Supplementary information

Genomes of leafy and leafless *Platanthera* orchids illuminate the evolution of mycoheterotrophy

In the format provided by the authors and unedited

Supplementary Information

- Genomes of leafy and leafless *Platanthera* orchids illuminate the evolution of mycoheterotrophy
- Ming-He Li^{1, 2*}, Ke-Wei Liu^{3*}, Zhen Li^{4, 5*}, Hsiang-Chia Lu^{1, 6*}, Qin-Liang Ye^{7*}, Diyang
- Zhang^{1, 2}, Jie-Yu Wang^{1, 8}, Yu-Feng Li⁷, Zhi-Ming Zhong⁷, Xuedie Liu^{1, 2}, Xia Yu^{1, 2}, Ding-
- Kun Liu^{1, 2}, Xiong-De Tu^{1, 2}, Bin Liu^{1, 2}, Yang Hao^{1, 2}, Xing-Yu Liao^{1, 2}, Yu-Ting Jiang^{1, 2},
- Wei-Hong Sun^{1, 2}, Jinliao Chen^{1,2}, Yan-Qiong Chen^{1, 2}, Ye Ai^{1,2}, Jun-Wen Zhai^{1, 2}, Sha-Sha
- Wu^{1, 2}, Zhuang Zhou^{1, 2}, Yu-Yun Hsiao⁹, Wan-Lin Wu^{9,10}, You-Yi Chen^{9, 10}, Yu-Fu Lin¹⁰, Jui-
- Ling Hsu¹⁰, Chia-Ying Li¹¹, Zhi-Wen Wang¹², Xiang Zhao¹², Wen-Ying Zhong¹², Xiao-Kai
- Ma¹, Liang Ma¹, Jie Huang¹, Gui-Zhen Chen¹, Ming-Zhong Huang¹, Laiqiang Huang³, Dong-
- Hui Peng^{1, 2}, Yi-Bo Luo¹³, Shuang-Quan Zou^{1, 2}, Shi-Pin Chen¹, Siren Lan^{1, 2†}, Wen-Chieh
- Tsai^{9,10†}, Yves Van de Peer^{4, 5, 14, 15†}, Zhong-Jian Liu^{1, 2, 16†}

29	Contents						
30	Supplementary Notes						
31	Supplementary Note 1. Evolution of chloroplast and mitochondrial genomes						
32	Supplementary Note 2. Genes involved in leaf initialization and leaf development						
33	Supplementary Note 3. Selective pressure of homologous genes involved in the photosynthesis						
34	pathway4						
35	Supplementary Figures						
36	Supplementary Figure 1. K-mer distribution of sequencing reads of P. zijinensis with 1.80%						
37	heterozygosity						
38	Supplementary Figure 2. K-mer distribution of sequencing reads of P. guangdongensis with						
39	1.89% heterozygosity						
40	Supplementary Figure 3. The Hi-C interaction matrices for chromosomes						
41	Supplementary Figure 4. The LTR insertion time distributions of P. zijinensis and P.						
42	guangdongensis						
43	Supplementary Figure 5. Common lost BUSCOs of <i>P. zijinensis</i> , <i>P. guangdongensis</i> and <i>G. elata</i> .						
44							
45	Supplementary Figure 6. Syntenic block of V. planifolia, P. zijinensis, P. guangdongensis and D.						
46	chrysotoxum						
47	Supplementary Figure 7. K_S distributions for the whole paranome (up) and the anchor pairs						
48	(bottom) in the <i>P. zijinensis</i> genome						
49	Supplementary Figure 8. K_S distributions for the whole paranome (up) and the anchor pairs						
50	(bottom) in the <i>P. guangdongensis</i> genome						
51	Supplementary Figure 9. Maximum likelihood phylogram of 19 angiosperms inferred based on						
52	single-copy genes						
53	Supplementary Figure 10. Venn diagram indicates the common lost genes of G. elata and P.						
54	guangdongensis19						
55	Supplementary Figure 11. Chloroplast genome of <i>P. zijinensis</i>						
56	Supplementary Figure 12. Chloroplast genome of <i>P. guangdongensis</i>						
57	Supplementary Figure 13. Chloroplast genome collinearity mapping of D. catenatum, P.						
58	guangdongensis, and P. zijinensis						
59	Supplementary Figure 14. Mitochondrial genome of P. zijinensis and P. guangdongensis23						
60	Supplementary Figure 15. Phylogenetic analysis of type II MADS-box genes in orchids24						
61	Supplementary Figure 16. Expression patterns of trehalase genes in various organs of autotrophic						
62	orchid D. catenatum, fully mycoheterotrophic orchid P. guangdongensis (PG), and						
63	partially mycoheterotrophic orchid P. zijinensis (PZ)						
64	Supplementary Figure 17. Expression patterns of SUT genes in various organs of P.						
65	guangdongensis						
66	Supplementary Figure 18. The boxplot of gene elements length for ten plant species						
67	Supplementary Figure 19. Ortholog groups found in various plant species						
68	Supplementary Figure 20. A seven-way comparison of A. shenzhenica (ASHE), D. catenatum						
69	(DCAT), G. elata (GELA), Pha. aphrodite (PAPH), Pha. equestris (PEQU), P. guangdongensis						
70	(PGUA) and <i>P. zijinensis</i> (PZIJ) in Orchidaceae						
71	Supplementary Figure 21. Expression pattern of transcriptome analysis for leaf development-						
72	related genes						

73	Supplementary Tables
74	Supplementary Table 1. The statistics of P. zijinensis sequencing raw data from Pacific
75	Biosciences platforms
76	Supplementary Table 2. The statistics of P. guangdongensis sequencing raw data from Pacific
77	Biosciences platforms
78	Supplementary Table 3. Summary of the P. zijinensis and P. guangdongensis genomes' assembly.
79	
80	Supplementary Table 4. BUSCO assessment of genome assembly for P. zijinensis and P.
81	guangdongensis
82	Supplementary Table 5. Chromosome length (bp) of P. zijinensis and P. guangdongensis
83	Supplementary Table 6. Summary of the P. zijinensis and P. guangdongensis genomes Hi-C
84	assembly
85	Supplementary Table 7. Categories of TEs predicted in P. zijinensis, P. guangdongensis and G.
86	elata genomes
87	Supplementary Table 8. The subtypes of repeats for six orchid species (see separate files)
88	Supplementary Table 9. LTR insertion distribution of P. zijinensis
89	Supplementary Table 10. LTR insertion distribution of P. guangdongensis
90	Supplementary Table 11. The prediction of gene structures of P. zijinensis, P. guangdongensis and
91	<i>G. elata</i>
92	Supplementary Table 12. Gene function annotation of P. zijinensis and P. guangdongensis 42
93	Supplementary Table 13. Summary of ncRNA annotation of <i>P. zijinensis</i> and <i>P. guangdongensis</i> .
94	
95	Supplementary Table 14. BUSCO assessment of genome annotation in six orchids
96	Supplementary Table 15. Statistics of syntenic analysis in P. guangdongensis, P. zijinensis, Pha.
97	aphrodite, V. planifolia and D. chrysotoxum
98	Supplementary Table 16. Summary of orthologous gene families in 19 sequenced plant species. 46
99	Supplementary Table 17. GO enrichment analysis for missing gene families in S. polyrhiza47
100	Supplementary Table 18. GO enrichment analysis for missing gene families in Pho. dactylifera. 48
101	Supplementary Table 19. GO enrichment analysis for missing gene families in P. guangdongensis.
102	
103	Supplementary Table 20. GO enrichment analysis for missing gene families in G. elata
104	Supplementary Table 21. Photosynthesis-related KEGG pathway and genes in six orchids51
105	Supplementary Table 22. Chloroplast genes of P. zijinensis and P. guangdongensis
106	Supplementary Table 23. GO enrichment analysis for missing gene families in P. zijinensis 54
107	Supplementary Table 24. GO enrichment analysis for missing gene families in A. officinalis 55
108	Supplementary Table 25. Significantly contracted gene families on the branch leading to the
109	divergence between P. zijinensis and P. guangdongensis (see separate file)
110	Supplementary Table 26. Significantly expanded gene families on the branch leading to the
111	divergence between P. zijinensis and P. guangdongensis (see separate file)
112	Supplementary Table 27. Significantly contracted gene families on the branch leading to P.
113	zijinensis (see separate file)
114	Supplementary Table 28. Significantly expanded gene families on the branch leading to P.
115	zijinensis (see separate file)
116	Supplementary Table 29. Significantly contracted gene families on the branch leading to P.

117	guangdongensis (see separate file)
118	Supplementary Table 30. Significantly expanded gene families on the branch leading to P.
119	guangdongensis (see separate file)
120	Supplementary Table 31. Number of genes related to leaf initiation and development in the
121	genomes of <i>A. thaliana</i> and orchids*
122	Supplementary Table 32. Transcription factor genes involved in root development
123	Supplementary Table 33. List of 46 MADS-box genes identified in P. zijinensis
124	Supplementary Table 34. List of 47 MADS-box genes identified in P. guangdongensis
125	Supplementary Table 35. Trehalase genes in sequenced plant genomes
126	Supplementary Table 36. Number of genes related to nutrient transport and assimilation in the
127	genomes of A. thaliana and orchids
128	Supplementary Table 37. Sequences of trehalase genes in C. goeringii (see separate file)
129	Supplementary Table 38. Length distribution of gene elements in sequenced plants
130	Supplementary Table 39. Primers used in this study
131	Supplementary Table 40. GO enrichment terms of significantly expanded gene families of P.
132	guangdongensis (see separate file)
133	Supplementary Table 41. Mitochondrial genes of P. zijinensis and P. guangdongensis
134	Supplementary Table 42. W value of other genes except for photosynthetic homologs of P.
135	guangdongensis and P. zijinensis (see separate file)
136	Supplementary Table 43. W value of photosynthetic homologs of <i>P. guangdongensis</i> and <i>P.</i>
137	zijinensis (see separate file)71
138	Supplementary Table 44. W value of each branch after the divergence of <i>P. guangdongensis</i> and <i>P.</i>
139	zijinensis using A. shenzhenica as outgroup (see separate file)
140	Supplementary Table 45. Gene element length for ten plant species (see separate file)
141	Supplementary Table 46. Gene IDs for leaf initiation and development (see separate file)
142	Supplementary References72
143	

144 Supplementary Notes

145 Supplementary Note 1. Evolution of chloroplast and mitochondrial genomes

146 **Degeneration of the photosynthesis system**

147 As *P. guangdongensis* does not perform photosynthesis, it was unsurprising that genes enriched

- 148 for 'chloroplast' annotations were strongly represented among the missing genes (Supplementary
- 149 **Tables 22, 40**). To further investigate the putative functions of missing genes, we examined genes
- 150 related to the photosynthetic apparatus, namely Photosystem I, Photosystem II, Cytochrome b₆f,
- 151 Cytochrome C₆, ATP synthase, and Rubisco. Of the nine nuclear genes coding for photosynthetic
- apparatus proteins in *P. zijinensis*, only six and two were present in the *P. guangdongensis* and *G.*
- 153 elata genomes, respectively; this was significantly fewer than in P. zijinensis and other sequence
- 154 orchids (Supplementary Table 22). We assumed that these genes were nonfunctional because
- 155 their full complements of subunits were not present.
- 156 We assembled the chloroplast genomes of *P. guangdongensis* and *P. zijinensis* (MZ440660 and
- 157 MZ440661). We found that the chloroplast genome of *P. guangdongensis* (88,060 bp) was
- 158 dramatically restructured and reduced in size, similar to the reduction in gene number observed for
- 159 the nuclear genome, compared to the chloroplast genomes of *P. zijinensis* (151,858 bp)
- 160 (Supplementary Figures 11, 12). The chloroplast genomes of these two species comprise two
- 161 single-copy regions (a large and a small single-copy region) and the two identical large inverted
- 162 repeats (IRs) encode 128 and 60 genes, respectively, of which P. zijinensis is most associated with
- 163 photosynthesis. The *P. guangdongensis* chloroplast genome has lost one IR and encodes only 28
- 164 protein-coding genes (Supplementary Figure 12), suggesting that *P. guangdongensis* is an
- ancient full mycoheterotrophy and that its chloroplast genome is in the last stage of a 'degradation
- 166 ratchet', that is, retention and loss of the five core nonbioenergetic genes^{1,2}. These results clearly
- 167 show that both the chloroplast and nuclear genomes of *P. guangdongensis* have lost most of the
- 168 genes required for photosynthesis, although the highly degraded chloroplast genome is still
- 169 essential for this full mycoheterotrophy (Supplementary Figures 11–13).
- 170

171 **Contraction of the mitochondrial genome**

172Although the P. guangdongensis genome has undergone extensive gene loss, we found that 550 173gene families containing 1,431 genes (25 by a significant margin) showed expansion in P. 174guangdongensis compared to P. zijinensis (Figure 2; Supplementary Table 30). These genes 175were enriched for GO terms related to several metabolic processes (Supplementary Table 40). 176 We speculate that these expanded genes are related to the functional requirements of the obligate 177mycoheterotrophic lifestyle of P. guangdongensis. We assembled the mitochondrial genome to 178 explore this idea, and the mitochondrial genome of P. guangdongensis was contracted in size 179 (1,126,452 bp, Supplementary Figure 14b) compared to the mitochondrial genomes of P. 180 zijinensis (1,215,055 bp, Supplementary Figure 14a). Thirty-three and 37 protein-coding genes, 181 19 and 20 tRNA genes, and one rRNA gene were annotated in P. guangdongensis and P. 182 zijinensis, respectively, showing gene contraction with one gene family (Mat-R, one gene) and 183 four genes (Atp family, Atp6; Rp family, Rp110, Rps1, and Rps2) in P. guangdongensis compared 184 to P. zijinensis (Supplementary Table 41). For example, the ATP synthase gene family in P. 185 zijinensis has five genes, whereas P. guangdongensis has four genes and loses Atp6. However, the 186 rRNA gene family has one Rps7 gene in P. guangdongensis; it is lost in P. zijinensis. Rps7 is one 187 of the primary rRNA-binding protein genes; its molecular functions include mRNA and rRNA 188 binding, and it is also a structural constituent of ribosomes³. This gene is located upstream of one 26S rRNA gene in the mitochondrial genome and is expressed as an abundant mRNA⁴. 189 190 In addition, we analysed and compared the chloroplast and mitochondrial genomes. It is a P. 191 guangdongensis nuclear gene that is integrated into the mitochondrial genome, which might be 192 related to the energy supply of *P. guangdongensis*. The lost chloroplast genes may be transferred 193 to the nuclear and mitochondrial genomes⁵. The lost chloroplast genes of *P. guangdongensis* were 194 queried in the nuclear and mitochondrial genomes, which only found *psbE* located in the *P*. 195 guangdongensis (PGU012205) and P. zijinensis (PZI018842) nuclear genomes, indicating that the 196 lost genes were not transferred to the nucleus and mitochondria. Interestingly, P. guangdongensis 197 retains more genes in the photosynthesis pathways than does G. elata, showing a closer number to 198 the ones in P. zijinensis, which predicts that more P. guangdongensis genes involved in

- 199 photosynthesis are lost. Selective pressure analysis (see Supplementary Note 3) showed that
- among all the orthologous pairs of collinear blocks in *P. guangdongensis* and *P. zijinensis*, 24
- 201 orthologous pairs involved in photosynthesis showed lower w values (Ka/Ks) (Ttest P
- 202 value=0.07258) (Supplementary Tables 42, 43). Using A. shenzhenica as an outgroup, the w
- 203 value of each clade showed that *P. zijinensis* was higher than *P. guangdongensis* (T_{test} P value
- 204 =0.0882) (Supplementary Table 44). Considering the close phylogenetic relationship between *P*.
- 205 *zijinensis* and *P. guangdongensis* and their distinguished habitats in the same region, we deduce
- 206 parsimoniously that the most recent common ancestor (MRCA) of *P. zijinensis* and *P.*
- 207 guangdongensis was a mixotrophy similar to P. zijinensis and that the invasion of MRCA into the
- 208 local shaded forest eventually led to the appearance of fully mycoheterotrophic *P*.
- 209 guangdongensis.
- 210

211 Supplementary Note 2. Genes involved in leaf initialization and leaf development

212 We are interested in determining whether specific leaf initiation genes have been lost in *P*.

213 guangdongensis and G. elata in relation to the loss of photoreceptor genes. To this end, we used

214 Arabidopsis genes that are well known for regulating leaf initiation and development, including

- auxin synthetic/responsive genes and transcription factors, as queries to analyse the genomes of *P*.
- 216 guangdongensis, P. zijinensis, G. elata, D. catenatum, and Pha. equestris⁶⁻⁹ (Extended Data
- 217 Figures 6, 7; Supplementary Table 31).

218 Among the key genes for leaf initiation, *P. guangdongensis* loses PLETHORA (PLT)

219 transcription factors while *P. zijinensis* has two copies, which are required for the maintenance of

high-level expression of *PIN1* during leaf development¹⁰. Similarly, *G. elata* has one homologue

- to PLT transcription factors (**Supplementary Table 31**). *PIN1* is an auxin efflux transporter gene.
- 222 It can be expressed in the shoot apical meristem (SAM) and redistributes auxin generated at the
- 223 meristem dome to the incipient primordia, so the expression of *PIN1* is important for auxin to
- trigger organogenesis at the SAM^{10,11}. The numbers of *PIN1* genes were comparable in the six
- 225 orchid genomes; *P. guangdongensis* and *G. elata* have only one homologue compared to *P.*
- 226 *zijinensis* (3) (Supplementary Table 31), likely because they are involved in multiple
- developmental processes¹². Although the genomes of *P. guangdongensis* and *P. zijinensis* still

228 have one homologue of the auxin synthetic pathway gene (YUC), whereas G. elata has lost it, the 229 contraction (loss) of upstream PLT transcription factors may affect the expression of PINI and 230 affect the distribution of auxin at the SAM in P. guangdongensis and G. elata. Furthermore, as 231 dark treatment can affect the subcellular localization of PIN1 and cease leaf initiation in 232 tomatoes¹³, the loss of photoreceptor genes may also affect the subcellular localization of *PIN1* in 233 P. guangdongensis and G. elata, eventually leading to the leafless phenotype. Nevertheless, genes 234 related to leaf localization and development are not entirely lost in P. guangdongensis and G. 235 elata, which still contain homologues of ASYMMETRIC LEAVES1 (AS1), another key regulator of 236 leaf initiation in Arabidopsis⁷. 237 For leaf development genes, the homologue numbers of Arabidopsis transcription factor 238 families, including Class II TCP and CUC, were reduced in the genomes of P. guangdongensis 239 and G. elata compared with other photosynthetic orchids (Supplementary Table 31). Our 240 phylogenetic analysis of TCP genes showed that P. guangdongensis and G. elata had only four 241 and three genes of the Class II CIN-TCP family, respectively, which contained six and eight genes 242in *P. zijinensis* and *A. thaliana*, respectively (Extended Data Figure 7). Interestingly, other *TCP* 243 genes related to leaf development in Arabidopsis such as TCP 4/5/10/13/17/23 do not exist in the 244 genomes of P. guangdongensis. Class II CIN-TCP genes can regulate leaf development in 245 Arabidopsis⁷. One of these two Class II CIN-TCP genes in P. guangdongensis was not expressed 246 in any of the analysed organs (Supplementary Figure 21; Supplementary Table 31), suggesting 247 that the leafless feature of P. guangdongensis is also correlated with the loss of Class II TCP 248 genes. 249 250Supplementary Note 3. Selective pressure of homologous genes involved in the photosynthesis 251pathway

252 To investigate the selection pressure of homologous genes in the photosynthesis pathway shared

by *P. guangdongensis* and *P. zijinensis*, 24 pairs of homologous genes in photosynthesis were

found to be shared by *P. guangdongensis* and *P. zijinensis*. First, *Ka/Ks* (w value) was calculated

for all homologous pairs in the collinear block of *P. guangdongensis* and *P. zijinensis*; then, it was

determined whether the w values of these 24 homologous pairs and other gene pairs were

- 257 significantly different. Second, we used BLASTP alignment to identify the homologous genes of
- 258 24 pairs of genes in *A. shenzhenica*, and then performed multiple sequence alignment for each
- 259 group of homologous genes. According to the tree structure of (A. shenzhenica, (P.
- 260 guangdongensis, P. zijinensis)), codeml was used to set the runmode = 0, model = 1, and NSsites
- 261 = 0. The *Ka*, *Ks* and w values of each branch were calculated. Taking *A. shenzhenica* as the
- 262 outgroup, w value of each branch was calculated after the differentiation of each group of genes *P*.
- 263 guangdongensis and P. zijinensis.
- 264

Supplementary Figure 1. *K*-mer distribution of sequencing reads of *P. zijinensis* with 1.80%
heterozygosity.

274 Supplementary Figure 2. *K*-mer distribution of sequencing reads of *P. guangdongensis* with

1.89% heterozygosity.

279 Supplementary Figure 3. The Hi-C interaction matrices for chromosomes. a. *P. zijinensis*. b.

280 P. guangdongensis.

Supplementary Figure 4. The LTR insertion time distributions of *P. zijinensis* and *P. guangdongensis*. Red, green, and blue distributions represent the insertion time of total LTR,
 Copia and *Gypsy*, respectively. a. The insertion time of total LTR, *Copia* and *Gypsy* of *P.*

Copia and *Gypsy*, respectively. a. The insertion time of total LTR, *Copia* and *Gypsy* of *P. zijinensis*. b. The insertion time of total LTR, *Copia* and *Gypsy* in *P. guangdongensis*.

292 Supplementary Figure 5. Common lost BUSCOs of *P. zijinensis*, *P. guangdongensis* and *G*.

elata.

Intra-genomic comparison within D. chrysotoxum (1,541 genepairs)

Chinc

Chin

Chr12

۰.

.

Chr1? Christian Christ

Chrile

Christ

Chr18 Chr19

Chr01

Chr02 Chr03

Chi09

CHIOT CHIOS

1.J.S. MOA Childe Chilos

Children Children

304 305

306 Supplementary Figure 6. Syntenic block of V. planifolia, P. zijinensis, P. guangdongensis and

307 D. chrysotoxum. a. V. planifolia vs. P. zijinensis. b. D. chrysotoxum vs. P. zijinensis. c. V.

308 *planifolia* vs. *P. guangdongensis.* **d**. *D. chrysotoxum* vs. *P. guangdongensis.* **e**. *D. chrysotoxum* vs.

- 309 D. chrysotoxum. f. V. planifolia vs. V. planifolia. g. P. zijinensis vs. P. zijinensis. h. P.
- 310 guangdongensis vs. P. guangdongensis. i. P. zijinensis vs. P. guangdongensis.
- 311

315 Supplementary Figure 7. $K_{\rm S}$ distributions for the whole paranome (up) and the anchor pairs

- 316 (bottom) in the *P. zijinensis* genome.

320 Supplementary Figure 8. Ks distributions for the whole paranome (up) and the anchor pairs

321 (bottom) in the *P. guangdongensis* genome.

324 Supplementary Figure 9. Maximum likelihood phylogram of 19 angiosperms inferred based

on single-copy genes. The phylogram shows that *P. zijinensis* and *P. guangdongensis* may have

higher substitution rate than other sequenced orchids.

333 Supplementary Figure 10. Venn diagram indicates the common lost genes of *G. elata* and *P.*

334 guangdongensis.

- 339 Supplementary Figure 11. Chloroplast genome of *P. zijinensis*. The total length of *P. zijinensis*
- 340 chloroplast genome is 151,858 bp with 128 genes in total; the overall GC content is 36.78%.

- 342 343
- 344 Supplementary Figure 12. Chloroplast genome of *P. guangdongensis*. The total length of *P.*
- 345 guangdongensis chloroplast genome is 88,060 bp with 60 genes in total; the overall GC content is346 35.99%.

352 Supplementary Figure 13. Chloroplast genome collinearity mapping of *D. catenatum*, *P.*

- 353 guangdongensis, and P. zijinensis.

Supplementary Figure 14. Mitochondrial genome of *P. zijinensis* and *P. guangdongensis*. a.
The mitochondrial genome size of *P. zijinensis* is 1,215kb, with 37 coding genes, 20 tRNA, and
one rRNA. b. The mitochondrial genome size of *P. guangdongensis* is 1,126kb, with 33 coding
genes, 19 tRNA, and one rRNA.

366 Supplementary Figure 15. Phylogenetic analysis of type II MADS-box genes in orchids.

- 367 Phylogenetic analysis of type II MADS-box genes based on *P. guangdongensis*, *P. zijinensis*, *A.*
- 368 shenzhenica (Ash), D. catenatum (Dc), and Pha. equestris (Pe).

Supplementary Figure 17. Expression patterns of SUT genes in various organs of P.

guangdongensis, which are performed in three replicates. The line in the middle of a box

represents the median value and the up and bottom borders of the boxes denote the 75th and 25th

percentiles, respectively. The upper and lower bars show the largest value within 1.5 times

interquartile range above 75th percentile and the smallest value within 1.5 times interquartile range

below 25th percentile, respectively. A dot shows the corresponding data points.

392

393 Supplementary Figure 18. The boxplot of gene elements length for ten plant species. The

white rhombus on the box represents the means of the length. The detailed length was listed inSupplementary Table 45.

411

412 Supplementary Figure 20. A seven-way comparison of *A. shenzhenica* (ASHE), *D. catenatum*

413 (DCAT), G. elata (GELA), Pha. aphrodite (PAPH), Pha. equestris (PEQU), P. guangdongensis

414 (PGUA) and *P. zijinensis* (PZIJ) in Orchidaceae. A total of 6,821 gene families were shared by

415 all taxa, with 710 and 665 gene families unique to *P. guangdongensis* and *P. zijinensis*,

416 respectively, 915 in *D. catenatum*, and 363 in *G. elata*.

420 Supplementary Figure 21. Expression pattern of transcriptome analysis for leaf

421 development-related genes. a. YUC and ARF7 expression levels in P. zijinensis (PZJ) and P.

422 guangdongensis (PGU). YUC was expressed in almost all tissues of P. zijinensis, whereas no

423 expression was noted in *P. guangdongensis*. *P. guangdongensis* has two *ARF7* genes, whereas *P.*

424 *zijinensis* has only one. **b.** TCP expression level in *P. zijinensis* and *P. guangdongensis*. *P.*

- 425 *zijinensis* has six *TCP* genes, and *P. zijinensis* and *P. guangdongensis* have different expression
- 426 levels in TCP2, which are performed in three replicates. The line in the middle of a box represents
- 427 the median value and the up and bottom borders of the boxes denote the 75th and 25th percentiles,
- 428 respectively. The upper and lower bars show the largest value within 1.5 times interquartile range
- 429 above 75th percentile and the smallest value within 1.5 times interquartile range below 25th
- 430 percentile, respectively. A dot shows the corresponding data point.

Supplementary Tables

Supplementary Table 1. The statistics of *P. zijinensis* sequencing raw data from Pacific Biosciences platforms.

ID	ZMWNUM	Total bases	Total	Average length	Max length	N50
		(Gb)	reads	(bp)	(bp)	length
						(bp)
r54160_20190712_093131-1_G01	727,183	25.93	1,377,670	18,821.57	211,197	26,689
r54263_20190703_090130-1_D01	584,835	20.73	1,057,822	19,599.44	211,348	27,257
r54263_20190706_083155-1_G01	694,124	23.75	1,297,184	18,312.31	210,386	26,287
r54266_20190710_093754-1_B01	660,948	23.62	1,219,016	19,377.48	221,776	26,926
r54267_20190710_093813-1_C01	622,237	21.70	1,134,772	19,123.47	190,359	26,868
r54268_20190708_093835-1_F01	690,376	25.06	1,323,320	18,939.90	203,496	26,919
r54269_20190708_094938-1_G01	677,439	23.87	1,262,466	18,903.56	208,356	26,598
r64048_20190713_082126-1_A01	5,071,152	126.55	6,618,643	19,120.94	159,011	28,192
r64048_20190715_031525-1_A01	6,015,591	149.95	8,068,149	18,585.13	155,047	27,085
Total	-	441.16	23,359,042	18,886.49	221,776	27,267
ID	ZMWNUM	Total bases	Total reads	Average	Max length	N50 length
------------------------------	-----------	-------------	-------------	-------------	------------	------------
		(Gb)		length (bp)	(bp)	(bp)
r54254_20190514_085037-1_C01	710,566	12.21	1,312,476	9,304.96	87,046	16,860
r54254_20190515_083958-1_D01	626,440	8.97	910,747	9,848.73	96,340	16,697
r54254_20190515_083958-2_E01	735,998	10.01	1,054,511	9,491.23	82,712	15,882
r54266_20190516_092754-1_E01	712,758	21.06	1,830,262	11,504.34	193,579	19,002
r54266_20190518_094033-1_F01	690,430	18.82	1,670,219	11,269.93	215,838	18,739
r54266_20190520_084709-1_B01	702756	21.14	1,706,490	12,389.31	192,367	19,309
r54268_20190518_094350-1_G01	696,836	21.26	1,781,783	11,934.14	210,180	19,119
r54040_20190712_093002-1_F01	718,228	29.32	1,617,479	18,127.80	201,512	23,708
r54267_20190708_093608-1_E01	663,825	25.35	1,402,189	18,079.00	190,768	23,605
r54268_20190702_090150-1_F01	768,250	18.34	1,244,058	14,742.10	110,636	20,952
r54268_20190703_090404-1_B01	706,350	28.79	1,581,022	18,209.23	225,546	23,956
r54268_20190705_085134-1_G01	763,760	29.79	1,685,557	17,675.49	197,044	23,420
r54269_20190705_085250-1_F01	712,663	28.45	1,585,848	17,941.25	231,293	23,809
r54270_20190707_083441-1_G01	723,633	29.66	1,598,055	18,559.75	211,480	24,046
r64048_20190716_084325-1_A01	3,668,388	111.03	5,736,032	19,357.11	139,943	26,271
Total	-	414.201	26,716,728	15,503.95	231,293	22,824

Supplementary Table 2. The statistics of *P. guangdongensis* sequencing raw data from Pacific Biosciences platforms.

		Contig		Scaffold	
		Size (bp)	Number	Size (bp)	Number
	N90	670,212	2,146	670,212	2,146
	N80	944,401	1,626	944,401	1,626
	N70	1,204,585	1,234	1,204,585	1,234
	N60	1,462,795	917	1,462,795	917
P. zijinensis	N50	1,766,898	658	1,766,898	658
	Longest	14,726,023	-	14,726,023	-
	Total Length	4,185,530,821	-	4,185,530,821	-
	Total	-	3,363	-	3,363
	Number(>=100bp)				
	Total	-	3,363	-	3,363
	Number(>=2000bp)				
	GC Content	0.434	-	0.434	-
	N80	682,374	1,916	682,374	1,916
	N70	954,322	1,399	954,322	1,399
	N60	1,219,324	1,009	1,219,324	1,009
P. guangdongensis	N50	1,567,289	704	1,567,289	704
	Longest	18,894,801	-	18,894,801	-
	Total Length	4,197,037,508	-	4,197,037,508	-
	Total	-	5,632	-	5,632
	Number(>=100bp)				
	Total	-	5,632	-	5,632
	Number(>=2000bp)				
	GC Content	0.444	-	0.444	-

Supplementary Table 3. Summary of the *P. zijinensis* and *P. guangdongensis* genomes' assembly.

Species	Туре	Number	Percentage
	Complete BUSCOs (C)	1,431	88.66%
	Complete and single-copy BUSCOs (S)	1,336	82.78%
	Complete and duplicated BUSCOs (D)	95	5.89%
P. zijinensis	Fragmented BUSCOs (F)	59	3.66%
	Missing BUSCOs (M)	124	7.68%
	Total BUSCO groups searched	1,614	-
	Complete BUSCOs (C)	1,163	72.06%
	Complete and single-copy BUSCOs (S)	1,029	63.75%
	Complete and duplicated BUSCOs (D)	134	8.30%
P. guangdongensis	Fragmented BUSCOs (F)	127	7.87%
	Missing BUSCOs (M)	324	20.07%
	Total BUSCO groups searched	1,614	-

Supplementary Table 4. BUSCO assessment of genome assembly for *P. zijinensis* and *P. guangdongensis*.

P. zijinensis		P. guangdon	gensis
Chromosome ID	Length(bp)	Chromosome ID	Length(bp)
Chr01	288,559,838	Chr01	306,176,568
Chr02	288,230,612	Chr02	289,869,818
Chr03	259,891,334	Chr03	268,315,559
Chr04	243,465,763	Chr04	237,903,340
Chr05	217,914,638	Chr05	230,796,450
Chr06	213,067,135	Chr06	200,407,056
Chr07	201,669,873	Chr07	196,390,169
Chr08	201,248,329	Chr08	195,397,838
Chr09	192,346,260	Chr09	193,144,512
Chr10	191,405,230	Chr10	192,856,783
Chr11	187,582,923	Chr11	192,089,829
Chr12	181,146,792	Chr12	184,075,117
Chr13	180,270,012	Chr13	174,593,638
Chr14	176,476,062	Chr14	174,014,280
Chr15	175,863,887	Chr15	172,265,668
Chr16	175,754,357	Chr16	171,788,109
Chr17	175,677,710	Chr17	169,190,934
Chr18	172,175,136	Chr18	167,679,590
Chr19	161,383,232	Chr19	156,112,666
Chr20	157,638,113	Chr20	148,208,908
Chr21	144,783,085	Chr21	143,092,320

Supplementary Table 5. Chromosome length (bp) of *P. zijinensis* and *P. guangdongensis*.

		Con	tig	Scafi	fold
Species		Size (bp)	Number	Size (bp)	Number
	N90	662,872	2,185	161,383,232	19
P. zijinensis	N50	1,736,073	681	192,346,260	9
	Total Length	4,184,852,821	-	4,186,550,321	-
	N90	362,532	2,856	156,112,666	19
P. guangdongensis	N50	1,450,518	764	193,144,512	9
	Total Length	4,161,505,152	-	4,164,369,152	-

Supplementary Table 6. Summary of the *P. zijinensis* and *P. guangdongensis* genomes Hi-C assembly.

			RepBase TEs	TE	Proteins	De no	vo	Comb	ined TEs
Species		Length(bp)	% in Genome	Length(bp)	% in Genome	Length(bp)	% in Genome	Length(bp)	% in Genome
	DNA	4,996,793	0.12	1,050,501	0.03	65,487,478	1.56	71,534,772	1.71
	LINE	1,578,911	0.04	443,274	0.01	21,621,402	0.52	23,643,587	0.56
	SINE	46,606	0.0011	0	0	1600	0.000038	48,206	0.0012
P. zijinensis	LTR	850,067,254	20.31	1,144,610,665	27.35	2,971,093,848	70.98	3,105,436,035	74.19
	LTR/Copia	426,528,277	10.19	580,166,597	13.86	1,335,154,123	31.90	1,422,324,008	33.98
	LTR/Gypsy	418,558,969	10.00	563,872,943	13.47	1,500,933,102	35.86	1,582,140,725	37.80
	Other	415	0.000010	0	0	0	0	415	0.000010
	Unknown	0	0	0	0	38,239,108	0.91	38,239,108	0.91
	Total	856,689,979	20.47	1,146,104,440	27.38	3,096,443,436	73.98	3,238,902,123	77.38
	DNA	2,919,630	0.069564	2,229,489	0.053121	90,468,666	2.155536	95,617,785	2.278221
	LINE	1,526,718	0.036376	995,739	0.023725	18,219,059	0.434093	20,741,516	0.494194
	SINE	64,580	0.001539	0	0	0	0	64,580	0.001539
P. guangdongensis	LTR	936,968,234	22.324514	1,153,597,873	27.486003	3,276,163,435	78.058951	3,297,634,853	78.570536
	LTR/Copia	498,706,193	11.882338	608,203,565	14.491259	1,435,667,013	34.206676	1,500,619,947	35.754266
	LTR/Gypsy	432,901,969	10.314465	545,368,605	12.994132	1,550,522,207	36.943254	1,573,200,149	37.483586
	Other	795	0.000019	0	0	0	0	795	0.000019
	Unknown	0	0	0	0	35,068,008	0.835542	35,068,008	0.835542
	Total	941,479,957	22.432012	1,156,823,101	27.562849	3,419,919,168	81.484122	3,449,127,537	82.180050
	DNA	17,593,554	1.66	216,595	0.02	43,345,030	4.09	47,093,040	4.44
	LINE	20,300,857	1.91	811,853	0.08	28,687,422	2.7	43,878,465	4.14
	SINE	7,750	0	0	0	121,164	0.01	128,645	0.01
G. elata	LTR	93,802,600	8.84	119,788,504	11.29	607,792,416	57.29	620,760,349	58.51
	Other	1,566	0	0	0	0	0	1,566	0
	Unknown	22,732	0	84	0	11,625,819	1.1	11,648,578	1.1
	Total	123,015,109	11.59	120,816,935	11.39	669,540,327	63.11	686,052,705	64.66

Supplementary Table 7. Categories of TEs predicted in *P. zijinensis*, *P. guangdongensis* and *G. elata* genomes

Supplementary Table 8. The subtypes of repeats for six orchid species (see separate files).

Insertion time (Mya)	LTR number	LTR percent (%)	Cumulative percent (%)
0.0-0.1	3912	10.21	100.0
0.1-0.2	3963	10.34	89.79
0.2-0.3	3691	9.63	79.45 ^a
0.3-0.4	3120	8.14	69.82
0.4-0.5	2507	6.54	61.68
0.5-0.6	2298	6.0	55.14
0.6-0.7	1840	4.8	49.14
0.7-0.8	1674	4.37	44.34
0.8-0.9	1649	4.3	39.97
0.9-1.0	1161	3.03	35.67
1.0-1.1	1289	3.36	32.64
1.1-1.2	1114	2.91	29.27
1.2-1.3	994	2.59	26.37
1.3-1.4	954	2.49	23.77
1.4-1.5	766	2.0	21.28
1.5-1.6	912	2.38	19.29
1.6-1.7	699	1.82	16.91
1.7-1.8	735	1.92	15.08
1.8-1.9	651	1.7	13.16
1.9-2.0	567	1.48	11.47
2.0-2.1	563	1.47	9.99
2.1-2.2	426	1.11	8.52
2.2-2.3	414	1.08	7.41
2.3-2.4	322	0.84	6.33
2.4-2.5	304	0.79	5.48
2.5-2.6	256	0.67	4.69
2.6-2.7	230	0.6	4.02
2.7-2.8	178	0.46	3.42
2.8-2.9	172	0.45	2.96
>2.9	962	2.51	2.51

Supplementary Table 9. LTR insertion distribution of *P. zijinensis*.

^aThe percentage of insertion of *P. zijinensis* before 0.2 Mya is 79.45%.

Insertion time (Mya)	LTR number	LTR percent (%)	Cumulative percent (%)
0.0-0.1	217	0.6	100.0
0.1-0.2	885	2.47	99.4
0.2-0.3	1234	3.44	96.93
0.3-0.4	2100	5.85	93.49
0.4-0.5	2206	6.15	87.63
0.5-0.6	2420	6.75	81.48
0.6-0.7	2517	7.02	74.74
0.7-0.8	2428	6.77	67.72
0.8-0.9	2539	7.08	60.95 ^a
0.9-1.0	2175	6.06	53.87
1.0-1.1	2187	6.1	47.81
1.1-1.2	1927	5.37	41.71
1.2-1.3	1657	4.62	36.34
1.3-1.4	1420	3.96	31.72
1.4-1.5	1288	3.59	27.76
1.5-1.6	1264	3.52	24.17
1.6-1.7	1041	2.9	20.65
1.7-1.8	907	2.53	17.75
1.8-1.9	775	2.16	15.22
1.9-2.0	645	1.8	13.06
2.0-2.1	646	1.8	11.26
2.1-2.2	492	1.37	9.46
2.2-2.3	467	1.3	8.09
2.3-2.4	329	0.92	6.79
2.4-2.5	322	0.9	5.87
2.5-2.6	277	0.77	4.97
2.6-2.7	271	0.76	4.2
2.7-2.8	194	0.54	3.44
2.8-2.9	196	0.55	2.9
>2.9	845	2.36	2.36

Supplementary Table 10. LTR insertion distribution of *P. guangdongensis*.

^aThe percentage of insertion of *P. guangdongensis* before 0.8Mya is 60.95%.

Supplementary Table 11. The prediction of gene structures of *P. zijinensis*, *P. guangdongensis* and *G. elata*.

Species	Gene set	Number	Average gene length (bp)	Average CDS length (bp)	Average exon per gene	Average exon length (bp)	Average intron length (bp)
	denovo/AUGUSTUS	270,300	3,372.18	720.59	2.18	330.46	2,246.09
	denovo/GlimmerHMM	194,383	19,235.5	914.68	4.93	185.37	4,656.54
	denovo/Genscan	113,289	10,045.67	594.28	2.98	199.51	4,776.65
	homo/P. equestris	27,579	15,046.22	830.92	3.31	251.02	6,153.47
	homo/D. catenatum	27,603	15,210.25	872.2	3.35	260.72	6,113.36
P. zijinensis	homo/A. shenzhenica	25,770	15,646.02	884.21	3.38	261.51	6,199.57
	homo/G. elata	24,351	15,712.72	871.46	3.46	252.2	6,044.28
	homo/A. officinalis	22,300	15,981.18	840.68	3.55	236.83	5,938.18
	homo/A. comosus	26,258	15,758.85	808.65	3.31	244.3	6,471.84
	RNA-seq	14,355	38,035.39	1,276.58	5.72	223.37	7,796.12
	MAKER	41,538	13,481.62	902.62	3.56	301.68	4,845.78
	Final	24,513	27,223.47	1,142.58	4.77	280.61	6,857.84
	denovo/AUGUSTUS	80,639	10,761.39	572.84	2.61	219.52	6,330.33
	denovo/GlimmerHMM	85,653	47,365.03	653.75	7.61	85.95	7,070.96
	denovo/Genscan	39,054	20,307.14	373.02	2.55	146.48	12,889.19
	homo/P. equestris	27,456	17,423.78	763.59	3.28	232.73	7,303.68
	homo/D. catenatum	27,205	17,936.26	794.4	3.34	237.9	7,328.08
	homo/A. shenzhenica	25,044	19,318.27	809.67	3.44	235.62	7,596.85
P. guangdongensis	homo/G. elata	23,657	19,502.75	820.35	3.55	231.14	7,328.78
	homo/A. officinalis	22,565	19,814.04	774.62	3.57	217.01	7,409.88
	homo/A. comosus	26,230	18,380.85	761.92	3.33	228.82	7,562.75
	RNA-seq	12,320	41,683.68	1,220.35	5.6	217.88	8,794.36
	MAKER	32,886	19,878.32	760.31	3.99	233.17	6,335.05
	Final	22,840	28,993.55	976.5	4.75	237.49	7,439.22
	After Hic	22559	29,014.56	980.89	4.76	237.86	7,412.71
	Augustus	21,936	13,514.25	884.15	3.97	222.61	4,250.07
	GlimmerHMM	55,024	17,429.62	561.02	3.83	146.59	5,966.72
	D. catenatum	22,201	8,433.42	877.26	3.64	240.77	2,858.41
	P. equestris	21,383	8,126.88	839.22	3.61	232.45	2,791.94
	A. shenzhenica	19,456	9,394.11	907.7	3.92	231.38	2,903.26
	A. officinalis	17,385	9,930.39	888.46	4.14	214.69	2,881.12
G. elata	O. sativa	18,788	8,149.08	797.42	3.63	219.54	2,792.90
	A. thaliana	16,118	10,187.20	908.57	4.16	218.58	2,939.32
	RNA-seq	12,186	19,373.64	1,092.56	4.79	228.23	3,354.41
	CEGMA	451	20,418.01	1,211.74	8.31	145.73	2,625.65
	MAKER	21,179	15,895.13	992.42	5.07	255.48	3,589.66
	Final set	18,019	15,982.61	1,091.86	5.18	253.51	3,331.50

Species	Values	Total	Nr	Swissprot	KEGG	KOG	TrEMBL	Interpro	GO	Overall
P. zijinensis	Number	25,511	21,908	16,346	16,695	16,311	21,919	20,106	4,229	22,237
	Percentage	-	85.88%	64.07%	65.44%	63.94%	85.92%	78.81%	16.58%	87.17%
P. guangdongensis	Number	21,725	18,441	12,010	13,500	13,092	18,284	15,609	3,404	18,698
	Percentage	-	84.88%	55.28%	62.14%	60.26%	84.16%	71.85%	15.67%	86.07%

Supplementary Table 12. Gene function annotation of *P. zijinensis* and *P. guangdongensis*.

S	Туре		C ()	A	Total	% of
Species			Copy(w)	Average length(bp)	length(bp)	genome
	miRNA		31	139.70	4,331	0.000103
	tRNA		994	73.50	73,064	0.001745
	rRNA	rRNA	4,187	103.51	433,418	0.010353
		18S	44	1,176.7	51,778	0.001237
		28S	29	193.06	5,599	0.000134
D _:::iuia		5.8S	21	153.76	3,229	0.000077
P. zijinensis		5S	4,093	91.08	372,812	0.008905
	snRNA	snRNA	615	109.8	67,527	0.001613
		CD-box	531	105.98	56,278	0.001344
		HACA-box	10	115.8	1,158	0.000028
		splicing	74	136.36	10,091	0.000241
		scaRNA	0	0	0	0
	miRNA		33	124.52	4,109	0.000098
	tRNA		1,015	73.44	74,546	0.001774
	rRNA	rRNA	2,533	192.55	487,721	0.011608
		18S	307	912.08	280,008	0.006664
		28S	140	189.83	26,576	0.000633
D. auguadanaansia		5.8S	66	153.15	10,108	0.000241
F. guangaongensis		5S	2,020	84.67	171,029	0.004071
	snRNA	snRNA	152	114.70	17434	0.000415
		CD-box	73	103.82	7,579	0.00018
		HACA-box	14	129.93	1,819	0.000043
		splicing	65	123.63	8,036	0.000191
		scaRNA	0	0.00	0	0

Supplementary Table 13. Summary of ncRNA annotation of *P. zijinensis* and *P. guangdongensis*.

Species	Туре	Number	Percentage
-	Complete BUSCOs (C)	1,288	79.80%
	Complete and single-copy BUSCOs (S)	1,200	74.35%
P. zijinensis	Complete and duplicated BUSCOs (D)	88	5.45%
	Fragmented BUSCOs (F)	101	6.26%
	Missing BUSCOs (M)	225	13.94%
	Total BUSCO groups searched	1,614	-
	Complete BUSCOs (C)	949	58.80%
	Complete and single-copy BUSCOs (S)	913	55.57%
P. guangdongensis	Complete and duplicated BUSCOs (D)	36	2.23%
	Fragmented BUSCOs (F)	177	10.97%
	Missing BUSCOs (M)	488	30.24%
	Total BUSCO groups searched	1,614	-
	Complete BUSCOs (C)	1,061	65.74%
	Complete and single-copy BUSCOs (S)	1,035	64.13%
G. elata	Complete and duplicated BUSCOs (D)	26	1.61%
	Fragmented BUSCOs (F)	103	6.38%
	Missing BUSCOs (M)	450	27.88%
	Total BUSCO groups searched	1,614	-
	Complete BUSCOs (C)	1,339	82.96%
	Complete and single-copy BUSCOs (S)	1,318	81.66%
A. shenzhenica	Complete and duplicated BUSCOs	21	1.30%
	Fragmented BUSCOs (F)	135	8.36%
	Missing BUSCOs (M)	140	8.67%
	Total BUSCO groups searched	1,614	-
	Complete BUSCOs (C)	1,240	76.82%
	Complete and single-copy BUSCOs (S)	1,211	75.03%
Pha. equestris	Complete and duplicated BUSCOs (D)	29	1.80%
	Fragmented BUSCOs (F)	197	12.21%
	Missing BUSCOs (M)	177	10.97%
	Total BUSCO groups searched	1,614	-
	Complete BUSCOs (C)	1,242	76.95%
	Complete and single-copy BUSCOs (S)	1,210	74.97%
D. catenatum	Complete and duplicated BUSCOs (D)	32	1.98%
	Fragmented BUSCOs (F)	176	10.90%
	Missing BUSCOs (M)	196	12.14%
	Total BUSCO groups searched	1,614	-

Supplementary Table 14. BUSCO assessment of genome annotation in six orchids.

Species1	Species2	#Genes	#Collinear	Percentage	#Collinear	#MeanGene
			genes	(%)	blocks	in blocks
P. guangdongensis	P. guangdongensis	22,559	911	4.04	66	11.8
P. zijinensis	P. zijinensis	24,513	857	3.50	68	8.1
P. guangdongensis	P. zijinensis	47,072	29,645	62.98	138	146.9
P. guangdongensis	Pha. aphrodite	42,232	18,518	43.85	450	26.4
P. zijinensis	Pha. aphrodite	44,186	19,428	43.97	485	25.8
P. guangdongensis	D. chrysotoxum	52,604	22,367	42.52	481	30.6
P. guangdongensis	V. planifolia	51,726	18,868	36.48	990	13.9
P. zijinensis	D. chrysotoxum	54,558	24,305	44.55	599	27.3
P. zijinensis	V. planifolia	53,680	19,664	36.63	1,024	14.4

Supplementary Table 15. Statistics of syntenic analysis in *P. guangdongensis*, *P. zijinensis*, *Pha. aphrodite*, *V. planifolia* and *D. chrysotoxum*.

Species	Genes	Unclustered	Clustered genes	Families	Unique families	Unique families	Common	Common families	Single copy	Average genes
		genes				genes	families	genes		per family
A. comosus	27,024	5,841	21,183	12,939	777	3,043	3,607	6,645	234	1.637
A. officinalis	27,375	8,071	19,304	11,831	827	3,590	3,607	6,471	234	1.632
A. shenzhenica	20,560	4,200	16,360	11,780	328	1,145	3,607	5,754	234	1.389
A. thaliana	26,637	3,714	22,923	12,438	776	3,250	3,607	7,633	234	1.843
A. trichopoda	25,933	7,615	18,318	12,082	942	4,003	3,607	5,296	234	1.516
B. distachyon	26,415	3,632	22,783	14,738	375	1,070	3,607	7,320	234	1.546
D. catenatum	26,791	5,603	21,188	13,663	678	2,717	3,607	6,367	234	1.551
G. elata	18,019	3,823	14,196	10,530	213	573	3,607	5,312	234	1.348
M. acuminata	34,241	8,574	25,667	12,505	479	1,209	3,607	10,290	234	2.053
O. sativa	35,402	11,034	24,368	15,766	907	2,374	3,607	7,181	234	1.546
Pha. aphrodite	28,910	4,046	24,864	13,717	414	2,121	3,607	6,327	234	1.813
Pho. dactylifera	23,890	6,079	17,811	10,800	368	1,086	3,607	6,912	234	1.649
Pha. equestris	26,471	7,206	19,265	13,985	467	1,147	3,607	6,169	234	1.378
P. guangdongensis	22,559	6,012	16,547	12,014	470	1,248	3,607	5,610	234	1.377
Po. trichocarpa	40,984	7,614	33,370	14,054	1,239	3,789	3,607	10,849	234	2.374
P. zijinensis	24,513	4,764	19,749	12,539	487	1,418	3,607	6,072	234	1.575
S. bicolor	27,160	3,691	23,469	15,093	330	913	3,607	7,476	234	1.555
S. polyrhiza	18,357	4,959	13,398	10,020	241	713	3,607	5,266	234	1.337
V. vinifera	25,328	5,953	19,375	12,536	595	1,741	3,607	6,651	234	1.546

Supplementary Table 16. Summary of orthologous gene families in 19 sequenced plant species.

GO ID	GO Term	GO Class	Pvalue	AdjustedPv	x1	x2	n	Ν	GOlevl
GO:0003824	catalytic activity	MF	1.08E-10	2.26E-07	621	8,744	1,530	26,471	2
GO:0008152	metabolic process	BP	3.63E-09	7.55E-06	725	10,658	1,530	26,471	2
GO:0005488	binding	MF	1.49E-08	3.09E-05	750	11,160	1,530	264,71	2
GO:0043169	cation binding	MF	2.68E-08	5.59E-05	227	2,771	1,530	26,471	4
GO:0046872	metal ion binding	MF	3.17E-08	6.59E-05	225	2,747	1,530	26,471	5
GO:0046914	transition metal ion binding	MF	5.13E-08	0.000107	151	1,692	1,530	26,471	6
GO:0071704	organic substance metabolic process	BP	5.18E-08	0.000108	579	8,361	1,530	26,471	3
GO:0044699	single-organism process	BP	6.90E-08	0.000144	901	13,857	1,530	26,471	2
GO:0016787	hydrolase activity	MF	1.19E-07	0.000248	272	3,502	1,530	26,471	3
GO:0009055	electron carrier activity	MF	1.34E-07	0.000278	59	497	1,530	26,471	2
GO:0044238	primary metabolic process	BP	2.71E-07	0.000564	559	8,123	1,530	26,471	3
GO:0044710	single-organism metabolic process	BP	9.48E-07	0.001973	310	4,178	1,530	26,471	3
GO:0009987	cellular process	BP	1.32E-06	0.002747	873	13,556	1,530	26,471	2
GO:0016568	chromatin modification	BP	1.10E-05	0.022848	10	33	1,530	26,471	6
GO:0042393	histone binding	MF	1.26E-05	0.026279	8	21	1,530	26,471	4
GO:0005515	protein binding	MF	1.78E-05	0.037066	275	3,772	1,530	26,471	3
GO:0005507	copper ion binding	MF	2.05E-05	0.042664	18	102	1,530	26,471	7

Supplementary Table 17. GO enrichment analysis for missing gene families in S. polyrhiza.

GO ID	GO Term	GO Class	Pvalue	AdjustedPv	x1	x2	n	Ν	GOlevl
GO:0016407	acetyltransferase activity	MF	2.46E-13	5.25E-10	22	57	1,530	26,471	6
GO:0008080	N-acetyltransferase activity	MF	3.30E-11	7.04E-08	17	41	1,530	2,6471	7
CO:0016747	transferase activity, transferring acyl	ME	1.055.07	0.000414	20	170	1.520	26 471	F
60:0010/4/	groups other than amino-acyl groups	IVIF	1.93E-07	0.000414	29	172	1,550	20,471	3
GO:0016746	transferase activity, transferring acyl groups	MF	4.98E-06	0.010612	32	233	1,530	26,471	4
GO:1901360	organic cyclic compound metabolic process	BP	8.37E-06	0.017822	319	4,427	1,530	26,471	4
GO:0044710	single-organism metabolic process	BP	9.03E-06	0.019239	303	4,178	1,530	26,471	3
GO:0044699	single-organism process	BP	1.03E-05	0.021868	882	13,857	1,530	26,471	2
GO:0003824	catalytic activity	MF	1.23E-05	0.026188	582	8,744	1,530	26,471	2
GO:0006807	nitrogen compound metabolic process	BP	2.14E-05	0.045514	350	4,973	1,530	26,471	3

Supplementary Table 18. GO enrichment analysis for missing gene families in Pho. dactylifera.

GO ID	GO Term	GO Class	Pvalue	AdjustedPv	x1	x2	n	Ν	GOlevl
GO:0016491	oxidoreductase activity	MF	4.00E-08	6.69E-05	141	2418	982	26,471	3
GO:0009654	photosystem II oxygen evolving complex	CC	1.34E-07	0.000223	7	13	982	26,471	3
GO:0015979	photosynthesis	BP	1.35E-07	0.000225	16	88	982	26,471	4
GO:0009523	photosystem II	CC	7.01E-07	0.001173	8	22	982	26,471	4
GO:0009521	photosystem	CC	1.11E-06	0.001858	11	48	982	26,471	3
GO:0044436	thylakoid part	CC	3.52E-06	0.005891	12	64	982	26,471	4
GO:0042651	thylakoid membrane	CC	7.47E-06	0.012497	8	29	982	26,471	4
GO:0044699	single-organism process	BP	9.55E-06	0.015973	580	13,857	982	26,471	2
GO:0055114	oxidation-reduction process	BP	2.12E-05	0.035419	123	2,296	982	26,471	4
GO:0019898	extrinsic component of membrane	CC	2.24E-05	0.037393	6	17	982	26,471	3
GO:0051260	protein homooligomerization	BP	2.66E-05	0.044499	4	6	982	26,471	7

Supplementary Table 19. GO enrichment analysis for missing gene families in *P. guangdongensis*.

GO ID	GO Term	GO Class	Pvalue	AdjustedPv	x1	x2	n	Ν	GOlevl
GO:0015979	photosynthesis	BP	1.87E-17	3.16E-14	28	88	1,127	26,471	4
GO:0009765	photosynthesis, light harvesting	BP	1.99E-13	3.36E-10	10	11	1,127	26,471	5
GO:0009521	photosystem	CC	4.02E-13	6.79E-10	18	48	1,127	26,471	3
GO:0044436	thylakoid part	CC	1.07E-12	1.80E-09	20	64	1,127	26,471	4
GO:0009654	photosystem II oxygen evolving complex	CC	4.79E-12	8.08E-09	10	13	1,127	26,471	3
GO:0009507	chloroplast	CC	7.77E-12	1.31E-08	11	17	1,127	26,471	6
GO:0034357	photosynthetic membrane	CC	8.00E-12	1.35E-08	19	63	1,127	26,471	3
GO:0051537	2 iron, 2 sulfur cluster binding	MF	1.61E-11	2.72E-08	10	14	1,127	26,471	5
GO:0009523	photosystem II	CC	3.64E-10	6.13E-07	11	22	1,127	26,471	4
GO:0042651	thylakoid membrane	CC	8.87E-10	1.50E-06	12	29	1,127	26,471	4
GO:1990204	oxidoreductase complex	CC	1.03E-09	1.73E-06	14	42	1,127	26,471	3
GO:0051536	iron-sulfur cluster binding	MF	1.98E-09	3.34E-06	17	67	1,127	26,471	4
GO:0019684	photosynthesis, light reaction	BP	5.52E-09	9.32E-06	11	27	1,127	26,471	5
GO:0016491	oxidoreductase activity	MF	8.48E-08	0.000143	156	2,418	1,127	26,471	3
GO:0015035	protein disulfide oxidoreductase activity	MF	1.04E-07	0.000176	14	58	1,127	26,471	6
GO:0019898	extrinsic component of membrane	CC	1.82E-07	0.000306	8	17	1,127	26,471	3
GO:0010277	chlorophyllide a oxygenase [overall] activity	MF	3.27E-06	0.005515	4	4	1,127	26,471	6
GO:0042440	pigment metabolic process	BP	4.21E-06	0.007101	8	24	1,127	26,471	4
GO:0016020	membrane	CC	5.21E-06	0.00879	496	9,976	1,127	26,471	2
GO:0009522	photosystem I	CC	5.24E-06	0.00884	7	18	1,127	26,471	4
GO:0003824	catalytic activity	MF	6.46E-06	0.010898	441	8,744	1,127	26,471	2
GO:0019062	virion attachment to host cell	BP	7.49E-06	0.01264	38	412	1,127	26,471	6
GO:0045454	cell redox homeostasis	BP	1.54E-05	0.025919	14	86	1,127	26,471	4
GO:0004960	thromboxane receptor activity	MF	1.86E-05	0.031346	17	123	1,127	26,471	8

Supplementary Table 20. GO enrichment analysis for missing gene families in G. elata.

	ko00196	ko00196	ko00195 gene	ko00195 KOs	ko00195 gene	ko00195 KOs	ko00195 genes	ko00195 KOs
	gene	KOs	nuclear	nuclear	chloroplast	chloroplast	Total	Total
Pha. aphrodite	13	11	61	36	29	29	90	54
Pha. equestris	11	9	58	38	29	29	87	53
D. catenatum	16	11	53	31	28	28	81	50
G. elata	0	0	6	4	0	0	6	4
P. guangdongensis	6	6	55	25	3	3	58	27
P. zijinensis	15	9	94	44	30	30	124	54
A. shenzhenica	13	11	44	33	30	30	74	53
A. officinalis	18	12	37	21	27	27	64	46
B. distachyon	18	12	81	42	29	29	110	54
O. sativa	15	12	114	43	30	30	144	53
S. bicolor	17	12	51	33	29	29	80	54
A. comosus	20	12	62	31	30	30	92	51
Pho. dactylifera	18	10	30	17	32	30	62	47
M. acuminata	24	12	64	28	28	28	92	53
S. polyrhiza	17	11	27	18	28	28	55	46
Po. trichocarpa	26	12	129	43	30	30	159	54
A. thaliana	22	12	46	26	30	30	76	55
V. vinifera	17	11	43	30	30	30	73	52
A. trichopoda	21	12	50	32	30	30	80	55

Supplementary Table 21. Photosynthesis-related KEGG pathway and genes in six orchids.

ko00195: Photosynthesis. https://www.kegg.jp/kegg-bin/show_pathway?ko00195

ko00196: Photosynthesis - antenna proteins. https://www.kegg.jp/kegg-bin/show_pathway?ko00196

Category for	Group of genes	Name of genes (P.	Name of genes (P.
genes		zijinensis)	guangdongensis)
Self-replication	Ribosomal RNAs	rrn4.5, rrn5, rrn16, rrn23	rrn4.5, rrn5, rrn16, rrn23
	Transfer RNAs	$trnA^{UGC}$, $trnC^{GCA}$, $trnD^{GUC}$,	$trnA^{UGC}$, $trnC^{GCA}$, $trnD^{GUC}$,
		$trnE^{UUC}$, $trnF^{GAA}$, $trnfM^{CAU}$,	$trnE^{UUC}$, $trnF^{GAA}$,
		$trnG^{GCC}$, $trnG^{UCC}$, $trnH^{GUG}$,	$trnfM^{CAU}$, $trnG^{GCC}$,
		$trnI^{CAU}$, $trnI^{GAU}$, $trnK^{UUU}$,	$trnG^{UCC}$, $trnH^{GUG}$, $trnI^{CAU}$,
		$trnL^{CAA}$, $trnL^{UAA}$, $trnL^{UAG}$,	$trnI^{GAU}$, $trnL^{CAA}$, $trnL^{UAA}$,
		$trnM^{CAU}$, $trnN^{GUU}$, $trnP^{UGG}$,	$trnL^{UAG}$, $trnM^{CAU}$, $trnN^{GUU}$,
		$trnQ^{UUG}$, $trnR^{ACG}$, $trnR^{UCU}$,	$trnP^{UGG}$, $trnQ^{UUG}$, $trnR^{ACG}$,
		$trnS^{GCU}$, $trnS^{GGA}$, $trnS^{UGA}$,	$trnR^{UCU}$, $trnS^{GCU}$, $trnS^{GGA}$,
		$trnT^{GGU}$, $trnT^{UGU}$, $trnV^{GAC}$,	$trnS^{UGA}$, $trnT^{UGU}$, $trnV^{GAC}$,
		trnV ^{UAC} , trnW ^{CCA} , trnY ^{GUA}	$trnW^{CCA}$, $trnY^{GUA}$
	Small Ribosomal	rps2, rps3, rps4, rps7, rps8,	rps2, rps3, rps4, rps7,
	protein	rps11, rps12, rps14, rps15,	rps8, rps11, rps14, rps15,
		rps16, rps18, rps19	rps16, rps18, rps19
	Large Ribosomal	rpl2, rpl14, rpl16, rpl20,	rpl2, rpl14, rpl16, rpl20,
	protein	rpl22, rpl23, rpl32, rpl33,	rpl22, rpl23, rpl32, rpl33,
		rpl36	rpl36
	RNA polymerase	rpoA, rpoB, rpoC1, rpoC2	$rpoA^{\Psi}$
Genes for	Photosystem I	psaA, psaB, psaC, psaI, psaJ	$psaA^{\Psi}$, $psaB^{\Psi}$, $psaI$
photosynthesis			
	Photosystem II	psbA, psbB, psbC, psbD,	$psbC^{\Psi}$, $psbD^{\Psi}$, $psbZ^{\Psi}$
		psbF, psbH, psbI, psbJ,	
		psbK, psbL, psbM, psbN,	
		psbT, psbZ	
	Cytochrome b/f	petA, petB, petD, petG, petL,	$petB^{\Psi}$, $petD^{\Psi}$, $petN$
	complex	petN, psbE	
	ATP synthase	atpA, atpB, atpE, atpF,	$atpA^{\Psi}$, $atpB^{\Psi}$, $atpE^{\Psi}$,
		atpH, atpI	$atpF^{\Psi}$, $atpH^{\Psi}$, $atpI^{\Psi}$
	ATP-dependent	clpP	clpP
	protease subunit p		
	gene		
	RuBisCO large	rbcL	$rbcL^{\Psi}$
	subunit		
	NADH	$ndhA^{\Psi}$, $ndhB$, $ndhC$, $ndhD^{\Psi}$,	$ndhB^{\Psi}$, $ndhJ^{\Psi}$, $ndhK^{\Psi}$
	dehydrogenase	$ndhE$, $ndhF^{\Psi}$, $ndhG$, $ndhI^{\Psi}$,	
		$ndhJ^{\Psi}$, $ndhK$	
Other genes	Maturase	matK	matK

Supplementary Table 22. Chloroplast genes of *P. zijinensis* and *P. guangdongensis*.

	Envelop membrane	cemA	
	protein		
	Subunit of acetyl-	accD	accD
	CoA-carboxylase		
	c-type cytochrome	ccsA	
	synthesis ccsA gene		
	Translation	infA	infA
	initiation factor IF-1		
Genes of unknown	Hypothetical	ycf1, ycf2, ycf3, ycf4	ycf1, ycf2, ycf4
function	chloroplast reading		
	frames		

Note: gene^{ψ} means Pseudogene.

GO ID	GO Term	GO Class	Pvalue	AdjustedPv	x1	x2	n	Ν	GOlevl
GO:0044464	cell part	CC	7.15E-07	0.00109	215	6,908	617	26,471	2
GO:0043170	macromolecule metabolic process	BP	2.61E-06	0.003987	206	6,673	617	26,471	4
GO:0005622	intracellular	CC	5.15E-06	0.007847	161	4,996	617	26,471	3
GO:0019538	protein metabolic process	BP	6.27E-06	0.009558	110	3,126	617	26,471	4
GO:0005737	cytoplasm	CC	1.99E-05	0.030367	63	1,571	617	26,471	4
GO:0044238	primary metabolic process	BP	2.16E-05	0.032899	237	8,123	617	26,471	3
GO:0010467	gene expression	BP	2.23E-05	0.033973	134	4,103	617	26,471	5
GO:0044260	cellular macromolecule metabolic process	BP	3.10E-05	0.047303	175	5,699	617	26,471	4
GO:0016482	cytoplasmic transport	BP	3.17E-05	0.048416	10	86	617	26,471	5

Supplementary Table 23. GO enrichment analysis for missing gene families in *P. zijinensis*.

GO ID	GO Term	GO Class	Pvalue	AdjustedPv	x1	x2	n	Ν	GOlevl
GO:0044260	cellular macromolecule metabolic process	BP	9.40E-07	0.001417	238	5,699	836	26,471	4
GO:0043170	macromolecule metabolic process	BP	2.55E-06	0.003835	269	6,673	836	26,471	4
GO:0065003	macromolecular complex assembly	BP	3.18E-05	0.047849	48	817	836	26,471	5

Supplementary Table 24. GO enrichment analysis for missing gene families in A. officinalis.

Supplementary Table 25. Significantly contracted gene families on the branch leading to the divergence between *P. zijinensis* and *P. guangdongensis* (see separate file).

Supplementary Table 26. Significantly expanded gene families on the branch leading to the divergence between *P. zijinensis* and *P. guangdongensis* (see separate file).

Supplementary Table 27. Significantly contracted gene families on the branch leading to *P. zijinensis* (see separate file).

Supplementary Table 28. Significantly expanded gene families on the branch leading to *P. zijinensis* (see separate file).

Supplementary Table 29. Significantly contracted gene families on the branch leading to *P. guangdongensis* (see separate file).

Supplementary Table 30. Significantly expanded gene families on the branch leading to *P. guangdongensis* (see separate file).

Category	A. thaliana	A. shenzhenica	Pha. equestris	D. catenatum	P. zijinensis	P. guangdongensis	G. elata
PLT3/5/7	3	1	3	1	2	0	1
PIN	8	5	6	5	7	1	3
PIN1	1	3	3	2	3	1	1
PINOID (PID)	1	1	1	3	1	1	2
ARF7/ARF19	2	1	1	4	1	1	1
YUC1/YUC4	2	1	1	1	1	1	0
Class I KNOX	4	3	3	5	3	2	2
AS1	1	1	1	1	1	1	1
AS2	1	3	3	5	1	1	2
ARF3/ARF4	2	1	2	1	1	1	1
KAN	4	5	4	4	5	3	3
CUC1/CUC2	2	4	5	2	1	1	1
Yabby	6	5	4	6	3	3	3
Class II CIN-TCP	8	7	9	10	6	4	3
RAX	3	3	5	5	3	3	3
GRF	9	8	8	9	11	9	5
GIF	3	1	1	2	1	1	2
WOX1/WOX3	2	0	0	2	2	2	2
SEU/SLK	4	2	3	4	3	3	2
LUG/LUH	2	1	2	2	2	2	1
Phytochrome	5	3	3	4	3	2	1
Cryptochrome	3	2	3	3	1	0	0
Phototropin	2	2	2	2	3	1	1

Supplementary Table 31. Number of genes related to leaf initiation and development in the genomes of A. thaliana and orchids*.

ARF: auxin-responsive factor; AS: ASYMMETRIC LEAVES; Class I KNOX: class-I KNOT-TED-like homeobox (STM, BP/KNAT1, KNAT2, KNAT6); CUC: CUP-SHAPED COTYLEDON; GIF: GRF-INTERACTING FACTOR; GRF: GROWTH-REGULATING FACTOR; KAN: KANADI; LUG: LEUNIG; LUH: LUG-HOMOLOG; PIN: PIN-FORMED; PLT: PLETHORA; RAX: REGULATOR OF AXILLARY MERISTEMS; SEU: SEUSS; SLK: SEU-like;

WOX: WUSCHEL-RELATED HOMEOBOX; YUC: YUCCA

*genes ID see Supplementary Table 46.

TF genes	P. zijinensis	P. guangdongensis	Family	Functions	References
BODENLOS (BDL)	PZI024281	PGU019826	AUX/IAA	Root meristem establishment	Hamann <i>et al.</i> (1999) ¹⁴
	PZI011080	PGU014458			
	PZI013537				
SHOOTROOT (SHR)	PZI019997	PGU022539	GRAS	Root radial patterning	Benfey et al. (1993) ¹⁵
SCARECROW (SCR)	PZI014099	PGU000238	GRAS	Root radial patterning; meristem maintenance	Scheres <i>et al.</i> (1995) ¹⁶
TRANSPARENT TESTA GLABRA1 (TTG1)	PZI014628	PGU021885	WD40	Production of seed mucilage and anthocyanin pigments; epidermal cell patterning	Galway <i>et al.</i> (1994) ¹⁷ Walker <i>et al.</i> (1999) ¹⁸
	PZI011377	PGU012877			
GLABRA3	PZI014668	PGU013160	bHLH	Epidermal cell patterning	Bernhardt et al. (2003) ¹⁹
ENHANCER OF GLABRA3 (EGL3)	PZI014668	PGU013160	bHLH	Epidermal cell patterning	Bernhardt et al. (2003) ¹⁹
WEREWOLF (WER)	PZI008325	PGU017605	MYB	Epidermal cell patterning	Lee and Schiefelbein (1999) ²⁰
	PZI000966	PGU008889			
	PZI017413	PGU011604			
CAPRICE (CPC)	PZI002055	not found	MYB	Epidermal cell patterning	Wada et al. (1997) ²¹
TRIPTYCHON (TRY)					Schellmann et al. (2002) ²²
ENHANCER OF TRY AND CPC (ETC1)					Kirik <i>et al.</i> (2004) ²³

Supplementary Table 32. Transcription factor genes involved in root development.

Gene ID	Gene Name	ORF (bp)	Protein length (aa)	Туре	Subfamily	Pseudogene
PZI013095	PzAG.1	708	235	MIKC ^c	C/D	
PZI010938	PzAG.2	744	247	MIKC ^c	C/D	
PZI006132	PzAG.3	705	234	MIKC ^c	C/D	
PZI024426	PzSTK.1	753	250	MIKC ^c	C/D	
PZI050004	PzSTK.2	681	226	MIKC ^c	C/D	
PZI004437	PzBAP3.1	675	224	MIKC ^c	B-AP3	
PZI022518	PzBAP3.2	678	225	MIKC ^c	B-AP3	
PZI022957	PzBAP3.3	687	228	MIKC ^c	B-AP3	
PZI050002	PzBAP3.4	654	217	MIKC ^c	B-AP3	
PZI014560	PzBPI.1	636	211	MIKC ^c	B-PI	
PZI004516	PzBPI.2	633	210	MIKC ^c	B-PI	
PZI050003	PzBs	642	213	MIKC ^c	Bs	
PZI005708	PzOs32	531	176	MIKC ^c	OsMADS32	
PZI004828	PzSOC1	612	203	MIKC ^c	SOC1	
PZI009972	PzSVP	603	200	MIKC ^c	SVP	
PZI004642	PzAGL12	636	211	MIKC ^c	AGL12	
PZI019581	PzANR1.1	696	231	MIKC ^c	ANR1	
PZI010148	PzANR1.2	735	244	MIKC ^c	ANR1	
PZI014789	PzAGL6.1	723	240	MIKC ^c	AGL6	
PZI013076	PzAGL6.2	732	243	MIKC ^c	AGL6	
PZI012696	PzAGL6.3	693	230	MIKC ^c	AGL6	
PZI012079	PzAP1.1	741	246	MIKC ^c	AP1	
PZI021295	PzAP1.2	750	249	MIKC ^c	AP1	
PZI050001	PzAP1.3	732	243	MIKC ^c	AP1	
PZI050005	PzSEP.1	735	244	MIKC ^c	SEP	
PZI050006	PzSEP.2	732	243	MIKC ^c	SEP	
PZI050007	PzSEP.3	726	241	MIKC ^c	SEP	
PZI019012	PzMP.1	1,119	372	MIKC*	Р	
PZI016288	PzMP.2	201	66	MIKC*	Р	\checkmark
PZI020325	PzMS.1	1,011	336	MIKC*	S	
PZI020324	PzMS.2	1,293	430	MIKC*	S	\checkmark
PZI002440	PzMA.1	786	261	Type I	Μα	
PZI002483	PzMA.2	969	322	Type I	Μα	
PZI001747	PzMA.3	654	217	Type I	Μα	
PZI002441	PzMA.4	660	219	Type I	Μα	
PZI003343	PzMA.5	690	229	Type I	Μα	
PZI004140	PzMA.6	747	248	Type I	Μα	
PZI003345	PzMA.7	525	174	Type I	Μα	
PZI016009	PzMA.8	567	188	Type I	Μα	
PZI050008	PzMA.9	375	124	Type I	Μα	\checkmark
PZI001713	PzMA.10	354	117	Type I	Μα	

Supplementary Table 33. List of 46 MADS-box genes identified in P. zijinensis

PZI019012	PzMA.11	972	323	Type I	Μα	
PZI019880	PzMA.12	327	108	Type I	Μα	
PZI007808	PzMC.1	471	156	Type I	Μγ	
PZI007772	PzMC.2	684	227	Type I	Μγ	
PZI050009	PzMC.3	366	121	Type I	Μγ	

Gene ID	Gene Name	ORF (bp)	Protein length (aa)	Туре	Subfamily	Pseudogene
PGU022789	PgAG.1	708	235	MIKC ^c	C/D	
PGU020655	PgAG.2	843	280	MIKC ^c	C/D	
PGU050001	PgAG.3	705	234	MIKC ^c	C/D	
PGU018555	PgSTK.1	753	250	MIKC ^c	C/D	
PGU001801	PgSTK.2	681	226	MIKC ^c	C/D	
PGU011068	PgBAP3.1	675	224	MIKC ^c	B-AP3	
PGU018698	PgBAP3.2	678	225	MIKC ^c	B-AP3	
PGU019537	PgBAP3.3	684	227	MIKC ^c	B-AP3	
PGU018266	PgBAP3.4	654	217	MIKC ^c	B-AP3	
PGU006449	PgBPI.1	636	211	MIKC ^c	B-PI	
PGU007229	PgBPI.2	633	210	MIKC ^c	B-PI	
PGU014928	PgBs	717	238	MIKC ^c	Bs	
PGU007237	PgOs32	600	199	MIKC ^c	OsMADS32	
PGU002100	PgSOC1	612	203	MIKC ^c	SOC1	
PGU004803	PgSVP	591	196	MIKC ^c	SVP	
PGU001807	PgAGL12	267	88	MIKC ^c	AGL12	\checkmark
PGU013474	PgANR1.1	696	231	MIKC ^c	ANR1	
PGU050002	PgANR1.2	186	61	MIKC ^c	ANR1	\checkmark
PGU008178	PgAGL6.1	723	240	MIKC ^c	AGL6	
PGU021046	PgAGL6.2	732	243	MIKC ^c	AGL6	
PGU002567	PgAGL6.3	696	231	MIKC ^c	AGL6	
PGU050003	PgAP1.1	741	246	MIKC ^c	AP1	
PGU013507	PgAP1.2	723	240	MIKC ^c	AP1	
PGU016558	PgAP1.3	729	242	MIKC ^c	AP1	
PGU016678	PgSEP.1	735	244	MIKC ^c	SEP	
PGU018088	PgSEP.2	732	243	MIKC ^c	SEP	
PGU010081	PgSEP.3	213	70	MIKC ^c	SEP	
PGU006472	PgMP.1	1,023	340	MIKC*	Р	
PGU011879	PgMP.2	201	66	MIKC*	Р	\checkmark
PGU022296	PgMS	1,017	338	MIKC*	S	
PGU004531	PgMA.1	636	211	Type I	Μα	
PGU015179	PgMA.2	864	287	Type I	Μα	
PGU012136	PgMA.3	621	206	Type I	Μα	
PGU004532	PgMA.4	768	255	Type I	Μα	
PGU017676	PgMA.5	690	229	Type I	Μα	
PGU001885	PgMA.6	774	257	Type I	Μα	
PGU000760	PgMA.7	690	229	Type I	Μα	
PGU010479	PgMA.8	333	110	Type I	Μα	
PGU011598	PgMA.10	660	219	Type I	Μα	
PGU006472	PgMA.11	936	311	Type I	Μα	
PGU001756	PgMA.12	708	235	Type I	Μα	

Supplementary Table 34. List of 47 MADS-box genes identified in *P. guangdongensis*

PGU015396	PgMA.13	618	205	Type I	Μα	
PGU005410	PgMA.14	690	229	Type I	Μα	
PGU018662	PgMA.15	702	233	Type I	Μα	
PGU011841	PgMC.1	495	164	Type I	Μγ	
PGU011840	PgMC.2	321	106	Type I	Μγ	
PGU011522	PgMC.3	183	60	Type I	Μγ	\checkmark

Species	Cluster2514 - Trehalase
A. comosus	Aco013872
A. officinalis	evm.model.AsparagusV1_10.956
A. shenzhenica	Ash017765
A. thaliana	AT4G24040.1
A. trichopoda	evm_27.TU.AmTr_v1.0_scaffold00069.51
B. distachyon	Bradi3g31410.1
D. catenatum	Dca016005, Dca017749, Dca017750
G. elata	Gel001910, Gel008696, Gel012431, Gel014770
M. acuminata	GSMUA_Achr4P24850_001
O. sativa	Os10t0521000-01
Pha. aphrodite	PAXXG329540-mRNA1, PAXXG368690-mRNA1
Pho. dactylifera	PDK_30s879561g002
Pha. equestris	Peq014361
P. guangdongensis	PGU009213, PGU021260
Po. trichocarpa	Potri.001G087100.1, Potri.003G143900.1, Potri.003G144000.1
P. zijinensis	PZI001453, PZI001454
S. bicolor	Sb01g031280.1
S. polyrhiza	Spipo0020S28070.1
V. vinifera	GSVIVT01019610001

Supplementary Table 35. Trehalase genes in sequenced plant genomes

Category	A. thaliana	P. zijinensis	P. guangdongensis	G. elata	Pha. equestris	D. catenatum
AMT	6	3	2	1	3	6
NRT1 ^a	17	21	14	13	19	20
NRT2	7	1	0	0	1	1
GLN	6	5	3	2	4	3
GDH	3	3	2	2	3	4
NIA	2	1	0	0	1 ^b	1 ^b
NIR	1	1	1	0	1	1
PHT1	9	5	5	2	4	7
PHT2	1	1	0	0	1	1

Supplementary Table 36. Number of genes related to nutrient transport and assimilation in the genomes of *A. thaliana* and orchids.

^a: There are 53 members in Arabidopsis NRT1/PTR family. Seventeen out of them have been demonstrated to encode nitrate transporters. Only these 17 genes were used as queries to search orthologues in the orchid genomes²⁴⁻²⁷. ^b: Two fragment sequences were blasted to the C- and N-terminus of NIA, respectively. AMT: ammonium transporter family (AMT1;1-5/AMT2;1); GLN: glutamine synthase (GLN1;1-5/GLN2); GDH: glutamate dehydrogenase (GDH1/2/3); NIA: nitrate reductase (NIA1/2); NIR: nitrite reductase (NIR1); NRT1: low-affinity nitrate transporter family (exception of NRT1.1); NRT2: high-affinity nitrate transporter family.

Supplementary Table 37. Sequences of trehalase genes in *C. goeringii* (see separate file).

Species	Protein coding	A wave as some longth (ba)	Average CDS	Average exon per	Average exon	Average intron
	gene number	Average gene length (bp)	length (bp)	gene	length (bp)	length (bp)
P. zijinensis	24,513	27,223.47	1,142,58	4.77	280.60	6,857.84
P. guangdongensis	22,539	29,014.56	980.89	4.76	237.86	7,412.71
G. elata	18,019	15,982.61	1,091.86	5.18	253.51	3,331.50
A. shenzhenica	20,560	7,920.65	1,115.40	5.14	288.56	1,554.72
Pha. equestris	26,471	11,891.64	938.18	4.21	222.81	3,127.52
D. catenatum	26,791	10,832.91	1,004.40	4.28	234.68	2,714.53
Z. mays	38,510	3,965.59	1,101.62	4.54	242.75	637.83
S. bicolor	27,159	2,942.10	1,261.01	4.85	259.9	436.44
O. sativa	40,745	2,439.30	1,117.21	4.18	266.99	415.17
P. heterocycla	31,987	4,244.98	1,210.22	5.28	229.03	440.95
A. thaliana	26,637	1,909.57	1,242.78	5.23	237.5	157.54

Supplementary Table 38. Length distribution of gene elements in sequenced plants.

Supplementary Table 39. Primers used in this study.

Gene ID	Species	Forward primer (5'->3')	Reverse primer (5'->3')
C232459_g1_i2	C. goeringii	AGTAACAACGACTGCGAGTATG	CGACAACCGAACCTGAGTTAT
C249696_g1_i4	C. goeringii	GTGGCTTGACTACTGGCTTAG	CCAATTCCACACGGGTATGA
c241934_g2_i1	C. goeringii	TTCTTCTCGTCACCATCAACTC	ACGTCTGCATCCTTGTCTTC
c241934_g3_i1	C. goeringii	GAAGCTCCCTGAGCATGTATC	CGTCTTCTCCCTTCCCAATTTCT
Dca017701	D. catenatum	GGAGTTCATGCCTTTCTCCTTA	ACATTTGGGAGAGCAACATAGA
Dca000062	D. catenatum	AAGCTCGGGTACACACATTC	GAAGGCGAAGTGAGCCATTA
Dca006498	D. catenatum	CAAGGCTTCCCTTCGACTAAA	GGAGAATGGCATGAACTCTACA
Dca026994	D. catenatum	GTATTGGGTTTCCTGTTTGGATTAG	GTTCTTCTTCACCGCCTTCT
Dca021512	D. catenatum	CATCAGCATTGAGAACCCTTTG	GACTTCTTCCGGTACACCTTATAG
Dca006499	D. catenatum	GCAAGCTTAGCAGAGGGTAATA	CTAGGCTCATCTCATTGTTGGT
Dca024473	D. catenatum	CTCCTGCTGCCAAACATACT	CAACCTCAGGTCCCACTTTATC
Dca011010	D. catenatum	CATCTTCCTCAACGTCGCTATG	ACACAGATCCACCCGAGTATAA
Dca019140	D. catenatum	CAGAGACTGGTTGGGACTTTAG	GCTATGTCAAGCTCCACCTTAT
Dca019138	D. catenatum	GAAGTCCCTTCCTGCGTTAATA	GCGGCTCAAAGAATGTTTATGT
Dca017259	D. catenatum	GCTCTCGGTGGATGAGTAATG	GCTATGTCAAGCTCCACCTTAT
Ubiqutin	D. catenatum	CCGGATCAGCAAAGGTTGA	AAGATTTGCATCCCTCCCC

*Sequences of trehalase genes in *C. goeringii* are provided in **Supplementary Table 37**.
- 2 Supplementary Table 40. GO enrichment terms of significantly expanded gene families of *P*.
- 3 guangdongensis (see separate file).

Supplementary Table 41. Mitochondrial genes of *P. zijinensis* and *P. guangdongensis*.

	-
	1
	٠

NO.	Gene type	P. guangdongensis	P. zijinensis
1	ATP synthase protein	atp l	atp l
2		atp4	atp4
3			atp6
4		atp8	atp8
5		atp9	atp9
6	heme exporter protein	сстВ	сстВ
7	cytochrome c biogenesis	ccmC	ccmC
8	cytochrome c maturation	ccmFc	ccmFc
9		ccmFN	ccmFN
10	cytochrome b	cob	cob
11	cytochrome c oxidase	coxl	coxl
12		cox2	cox2
13		cox3	cox3
14	cytochrome b	cytB	cytB
16	Maturase		mat-R
17	Trimethylamine methyltransferase	mttB	mttB
18	NADH dehydrogenase	nad1	nad1
		nad2	
19		nad3	nad3
20			nad4
21		nad4L	nad4L
22		nad5	nad5
23		nad6	nad6
24		nad7	nad7
25	ribosomal protein		rpl10
26		rpl16	rpl16
27		rpl2	rpl2
28		rpl5	rpl5
			rps1
29		rps10	rps10
30		rps12	rps12
31		rps13	rps13
32		rps14	rps14
33		rps19	rps19
			rps2
34		rps3	rps3
35		rps4	rps4
36		rps7	
38	Open reading frame	orf103a	orf103a

			orf104b
39		orf109c	orf109c
40		orf112c	
41		orf116	orf116
42		orf121a	orf121a
43		orf125f	orf125f
44		orf134	orf134
45		orf142	orf142
46		orf171	orf171
47		orf214	orf214
48			orf216
49		orfX	orfX
50	ribosomal RNA	rrn5	rrn5
51	transfer RNA	trnC ^{GCA}	trnC ^{GCA}
52		$trnD^{GUC}$	$trnD^{GUC}$
53		$trnE^{TTC}$	trnE ^{TTC}
54		trnF ^{GAA}	trnF ^{GAA}
55		$trnfM^{CAU}$	trnfM ^{CAU}
56		trnH ^{GUG}	trnH ^{GUG}
57		trnH ^{GTG}	trnH ^{GTG}
58		trnI ^{CAU}	trnI ^{CAU}
59		trnI ^{AAT}	trnI ^{AAT}
60		trnK ^{UUU}	trnK ^{UUU}
61		trnL	
		$trnL^{TTT}$	<i>trnL</i> ^{TTT}
62		trnM ^{CAU}	$trnM^{CAU}$
63		trnM ^{CAT}	trnM ^{CAT}
64		trnN ^{GTT}	trnN ^{GTT}
65		$trnQ^{TTG}$	$trnQ^{TTG}$
66			trnS ^{GCU}
67			trnS ^{TGA}
68		$trnW^{CCA}$	trnW ^{CCA}
69		trnY ^{AUA}	trnY ^{AUA}
70		trnY ^{GTA}	trnY ^{GTA}

10	
11	Supplementary Table 42. W value of other genes except for photosynthetic homologs of <i>P</i> .
12	guangdongensis and P. zijinensis (see separate file).
13	
14	Supplementary Table 43. W value of photosynthetic homologs of <i>P. guangdongensis</i> and <i>P.</i>
15	zijinensis (see separate file).
16	
17	Supplementary Table 44. W value of each branch after the divergence of <i>P. guangdongensis</i>
18	and P. zijinensis using A. shenzhenica as outgroup (see separate file).
19	
20	Supplementary Table 45. Gene element length for ten plant species (see separate file).
21	
22	Supplementary Table 46. Gene IDs for leaf initiation and development (see separate file).
23	
24	
25	

26 Supplementary References

27	1.	Graham, S. W., Lam, V. K. Y. & Merckx, V. S. F. T. Plastomes on the edge: the evolutionary
28		breakdown of mycoheterotroph plastid genomes. New Phytol. 214, 48-55 (2017).
29	2.	Barrett, C. F. & Davis, J. I. The plastid genome of the mycoheterotrophic Corallorhiza striata
30		(Orchidaceae) is in the relatively early stages of degradation. Am. J. Bot. 99, 1513-1523
31		(2012).
32	3.	Estiati, A. & T., T. K. The ribosomal protein S7 gene is transcribed and edited in sugar beet
33		mitochondria. Physiol. Plant. 102, 325-327 (1998).
34	4.	Zhuo, D. & Bonen, L. Characterization of the S7 ribosomal protein gene in wheat
35		mitochondria. Mol. Gen. Genet. 236, 395-401 (1993).
36	5.	Cusimano, N. & Wicke, S. Massive intracellular gene transfer during plastid genome
37		reduction in nongreen Orobanchaceae. New Phytol. 210, 680-693 (2016).
38	6.	Moon, J. & Hake, S. How a leaf gets its shape. Curr. Opin. Plant Biol. 14, 24-30 (2011).
39	7.	Byrne, M. E. Making leaves. Curr. Opin. Plant Biol. 15, 24-30 (2012).
40	8.	Bar, M. & Ori, N. Leaf development and morphogenesis. Dev. 141, 4219-4230 (2014).
41	9.	Ichihashi, Y. & Tsukaya, H. Behavior of leaf meristems and their modification. Front. Plant
42		<i>Sci.</i> 6 , 1–8 (2015).
43	10.	Prasad, K. et al. Arabidopsis PLETHORA transcription factors control phyllotaxis. Curr.
44		<i>Biol.</i> 21 , 1123–1128 (2011).
45	11.	Pinon, V., Prasad, K., Grigg, S. P., Sanchez-Perez, G. F. & Scheres, B. Local auxin
46		biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in
47		Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 110, 1107–1112 (2013).
48	12.	Křeček, P. et al. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol.
49		10 , 1–11 (2009).
50	13.	Yoshida, S., Mandel, T. & Kuhlemeier, C. Stem cell activation by light guides plant
51		organogenesis. Genes Dev. 25, 1439-1450 (2011).
52	14.	Hamann, T., Mayer, U. & Jürgens, G. The auxin-insensitive bodenlos mutation affects

53 primary root formation and apical-basal patterning in the *Arabidopsis* embryo. *Development*

54 **126**, 1387–1395 (1999).

- 55 15. Benfey, P. N. *et al.* Root development in *Arabidopsis*: four mutants with dramatically altered
 56 root morphogenesis. *Development* 70, 57–70 (1993).
- 57 16. Scheres, B. *et al.* Mutations affecting the radial organisation of the *Arabidopsis* root display
 58 specific defects throughout the embryonic axis. *Development* 121, 53–62 (1995).
- 59 17. Galway, M. E. *et al.* The *TTG* gene is required to specify epidermal cell fate and cell
 60 patterning in the *Arabidopsis* root. *Dev. Biol.* 166, 740–754 (1994).
- 8. Walker, A. R. *et al.* The *TRANSPARENT TESTA GLABRA1* locus, which regulates trichome
 differentiation and anthocyanin biosynthesis in *Arabidopsis*, encodes a WD40 repeat protein. *Plant Cell* 11, 1337–1349 (1999).
- 64 19. Bernhardt, C. et al. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3
- 65 (*EGL3*) specify epidermal cell fate in the *Arabidopsis* root. *Development* 130, 6431–6439
 66 (2003).
- 67 20. Lee, M. M. & Schiefelbein, J. WEREWOLF, a MYB-related protein in *Arabidopsis*, is a
 68 position-dependent regulator of epidermal cell patterning. *Cell* 99, 473–483 (1999).
- 69 21. Wada, T., Tachibana, T., Shimura, Y. & Okada, K. Epidermal cell differentiation in
- 70 *Arabidopsis* determined by a *Myb* homolog, *CPC*. *Science*. **277**, 1113–1116 (1997).
- Schellmann, S. *et al. TRIPTYCHON* and *CAPRICE* mediate lateral inhibition during
 trichome and root hair patterning in *Arabidopsis. EMBO J.* 21, 5036–5046 (2002).
- 73 23. Kirik, V., Simon, M., Huelskamp, M. & Schiefelbein, J. The ENHANCER OF TRY AND
- *CPC1* gene acts redundantly with *TRIPTYCHON* and *CAPRICE* in trichome and root hair
 cell patterning in *Arabidopsis*. *Dev. Biol.* 268, 506–513 (2004).
- Zhang, G. Q. *et al.* The *Dendrobium catenatum* Lindl. genome sequence provides insights
 into polysaccharide synthase, floral development and adaptive evolution. *Sci. Rep.* 6, 19029
 (2016).
- Zhang, G. Q. *et al.* The *Apostasia* genome and the evolution of orchids. *Nature* 549, 379–383
 (2017).

81 26. Cai, J. et al. The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47, 65-

82 72 (2015).

- 83 27. Yuan, Y. et al. The Gastrodia elata genome provides insights into plant adaptation to
- 84 heterotrophy. *Nat. Commun.* **9**, 1615 (2018).