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Abstract: Previous energy performance studies neglected the role of information entropy 

in feedback processes between input and output slacks. Superior energy performance may 

be achieved through the capability of learning from how increased outputs could yield 

reduced inputs and vice-versa. This paper focus on this gap, by presenting an assessment 

of US states for a 35-year period in lieu of relevant socio-economic and demographic 

variables. US is the world largest energy producer and consumer, being well-known not 

only for innovation in efficient energy use but also for managerial feedback mechanisms 

in the energy field which ensures continuous improvement in generation and 

consumption. First, a novel SEA-IS (Stochastic-Entropic Analysis for Ideal Solutions) 

model is developed to assess the potential information gains that may arise from energy 

slacks minimization given different optimal reduction quantiles in US states. This non-

linear stochastic optimization model not only relies on Beta distributed priors to model 

the odds-ratio of learning feedback but also takes advantages of numerous strengths 

present in DEA and TOPSIS approaches for performance management. Machine learning 

methods are also employed to predict information gains in terms of contextual variables. 

Results indicate that California is the only U.S. state that has indicate strong mutual 

information feedback and continuous improvements in efficiency. There is ample scope 

for harnessing the power of information gains in improving energy efficiency, particularly 

in 37 U.S. states, which indicates scope for a public-private partnership to achieve this 

goal.  

 

Keywords: US energy; performance; state-level; stochastic-entropic approach; 

information gains; slack management; feedback. 

 

1. Introduction 

Since the inception of performance/efficiency measurement tools in the context of energy 

utilization in production processes, almost all studies have neglected the impact of 

information entropy on score estimates computed using alternative multi-criteria 

decision-making (MCDM) and productive frontier models (for example, Tsai et al., 

(2014)). Instead of focusing on feedback learning processes that may arise when reducing 

inputs or increasing outputs (Kendall et al., (2017); Ashouri et al., (2020)), energy 

performance studies have either focused on analyzing, at the country level, (i) how 

physical, human, and energy resources (or inputs) were converted into social-welfare and 

undesirable pollutants (or outputs) under a “black-box assumption” (Lee and Lu (2010); 
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Menezes et al., (2012)) or (ii) how positive and negative criteria (the MCDM counterparts 

of productive frontier models) might delimit a performance possibility set by establishing 

boundaries for their positive and negative ideal solutions (Wanke, 2015).  

Some studies have incorporated uncertainty in models in terms of random variations 

supposing a data process such as in stochastic productivity frontiers or, in terms of 

fuzziness, as in imprecise decision-making environments ((Tsaur et al., 2002). However, 

little effort has been expended on exploring whether energy performance related inputs 

and outputs (or negative and positive criteria, respectively) share some level of mutual 

information (Tsanas and Xifara (2012)), thereby allowing producers to learn 

simultaneously from each other’s distributional behaviors.  

Different from correlation coefficients, which are already explored in some stochastic 

MCDM models (for example, Peng (2015)), mutual information is a concept closely 

related to information entropy and represents the distance between two marginal 

distributions (Walters-Williams and Li (2009)), setting the grounds for feedback, 

learning, or synergistic endogenous processes that may eventually arise within the ambit 

of continuous improvement initiatives. 

Note that the utilization of different energy usage related variables for assessing 

performance has a more fertile ground under the application of MCDM techniques instead 

of the application of parametric and non-parametric efficiency measurement techniques, 

such as SFA (Stochastic Frontier Analysis) and DEA (Data Envelopment Analysis), 

respectively (Kumar et al. (2017); Kaya et al. (2017)). These variables can include 

consumption and generation variables, as well as undesirable byproducts, which are often 

strongly correlated with each other. The advantage of using these variables that MCDM 

models have over parametric and non-parametric frontier techniques stem from the 

complexity that often arises in the context of choosing the appropriate subset of energy 

variables. Parametric frontier techniques are mostly impacted by the curse of collinearity 

while non-parametric frontier techniques are mostly affected by the curse of 

dimensionality (Geenens (2011)). In both cases, these limitations may yield performance 

scores biased towards one, unless an adequate variable reduction criterion is implemented 

(Wu et al., 2005; Hollingsworth and Smith, 2003; Gonzalez-Bravo, 2007; Despic et al., 

2007; Emrouznejad and Amin, 2009). However, putting these issues in comparison to 

MCDM models, the building of partial ideal functions (TOPSIS – Technique for Order 

of Preference by Similarity to Ideal Solution; (Wanke et al. (2016)), compromise 

functions (VIKOR method – Opricovic and Tseng (2007)), relative performance 

functions (SWARA– Step-wise Weight Assessment Ratio; Yazdani et al., (2016)), or 

utility functions (COPRAS– Complex Proportional Assessment, Zavadskas and Turskis 

(2010)), just to mention a few examples, in terms of banks (alternatives) and banking 

variables (criteria), helps in obfuscating these collinearity and dimensionality issues, 

which tend to be ignored in MCDM models, despite isolated efforts for incorporating 

some kind of uncertainty in terms of fuzzy numbers. 

On the other hand, MCDM models present some shortcomings when compared to 

parametric and non-parametric efficiency measurement techniques. These shortcomings 

are primarily related to the establishment of directional or radial measures for developing 

an improvement path towards the ideal solution. As a direct consequence of this, their 

slack measures and consequently, the “elasticity” assessment of their performance, that 
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is, whether more or less than proportional – in an analogous parallel to the increasing and 

decreasing returns to scale within the ambit of a productive function – is not present at 

all. Notwithstanding, some of these methods, such as TOPSIS, require exogenously 

defined criteria/alternative weights, while productive resource and DMU (Decision 

Making Unit) weights are defined endogenously in DEA models, for instance, as part of 

the primal/dual optimization process with respect to the data envelop computation. Aside 

these limitations, both frontier and MCDM models present their respective strengths. A 

novel performance/efficiency model that encompassed strengths from both research 

streams should present the following features: (i) performance optimization conducted n 

times at the DMU level (supposing that there are n DMUs in the sample); (ii) 

endogenously defined weights for inputs and outputs (or negative and positive criteria, 

respectively); (iii) information on slacks in terms of productive frontiers or ideal 

solutions; and (iv) unbiased scores with good discriminatory power; besides the proper 

distributional assumptions, and their respective simplifications, that make the quest for 

information entropy tractable in terms of capturing the learning/feedback/synergy 

processes due to mutual information sharing. 

Therefore, this paper aims to fill this literature gap by presenting the novel Stochastic-

Entropic Analysis for Ideal Solutions (SEA-IS) model, - a hybrid approach that take 

advantage of DEA and TOPSIS strengths -, which is applied to a set of energy 

performance related variables, aiming at assessing its behavior at US state-level from 

1980 until 2014. The United States was chosen as the locus of analysis due to its historical 

leadership on the research, development, and application of alternative energy sources 

and uses for social-welfare, most of them are based on learning, information sharing, and 

novel business opportunities in different sectors of economy. Energy performance in the 

US States appears to be timidly impacted on by mutual information levels between 

positive (outputs) and negative (inputs) criteria in comparison to the capital stock type 

existent in each state. This being the case, the impact of these contextual variables on 

performance and their eventual synergistic effects on US energy performance at the state 

level due to mutual information are assessed by machine learning techniques. A 

robustness comparison among SEA-IS, DEA, and TOPSIS scores is also provided in light 

of information reliability theory.  

The remainder of the paper is organized as follows. Section 2 presents the contextual 

setting of the US energy sector, exploring the specifics and particulars of each state. 

Section 3 presents the literature review, with a special emphasis on methods for assessing 

energy performance/efficiency and the US context. Section 4 covers the methodology, 

focusing on the dataset and SEA-IS modelling. Data analysis and discussion is presented 

in Section 5. Conclusions and policy implications follow in Section 6. 

 

2. Background on US Energy Sector 

 

The United States uses produces and uses energy from a range of renewable and non-

renewable resources, which includes a combination of energy from primary and 

secondary energy sources. Primary energy sources that are dominated by fossil fuels such 

as petroleum, natural gas, and coal. For example, in 2019, 80% or total primary energy 

production were from three fossil fuel sources. In recent years, other primary energy 

sources have become available such as wind, hydroelectric, solar, geothermal, and 

biomass. A secondary source of energy is electricity, which is generated from different 

primary energy sources. 



4 
 

The U.S. is one of the leading producers and consumer of energy worldwide.  For 

example, in 2017, the total energy consumed from primary energy sources by the U.S. 

was about 17% of the total energy consumed from similar sources worldwide. The U.S. 

energy consumption had continued to increase since 1949 with the occasional drop during 

recessionary periods when the economy slowed down. The graph below shows the U.S. 

primary energy consumption levels from different sources over the years.  

 

 

Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3, April 2020 

While the total U.S. energy consumption level has increased over the years, the 

combination of energy from different sources has changed over the years. Coal was the 

dominant energy source in the late nineteenth century until it was surpassed by petroleum 

products in the middle of the twentieth century. During this period, natural gas production 

also steadily increased. The figure below depicts the long-term history of the change in 

U.S. energy combination mix.  
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Energy can be used for both resale and end-uses. There are four sectors that utilize energy 

as end-users, (i) the residential sector including residential houses and apartments, (ii) the 

industrial sector that includes manufacturing units, agricultural, mining, and construction 

facilities, (iii) the commercial sector that includes offices, schools, hospitals, shopping 

malls, restaurants etc., and, finally, (iv) the transportation sector. These end-use sectors 

consume energy from both primary energy such as coal and buy electricity from the 

electric power sector, a secondary energy source.  

While total energy consumption has increased over the years along with the U.S., the per 

capita energy consumption has remained relatively flat since the seventies given 

advancement in energy efficient improving technology and policy interventions such as 

the CAFÉ standards, among other contributing factors.  

After dominating the U.S. energy production for nearly a century, coal production started 

to decline since the late nineties primarily because of a decline in coal utilization in 

electricity production. By 2019, U.S. coal production was about 60% of the level 

produced in 1998. In contrast, natural gas production increased to a peak, as a result of 

efficient and improved drilling and production techniques. In recent years, both 

production and consumption of renewable energy have increased reaching a peak in 2019. 

This rise is attributed to the sharp rise in solar and wind energy. The graph below shows 

the U.S. primary energy production levels from major sources from 1950 to 2019.  
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Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.2, April 

2020 

   

3. Literature Review 

Energy utilization is of paramount importance in defining an economy’s growth path 

because conversion of energy from one form to another is an integral part of every 

production process.  As such, economists have long been interested in analyzing the role 

of energy in various sectors of the economy. Energy from different sources can vary both 

in terms of their efficacy in the production process and also the resulting impact of the 

surrounding physical environment. For e.g., one unit of energy from fossil fuels can have 

different effects on both the rate of production and the byproducts generated that will 

determine the net environmental impact. 

The variability in the effects of various energy sources on production is often an area of 

focus for production economists while the environmental effects of different forms of 

energy consumption continues to garner considerable among environmental economists. 

One strand of research on energy has focused on the availability of renewable energy 

options to mitigate the effects of climate change. For example, in a series of three papers, 

McKendry (2002) examines the background to biomass production, reviews energy 

conversion technologies, and evaluates the potential of alternative gasification 

technologies for biomass gasification.  

The early research on energy performances primarily focused on the relationship between 

economic growth and energy use. For example, in an earlier publication exploring the 

causal relationship between energy use and economic growth in the United States, Stern 

(1993) found when adjusted for changing fuel composition, final energy use Granger 

causes gross domestic product (GDP). Asafu-Adjaye (2000) estimated the causal 

relationships between energy use and income for a selected group of Asian economies. 

The paper’s results showed unidirectional Granger causality from energy to income for 

India and Indonesia and bidirectional Granger causality for Thailand and the Philippines, 

indicating the variability in the energy use – income relationship across economies. Paul 
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and Bhattacharya (2004) combined an Engle-Granger cointegration approach with the 

standard Granger causality test to find a bidirectional causality exists between Indian 

economic growth and energy consumption for the period 1950 to 1996. For 19 African 

countries, Wolde-Rufael (2005) estimated the relationship between energy use per capita 

and per capita real GDP for the years 1971 to 2000. In the African context, the author 

found a long run relationship between the two series for eight countries and causality for 

ten out of nineteen countries. This work further highlights the variability in the empirical 

evidence on the energy and national income relationship across different countries. 

Chiou-Wei et al., (2008) build on previous research by applying both linear and nonlinear 

Granger causality tests to estimate the causal relationship between energy consumption 

and economic growth for a sample of Asian countries and the United States. Apergis and 

Payne (2010) specifically focus on the relationship between renewable energy 

consumption and economic growth and provide evidence from a panel of twenty OECD 

countries. Their Granger-causality results indicate bidirectional causality between 

renewable energy consumption and economic growth in both the short- and long run.  

With an increase in environmental concerns, particularly the impact of fossil fuel 

consumption on global emissions, a growing body of literature has emerged that 

investigates linkages between energy consumption, economic growth, and environmental 

performance. Using data from 1960 to 2007 for China, Zhang and Cheng (2009) found 

that neither carbon emissions nor energy consumption leads economic growth, which 

leads them to conclude that a conservative energy policy and a carbon emissions reduction 

policy will not impede China’s economic growth. Ozturk and Acaravci (2010) draw a 

similar conclusion for Turkey. Similar studies have been done by Menyah and Wolde-

Rufael (2010, 2010) for South Africa and the United States, by Pao and Tsai (2010) for 

the BRICS countries among others. Tahvonen and Salo (2001) analyzed the transitions 

between nonrenewable and renewable energy at different stages of an economy’s growth 

path and concluded that an inverted-U relation between carbon emissions and income 

level may be possible under certain conditions even in the absence of environmental 

policy.  

The research presented in this paper is related the role of entropy in energy performance. 

Even though there is limited economics research in this area, the laws of thermodynamic 

was introduced to economics almost fifty years ago by Georgescu-Roegen (1971). 

According to the second law of thermodynamics or the law of entropy, transformation of 

energy from one form to another will always result in an irreversible loss of some amount 

of freely available energy. An early publication by Garrison and Paulson (1973) 

demonstrated that entropy can be a useful index of the geographic concentration of 

economic activity.  

Based on the generalized entropy mobility measures developed in Maasoumi and 

Zandvakili (1986), Maasoumi and Trede (2001) applied the approach to analyze income 

mobility in Germany and the United States. Kåberger and Månsson (2001) provided a 

comparative analysis on the opposing views on the relationship between thermodynamics 

and economic theory i.e., whether the physical constraints have binding effects on 

economic growth or not. Antoniou et al., (2002) developed a novel approach to address 

the problem of efficient resource allocations in different types of economic systems and 

proposed that entropy should be an indicator of the efficiency of resource distribution. 
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Zohrabian et al., (2003) applied a maximum entropy method to estimate the success 

probabilities of research on the economics of crop genetic diversity and gene bank 

management. The maximum entropy approach allowed the authors to fit a distribution to 

the data by imposing as little structure as possible and using maximum information from 

the segment of the distribution that is of most interest.  

Within the context of environmental issues, Fernandez (1997) estimated the parameters 

of the objective function and state equation in an optimal control model of water quality 

and expenditures for wastewater treatment using a maximum entropy approach. Zhou et 

al., (2013) first proposed a non-radial data envelopment analysis (DEA) approach by 

integrating the entropy weight and the SBM model and applied the model to an efficiency 

analysis of the Chinese power industry. Han et al., (2018) performed a carbon efficiency 

analysis of industrial departments in China by developing an environmental DEA model 

based on information entropy. Santos et al., (2019) applied an entropy-TOPSIS-F 

approach to develop a method for the evaluation and selection of green suppliers for the 

Brazilian furniture industry. Li et al., (2019) has applied the maximum entropy approach 

to estimate parameters of probability distributions of demand and supply of water and 

used an entropy-weight-based TOPSIS method to evaluate agricultural water resources 

allocation schemes.  

This paper advances the literature on the role of information entropy on energy 

performances by developing a novel SEA-IS (Stochastic-Entropic Analysis for Ideal 

Solutions) model to assess the potential information gains that may arise from energy 

slacks minimization given different optimal reduction quantiles in US states. Drawing on 

the advantages of both DEA and TOPSIS approaches applied to evaluate performance 

management, the paper assesses the impact of a set of socio-economic and demographic 

variables and their synergistic effects on the U.S. state level energy performances between 

the years 1980 and 2014.  

 

 

4. Methodology 

4.1. Data Source 

Table 1 presents descriptive statistics of data on US states which was collected from the 

EIA database and publicly available annual reports from 1980 to 2014. Inputs (negative 

criteria) and outputs (positive criteria) are variables that are commonly found in the 

literature review on energy performance papers. Contextual variables were collected from 

the U.S. Bureau of Economic Analysis database. The state income inequality data were 

obtained from Mark W. Frank’s U.S. State Level Income Inequality website.5 The state 

capital stock data were obtained from Yamarik (2013).  

 

The inputs chosen in the model are population, private capital stock, and total energy 

consumption. We include total population (number of persons in each state) as population 

size is an indicator of aggregate demand for goods and services, and, also, energy demand. 

Capital investments are a primary input of all production activities. Energy is 

 
5 Source: https://www.shsu.edu/eco_mwf/inequality.html  

https://www.shsu.edu/eco_mwf/inequality.html
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consumption is an indicator of the rate of economic activities in any economy. Some 

contextual variables were included that can potentially influence energy performance 

across states. For example, variables such as real personal income and the GINI 

coefficient are indicators of individual spending power and income inequality, which can 

be correlated with both the type and level of energy consumption (Lee and Chien, 2010). 

The employment level, indicated by the number of jobs, tend to be correlated with energy 

consumption though previous authors have found evidence of a bidirectional causal 

relationship between the two variables (Glasure and Lee, 1995). 

 

Table 1. Descriptive statistics of Inputs (I), Outputs (O) and Contextual variables (C). 

Variable Unit Min Max Median Mean SD CV 

In
p

u
ts

 

Population 
Number 
of 
persons 

490787.00 38680810.00 4089875.00 5845831.11 6530262.66 1.12 

Net Private 
Capital Stock 

Millions 
of 
chained 
2009 
dollars 

27349.05 2677884.22 213346.92 336229.98 424584.58 1.26 

Total Energy 
Consumption 

Billion 
BTU 

130720.00 12733681.00 1422363.00 1912461.96 2048468.40 1.07 

O
u

tp
u

ts
 

Real GDP 

Millions 
of 
chained 
2009 
dollars 

20074.00 2113280.00 168218.00 274233.30 331352.56 1.21 

CO2 - Coal 

Million 
metric 
tons of 
CO2 

0.00 161.91 31.22 39.40 39.28 1.00 

CO2 - 
Petroleum 

Million 
metric 
tons of 
CO2 

1.04 346.00 32.35 47.33 56.40 1.19 

CO2 - Natural 
Gas 

Million 
metric 
tons of 
CO2 

0.14 240.98 14.26 24.93 34.84 1.40 

CO2 - Total 

Million 
metric 
tons of 
CO2 

2.65 717.96 80.19 111.66 113.36 1.02 

C
o

n
te

xt
u

al
  

Real Personal 
Income 

Millions 
of 
dollars 

16055.70 1746817.84 141347.75 225729.82 266724.44 1.18 

GINI - 0.52 0.71 0.59 0.60 0.04 0.06 

Employment 
NAICS 
Industry 

Number 
of jobs 

310043.00 21997098.00 2288619.00 3377041.64 3646719.04 1.08 

Residential 
Billion 
BTU 

30848.00 1745786.00 317981.00 407880.07 373378.34 0.92 

Commercial 
Billion 
BTU 

23164.00 1640247.00 244858.00 344087.21 339211.89 0.99 

Industrial 
Billion 
BTU 

3507.00 7175851.00 394365.00 631791.21 953276.41 1.51 

Transportation 
Billion 
BTU 

18872.00 3354828.00 414292.00 528703.49 576460.78 1.09 

Trend - 1.00 17.00 9.00 9.00 4.90 0.54 

Trend 
Squared 

- 1.00 289.00 81.00 105.00 90.78 0.86 
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4.2. Efficiency versus Performance measurement: A focus on DEA and TOPSIS 

Broadly speaking, performance is a broader benchmarking concept that can be structured 

by using either scalar or ratio variables, or even a mix of them. It is usually employed 

when there are difficulties in comparing with peers – they may not be homogeneous - 

and/or, - although not necessarily -, in quantifying monetary or physical values for inputs 

and outputs, namely, the negative and positive criteria, respectively (Mihaiu et al., 2010). 

Performance scores are often assessed by MCDM matrix-based methods like TOPSIS, 

VIKOR, or COPRAS, for instance, where specific functions are assumed (e.g. ideal 

solutions, compromise solutions, utility solutions, etc) (Behzadian et al., 2012). Precisely, 

TOPSIS develop cardinal or scale metrics within the range delimited by positive and 

negative ideal solutions through linear combinations of the criteria. The performance 

distance in TOPSIS is cardinal, consisting of a second power metric in the Euclidean n-

space (Olson, 2004). Putting into other words, TOPSIS computes cardinal distances 

(scores) from ideal positive solutions while simultaneously presents an ordinal ranking of 

them (Behzadian et al., 2012). 

In contrast, although efficiency is another popular stream of performance study, it 

essentially relies on the assumptions about a productive frontier or a data envelop. Hence, 

productive efficiency is one particular way for accessing performance (Talley, 2006). The 

“efficiency” terminology is saved to DEA and SFA, that is, methods that compute 

performance based on the productive frontiers that envelope a data set. Frontier methods 

computes the cardinal distances from a data envelope formed by actual observations of 

the frontier of best practices. Therefore, efficiency methods are capable of indicating how 

efficiently a bank is in minimizing variables related to decreasing performance and in 

maximizing other variables related to increasing performance in comparison to other 

peers (Tsai & Chang, 2010). For the sake of simplicity, TOPSIS measures performance 

in qualitative terms while DEA measures it quantitatively (Zeydan and Çolpan, 2009). 

The fine-tuning between efficiency and performance scores is often accomplished by 

selecting a suitable set of variables/criteria and their expected impacts – whether positive 

or negative – on banking efficiency/performance, as long as direct analogies can be done 

between inputs and negative criteria, as well as on outputs and positive criteria.  

In a traditional DEA model, performance is calculated using ex-post information 

collected from historical data with respect to inputs and outputs (Berger & Humphrey, 

1997; Charnes, Cooper, & Rhodes, 1978). Battese and Rao (2002) showed that examining 

performance with DEA presents better discrimination—i.e., efficiency scores that are less 

biased towards one—if this set of inputs/outputs is considered under a meta-frontier that 

encompasses several years of observation, similarly to what is emulated within the ambit 

of MCDMs such as TOPSIS. TOPSIS, in a similar fashion to other MCDMs, is also 

nonparametric by nature because there are no underlying statistical properties 

whatsoever. As regards the fundamentals of TOPSIS, this MCDM is based on the concept 

that the positive ideal solution has the best level for all criteria considered or for the 

input/output set, while the negative ideal is the one with the worst values for the 

input/output set (Wanke et al., 2016a). Despite its general resemblance to DEA where 

outputs may be maximized and/or inputs minimized, the determination of the weights of 

the relative importance of each criteria is exogenously defined in TOPSIS, whereas in the 

case of DEA these weights are endogenously calculated within the ambit of the model 

(Behzadian et al., 2012). Besides, TOPSIS is computationally simpler because there are 
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virtually no constraints with respect to the number of criteria (inputs/outputs) that can be 

assessed (Wanke et al., 2016a). 

 

4.3. Stochastic-Entropic Analysis for Ideal Solution (SEA-IS) 

Stochastic-Entropic Slack Ratios 

Let's consider a set of d DMUs, each one of them consuming i inputs xd,i to produce yd,o 

outputs o, where d = {1..n}, i = {1..m}, o = {1..s}, x and y are, respectively, input and 

output matrices with dimensions nxm and nxs. The positive ideal solution for all DMU d 

for each output o is given by max(yo) while the negative ideal solution for each input i is 

min(xi), for all DMU d. These ideal solutions are the cornerstones for computing relative 

slacks for each input i and output o at the DMU level, such as: 

𝛥xd,i = (xd,i - min(xi))/xd,i, 𝛥xd,i  ranges between 0 and 1 for all i and d       (1) 

𝛥yd,o = (max(yo) - yd,o)/max(yd,o), 𝛥yd,o  ranges between 0 and 1 for all o and d      (2) 

where 𝛥xd,i is the relative slack or potential for reducing input i at DMU d, while 𝛥yd,o is 

the potential for increasing output o at DMU d. Weights, wxd,i or wyd,o, can be assigned, 

respectively, to each input or output given that ∑ 𝑤𝑥𝑑,𝑖 = 1𝑖  and ∑ 𝑤𝑦𝑑,𝑜 = 1𝑖  for all d. 

Therefore, the expected weighted output increasing and input reducing potentials (or 

relative slack ratios, EWOS and EWIS, respectively) for each DMU d are given as it 

follows: 

𝐸𝑊𝑂𝑆𝑑 = ∑ 𝑤𝑦𝑑,𝑜𝛥𝑦𝑑,𝑜 ∀ 𝑑 𝑜             (3) 

𝐸𝑊𝐼𝑆𝑑 = ∑ 𝑤𝑥𝑑,𝑖𝛥𝑥𝑑,𝑖   ∀ 𝑑 𝑖             (4) 

Similarly, information entropy (IE) can also be defined for each DMU d with respect to 

its inputs (Hxd) and outputs (Hyd). Information entropy (Shannon, 1948) is often regarded 

as a measure of information reliability - the higher the entropy, the lower the reliability - 

denoting the epistemic uncertainty that surrounds a given phenomenon, measuring the 

distance between the distribution of its current state and the distribution of the unknown 

true behavior, which can only be inferred. 

𝐻𝑥𝑑 = − ∑ 𝑝(𝑥𝑑,𝑖) ln 𝑝(𝑥𝑑,𝑖)
𝑚
𝑖=1  ∀ 𝑑                                 (5) 

𝐻𝑦𝑑 = − ∑ 𝑝(𝑦𝑑,𝑜) ln 𝑝(𝑦𝑑,𝑜)𝑠
𝑜=1  ∀ 𝑑                                  (6) 

where 0 ≤  𝐻.𝑑 ≤ 1, p(.) denotes the probability of occurring an specific input/output 

outcome for DMU d and 1 signifies maximal entropy. The following steps are developed 

in terms of the i inputs of DMU d, however they are analogous in case of the o outputs. 

Suppose that the next equivalences between eqs. (3) and (5) hold: 

𝑝(𝑥𝑑,𝑖) ~ 𝑤𝑥𝑑,𝑖  ∀ 𝑑, 𝑖             (7) 

−ln 𝑝(𝑥𝑑,𝑖) ~ 𝛥𝑥𝑑,𝑖   ∀ 𝑑, 𝑖             (8) 

While both elements in eq. (7) range between 0 and 1, applying exp(.) into both sides of 

eq. (8) yield the following equivalence: 

𝑝(𝑥𝑑,𝑖) ~ 𝑒𝑥𝑝 (−𝛥𝑥𝑑,𝑖)  ∀ 𝑑, 𝑖       (9) 
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𝑓(𝑥𝑑,𝑖; 𝛥𝑥𝑑,𝑖) = 𝛥𝑥𝑑,𝑖  𝑒𝑥𝑝 (−𝛥𝑥𝑑,𝑖𝑥𝑑,𝑖 ), 𝑥 ≥ 0, ∀ 𝑑, 𝑖    (10) 

That is, the density probability of 𝑥𝑑,𝑖 can be proxied by an exponential distribution of 

rate ( λ) - scale inverse (1/ λ) - parameter 𝛥𝑥𝑑,𝑖. Putting it into other words, 𝑋𝑑,𝑖 can be 

described as a random variable exponentially distributed -  at the DMU level - with rate 

parameter given by the relative slack or the input reduction potential in terms of the ideal 

negative solution for input i (min(xi)): 𝑋𝑑,𝑖~𝐸𝑥𝑝(𝛥𝑥𝑑,𝑖). This equivalence is particularly 

interesting because among all continuous probability distributions with support [0, ∞) and 

mean 1/λ, the exponential distribution presents the largest differential entropy (Park and 

Bera, 2009). 

Taking DMU d into perspective, its Weighted Input Slacks Sum (WISSd) can be expressed 

as a mixture of m independent exponential distributions with different ratio parameters. 

X is a Hyperexponential random variable if X is 𝑋𝑑,𝑖~𝐸𝑥𝑝(𝛥𝑥𝑑,𝑖) with weights 𝑤𝑥𝑑,𝑖, 

which is an Hyperexponential distribution.  

𝑊𝐼𝑆𝑆𝑑 = ∑ 𝑤𝑥𝑑,𝑖𝐸𝑥𝑝(𝛥𝑥𝑑,𝑖)   ∀ 𝑑 𝑖                  (11) 

In order to make this summation analytically tractable, let's assume an average potential 

for reducing inputs at each DMU d, that is ∆𝑥𝑑 = ∑ 𝑤𝑥𝑑,𝑖𝛥𝑥𝑑,𝑖/𝑚   ∀ 𝑑 𝑖 . Plugging this 

average relative input slack ratio into eq. (11) it becomes a weighted summation of 

exponential distribution of equal ratio parameters (~Exp(∆𝑥𝑑)) summed m times), which 

results in a Gamma distribution (Crooks, 2019) of shape parameter m and scale parameter 

(inverse ratio) 1/∆𝑥𝑑, such as: 

𝑊𝐼𝑆𝑆𝑑~𝐺𝑎𝑚𝑚𝑎(𝑥𝑑; 𝑚, ∆𝑥𝑑)  ∀ 𝑑       (12) 

Analogous results can be derived observing the same previous steps for a Weighted 

Outputs Slacks Sum (WOSSd): 

𝑊𝑂𝑆𝑆𝑑~𝐺𝑎𝑚𝑚𝑎(𝑦𝑑; 𝑠, ∆𝑦
𝑑

)  ∀ 𝑑       (13) 

Putting eqs. (12) and (13) into perspective, it is equivalent to say that, for each DMU d, 

summed input and output slack ratios observe Gamma distributions with shape 

parameters that represent the number of inputs and outputs and scale parameters that 

represent how large the average input or output is greater with respect to its respective 

ideal solution. Again, it is important to note that the gamma distribution is the maximum 

entropy probability distribution for a random variable Xd for which E[Xd] = m/∆𝑥𝑑 is 

fixed and greater than zero (the same is applied analogously to a random variable Yd, cf. 

Park and Bera [2009]). 

The equivalence between IE and stochastic slack ratios for inputs and outputs can also be 

established in terms of distances between two elements of two a set, departing from eqs. 

(5) and (6) and eqs. (12) and (13). For example, a metric or distance function is 

a function that defines a distance between each pair of elements of a set. A set with a 

metric is called a metric space (Cech, 1969). Many information entropy applications 

require a metric or a distance measure between pairs of points such as: 

D(𝑥𝑑, 𝑦𝑑) = 𝐻𝑥𝑑 + 𝐻𝑦𝑑 − 2𝑀𝐼(𝑥𝑑, 𝑦𝑑) ∀ 𝑑      (14) 

where the metric D(𝑥d, 𝑦d) is particularly known as the variation of information (Melia, 

2007) and satisfies the properties of triangle inequality, non-

negativity, indiscernibility and symmetry. MI represents the mutual information level of 

https://en.wikipedia.org/wiki/Support_(mathematics)#In_probability_and_measure_theory
https://en.wikipedia.org/wiki/Differential_entropy
https://en.wikipedia.org/wiki/Maximum_entropy_probability_distribution
https://en.wikipedia.org/wiki/Maximum_entropy_probability_distribution
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Triangle_inequality
https://en.wikipedia.org/wiki/Non-negative
https://en.wikipedia.org/wiki/Non-negative
https://en.wikipedia.org/wiki/Identity_of_indiscernibles
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random variables Xd and Yd and measures the "amount of information" that can be inferred 

about one random variable by observing the other (Archer et al., 2013). Putting it into 

other words, MI is intricately linked to the expected "amount of information" held in a 

random variable, which is not necessarily limited to a linear dependence like 

the correlation coefficient or other forms of unidirectional causality (Massey, 1990) That 

is why MI is also known as information gain (Permuter et al., 2009). 

Readers should note that, the higher the joint marginal information (MI) between random 

variables Xd and Yd, the lower the metric. This means that mutual information bridges the 

gap between elements in distinct sets (in this research, input and output sets). The 

information gain for one random variable from learning for the other could even be as 

high enough to offset their individual entropies yielding, into the limit, a zero distance 

between Xd and Yd. Analogously applying these key concepts to eqs. (12) and (13), it 

would be equivalent to affirm that MI represents the strength or intensity of the feedback 

processes that exists between the inputs (Xd) and outputs (Yd) observed at each DMU 

level, by which information is also gained on how reducing input slack ratios through 

learning on how increasing output slack ratios (and vice-versa). As long there is a direct 

relationship between slacks and efficiency levels in production frontier literature, this 

research posits that the efficiency level of DMU d, or Effd, can be proxied by 1 - D(Xd,Yd), 

such as: 

Effd = 1 - D(𝑥𝑑 , 𝑦𝑑) = 1 + 2𝑀𝐼(𝑥𝑑 , 𝑦𝑑) − 𝐻𝑥𝑑 − 𝐻𝑦𝑑  ∀ 𝑑   (15) 

Putting into other words, the efficiency levels of a given DMU d - assessed in terms of 

how inputs and output slack ratios are stochastically distributed from their negative and 

positive ideal solutions, respectively - are positively impacted by the feedback learning 

processes that exists between these very slacks. On the other hand, lower efficiency levels 

are strongly tied up by higher individual entropy levels for inputs and outputs, from which 

very little is known to allow information gains on the other variable. 

Hutter and Zaffallon (2008) dealt with the issue of determining the posterior distribution 

of MI for using it in inductive decision-making rather than in descriptive purposes using 

Bayesian inference. The authors demonstrated the exact analytical expression for the 

mean, and showed that the analytical approximations for variance, skewness and kurtosis 

presented an accuracy level of the order O(n−3), where n is the sample size. The derived 

analytical expressions by the authors allowed the distribution of mutual information to be 

approximated reliably and quickly, while Beta distribution showed to be one of the most 

accurate approximations. 

One of the advantages of assuming that MI is a function of Beta random variables is the 

fact that Beta distribution yields the exact solution for the odds-ratio of two Gamma 

independent random variables (Crooks, 2019). Therefore, assuming that MI is a function 

Beta distributed odds-ratio can be useful in assessing the likelihood of a joint input/output 

slack ratio improvement and, hence, of the information gain that helps in achieving higher 

efficiency levels due to learning about one distribution by another in a feedback 

processes. Another advantage of assessing MI in terms as a function of Beta distributed 

odds-ratio (OR) is the establishment of upper boundaries for joint improvement and, 

therefore, for the "maximal" attainable efficiency level by DMU d. Besides, information 

gains and efficiency levels can be assessed in probabilistic terms, by determining different 

quantile thresholds for the joint input/output slack ratio improvement. So, considering 

that this assumption holds: 

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Information_content
https://en.wikipedia.org/wiki/Correlation_coefficient
https://en.wikipedia.org/wiki/Information_gain
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ORd ~ Beta(m, s) ~ 
∆𝑥𝑑𝐺𝑎𝑚𝑚𝑎(𝑥𝑑;𝑚,∆𝑥𝑑)  

∆𝑥𝑑𝐺𝑎𝑚𝑚𝑎(𝑥𝑑;𝑚,∆𝑥𝑑)  +∆𝑦𝑑𝐺𝑎𝑚𝑚𝑎(𝑦𝑑;𝑠,∆𝑦𝑑)
 ∀ 𝑑   (16) 

ORd = Beta(m, s) = 
∆𝑥𝑑𝑊𝐼𝑆𝑆𝑑

∆𝑥𝑑𝑊𝐼𝑆𝑆𝑑+∆𝑦𝑑𝑊𝑂𝑆𝑆𝑑
∀ 𝑑      (17) 

 

𝑊𝑂𝑆𝑆𝑑 = 𝑊𝐼𝑆𝑆𝑑
∆𝑥𝑑(1−𝐵𝑒𝑡𝑎(𝑚,𝑠))

∆𝑦𝑑𝐵𝑒𝑡𝑎(𝑚,𝑠)
 ∀ 𝑑      (18) 

 

MId = 
∆𝑥𝑑(1−𝐵𝑒𝑡𝑎(𝑚,𝑠))

∆𝑦𝑑𝐵𝑒𝑡𝑎(𝑚,𝑠)
  ∀ 𝑑        (19) 

 

it is possible to express WOSSd as a stochastic function of WISSd, cf. eqs. (18) and (19), 

which represents the MI. Next subsection discusses these issues under the paradigm of 

stochastic optimization, where weights for input/output slack ratios are optimized to 

determine the respective quantile efficiency thresholds given that the stochastic 

relationship presented in eq. (18) holds as a robust prior for assessing information gains 

in joint management of input/output slack ratios. Readers should recall that, to make this 

stochastic-entropic problem tractable, different assumptions were adopted that made the 

role of input/output slack ratio weights negligible throughput the distributional 

assumptions adopted. Therefore, it is deemed necessary to take some steps back in order 

to assess their relative importance by means of stochastic programming. 

 

Stochastic Optimization of Slack Ratio Weights for Efficiency Quantiles 

Let r.(.) denote the weighted Euclidean distance operator. Squared terms are useful in 

non-linear optimization problems, assuring convexity of the possibility set of solutions 

while avoiding the trade-off between positive and negative values in the objective 

function. Applying this operator into eqs. (3) and (4), the weighted Euclidean distance 

between the inputs and the outputs of DMU d to their respective ideal solutions are given 

as: 

𝑟𝑦𝑑 =  [∑ 𝑤𝑦𝑑,𝑜(𝛥𝑦𝑑,𝑜)
2

] 𝑜

1/2

  ∀ 𝑑       (20) 

𝑟𝑥𝑑 = [∑ 𝑤𝑥𝑑,𝑖(𝛥𝑥𝑑,𝑖)
2

] 𝑖

1/2

 ∀ 𝑑       (21) 

Besides, eq. (18) can be rewritten as:  

𝑟𝑦𝑑 = 𝑟𝑥𝑑
[∆𝑥𝑑(1−𝐵𝑒𝑡𝑎(𝑚,𝑠))]²

[∆𝑦𝑑𝐵𝑒𝑡𝑎(𝑚,𝑠)]²
 ∀ 𝑑      (22) 

An analogous efficiency metric can be also defined based on eq. (15), supposing that the 

equivalence between information entropy and expected weighted slack ratios still holds: 

Effd = 1 + 2𝑟𝑥𝑑𝑟𝑦𝑑 − 𝑟𝑥𝑑 − 𝑟𝑦𝑑  ∀ 𝑑      (23) 

Plugging eq. (22) into eq. (23) , differentiating eq. (23) w.r.t. 𝑟𝑥𝑑 , and solving it to zero, 

the optimal weighted Euclidean distance for the inputs of DMU d that yields maximal 

efficiency - in light of learning about the input distribution through the output distribution 

- is given by: 
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𝑟𝑥𝑑,𝑜𝑝𝑡 = 
[∆𝑥𝑑(1−𝐵𝑒𝑡𝑎(𝑚,𝑠))]²+[∆𝑦𝑑𝐵𝑒𝑡𝑎(𝑚,𝑠)]²

4[∆𝑥𝑑(1−𝐵𝑒𝑡𝑎(𝑚,𝑠))]²
   ∀ 𝑑     (24) 

 

Optimal quantiles (q) for the weighted Euclidean input distances (or slack ratios) can be 

numerically computed6 observing the following expression with incomplete Beta 

function terms, 𝐵𝑒𝑡𝑎(𝑚, 𝑠, 𝑞) (Bancroft, 1949): 

𝑟𝑥𝑑,𝑜𝑝𝑡(𝑞)  =    ∫
[∆𝑥𝑑(1−𝐵𝑒𝑡𝑎(𝑚,𝑠,𝑞))]²+[∆𝑦𝑑𝐵𝑒𝑡𝑎(𝑚,𝑠,𝑞)]²

4[∆𝑥𝑑(1−𝐵𝑒𝑡𝑎(𝑚,𝑠,𝑞))]²

𝑡=𝑞

𝑡=0
  𝑑𝑡   ∀ 𝑑   (25) 

As regards the weighted Euclidean output distances, however, adjustments must be made 

in integral parameters as long as inputs are random variables defined departing from 

negative ideal solutions (minimal) while outputs are random variables defined departing 

from positive ideal solutions (maximal). This being the case, Bancroft (1949) showed that 

Beta(m, s, q) = 1-Beta(s, m, 1 - q). Therefore: 

 

𝑟𝑦𝑑,𝑜𝑝𝑡(1 − 𝑞) =    ∫
[∆𝑥𝑑𝐵𝑒𝑡𝑎(𝑠,𝑚,1−𝑞)]²+[∆𝑦𝑑(1− 𝐵𝑒𝑡𝑎(𝑠,𝑚,1−𝑞))]²

4[∆𝑦𝑑(1− 𝐵𝑒𝑡𝑎(𝑠,𝑚,1−𝑞))]²

𝑡=1−𝑞

𝑡=0
  𝑑𝑡   ∀ 𝑑 (26) 

The non-linear programming problem for stochastic-entropic efficiency quantiles, solved 

for each DMU d at a time, is given in model (27): 

 

Max  Effd (q)    (eq. 23) 

s.t. 

𝐸𝑓𝑓𝑑 (𝑞) ≥ 0     (eq. 23) 

𝐸𝑓𝑓𝑑 (𝑞) ≤ 1     (eq. 23) 

𝑟𝑥𝑑 = 𝑟𝑥𝑑,𝑜𝑝𝑡(𝑞)   (eq. 25) 

𝑟𝑦𝑑 = 𝑟𝑦𝑑,𝑜𝑝𝑡(1 − 𝑞)  (eq. 26)     model (27) 

∑ 𝑤𝑦𝑑,𝑜 = 1   𝑜    (from eq. 20)  

∑ 𝑤𝑥𝑑,𝑖 = 1   𝑖     (from eq. 21) 

𝑤𝑦𝑑,𝑜 ≤ 1  ∀ 𝑜   (from eq. 20) 

𝑤𝑦𝑑,𝑜 ≥ 0  ∀ 𝑜   (from eq. 20) 

𝑤𝑥𝑑,𝑖 ≤ 1  ∀  𝑖       (from eq. 21) 

𝑤𝑥𝑑,𝑖 ≥ 0  ∀  𝑖   (from eq. 21) 

 

5. Analysis and Discussion of Results 

 

Fig. 1 depicts efficiency/performance score densities obtained from traditional DEA 

models – under variable and constant returns-to-scale assumptions, VRS and CRS, 

 
6 MAPLE codes were developed for numerically assessing the integral on incomplete Beta functions. These 

codes are available to readers upon request. 
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respectively – and from TOPSIS. While DEA scores suffer from the curse of 

dimensionality, being extremely biased towards one; TOPSIS scores, although more 

discriminatory, are mostly contained in between the range delimited by 0.55-0.70. On the 

other hand, Fig. 2 presents SEA-IS scores computed based on the 92.5%, 95%, and 97.5% 

quantiles for the input/output slack ratios and their mutual feedback. While differences 

between quantiles appear to be minimal, one can see that the their bi-modal aspect 

suggests the existence of groups of US states differently impacted by contextual variables. 

Besides, it is noteworthy the larger range of score fluctuation under SEA-IS computation. 

 

 

 
 

Fig. 1. Density plots for efficiency/performance scores computed under 

traditional models. 
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Fig. 2. Density plots for SEA-IS scores computed under different threshold 

quantiles for input/output slack mutual feedback. 

 

It is interesting to note that, although SEA-IS shares some hybrid features with traditional 

DEA and TOPSIS methods, as discussed in Section 4, a stronger isotonic relationship 

only holds between SEA-IS and TOPSIS scores, as suggested by the correlogram 

presented in Fig. 3. Yet, this isotonic relationship appears to be stable under higher 

quantile thresholds for input/output mutual feedback. This may suggest that, while tied-

up to some extent, mutual information and continuous improvement initiatives may be 

closely related to higher performance levels, with little space left for disruptive 

managerial practices in the US energy sector at the state level. One possible reason could 

be that higher performance levels are characterized by better managerial practices that 

recognize the value of both mutual information and continuous improvement initiatives 

in improving and maintaining higher performance levels.  
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Fig. 3. Alternative score correlogram. 

 

Table 2 helps in putting into perspective this previous discussion. While SEA-IS scores 

are more dispersed, that is, coefficient of variation (CV) is higher in comparison to 

traditional models, gains on information reliability – lower information entropy (IE) – 

cannot be detected under higher quantile thresholds for input/output slack mutual 

feedback. These information reliability gains in SEA-IS are manifested in bi-modal 

density scores and loss of isotonicity with traditional models. In fact, when compared to 

DEA and TOPSIS traditional models, SEA-IS approach provides information on 

input/output relative weight importance for mutual feedback processes (cf. Fig. 4 top and 

bottom graphs for mean weights obtained for the 0.95 quantile). While input/output 

weights are either exogenously defined in TOPSIS at the criteria level or endogenously 

defined in DEA at the DMU level, SEA-IS differs by ranking input/output relevance in 

terms of engendering continuous improvement practices. 

As regards US energy performance at the state level, net private capital stock is the most 

relevant input that could be used to learn about outputs, given a current technological 
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frontier on energy usage, generation, and consumption. On the output side, CO2 

emissions derived from petroleum and coal, in order, are the more relevant undesirable 

by-products to learn about input behavior. It is possible to affirm that in US states, 

common input/output mutual learning practices towards higher efficiency levels 

commence on basic balance between the capital stock - used as means of production, 

economic development, and social-welfare – and the undesirable pollutant by-products 

derived from their use.  

The United States is relatively a more capital abundant country, which possibly influences 

the wage-capital price ratio in a way that makes production processes more capital 

intensive (vis-à-vis labor intensive). As a result, capital generally plays a dominant role 

in providing information about the final outputs that are generated. Note, our findings are 

not industrial sector specific, which indicates the dominant role of capital as an input in 

the entire economy rather than a specific sector. Similarly, on the output side, we find 

emissions from coal and petroleum provide more information about input behavior is 

consistent with the higher percentage use of these fuel sources in the U.S. economy even 

though natural gas has overtaken coal utilization very recently.  

 

 

Fig. 4. Most weighted inputs and outputs computed with SEA-IS models for the 95% 

mutual feedback quantile between input/output slacks. 
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Fig. 5 illustrates the slight impact of higher mutual feedback quantile thresholds on 

efficiency levels. It is worth noting that even during the world financial crisis years (2008-

2013), learning processes could not have helped in improving median efficiency levels, 

suggesting that economic dynamics US states were still dependent on petroleum and coal, 

despite the drop-in overall economic activity. Intuitively, this implies that during the 

recession years, with higher-than-normal levels of business uncertainty and lower levels 

of aggregate demand, producers were reluctant to make changes to their input 

combination (for example, switching to alternative energy sources) and, hence, coal and 

petroleum remained the primary fuel options in production. 

Table 2. Descriptive statistics on alternative scores. 

Efficiency Min Max Median Mean SD CV IE Kurtosis Skewness 

DEA CRS 0.925 1.000 0.978 0.977 0.015 0.015 1.0000 -0.038 -0.521 

DEA VRS 0.932 1.000 0.980 0.979 0.015 0.015 1.0000 -0.189 -0.536 

TOPSIS 0.442 0.668 0.649 0.638 0.035 0.055 0.9998 15.281 -3.460 

SEA IS 0.925 0.469 0.993 0.854 0.838 0.115 0.138 0.9985 -0.148 -0.770 

SEA IS 0.950 0.461 0.993 0.855 0.838 0.115 0.137 0.9985 -0.084 -0.781 

SEA IS 0.975 0.460 0.993 0.855 0.839 0.115 0.137 0.9985 -0.062 -0.785 
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Fig. 5. Yearly comparison for SEA-IS scores under the 92.5%, 95%, and 97.5% mutual 

feedback quantile between input/output slacks. 

 

To dig into the continuous improvement nature in the US energy sector, although the 

mutual feedback processes between inputs and outputs appears to be timid when 

compared to the balance between capital stock and pollutant emissions, it is necessary to 

map the efficiency behavior at the DMU level beyond quantile thresholds, aiming at what 

happens in the course of time. Besides, an additional glimpse into the mutual information 

density, whether below or above median (cf. Fig. 6) is deemed necessary to infer on the 

very nature of the continuous improvement processes in the US energy sector, even 

though there are no discernible differences among percentile thresholds or other grouping 

schemes. 
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Fig. 6. Mutual information density for US energy performance at the state level. 

 

Let´s consider the following alternative groups of states, which is also reported in Tables 

3 and 4: 
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Group A: Formed by states where mutual information level is above median and SEA-IS 

efficiency scores both increased from 1998 to 2014 and from the 0.925 to 0.975 threshold 

quantile. This group is named Strong mutual information/strong continuous improvement 

management. These states definitely not only present strong mutual feedback between 

input/output slacks, but are also capable of sustaining efficiency increase over time and 

over quantile thresholds, which may eventually yield to disruptive energy usage, 

consumption, and production with technological shift. California is the single state 

belonging to this group.  

It is hard to pinpoint to a single reason behind California’s success in consistently 

improving energy efficiency over time. However, California has long been proactive in 

experimenting with alternative energy sources with an aim to improve energy efficiency 

across all sectors. For example, in 2018, California ranked first among all 50 states as a 

producer of electricity from solar, geothermal, and biomass, and fourth in conventional 

hydroelectric power generation.7 This indicates a strategic approach undertaken by the 

state to improve energy efficiency across the Californian economy, which indicates why 

they may have been able to take advantage of feedback loops and learning opportunities, 

which may have risen through initiatives undertaken to achieve continuous 

improvements.  

 

Group B: Formed by states where mutual information level is above median and SEA-IS 

efficiency scores just increased from 2002 to 2015 but decreased from the 0.925 to 0.975 

threshold quantile. This group is named Strong mutual information/weak continuous 

improvement management. These states present strong mutual feedback between 

input/output slacks capable of sustaining efficiency increase over time. However, as 

regards quantile thresholds, these states fail in producing disruptive improvements or 

technological changes in energy usage, production, and consumption. Eight states belong 

to this group: Connecticut, Delaware, Indiana, Maine, Massachusetts, Michigan, 

Missouri, and West Virginia. The presence of strong mutual feedback indicates that there 

have been learning opportunities for improving energy efficiency but other existing 

factors may have prevented the states from making continuous improvements. For 

example, lack of suitable management practices that would have allowed production units 

to learn from the mutual information channels.  

 

Group C: Formed by states where mutual information level is below median and SEA-IS 

efficiency scores decreased from 2002 to 2015 but increased from the 0.925 to 0.975 

threshold quantile. This group is named Weak mutual information/strong continuous 

improvement management. Although these states present a weak mutual feedback 

between inputs and output slacks and declining efficiency over the course of time, there 

is still potential, however, for producing disruptive improvements or technological 

changes in energy production, usage, and generation. Three states belong to this group: 

Florida, Louisiana, and New York. For these states, while there are limited learning 

 
7 https://www.eia.gov/state/?sid=CA  

https://www.eia.gov/state/?sid=CA
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opportunities presented through the mutual information pathways, the results indicate 

there is some evidence of occasional phases of improvements in energy performances, 

possibly from temporary phases of good managerial practices where units managed to 

capitalize on intermittent learning opportunities from any feedback process.  

 

Group D: Formed by states where mutual information level is below median and SEA-IS 

efficiency scores both decreased from 2002 to 2015 and from the 0.925 to 0.975 threshold 

quantile. This group is named Weak mutual information/weak continuous improvement 

management. Mutual feedback processes are weak within this group of states, which is 

incapable of sustaining efficiency growth over time and under higher quantile thresholds. 

This is the largest group with the 37 states.  

Table 3. Distribution of US States among groups. 

Group Frequency Frequency (%) 

(A) Strong M.I./Strong C.I. 1 2.04 

(B) Strong M.I./Weak C.I. 8 16.33 

(C) Weak M.I./Strong C.I. 3 6.12 

(D) Weak M.I./Weak C.I. 37 75.51 

 

Table 4. Listing of US States among groups.8 

DMU Group  DMU Group 

California Strong M.I./Strong C.I.  Maryland Weak M.I./Weak C.I. 

Connecticut Strong M.I./Weak C.I.  Minnesota Weak M.I./Weak C.I. 

Delaware Strong M.I./Weak C.I.  Mississippi Weak M.I./Weak C.I. 

Indiana Strong M.I./Weak C.I.  Montana Weak M.I./Weak C.I. 

Maine Strong M.I./Weak C.I.  Nebraska Weak M.I./Weak C.I. 

Massachusetts Strong M.I./Weak C.I.  Nevada Weak M.I./Weak C.I. 

Michigan Strong M.I./Weak C.I.  New Hampshire Weak M.I./Weak C.I. 

Missouri Strong M.I./Weak C.I.  New Jersey Weak M.I./Weak C.I. 

West Virginia Strong M.I./Weak C.I.  New Mexico Weak M.I./Weak C.I. 

Florida Weak M.I./Strong C.I.  North Carolina Weak M.I./Weak C.I. 

Louisiana Weak M.I./Strong C.I.  North Dakota Weak M.I./Weak C.I. 

New York Weak M.I./Strong C.I.  Ohio Weak M.I./Weak C.I. 

Alabama Weak M.I./Weak C.I.  Oklahoma Weak M.I./Weak C.I. 

Alaska Weak M.I./Weak C.I.  Oregon Weak M.I./Weak C.I. 

Arizona Weak M.I./Weak C.I.  Pennsylvania Weak M.I./Weak C.I. 

Arkansas Weak M.I./Weak C.I.  Rhode Island Weak M.I./Weak C.I. 

Colorado Weak M.I./Weak C.I.  South Carolina Weak M.I./Weak C.I. 

District of Columbia Weak M.I./Weak C.I.  South Dakota Weak M.I./Weak C.I. 

Georgia Weak M.I./Weak C.I.  Tennessee Weak M.I./Weak C.I. 

Hawaii Weak M.I./Weak C.I.  Utah Weak M.I./Weak C.I. 

Idaho Weak M.I./Weak C.I.  Virginia Weak M.I./Weak C.I. 

Illinois Weak M.I./Weak C.I.  Washington Weak M.I./Weak C.I. 

 
8 Texas and Vermont were removed due to infeasible solution in SEA-IS optimization. 
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Iowa Weak M.I./Weak C.I.  Wisconsin Weak M.I./Weak C.I. 

Kansas Weak M.I./Weak C.I.  Wyoming Weak M.I./Weak C.I. 

Kentucky Weak M.I./Weak C.I.    

 

It is interesting to note that more than 90% of the US states investigated presented weak 

continuous improvement management practices – California, Florida, Louisiana, and 

New York are exceptions. Yet, it is still possible to affirm that continuous improvement 

practices and mutual information levels are attached to some extent, as long as strong 

continuous improvement practices – as captured by quantile thresholds – are still verified 

despite weak mutual information levels. Up to some extent, however, this detachment is 

necessary for the eventual emergence of disruptive practices or technological changes as 

a consequence of continuous improvement evolution, what appears to be happening in 

California. In fact, Fig. 7 confirms that weak continuous improvement processes, as 

captured by quantile thresholds, are more relevant than the mutual information level per 

se, in explaining higher US energy performances at the state level. These states however 

appear to be stagnant as long as learning opportunities are scarce. Conversely, stronger 

continuous improvement levels appear to be related to smaller energy efficiency levels, 

reflecting the plenty of opportunities from learning from feedback processes between 

input and output slacks. Results indicate that there is plenty of scope for improvements 

in energy performance across the U.S., given that 37 of 50 states indicated both weak 

mutual information and weak continuous improvement management practices. However, 

California’s progress is promising and a detailed study might reveal insights that might 

prove crucial in other states achieving consistent energy efficiency improvements through 

mutual information feedback loops. This is particular true for the states that fall under the 

strong mutual information/weak continuous improvements category, where there is 

already present substantial learning opportunities.  

 

 

 
Fig. 7. SEA-IS efficiency density for groups US states. 
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Fig. 8. Contextual variable conditional densities correlogram per group of states. 
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As regards the impact of contextual variables on SEA-IS efficiency scores and mutual 

information levels, Fig. 8 suggests strong heterogeneity between each group of US states. 

Besides, collinearity appears to be present in combinations among sector, consumption, 

and personal income. An artificial network model, multi-layer perceptron architecture, 

was developed for classification purposes with respect of each bank group using 

contextual variables as predictors. The best architecture founding using 10-fold cross-

validation was formed by 1 hidden layer with 13 neurons, yielding a median predictive 

accuracy about 95.3% (cf. Fig. 9). Sensitivity analysis on contextual variable importance 

for predicting group membership was performed as in Olden et al. (2002) and its results 

are reported in Fig. 10. 

 

 

Fig. 9. Parameter tuning for US states group membership neural network. 

 

It is worth noting the close relationship between social welfare – as captured by GINI ad 

real personal income - and strong mutual information/strong continuous improvement 

practices in California. Rather than claiming on a cause-and-effect relationship, social-

welfare indicators can serve as proxies for relevant mutual feedback between input/output 

slacks which can eventually yield technological change or business disruption in industry 

and transportation sectors with respect to energy performance. Interesting to note that, as 

regards weak mutual information and strong continuous improvement (Florida, 

Louisiana, and New York), higher welfare inequality as captured by GINI appears to 

boost continuous information in energy residential use, differently from California, 

where industrial use is more prominent. This could indicate differences in household 

culture across states. When faced with lower income levels persistently, unlike CA, in 

these states, residents have developed a cautious approach toward energy use, with an 

aim to keep energy bills under check. Stagnant lower personal income may result in 
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inhibiting continuous improvement and, eventually technological change, as can be noted 

in the majority of US states with low mutual information levels. Unlike Florida, 

Louisiana, and New York, for a large group of states in the weak mutual 

information/weak continuous improvement category, we find states with low and/or 

stagnant real income levels are often unable to make continuous energy efficient 

improvements, which indicates some form of government intervention might be needed 

to enable these states to leverage the gains from mutual information feedback mechanisms 

in production systems.  

**

 

Fig. 10. Contextual variable importance for US states group membership. 

 

5. Conclusions 

In production processes, as inputs are transformed into output with the help of technology, 

learning opportunities may often arise, which can potentially help in improving efficiency 

over time. However, the extent to which information through feedback loops can be 

utilized to enhance performance can greatly vary across both industrial sectors and firms 

within any sector. Information entropy also plays a role in energy performances given 

that energy is key component of every production process. When energy performance 

related inputs and outputs share some level of mutual information, there is some potential 

for producers to learn simultaneously from each other’s distributional behaviors. 

However, to the best of our knowledge, few studies in energy economics, including 

studies involving MCDM criteria, and both parametric and non-parametric frontier 

techniques, have explored this area. Thus, to further our understanding of the role played 

by information entropy in improving energy efficiency in production processes, this paper 

advances the related literature by presenting a novel stochastic entropy analysis – ideal 

solution (SEA-IS) model. The model builds on the strengths of traditional DEA and 

TOPSIS models. The SEA-IS model is used to assess the potential information gains that 

may arise from energy slacks minimization given different optimal reduction quantiles in 

all fifty U. S. states. The United States has consistently been one of the highest energy 

users of the twentieth century with a large and well-developed industrial sector, which 

allows us to study the feedback mechanisms between various inputs such as capital stock, 
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energy consumption, population and output such as GDP and undesirable by-products 

such as carbon dioxide emissions from fuel sources such as petroleum, coal, and natural 

gas. Contextual variables related to social welfare such as real income and GINI 

coefficient, and the total number of jobs, all of which affect energy utilization levels were 

also considered. A robustness comparison among SEA-IS, DEA, and TOPSIS scores is 

provided in light of information reliability theory.  

The results of the analysis indicated while DEA scores suffer from the curse of 

dimensionality and the TOPSIS scores are, mostly, contained in the range 0.55 – 0.70, 

the SEA-IS model scores were computed based on the 92.5%, 95%, and 97.5% quantiles 

for the input/output slack ratios and their mutual feedback. The scores indicated the 

existence of four groups of US states, which varied in terms of the role played by mutual 

information in improving energy performances and in terms of their scope of making 

continuous improvements over time. The variation among the four state groups indicate 

there is ample score for harnessing the power of feedback mechanisms in production 

process to improve energy efficiency, particularly in the bottom 37 states. There is a role 

of government intervention and a potential for public-private partnership at state levels 

for achieving this efficiency goal.  

The model presented in this paper can be applied in future studies in studying the role of 

information entropy in non-renewable vis-à-vis renewable energy sources. Beyond 

energy performance-based studies, it can be applied to analyze the role of feedback 

learning mechanisms in improving efficiency in other resource-based sectors such as 

fisheries.  
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