Machine 

Area (m2) Percentage (%) 

Region of agreement 293 926 410 74,73 

SAM classified 16 123 500 4,10 

SVM classified 83 249 100 21,17 

Total 393 299 010 100 
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4.4.Generation of reference training samples 

A total of 13 178 pixels were classified as pompom-containing by the SAM classifier and this 

resulted in 13 178 reference points for the pompom-containing pixels class. All the generated 

points could potentially be used as reference training samples in subsequent machine-learning 

classifications. However, it should be noted that the SAM classification was verified with a 

92% mapping accuracy and so 1 in every 12 points in this reference dataset could be a 

misclassification (i.e., 8%). To generate a more accurate reference dataset, points from non-

verified regions within the mapping area as well as points that were closer to misclassifications 

of the pixel-based accuracy assessment were manually removed in this study. As a result of 

this manual data cleaning exercise, a total of 9 178 points were removed from the pompom-

containing reference dataset and only 4 000 points were retained. However, it should be noted 

that the manual deletion of points is not mandatory in this solution strategy as the deletion of 

some points does not improve the validity of the remaining points. For the non-pompom-

containing class, 8 000 random points that are, at least, 100 m apart were generated within the 

non-pompom-containing class super-polygon. Figure 7 below shows 4 000 pompom-

containing reference points in red together with the 8000 non-pompom-containing reference 

points in green.  

 

Figure 7: SAM classification derived reference training samples with 4 000 pompom reference 

points shown in red and 8 000 non-pompom reference points shown in green.  
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4.5.Verification of training samples 

4.5.1 Verification of the pompom-containing pixels class training samples 

The pompom-containing training samples were verified using a set of 50 points selected from 

the SAM pompom-containing pixels class. Of the 50 selected points, 46 were verified meaning 

that the SAM classification was verified with a 92% overall mapping accuracy. The high 

accuracy could be attributed to the fact that most of the verification points were deliberately 

selected within very large clusters of pixels classified as pompom-containing as opposed to 

isolated pixels. This is because at the stage, it was not known whether SAM was accurate in 

mapping the pompom weed as the MLC and SVM classifiers produced different results within 

the SAM regions of high pompom density classification (i.e. the 8 hotspots). Of the four non-

verified points, one fell on a burnt area that was burnt between image acquisition and the 

verification survey due to wildfires and thus could not be verified. The three remainder points 

consisted of the native Senecio inornatus plant which sometimes co-occurs with pompom weed 

as its native range includes grasslands (Egli et al., 2020). It is suspected that one or more of the 

20 endmembers used to train the SAM could have contained many Senecio inornatus plants 

within their 30 x 30 m boundary hence three isolated clusters of Senecio inornatus were 

committed into the pompom-containing pixels class by the SAM classifier. This, in future 

studies, can be avoided by not taking GCPs in areas where there is co-occurrence of the Senecio 

inornatus plant with the pompom weed. Figure 8 below shows the 46 verified points in green, 

three non-verified points that contained isolated clusters of Senecio inornatus in yellow, one 

non-verified point that could not be verified due to wildfires in red as well the 150 GCPs of the 

initial data collection survey in blue. As can be seen from Figure 8, the verification points were 

collected in areas that were not visited during the initial survey and were particularly collected 

in and around the Rietvlei Nature Reserve. Due to wildfires, some regions within the study area 

could not be included in the verification survey meaning that, in future studies, follow up 

verification surveys should be conducted during the rainy season. 
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Figure 8: Sentinel 2 colour image used as a backdrop to show the 150 reference points in blue, 

46 verified points in green, 3 non-verified Senecio inornatus points in yellow and 1 non-

verified point in red. 

4.5.2. Verification of the non-pompom-containing pixels class training samples 

The non-pompom-containing pixels class of the SAM classification was verified using Google 

Earth images. Of the 140 non-pompom-containing samples, 125 were verified beyond doubt 

as belonging to the non-pompom-containing class as these fell in water bodies, highway roads, 

private golf courses, building rooftops, industrial buildings, open-cast mines and routinely 

monitored residential estates. It should be noted, however, that the 15 (~11%) non-verified 

points shown using ‘U’, for unverified, in Figure 9 below, are not misclassifications per se but 

were rather not verified as belonging to the non-pompom-containing class as these fell in open 

grass. Since pompom weed is known to affect grasslands, it could not be rule-out, beyond 

doubt, that these training samples do not belong to the pompom-containing pixels class. 
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Figure 9: 30 m DESIS colour image (R,G,B band combination 94, 59, 28) showing the 140 

verification points with the Google Earth ‘U’ symbol above the 15 unverified non-pompom-

containing training pixels.  

5. Conclusion 

This study presented a possible solution strategy for generating large numbers of the reference 

training samples sometimes required to train machine-learning algorithms in image processing 

of remotely sensed hyperspectral imagery. In particular, three strategically selected image 

classifiers, namely, SAM, MLC and SVM were assessed to investigate the best performing 

classifier for generating thousands of training samples for mapping the invasive pompom weed 

using 30 m DESIS hyperspectral imagery. The SAM, MLC and SVM classifiers had pixel-

based classification accuracies of 87%, 73% and 67% for the pompom-containing pixels class, 

respectively. However, even though the region-based analysis revealed classification 

agreements of 94% and 75% between the SAM classification and the classifications of MLC 

and SVM methods, respectively, over the entire study area of 393 km2, these classifiers 

produced different classification results within the SAM high pompom density classification 

regions of 4 circles and 4 ellipses (i.e., the 8 hotspots). This means neither MLC nor SVM 

classifications could be used to verify the SAM classification results both qualitatively and 

quantitatively. As a result, an independent verification survey had to be conducted at the 

Rietvlei Nature Reserve to validate the SAM pixel-based mapping accuracy. Results of this 
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study demonstrated that the SAM classifier can be used to generate a large number of accurate 

reference samples for training machine-learning algorithms to map pompom weed from DESIS 

hyperspectral data. A total of 4 000 pompom-containing and 8 000 non-pompom-containing 

training samples were generated from a SAM classification that was trained using only 20 

endmembers. The training samples generated in this study will be used to produce labelled 

samples for training a robust machine-learning image classification algorithm that is based on 

a convolutional neural network (CNN) model for automated mapping of the invasive pompom 

weed in South Africa. Furthermore, this study presented a possible solution strategy to generate 

large numbers of accurate reference training samples for species-level mapping of IAPs in 

heterogenous environments from new generation spaceborne hyperspectral data using 

machine-learning algorithms. 
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