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Abstract: The vast majority of knowledge related to the question “To what extent do pharmaceuticals in the environment
pose a risk to wildlife?” stems from the Asian vulture crisis (>99% decline of some species of Old World vultures on the Indian
subcontinent related to the veterinary use of the nonsteroidal anti‐inflammatory drug [NSAID] diclofenac). The hazard of
diclofenac and other NSAIDs (carprofen, flunixin, ketoprofen, nimesulide, phenylbutazone) to vultures and other avian
species has since been demonstrated; indeed, only meloxicam and tolfenamic acid have been found to be vulture‐safe. Since
diclofenac was approved for veterinary use in Spain and Italy in 2013 (home to ~95% of vultures in Europe), the risk of NSAIDs
to vultures in these countries has become one of the principal concerns related to pharmaceuticals and wildlife. Many of the
other bodies of work on pharmaceutical exposure, hazard and risk to wildlife also relate to adverse effects in birds (e.g.,
poisoning of scavenging birds in North America and Europe from animal carcasses containing pentobarbital, secondary and
even tertiary poisoning of birds exposed to pesticides used in veterinary medicine as cattle dips, migratory birds as a vector
for the transfer of antimicrobial and antifungal resistance). Although there is some research related to endocrine disruption in
reptiles and potential exposure of aerial insectivores, there remain numerous knowledge gaps for risk posed by pharma-
ceuticals to amphibians, reptiles, and mammals. Developing noninvasive sampling techniques and new approach meth-
odologies (e.g., genomic, in vitro, in silico, in ovo) is important if we are to bridge the current knowledge gaps without
extensive vertebrate testing. Environ Toxicol Chem 2024;43:595–610. © 2022 The Authors. Environmental Toxicology and
Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government
employees and their work is in the public domain in the USA.
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INTRODUCTION
With rising living standards increasing the demand for live-

stock production and the growing and aging human population
reliant on healthcare systems, pharmaceutical contamination of
the environment is increasingly of concern (see Boxall et al.,
2012; Wilkinson et al., 2022). Although environmental con-
taminants such as pharmaceuticals are just one of the many
stressors faced by free‐ranging species (e.g., along with habitat
destruction, climate change, and disease), with 41% of am-
phibian species, 21% of reptiles, 13% of birds, and 27% of

mammals listed as threatened with extinction by the Interna-
tional Union for Conservation of Nature (IUCN, 2022), it is im-
portant that we understand the potential of pharmaceuticals to
affect populations.

Pharmaceuticals encompass a broad range of substances
of synthetic or biological origin used to diagnose, treat, miti-
gate, or prevent disease or to promote well‐being (also see
Supporting Information, 1). They are characterized as sub-
stances that have the ability to stimulate, depress, or replace
physiological functioning in a biological system. This implies
that the underlying mechanism by which the drug functions
needs to be present for a physiological effect to occur. Some
compounds that are primarily thought of and used as pesti-
cides (e.g., organophosphorus insecticides [OPs]) are also
registered and used in veterinary medicine as livestock dips to
parasites, thus expanding the definition of what is traditionally
thought of as a pharmaceutical. This definition of “pharma-
ceuticals” generally implies that most drugs have similar effects
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in whatever biological system they have been placed, based on
their mode of action. However, for some species the effects
may be exaggerated or unexpected as a result of interspecific
physiological differences, including differences in pharmacoki-
netics and/or pharmacodynamics (Toutain et al., 2010).

The principal source of pharmaceuticals in the environment is
believed to be usage in human patients, livestock, and com-
panion animals, which results in excretion of active pharma-
ceutical ingredients (APIs) and metabolites (Daughton & Ternes,
1999). Manufacturing and inappropriate disposal of pharma-
ceuticals and the presence of veterinary drug residues in car-
casses of livestock represent additional exposure pathways that
can lead to exposure of wildlife (see Supporting Information, 2,
and Figure S2a–d). To date, research on pharmaceuticals and
wildlife has largely focused on effects of nonsteroidal anti‐
inflammatory drugs (NSAIDs) on avian scavengers, with some
work also on exposure, hazard, and risk of euthanasia drugs,
antidepressants, and synthetic hormones (Table 1), and the role
of wildlife in the transfer of antimicrobial resistance (AMR; Arnold
et al., 2014; Bean & Rattner, 2018; Shore et al., 2014). Geo-
graphically, the focus has been on areas of Europe, North
America, South Asia, and South Africa (Kookana et al., 2014; see
Supporting Information, 3, for further discussion).

Depending on the environmental fate and mechanism of ac-
tion of pharmaceuticals, wildlife can be used as sentinels for
environmental contamination, to monitor bioaccumulation proc-
esses and to act as bioindicators of potential adverse effects.
Wildlife are an integral part of complex food webs including
humans and livestock, and there is growing recognition for the
One Health perspective, indicating a need to give greater

consideration to pharmaceutical impacts on wildlife. Examples of
direct relevance to human health include the spread of AMR by
migratory birds (Blanco et al., 2020; Loucif et al., 2022; Navedo
et al., 2021) and the negative impact of some veterinary drugs on
avian scavengers (Cuthbert et al., 2014; Plaza et al., 2022) and
coprophagous insects (Tonelli et al., 2020), all of which can have
consequences on the health of humans and domestic animals,
for example, transfer of AMR organisms.

Given the potential for pharmaceuticals to have therapeutic
effects, side effects, or unexpected toxicity in nontarget wildlife,
it is noteworthy just how many drugs are licensed for use and
how little we know about hazard to wildlife. In the United States
alone, the US Food and Drug Administration (USFDA) has ap-
proved over 1600 animal drug products and 20,000 prescription
drug products for human use, which include one or more of the
approximately 4000 different APIs (USFDA, 2021). A little over
half (51%) of the drugs approved for use in veterinary medicine
by the USFDA are also approved for use in humans (Scott
et al., 2020). Notably there are no routine regulatory require-
ments for industry to perform tests in wildlife species for human
(European Medicines Agency [EMA], 2006, 2016; USFDA,
1998a, 1998b) or veterinary (Veterinary International Conference
on Harmonization, 2000, 2006) medicines. Typically, a phased
approach (see EMA, 2006; USFDA, 1998a, 1998b) is used in risk
assessment for pharmaceuticals (see Figure 1 for a simplified
schematic of regulations and Supporting Information, 4, for a
more detailed discussion), with the aim of the initial screening
phase to approve those drugs used in very low volumes, while
later phases use data from acute and chronic tests in aquatic
vertebrates, aquatic invertebrates, algae, terrestrial invertebrates,

TABLE 1: Known and potential pharmaceutical classes and individual drugs of concern for wildlife from the perspective of exposure (high volume of
use, persistence/pseudopersistence), hazard (highly potent), and risk (known exposure pathway combined with exposure at a sufficient level to
cause adverse effects)

Yellow cells are theoretical exposure, hazard, or risk; gray cells are known exposure, hazard, or risk.
NSAIDs= nonsteroidal anti‐inflammatory drugs.
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microbes, and plants. The need for tests in birds and mammals is
considered on a case‐by‐case basis, based on considerations of
potential exposure and acute toxicity. Registration of the NSAID
flunixin by the USFDA as a transdermal formulation for cattle in
the United States is one example of when testing in wildlife
species was required because of concern around the toxicity of
NSAIDs to avian scavengers (USFDA, 2017).

In the present review, we discuss current knowledge and
research priorities involved with answering some of the key
questions of the risk that pharmaceuticals in the environment
pose to “wildlife.” Although there are many varied definitions
of “wildlife,” we limited our scope to free‐ranging amphibians,
reptiles, birds, and mammals, as in Rattner (2009; although the
definition varies among sources; see Supporting Information,
5). We focus on livestock dips, NSAIDs, euthanasia drugs, AMR,
and antifungal resistance (AFR), drug effects on the micro-
biome of wildlife, the significance of exposure via wastewater,
exposure hazard and risk for species other than birds, and 21st‐
century approaches for assessment of exposure and hazard.

PESTICIDES AND OTHER
PHARMACEUTICALS USED AS DIPS
FOR LIVESTOCK
What is our current understanding of the topic?

For over a century, a variety of chemicals applied in the form
of a topical dip or pour‐on have been used for control of para-
sites or disease treatment in livestock; in some instances, they
have posed a significant secondary exposure hazard to wild
birds. For example, in South Africa, arsenic‐based compounds
were introduced in the 1890s for livestock dipping, and frequent
dipping of cattle often became compulsory in an effort to control
the tick vector of the protozoan parasite that causes East Coast
fever (Ramudzuli & Horn, 2014). South African ornithological re-
cords indicate that the yellow‐billed oxpecker (Buphagus afri-
canus), heavily dependent on tick prey, failed to breed in that

country between 1907 and 1941 (Stutterheim & Brooke, 1981).
This observation, in combination with lethality data from an ex-
perimental trial in which red‐billed oxpeckers (Buphagus eryth-
rorhynchus) were fed ticks dipped in arsenic trioxide
(Bezuidenhout & Stutterheim, 1980), suggests that the collapse
of the yellow‐billed oxpecker population in this region was likely
due to the reductions in tick prey coupled with consumption of
arsenic‐poisoned prey (Stutterheim & Brooke, 1981).

In the United States, avian poisoning events related to topi-
cally applied OPs have been documented and studied in far
greater detail. A 1982 field study demonstrated that
black‐billed magpies (Pica pica) and red‐tailed hawks (Buteo ja-
maicensis) were killed by famphur used as a pour‐on to control
warbles (Hypoderm sp.) on cattle in the states of Washington and
Oregon (Henny et al., 1985). Gizzard contents of many dead
magpies included cattle hair containing famphur or its activated
metabolite, famphur oxon, and brain acetylcholinesterase (AChE)
activity of the dead magpies was markedly depressed. During
peak magpie mortality, some 10 days after cattle had been
treated with famphur, a dead red‐tailed hawk was found nearby
with brain AChE activity depressed by 87% and magpie remains
with 21 µg/g famphur detected in its crop. Subsequently, five
cases involving bald eagles (Haliaeetus leucocephalus), red‐tailed
hawks, and a great horned owl (Bubo virginianus) collected in
Oregon, California, Iowa, and Colorado were also linked to
topically applied OPs, with remains of dead livestock found in
proximity to dead birds (Henny et al., 1987). Stomach or crop
contents of birds contained hair, flesh, and hide of livestock that
tested positive for famphur and, in one case, fenthion; brain
AChE activity was markedly depressed in the raptors. The ex-
posure route was complex, including exposure via cow hair to
magpies as an intermediary (sometimes cowbirds [Molothrus
ater] or starlings [Sturnus vulgaris]) and finally to raptors.

In a large‐scale study of avian scavenger poisoning between
2004 and 2013 in Spain, four cases involving bearded vultures
(Gypaetus barbatus) tested positive for antiparasitics (three with
diazinon, one with permethrin; Mateo et al., 2015), likely

FIGURE 1: Simplified schematic of risk assessment for human and veterinary pharmaceuticals highlighting that specific testing with wildlife species
is not routinely required but may be needed on a case‐by‐case basis. PEC= predicted environmental concentration; OECD=Organisation for
Economic Co‐operation and Development.
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representing legal use of these veterinary pharmaceuticals. A
large number of lamb feet collected from abattoirs and supple-
mental vulture feeding stations had detectable quantities of OP
or pyrethroid insecticides. A relatively simple washing procedure
greatly reduced residues and was proposed as a risk‐mitigation
measure to protect birds. There are other groups of pharma-
ceuticals used as pour‐on formulations including some NSAIDs,
such as flunixin (e.g., Banamine® transdermal) used for control of
pain and pyrexia associated with bovine respiratory disease
(USFDA, 2017). Differential sensitivity among avian species is the
hallmark of some NSAIDs (e.g., diclofenac [Rattner et al., 2008]),
and flunixin may cause renal lesions in some avian species at a
therapeutic dose extrapolated from that used in mammals (i.e.,
1mg/kg/day; Klein et al., 1994). However, a detailed environ-
mental assessment of Banamine transdermal examining potential
exposure pathways with calculation of risk quotients for non-
target wildlife (red‐tailed hawk, coyote [Canis latrans]) concluded
no significant impact from its proposed use (USFDA, 2017).

What are the future research priorities related
to livestock dips and wildlife?

1. Evaluate the extent to which topical use of flunixin (and
other NSAIDs if registered for that use) are hazardous to
insectivorous birds.

2. Determine the extent to which active ingredients, in some
cases thought of as plant protection products, that are also
used as antiparasitics in veterinary medicine are a risk to
wildlife.

NSAIDS AND SCAVENGERS
What is our current understanding of the topic?

One of the most recent instances of population‐level effects in
wildlife due to an environmental contaminant occurred in Old
World vultures on the Asian subcontinent following their ex-
posure to residues of diclofenac in the carcasses they fed on (see
Figure 2). Oaks et al. (2004) was the first published study to make
the link between diclofenac residues in liver and kidney of dead
and dying vultures in Pakistan, with visceral gout, tubular ne-
crosis, and renal failure which led to death and the observed
population‐level declines. Although diclofenac is now recognized
as the cause, it took many years to reach this conclusion (Green
et al., 2004; Oaks et al., 2004; Shultz et al., 2004; Swan, Cuthbert,
et al., 2006). The exposure scenario was unpredictable and linked
to the large number of cattle in the area due to the religious
significance of cattle in Hinduism. Cattle are not slaughtered as in
typical production systems and when ill were treated palliatively
with NSAIDs, commonly diclofenac (a cyclooxygenase‐2 and
prostaglandin synthetase inhibitor). The toxicity of diclofenac to
Gyps vultures was also unexpected, with it being extremely
nephrotoxic (Meteyer et al., 2005). This resulted in estimated
population declines for some species of 99% over a 15‐year
period from levels in the early to mid‐1990s. In India, according
to the IUCN (2022), white‐rumped vulture (Gyps bengalensis),
slender‐billed vulture (Gyps tenuirostris), Indian vulture (Gyps

indicus), and red‐headed vulture (Sarcogyps calvus) are critically
endangered, while Egyptian vulture (Neophron percnopterus) is
listed as endangered, cinereous vulture (Aegypius monachus) is
classed as near threatened, and bearded vulture (Gypaetus
barbatus), griffon vulture (Gyps fulvus), and Himalayan vulture
(Gyps himalayensis) are listed as of least concern.

Following the elucidation of the toxicity of diclofenac, me-
loxicam was introduced as a safe alternative, with countries on
the subcontinent banning the manufacture and importation of
diclofenac for use in veterinary medicine but not its use (Swan,
Naidoo, et al., 2006). As a result, initial usage of stockpiles
caused ongoing losses of birds (Taggart et al., 2009). As me-
loxicam use became more prominent and diclofenac was phased
out (see Cuthbert et al., 2014), certain areas on the Asian sub-
continent have seen a degree of vulture population recovery,
albeit not a return to their previous numbers (see Supporting
Information, 6.1, for more detail on vulture population status and
the Indian government's response). In areas where signs of total
recovery were evident, the change has been attributed to mi-
gration and not true recovery (Galligan et al., 2014, 2020; Paudel
et al., 2016). Indeed, captive breeding programs successes have
mainly been restricted to providing a sanctuary to prevent ex-
tinctions; only relatively small numbers of endangered vultures
have been bred, and habituation of captive bred chicks limits
success of releases (V. Naidoo, personal communication, June
21, 2021). Nonetheless, despite the positive benefits achieved
with the removal of diclofenac, the safety of vultures was not fully
protected; and other NSAIDs have since been identified as being
toxic to birds, such as aceclofenac and nimesulide (Galligan
et al., 2016, 2022). In areas where these drugs are used, toxicity is
being reported with continued loss of birds. A summary of the
toxicity of diclofenac and other NSAIDs to other avian species is
provided in Table 2, with further discussion of differential me-
tabolism in Supporting Information, 6.2. There are a couple of
notable instances of insensitive species; for example, New World
vultures are apparently tolerant of diclofenac (Rattner et al., 2008;
Table 2). Perhaps the most significant development on this topic
in the last decade came in 2013, when diclofenac was approved
for veterinary use in Spain and Italy, countries holding approx-
imately 95% of all European vultures. In this instance, the po-
tential for exposure (Herrero‐Villar et al., 2020) combined with the
known hazard could translate into risk to individuals and even
populations. In fact, the first case of diclofenac poisoning in a
wild vulture in Europe was detected in 2020 in a cinereous
vulture in Spain (Herrero‐Villar, Delepoulle, et al., 2021).

What are the future research priorities related
to NSAIDs and hazard to birds?

1. Continue to monitor the use of diclofenac and other NSAIDs
for treatment of livestock in the Old World and monitor the
status of critically endangered vultures.

2. Gain further understanding of exposure, hazard, and risk of
NSAIDs for other avian species.

3. Determine exposure (e.g., carcass surveys) and risk posed to
vultures in Europe and Africa as a result of NSAID use in
veterinary medicine.
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EUTHANASIA DRUGS AND SCAVENGERS
What is our current understanding of the topic?

There are many instances of barbiturates, and specifically
those used as euthanizing agents, causing intoxication and
mortality in wildlife, mainly in North America and Europe in avian
scavengers, although exposure of some mammalian scavengers
has also been reported in Spain (Herrero‐Villar, Sánchez‐
Barbudo, et al., 2021). Exposure to barbiturates occurred when
scavengers ingested carcasses of domestic animals that had
been euthanized with pentobarbital but had not been properly
disposed of (i.e., appropriate disposal is via a means that pre-
vents potential scavenger exposure: burial, incineration; Russell &
Franson, 2014; Wells et al., 2020). Between 1975 and 2013
mortality due to pentobarbital intoxication in bald eagles sub-
mitted to the US Geological Survey, National Wildlife Health
Center (Madison, WI), represented 1.1% (33/2980) of all bald
eagle mortalities and 4.3% of poisonings (33/762). For golden
eagles (Aquila chrysaetos) the equivalent mortality and poisoning
numbers were 0.2% (3/1427) and 2.6% (3/117), respectively
(Russell & Franson, 2014). More recently, a study in Spain found
barbiturates in 5.9% (28 of 473) of intoxicated griffon vultures
between 2004 and 2020 (Herrero‐Villar, Sánchez‐Barbudo,
et al., 2021). Other raptors have also been affected by ex-
posure to barbiturates throughout Europe, including cinereous
vulture (Aegypius monachus), Egyptian vulture (Neophron perc-
nopterus), Spanish imperial eagle (Aquila adalberti), red kite
(Milvus milvus), and Eurasian buzzard (Buteo buteo; Herrero‐
Villar, Sánchez‐Barbudo, et al., 2021; Moriceau et al., 2022; Wells
et al., 2020). Pentobarbital concentrations in avian scavengers
found dead ranged between 0.12 and 344mg/kg in gastric
contents and between 0.20 and 164mg/kg in liver (Herrero‐Villar,
Sánchez‐Barbudo, et al., 2021). Some of these mortality events
have been clearly linked to the consumption of contaminated
livestock carcasses (Herrero‐Villar, Sánchez‐Barbudo, et al., 2021).

What are the future research priorities related
to the risk posed by euthanasia drugs in the
environment to wildlife?

1. Understand the extent to which accidental and intentional
barbiturate intoxication occurs in geographic regions beyond
Spain and North America using existing incident reporting
databases, and if such schemes are not currently monitoring
for barbiturates, start including them in the list of analytes.

AMR, AFR, AND THE MICROBIOME
What is our current understanding of the topic?
AMR. The increased use of antibiotics and antifungals in human
and veterinary medicine has led to frequent detection of anti-
microbials (and, to a lesser extent, antifungals) in the environ-
ment (Wilkinson et al., 2022). One of the most disconcerting
effects of their presence is the development of resistant (AMR
and AFR) organisms. In this context, scavenging birds have been
identified as potential dispersants of AMR because of their likely
exposure via domestic animal carcasses potentially treated with
veterinary drugs and their capacity to travel long distances
(Blanco et al., 2020). Some of the AMR organisms are zoonotic
pathogens (i.e., Salmonella) that are a particular concern from a
human health and food safety standpoint, and some of these
organisms have been reported in vultures and wild ungulates
(Blanco, 2018; Marin et al., 2018; Ramos et al., 2022). Other avian
species have been described as being potential dispersants and
reservoirs of AMR, such as shorebirds, with compound exposure
linked to use in aquaculture (Carroll et al., 2014; Navedo
et al., 2021).

Antimicrobial resistance has also been reported in wild un-
gulates, where the pathway of transfer is via direct contact with
domestic livestock as a consequence of human disturbance

FIGURE 2: Timeline of Asian vulture crisis and research in the years that followed identification of diclofenac as the cause. LD50=median lethal
dose; bw= body weight.
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and habitat conversion to agricultural systems (Espunyes
et al., 2021; Ramos et al., 2022). Some of these wild ungulates
play an important role in transmission between environmental
compartments, such as wild boar, with interactions between
urban, agricultural, and natural environments (Torres et al.,
2020). This has also been reported in wild rodents with close
contact with farms (Arnold et al., 2016). This may indicate a
potential for the spread of AMR organisms globally, with sub-
sequent implications from a “One Health” perspective.

What is our current understanding of the topic?
AFR. Antifungal resistance needs to be studied further before
the role of wildlife in the dispersal of resistant organisms can be
understood. There are only a few reports that describe resistant
fungi isolated from European mammals such as wild boar and
hedgehog that are closely linked to urbanized habitats (Gnat
et al., 2021; Rhimi et al., 2022). Triazoles are also used as pesti-
cides, and, as such, development of cross‐resistance to triazoles
used in the treatment of human fungal diseases (Bowyer &
Denning, 2014; Snelders et al., 2012) should be considered.

What is our current understanding of the topic?
Microbiome. The role of the microbiome in human health is an
emerging topic (Valles‐Colomer et al., 2019; Zheng et al., 2020)
that may also be an important aspect of wildlife ecotoxicology.
Studies in laboratory animals and humans have shown changes in
the enteric microbiome that are caused by antibiotics (Cho
et al., 2012; Dethlefsen & Relman, 2011), and there is evidence
that the enteric microbiome can also be affected by nonantibiotic
pharmaceuticals (Maier et al., 2018). In captivity, the treatment of
koalas for chlamydia with antibiotics caused changes in their in-
testinal microbiome which affected plant tannin degradation
(Dahlhausen et al., 2018). In a hypothesis‐driven research study,
Thomason et al. (2017) demonstrated that ocular microbiomes of
house finches were altered after antibiotic treatment; the sub-
jects exhibited more severe Mycoplasma‐induced conjunctival
inflammation than untreated finches. To date, however, although
the presence of AMR bacteria has been widely described across
taxa throughout the world (see previous discussion), few studies
have explored the effects of pharmaceuticals on the microbiome
of wildlife. Exceptions include impacts of antimicrobials on re-
sistant bacteria in the intestinal microbiota of mallard ducks (Anas
platyrhynchos; Atterby et al., 2021), and Pitarch et al. (2017)
observed oral mycoses in avian scavengers exposed to anti-
biotics that may alter the host's normal microbiota composition
and that can facilitate opportunistic pathogenic yeast growth to
cause disease.

What are the future research priorities related to AMR/
AFR and the microbiome?

1. Gain a greater understanding of the role of wildlife in
transferring AMR organisms.

2. Develop an understanding of the significance of wildlife in
transferring AFR.TA
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3. Conduct controlled experiments to understand the enteric
microbiome in different wildlife species and their im-
plications for immune function.

IMPORTANCE OF WASTEWATER AS A
PHARMACEUTICAL EXPOSURE PATHWAY
FOR WILDLIFE
What is our current understanding of the topic?
Foraging directly on wastewater‐treatment plants. Con-
trolled studies designed to simulate exposure of European star-
lings foraging on invertebrates at wastewater‐treatment plant
(WWTP) trickling filter beds to the antidepressant fluoxetine have
been conducted in the United Kingdom (Bean et al., 2014, 2017;
Whitlock et al., 2018, 2019). These studies found indications that
environmentally realistic concentrations administered via in-
vertebrates injected with fluoxetine for approximately 6 months
may cause subtle effects on foraging (e.g., timing and frequency
of foraging bouts [Bean et al., 2014]) and courtship behavior
(Whitlock et al., 2019). At present, the importance of this ex-
posure pathway (i.e., birds eating fluoxetine‐contaminated in-
vertebrates from WWTPs) and the biological significance of the
effects of fluoxetine remains a knowledge gaps (i.e., do they
translate from the laboratory to the field, behavior as a relevant
apical endpoint; see Supporting Information, 7). Only the ex-
periment of Whitlock et al. (2019) detected fluoxetine residues in
free‐ranging starlings. However, the residues were detected in
feathers of starlings that had been grown in the wild (21 of 25
birds, up to 27 ng/g dry wt) but sampled after the birds had been
brought into the laboratory and dosed with fluoxetine. As there
was also fluoxetine contamination of feathers and the liver of one
control bird, it was not clear whether the fluoxetine in these
feathers was transferred during captivity (e.g., via contact with
excreta or during preening) or was the result of exposure prior to
capture. The importance of this exposure route and the risk
posed remain to be determined.

Water–fish–osprey food webs. To date, two studies have
examined exposure, potential effects, and trophic transfer of APIs
and metabolites in the osprey food web. Between 2012 and
2015, water samples, blood samples from various species of fish
commonly consumed by osprey, and blood samples from 40‐ to
45‐day‐old osprey nestlings were collected in Chesapeake and
Delaware Bays and associated tributaries in the United States
(Bean et al., 2018; Lazarus et al., 2015). Water and blood plasma
samples were analyzed for more than 20 APIs or metabolites by
liquid chromatography–tandem mass spectrometry. The anti-
hypertensive diltiazem consistently exceeded detection limits in
osprey nestling plasma samples from the Chesapeake region. In
the Delaware region, the analgesic acetaminophen was detected
in 75% of the osprey nestling plasma samples, and the NSAID
diclofenac was detected in only 7% of the nestling plasma
samples. Although the effect thresholds of these three APIs are
unknown for ospreys, observed concentrations were well below
the human plasma therapeutic concentration (HTC; 28% of the
HTC for diltiazem and two to three orders of magnitude lower for

acetaminophen and diclofenac). Overall, these data and pre-
dictions may indicate that the risk of therapeutic or toxicological
effects associated with trophic transfer of APIs andmetabolites to
osprey nestlings in the Chesapeake and Delaware regions is low
(see Supporting Information, 8, for further discussion of kinetics).

What are the future research priorities related to
evaluating the significance of exposure to
pharmaceuticals from wastewater?

1. Fill knowledge gaps around the significance of exposure to
pharmaceuticals at or near WWTPs in regions other than
Europe and North America.

2. Understand the exposure and hazard for aerial insectivores
foraging on insects that emerge from WWTP filter beds.

3. Periodic monitoring/decadal reevaluation of pharmac
eutical contamination of the environment using noninvasive
methods in sentinel species.

EFFECTS ON WILDLIFE OTHER THAN BIRDS
Research related to pharmaceuticals in the environment has

focused on exposure and effects in birds, leaving knowledge
gaps on the risk of pharmaceuticals to amphibians, reptiles,
and mammals.

What is our current understanding of the topic?
Amphibians and reptiles. The detection of many classes of
pharmaceuticals in wastewater effluent, groundwater, untreated
drinking water, and runoff from concentrated animal feed oper-
ations (see Barnes et al., 2008; Bartelt‐Hunt et al., 2011; Focazio
et al., 2008; Roberts & Thomas, 2006) has led to extensive lab-
oratory exposure studies, field monitoring, and modeling efforts
to assess the risk to aquatic species, including reptiles and am-
phibians. Notably, direct evidence of pharmaceutical exposure
through detection of parent compound or metabolites is gen-
erally lacking for free‐ranging amphibians and reptiles. However,
in laboratory studies the pharmaceutical 17α‐ethinylestradiol
(EE2) and several progestogens have been shown to evoke
reproductive toxicity in Xenopus tropicalis and Xenopus
laevis at environmentally relevant concentrations (Orlando &
Ellestad, 2014; Safholm et al., 2014). The highly publicized
findings of feminization and endocrine disruption in American
alligators (Alligator mississippiensis) at Lake Apopka, Florida,
USA, were principally attributed to chlorinated hydrocarbon
pesticides and not pharmaceuticals (see Guillette et al., 2000);
however, this triggered many other such investigations in reptiles
and other wildlife, with the potential for such effects from phar-
maceuticals like EE2 and diethylstilbesterol often mentioned (see
Guillette & Edwards, 2008). Nile crocodiles (Crocodylus niloticus)
were studied at a commercial crocodile farm downstream from
a sewage‐treatment plant in Brits, South Africa (Arukwe et al.,
2015, 2016). Carbamazepine, EE2, galaxolide, and tonalide were
detected in water at various locations in proximity to the farm

Pharmaceuticals in the environment and risk to wildlife—Environmental Toxicology and Chemistry, 2024;43:595–610 603

wileyonlinelibrary.com/ETC © 2022 The Authors



using passive samplers, and more commonly studied con-
taminants (aliphatic hydrocarbons, aromatic hydrocarbons,
metals, halogenated pesticides) were present in the liver of
crocodiles, with correlative evidence potentially indicating
effects on biotransformation and oxidative stress endpoints, and
reproductive and endocrine pathways.

Aerial insectivores. Bats can also be exposed to pharma-
ceuticals when they forage on insects that emerge from
sewage filter beds (Park & Cristinacce, 2006). Park et al.
(2009) determined that concentrations of the synthetic es-
trogen EE2 were greater in insects collected around trickling
filers than at sites over 2 km away but never actually dem-
onstrated exposure of bats to pharmaceuticals. In high‐
income countries at least, activated sludge has been re-
placing trickling filter beds in recent years; and thus, the
relevance and importance of this exposure route for aerial
insectivores remains unknown.

Marine mammals. A recent review of pharmaceuticals and
personal care products and their toxicity to aquatic organisms
(Srain et al., 2021) describes effects on a range of aquatic in-
vertebrates and fish but reports evidence from only one nonfish
vertebrate, citing an in vitro study which suggests potential im-
pacts on immune function in harbor seals (Phoca vitulina; Kleinert
et al., 2018).

Otters feed almost exclusively in aquatic systems, which may
be contaminated by both effluent discharge and runoff. Fish
are the predominant prey of most of the 13 otter species
worldwide, although for some species aquatic crustaceans are
commonly consumed (Kruuk, 2006). Trophic transfer of phar-
maceuticals to otters seems likely in view of evidence of con-
tamination of freshwater invertebrates and fish (see Cerveny
et al., 2021; Miller et al., 2019). As yet, there is no published
evidence of internal pharmaceutical exposure of otters, but
recent data from the LIFE Apex Project (Gkotsis et al., 2022)
indicates that a wide range of antidepressants, drugs of abuse,
and stimulants are present in apex predators, and their prey,
including a metabolite of the analgesic metamizole in an otter
from Germany, and screening of hair samples identifies
NSAIDS (ibuprofen and diclofenac) in Eurasian otter (Lutra lutra)
from the United Kingdom (Richards et al., 2011).

What are the future research priorities related to
studying exposure and effects of pharmaceuticals
in the environment to reptiles, amphibians, and
mammals?

1. Despite a clear potential for exposure via trophic transfer
from fish and invertebrates, research has yet to document
the occurrence, accumulation, or risk from pharmaceuticals
in aquatic and, particularly, marine mammals (Kleinert
et al., 2018).

2. There are still many knowledge gaps around the exposure
and hazard of pharmaceuticals to reptiles and amphibians.
Evaluating the ability to use read‐across data from fish

and endocrine disruption screening studies (e.g., amphibian
metamorphosis assay) would be helpful for risk assessment.

NONINVASIVE METHODS FOR
EVALUATING PHARMACEUTICAL
EXPOSURE OF WILDLIFE
What is our current understanding of the topic?

Opportunistic sampling of animals found dead or carcasses
provided by hunters or animal control programs represents one
method for evaluating exposure without invasive sampling. As
previously documented, wildlife poisoning by pharmaceuticals
has focused on avian scavengers exposed to highly toxic com-
pounds such as NSAIDs and barbiturates (Pain et al., 2008;
Russell & Franson, 2014; Wells et al., 2020). The catastrophic
situation in Asia with diclofenac could potentially have been
ameliorated sooner, preventing the vulture population crash. For
example, the WILDCOMS network (www.wildcoms.org.uk) in the
United Kingdom brings together a number of surveillance
schemes which monitor disease and contaminants in vertebrates
found dead, including predatory birds, otters, and cetaceans.
Collection is necessarily ad hoc, and careful consideration must
be given to potential biases (e.g., unequal probability of sam-
pling certain demographics or locations) and variables which
might confound interpretation (e.g., spatial distributions shift
over time).

Other noninvasive sampling matrices such as feathers or hair
and sampling food items such as invertebrates or ungulate car-
casses represent options that adhere to the principles of the 3Rs
(reduce, refine, replace). Supporting Information, Table S9, con-
tains examples of some of the studies and schemes in place for
contaminant exposure assessment in wildlife.

What are the future research priorities for
exposure assessment of pharmaceuticals and
wildlife?

1. Further investigate the link between internal exposure and
residues in feathers and hair as a noninvasive matrices.

2. Routinely monitor livestock carcasses left for scavengers and
determine the awareness of stakeholders responsible for
the disposal of medicated carcasses (i.e., veterinarians and
farmers) about the impacts of drug residues for wildlife.

3. There is a need to implement a global wildlife monitoring
system that enables the correlation of nontarget wildlife
intoxications with residues of emerging contaminants such
as pharmaceuticals.

3Rs APPROACHES THAT COULD BE USED
FOR EFFECTS ASSESSMENT

As outlined in Figure 1, industry is not routinely required
to conduct Organisation for Economic Co‐operation and Devel-
opment guideline tests to assess the safety of pharmaceuticals
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for wildlife species. With thousands of active ingredients, con-
ducting in vivo safety tests would be extremely costly and entail
use of large numbers of vertebrates. For effects assessment,
there are options with minimal vertebrate usage (e.g., Swan,
Cuthbert, et al. [2006] demonstrated that treating only two birds
provides sufficient replication to determine whether the toxicity
of diclofenac was similar to that of the white‐rumped vulture) of
nonreleasable animals at wildlife rehabilitation centers (e.g.,
Galligan et al., 2020; Rattner et al., 2008). Figure 3 outlines some
of the approaches that could be used to fill these data gaps (e.g.,
quantitative structure–activity relationships [QSARs], approaches
looking at effects on the genome or transcriptome, indirect ef-
fects, in ovo and in vitro methods, evaluation of sublethal effects,
identification of biomarkers that could be used in pathway‐based
approaches to assist read‐across from preclinical mammalian
data), while further discussion of priorities related to effects as-
sessment is provided in Supporting Information, 10.

What are the future research priorities for effects
assessment and wildlife?

1. Validation and eventual utilization of new approach meth-
odologies to complement or replace safety data in mam-
mals generated in preclinical trials.

CONCLUSIONS
Pharmaceuticals in the environment have been found to

cause individual lethality and even population‐level effects in
wildlife as a result of unique exposure pathways and un-
expected sensitivity. Much of our knowledge on the topic has
focused on NSAIDs and birds as a result of the Asian vulture
crisis. With thousands of drugs licensed for use and no regu-
latory requirement to conduct in vivo safety tests on a routine
basis, it is important to employ noninvasive methods in the
field and laboratory to prevent another such crisis involving
wildlife. The key questions related to the topic are identified as
follows (Textboxes 1–5).

FIGURE 3: In vitro, in vivo, and modeling approaches for filling data gaps for pharmaceutical effects assessment in wildlife. QSAR= quantitative
structure–activity relationship.

TEXTBOX 1: NSAIDs and wildlife, diclo-
fenac and vultures, current status of
population recovery, exposure and risk

Almost two decades after the work of Lindsay Oaks and
coworkers (2004), the risk posed by NSAIDs to avian
scavengers remains a key research priority. Specifically,
1) documenting the current status of vulture populations
in Asia, 2) determining the extent of illegal use of diclo-
fenac in cattle on the Indian subcontinent (Galligan
et al., 2021), 3) documenting mortality incidents in avian
scavengers associated with diclofenac and other NSAIDs
in other geographic regions, 4) determining the rele-
vance of human use of NSAIDs as an exposure route for
wildlife, 5) characterizing the hazard of other NSAIDs to
other avian species, and 6) elucidating the mechanism of
toxicity of NSAIDs in Old World vultures.

TEXTBOX 2: Antimicrobials and effects
on microbiota

Antimicrobial resistance is a major challenge in human
medicine but may be less relevant for wildlife because
they are not intentionally treated with antimicrobials
unless admitted to a wildlife sanctuary, which is a rare
circumstance. Nonetheless, gaining a greater under-
standing of the role of wildlife in transferring AMR and
AFR organisms is a data gap and research need. In ad-
dition, further research is needed to determine whether
exposure to antimicrobials and antifungals at much lower
doses (i.e., environmental concentrations or residues in
treated food rather than therapeutic doses), together
with the presence of resistant microorganisms, can affect
the microbiome in wildlife.
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TEXTBOX 3: The importance of trophic
transfer from WWTPs

Insectivorous and omnivorous wildlife (e.g., birds, bats)
could theoretically be exposed to pharmaceuticals through
direct dietary or dermal routes at or near urban WWTPs
(particularly in developing countries with poor secondary
or tertiary treatment works) and in rural settings where
wastewater or biosolids are used as fertilizer to amend
soils, fields, and woodlands (reviewed in Bean &
Rattner, 2018). Although modeling efforts have identified
physiochemical and pharmacokinetic properties (e.g., en-
vironmental persistence, log octanol–water partition co-
efficient, leachability, half‐life) for which pharmaceutical
exposure of wildlife has greatest likelihood, robust data
(i.e., parent compound or metabolite detected in tissue or
excreta) documenting such exposure are lacking.

TEXTBOX 4: To what extent are phar-
maceuticals in the environment affecting
populations and the diversity of reptiles,
amphibians, and mammals?

At present, much of the research on wildlife and pharma-
ceuticals has been on birds. Global biodiversity is changing
rapidly, and initiatives to reduce or halt losses have thus far
had limited success (Jetz et al., 2019). Causative agents
are likely to be multiple, simultaneous, and potentially
synergistic, making direct links between population‐level
change and specific toxicological threats difficult to
decipher. Amphibians are likely to be particularly at risk
because of their permeable skin and their reliance on both
aquatic and terrestrial habitats at different life stages.
Reptiles are the least studied group of vertebrates with
regard to environmental contaminant exposure (Hopkins,
2000). Pharmaceutical risk to this vertebrate class remains
largely unexplored (although see Mesak et al., 2019).
Despite potential trophic transfer of pharmaceuticals by
fish and invertebrates, very little research has yet focused
on the occurrence, accumulation, or risk from pharma-
ceuticals in marine mammals (Kleinert et al., 2018).

TEXTBOX 5: Development of specific
noninvasive tools for exposure and ef-
fects assessment

Development of tools that enable exposure assessment
(e.g., feather and hair, expansion of wildlife incident re-
porting schemes) and the use of new approach meth-
odologies for effects assessment (e.g., genomic and
transcriptome analysis, development of wildlife‐specific
QSARs) would be highly beneficial to minimize the
likelihood of another Asian vulture crisis. Ideally, such
approaches would involve noninvasive or alternative
(to vertebrate) methods.

Supporting information—The Supporting Informationis avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5528.
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