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Highlights 

 Bioacoustic monitoring requires efficient and accessible call recognition methods. 
 We examined open-source recognizers for nest monitoring in black-cockatoos. 
 Recognizers correctly assigned nest activity in roughly 60% of survey days. 
 Fledging was detected by the recognizers. 
 Bioacoustics and semi-automated post-processing are useful for nest monitoring. 

 

Abstract 

Ecologists are increasingly using bioacoustics in wildlife monitoring programs. Remote 
autonomous sound recorders provide new options for collecting data for species and in contexts 
that were previously difficult. However, post-processing of sound files to extract relevant data 
remains a significant challenge. Detection algorithms, or call recognizers, can aid automation 
of species detection but their performance and reliability has been mixed. Further, building 
recognizers typically requires either costly commercial software or expert programming skills, 
both of which reduces their accessibility to ecologists responsible for monitoring. In this study 
we investigated the performance of open-source call recognizers provided by the monitoR 
package in R, a language popular among ecologists. We tested recognizers on sound data 
collected under natural conditions at nests of two endangered subspecies of black-cockatoo, 
the Kangaroo Island glossy black-cockatoo Calyptorhynchus lathami halmaturinus (n = 23 
nests), and the south-eastern red-tailed black-cockatoo Calyptorhynchus banksii graptogyne 
(n = 20 nests). Specifically, we tested the performance of binary point matching recognizers in 
confirming daily nest activity (active or inactive) and nesting outcome (fledge or fail). We 
tested recognizers on recordings from nests of known status using 3 × 3-h recordings per nest, 
from early, mid and late stages of the recording period. Daily nest activity was correctly 
assigned in 61.7% of survey days analysed (n = 60 days) for the red-tailed black-cockatoo, and 
62.3% of survey days (n = 69 days) for the glossy black-cockatoo. Fledging was successfully 
detected in all cases. Precision (true positive / true positive + false positive) of individual 
detections was 70.2% for the south-eastern red-tailed black-cockatoo and 37.1% for the 
Kangaroo Island glossy black-cockatoo. Manual verification of outputs is still required, but it 
is not necessary to verify all detections to confirm an active nest (i.e., nest is deemed active 
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when true positives are identified). We conclude that bioacoustics combined with semi-
automated post-processing can be an appropriate tool for nest monitoring in these endangered 
subspecies. 

Keywords: Bioacoustics; Monitoring; Call recognizer; Breeding success; Black-cockatoo; 
Calyptorhynchus 

1. Introduction 

Acoustic technologies offer new ways to collect data on wildlife populations and ecosystems 
(Servick, 2014). Soundscapes and wildlife sounds can now be collected over spatial and 
temporal scales much greater than those historically possible (Shonfield and Bayne, 2017; 
Sugai et al., 2019; Towsey et al., 2014). For example, Australia's new, permanent continent-
wide Acoustic Observatory (https://acousticobservatory.org/) is providing continuous 
soundscape recordings from 360 listening stations across representative ecoregions (Roe et al., 
2021). Advances in recent decades have seen bioacoustic methods used to locate rare and 
cryptic species (Dema et al., 2018; Schroeder and McRae, 2020; Sebastián-González et al., 
2015; Wrege et al., 2017), measure population density and abundance (Marques et al., 2013; 
Pérez-Granados and Traba, 2021), identify individual animals (Bailey et al., 2021; Ehnes and 
Foote, 2015), localize individuals (Frommolt and Tauchert, 2014), assess species occupancy 
(Campos-Cerqueira and Aide, 2016; Chambert et al., 2018; Furnas and Callas, 2015; Law et 
al., 2021), monitor breeding phenology (Larsen et al., 2021), and monitor invasive species 
(Brodie et al., 2021). However, bioacoustics faces several ‘big data’ problems, not the least of 
which concern processing large volumes of sound files to extract relevant ecological data 
(Kowarski and Moors-Murphy, 2021; Servick, 2014). These issues currently limit the utility of 
bioacoustic methods to ecologists and need to be addressed for the methods to be more widely 
adopted for wildlife monitoring and conservation. 

A key issue in bioacoustic studies is detecting and classifying species' calls from sound 
recordings (Browning et al., 2017; Sugai et al., 2019). Manual processing involves examining 
spectrograms to detect calls visually and aurally; however, this approach is time-consuming 
and not typically feasible for anything other than short-term monitoring. For this reason, 
ecologists have increasingly used automated or semi-automated detection methods via call 
recognizers, a general term for various tools and algorithms that interrogate sound recordings 
to detect calls of interest (Sugai et al., 2019). The choice of recognizer and subsequent 
performance depend on many factors, including the characteristics of the calls to be detected, 
the presence of other species' calls and environmental noise (Brandes, 2008; Cragg et al., 2015; 
Crump and Houlahan, 2017; Knight et al., 2017; Priyadarshani et al., 2018; Salamon et al., 
2016; Towsey et al., 2012). Recognizers have been used with varying levels of success 
(Priyadarshani et al., 2018; Sugai et al., 2019) but generally the field of recognizer development 
still faces difficulties and is not a panacea to bioacoustics' challenges. Reliable, fully-automated 
methods are rare. More often, semi-automated methods that combine automated recognition 
and manual verification are used to detect and classify species (Shonfield and Bayne, 2017; 
Sugai et al., 2019). 

Although progress in recent years has been substantial, developing a high-performing call 
recognizer requires some expertise in programming and machine learning, which often limits 
accessibility to ecologists and managers responsible for on-ground monitoring (Priyadarshani 
et al., 2018; Sebastián-González et al., 2015; Sugai et al., 2019). Commercial software partly 
addresses this issue by providing a more user-friendly interface with which to train algorithms 
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and process sound files. These recognizers can perform well and improve monitoring. For 
example, Shonfield et al. (2018) found that Hidden Markov model recognizers built using Song 
Scope software (Wildlife Acoustics Inc., Maynard, MA, USA) allowed for many more 
detections to be acquired for three species of owl, Strix varia, Aegolius funereus and Bubo 
virginianus (c.f. manual listening and traditional field surveys). However, performance is not 
necessarily high, and results can be inconsistent among different software (Duan et al., 2013; 
Joshi et al., 2017; Knight et al., 2017; Lemen et al., 2015; Rocha et al., 2015; Russo and Voigt, 
2016; Schroeder and McRae, 2020). For commercially-available bat detectors, which are often 
used by ecological consultants and others involved in monitoring, Russo and Voigt (2016) 
caution that their use has preceded proper testing and detections should not be accepted without 
scrutiny. The issue lies partly in that the underlying construction of the algorithms is not easily 
understood or altered by non-experts. An additional limitation of commercial software is their 
cost. Acoustic projects can be costly to setup (e.g., equipment) and operate, especially in terms 
of human hours needed for data analysis and processing (Browning et al., 2017). This may 
preclude conservation programs which often operate on small budgets from investing in 
commercial software. Together, these issues of programming skills, recognizer performance 
and cost may see traditional survey methods favoured over bioacoustics, despite the many 
benefits of acoustic methods for species monitoring. 

In this study we examined the performance of call recognizers implemented in the monitoR 
package in R software (Katz et al., 2016b; R Core Team, 2019), an open-source statistical 
language popular among ecologists (Lai et al., 2019). Like most commercial options, monitoR 
recognizers are easily constructed from example training calls (templates) and allow the end-
user to manipulate various parameters that alter the recognizer's performance. We tested the 
performance of recognizers in detecting daily nest activity (active or inactive) and nest outcome 
(fledge or fail) in two endangered subspecies of black-cockatoo endemic to south-eastern 
Australia. The Kangaroo Island glossy black-cockatoo Calyptorhynchus lathami halmaturinus 
and the south-eastern red-tailed black-cockatoo Calyptorhynchus banksii graptogyne comprise 
small and isolated populations whose recoveries are partly constrained by low reproductive 
output. While the Kangaroo Island glossy black-cockatoo has had some traditional nest 
monitoring (Berris et al., 2018), there has been no routine nest monitoring for the south-eastern 
red-tailed black-cockatoo. Both populations are remote and nesting occurs across large spatial 
areas, especially in the red-tailed black-cockatoo. As such, both would benefit from more 
efficient nest monitoring methods that reduce the requirement for in-field human observers. 

To address these issues we applied the nest-associated vocalizations of both subspecies 
(Teixeira et al., 2020) to assess the utility of bioacoustics for nest monitoring. Their 
vocalizations are loud and distinct and are given at predictable times each day. These traits may 
make them potentially suited to automated or semi-automated methods of call detection. Using 
sound data collected under natural conditions at wild nests we aimed to (a) develop an open-
source call recognizer using the monitoR package in R, and (b) for each nest, test the 
performance of the recognizer in detecting daily nest activity over the course of the nesting 
period, and (c) identify nesting outcome. 
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2. Materials and methods 

2.1. Sound data collection 

We collected sound data over two breeding seasons from 24 nests of the glossy black-cockatoo 
on Kangaroo Island in South Australia, and 22 nests of the red-tailed black-cockatoo in the 
Casterton region of Victoria. Each nest tree was fitted with an autonomous sound recorder 
(Frontier Labs Bioacoustic Audio Recorder, https://frontierlabs.com.au/) for the duration of the 
nesting period (i.e., until fledging or confirmed failure). If a female cockatoo was incubating 
an egg or brooding a nestling, we installed the recorder on a nearby tree within 10 m of the nest 
tree, to minimise disturbance during this sensitive period. A distance of up to 10 m was 
considered appropriate for the amplitude of most nest-associated vocalizations, most 
importantly those that are loud and clear in sound recordings (i.e., not in-nest vocalizations) 
(Teixeira et al., 2020). Although we did not directly measure detection space, we observed 
clipping in spectrograms from some nests, which indicates that the amplitude of vocalizations 
was too high for the microphone at short distance. As such, we considered a distance of several 
metres (<5) to be ideal. 

Each sound recorder was programmed to record for three hours per day, concluding at 30 min 
after sunset (sunset-based schedule), as this is when the birds are most active at nests (DT, pers. 
obs.). Additionally, one day per week, recording commenced at 30 min before sunrise and 
concluded at 30 min after sunset (full-day schedule). Technical issues in the first breeding 
season resulted in some recorders losing their sunset-based schedules, and therefore recorded 
only during morning schedules. To increase the chances of recording the fledging event, some 
recorders were updated to record every day at the full-day schedule if a large nestling was 
observed at the nest hollow entrance during field inspections. 

All recordings were made using an omnidirectional microphone, with a fixed gain of 20 dB 
and a sample rate of 44.1 kHz and a bit depth of 16 bits. Microphones had an 80 Hz high-pass 
filter to reduce the effects of low frequency noise (e.g., wind and traffic). All recordings were 
made in uncompressed wave (.wav) format. The major costs associated with the field recording 
and analysis were the Bioacoustic Audio Recorders (approx. $1000.00 AUD per unit including 
microphones and batteries), external hard drives (approx. $150.00 AUD per 4 TB unit) and 
Raven Pro 1.6 software ($100.00 USD per year). Recordings were backed up to the Ecosounds 
repository (www.ecosounds.org) for permanent, cost-free storage. 

2.2. Recognizer development 

We used binary point matching, implemented using the monitoR package in R version 1.0.7, 
as the recognition algorithm for this study (Hafner and Katz, 2018; Katz et al., 2016b). We 
chose monitoR because it is open source, easily shared among end-users and, once scripted, 
does not require expert programming skills. These are important considerations for making 
automation accessible to conservation stakeholders. Binary point matching is a template 
matching algorithm, that compares reference calls (hereafter ‘templates’) to spectrograms of 
sound recordings (‘surveys’). The method of binary point matching used in monitoR is a 
variation of that described in Towsey et al. (2012) (Katz et al., 2016b). MonitoR also provides 
spectrogram cross correlation, but in preliminary trials we found this method returned many 
more false positive detections than binary point matching, and therefore we did not pursue it 
further. Binary point matching delimits ‘on’ and ‘off’ regions (call and non-call) of the 
template, which are based on a user-set amplitude cut-off, and ignores all others. Each template 
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is ‘stepped’ across survey files and each time bin is scored for similarity between surveys and 
templates as the difference in mean amplitude between on and off regions. A higher score 
indicates greater similarity between signals in a survey file and a template. For each template 
monitoR allows the user to set a score cut-off (or detection threshold) which is the minimum 
score that will return a positive detection. As such, score cut-off determines the relative 
proportions of true and false positives, as well as true and false negatives (Brauer et al., 2016; 
Katz et al., 2016a; Knight and Bayne, 2019). Projects seeking to locate cryptic species, for 
instance, will require a lower detection threshold (i.e., greater sensitivity) to detect rare or faint 
calls, with the likely trade-off of increased false positive detections (i.e., poorer specificity). 

The choice of templates and their specified amplitude and score cut-offs is crucial in recognizer 
development. To quantitatively assess these parameters, we performed a pilot study on a 
sample of surveys using a range of call templates of varying amplitude and score cut-offs. The 
results from this pilot study informed final recognizer construction and performance testing 
(see section 2.3). To select sample calls as templates, we randomly selected three nests at which 
nestling calls were recorded for each subspecies. For each nest, we selected three adult flight 
calls, three adult perch calls, three adult female nest calls and three nestling calls as call 
templates (see Teixeira et al., 2020 for details on call types). Selected calls were not masked 
by other sounds and they clearly showed the structure of the call. Using a custom function in 
R, we created three copies of each call template, which differed in their amplitude cut-off. To 
determine these cut-off values, we first manually viewed each call template in monitoR and 
chose the amplitude cut-off until that appeared to best show the call's structure. The R function 
used this value as a mid-point, creating two additional copies of the template at ±2 dB. As such, 
for each subspecies, a sample of 108 call templates was used in the pilot study. 

Call templates were tested on a balanced sample of presence-absence sound files from every 
nest monitored, except for one nest of the south-eastern red-tailed black-cockatoo where only 
absences (true negatives) were recorded. For all other nests, we selected one 5-min sound clip 
where the birds were present (true positive) and one where the birds were absent (true negative). 
We ensured that true negative sound clips included other species' calls, as these may be a source 
of false positive detections. The sample used in the pilot study comprised 39 × 5-min sound 
files for the south-eastern red-tailed black-cockatoo and 46 × 5-min sound files for the 
Kangaroo Island glossy black-cockatoo. 

Pilot sound files (pilot surveys) were processed using the pilot call templates with a low score 
cut-off of five. Each template was summarised for the number of true positive, false positive 
and true negative detections returned at score cut-off increments of 0.2 from a minimum of five 
to a maximum of 25. The minimum cut-off value was arbitrary, but a low value was necessary 
to quantify the performance at a range of values from higher sensitivity/lower specificity (low 
cut-off value) through to lower sensitivity/higher specificity (high cut-off value). Preliminary 
trials showed most true positive detections scored above 15 and, as such, a minimum of five 
was deemed suitably low. A true positive (TP) detection was taken to be any detection in a 
sound file where the birds were present, and a false positive (FP) detection was any detection 
in a file where the birds were absent. True negatives (TN) were the absence of detections in 
files where the birds were absent. The performance of each template was calculated as TP + TN 
/ n. From this, we selected the two best-performing templates across all call types, and their 
optimal score cut-offs, for each subspecies' final recognizer (i.e., two templates per species). 
For the Kangaroo Island glossy black-cockatoo, six templates performed equally well and two 
of these were copies of the same original template which differed in their amplitude cut-off 
value (see above). As such, for this subspecies, we randomly selected two templates to form 
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the final recognizer, but ensured these were not copies of the same original template (Table 
S2). The selected templates were nestling calls from two nests. For the south-eastern red-tailed 
black-cockatoo, the three best templates were copies of the same original template that differed 
in their amplitude cut-off value. We selected one of these and the next highest-scoring template, 
both of which were adult flight calls from two nests, to form the final recognizer (Table S1). 
The performance of each template at its optimal score cut-off is provided in the Supplementary 
Material (Table S1 and Table S2). Nests from which final templates were selected were 
excluded from subsequent recognizer testing (see Section 2.3). One of these nests of the 
Kangaroo Island glossy black-cockatoo was monitored as trial only and was not intended to be 
included in the final dataset. 

2.3. Recognizer performance 

A total of 46 nests (excluding trial nests) were monitored in this study (n = 24 for the Kangaroo 
Island glossy black-cockatoo; n = 22 for the south-eastern red-tailed black-cockatoo). We 
quantitatively measured the performance of the recognizer on recordings from every nest 
except those from which the templates were constructed. For most nests, we recorded 3 × 3 h 
in the late afternoons, finishing at 30 mins after sunset. In some cases, technical problems 
caused recordings to fail, in which case we used recordings collected earlier in the day (e.g. 3 h 
commencing 30 min before sunrise). Recordings to be tested were chosen randomly from three 
defined time periods in each nest's recording schedule: early, mid and late recording stages, 
which we categorised as time 1, time 2 and time 3. For nests that fledged, we randomly selected 
one recording before fledging (time 1) and one recording after fledging (time 3), as well as the 
recording on the day of fledging (time 2). Fledging is vocally indicated in these subspecies 
(Teixeira et al., 2021) and this knowledge was used to confirm fledging date from sound 
recordings. In short, fledging is associated with loud calling by all three birds (fledgling and 
parent birds) and calls decrease rapidly in amplitude as the distance from the sound recorder 
increases with flight (Teixeira et al., 2021). As the birds do not return to the nest after fledging, 
no further nest-associated vocalizations are recorded. For nests deemed successful but where 
the fledging event was not recorded (e.g., batteries lost power before fledging), we randomly 
chose three recording days from early, mid and late stages to represent times 1, 2 and 3. The 
same was done for unsuccessful nests, noting that the recording period was often shorter for 
failed nests because sound recorders were removed if nesting failure was confirmed through 
in-field inspections. The recording period per nest ranged from 6 to 153 days. For nests that 
were monitored over several months, the test recordings were often separated by weeks or 
months. For nests monitored for shorter periods, test recordings were temporally closer 
(sometimes consecutive days). We did not exclude any recording days due to poor conditions 
(e.g., rain) as this is an unavoidable factor in bioacoustic monitoring of these subspecies. 

Detections were verified using Raven Pro 1.6 (spectrogram parameters: Hann window; window 
size = 512 samples; hop size = 512 samples; 50% overlap) (K. Lisa Yang Center for 
Conservation Bioacoustics, 2022, Ithaca, New York). We verified detections at two levels: 
individual detections and survey day. First, detections were categorised as ‘yes’ if they were a 
call of a glossy or red-tailed black-cockatoo (true positive), and ‘no’ in all other cases (false 
positive) (Fig. 1). Judgements of true positive detections were informed by in-field 
observations where possible, but for some nests this information was extracted exclusively 
from the sound recordings. We did not differentiate call types (e.g., adult flight calls versus 
nestling calls). However, adult calls from birds other than the nesting pair were flagged as false 
positives. This was based on in-field observations of nest activity (i.e., we noted if and where 
other nests were located) and expert judgement by the lead researcher (DT) based on the 
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amplitude of the calls. Calls were deemed to be false positive detections from other nesting 
pairs if most calls within a given calling bout were low in amplitude and if there was no 
indication of those birds flying towards to the nest of interest (progressive increases in call 
amplitude). 

 

Fig. 1. Example spectrogram showing true positive recognizer detections (blue boxes; numbers denote detection 
number in the sound file) of Kangaroo Island glossy black-cockatoo nestling calls. The soundscape also contains 
the female begging call (repetitive calling until approx. 1:12:20) and male perch calls (1:11:05, 1:11:51), and non-
target species including galah, red wattlebird, and little corella. Airplane noise is also present (approx. 1:11:25 
and 1:13:20). Spectrogram created using Raven Pro 1.6 (Cornell Lab of Ornithology; Hann Window; window 
size = 1024 samples; hop size = 512 samples; 50% overlap).  

Precision of individual detections was calculated as TP / TP + FP. We then categorised each 
survey day as: (a) Correctly assigned nest activity (true positive: nest active and true positive 
detections verified; or true negative: nest inactive and no detections returned), (b) Missed 
nesting activity (false negative: nest active but no true positive detections returned), or (c) 
Incorrect detection of nesting activity (nest inactive but false positive detections returned). 

Finally, for each nest where fledging was recorded (n = 6 for the Kangaroo Island glossy black-
cockatoo and n = 2 for the south-eastern red-tailed black-cockatoo; excluding nests from which 
the templates were constructed), we noted whether the recognizer successfully detected the 
fledging event. We considered a successful detection to be detections of calls given at the 
moment of a nestling's take-off or immediately preceding this event (see Teixeira et al., 2021 
for a description of fledging vocalizations). Fledging was recorded at seven nests of the glossy 
black-cockatoo, but one of these was used for template calls and therefore was not tested here. 
Fledging was recorded at three nests of the red-tailed black-cockatoo and two were tested here. 
Verifications were summarised using the dplyr package (Wickham et al., 2019) in R statistical 
language (R Core Team, 2019). 

3. Results 

3.1. Pilot study 

The two best-performing templates that formed the recognizer for the south-eastern red-tailed 
black-cockatoo had performance scores (TP + TP / n) of 0.8205 and 0.7945, respectively, at 
their optimal score cut-offs (Table S1). The worst-performing template at its optimal score cut-
off had a performance score of 0.5128. For the Kangaroo Island glossy black-cockatoo, the two 
best-performing templates that formed the recognizer both had performance scores of 0.8261 
and the worst-performing template had a score of 0.6087 (Table S2). 
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3.2. Recognizer performance 

At the level of the survey day, nest activity was correctly identified in 61.7% of recording days 
analysed (nest active and true positive detections verified, or nest inactive and no detections 
returned) for the south-eastern red-tailed black-cockatoo (n = 60 survey days) (Table 1). Nest 
activity was missed in 10.0% of recording days (nest active and no detections returned), and in 
28.3% of recording days nest activity was incorrectly detected (nest inactive and detections 
returned). For the Kangaroo Island glossy black-cockatoo (n = 69 survey days), nest activity 
was correctly assigned in 62.3% of recording days. Nest activity was missed in 21.7% of days, 
and incorrectly detected in 15.9% of days. The recognizers successfully detected the fledging 
event in all cases for both subspecies. 

Table 1. Recognizer performance evaluated at the level of the survey day for the south-eastern red-tailed black-
cockatoo (RTBC), Calyptorhynchus banksii graptogyne, and the Kangaroo Island glossy black-cockatoo (GBC), 
Calyptorhynchus lathami halmaturinus. (a) Nest activity correctly assigned as active (true positive detections 
verified) or inactive (no detections returned); (b) Nest active but no true positive detections returned; (c) Nest 
inactive but false positive detections returned. 

 Day-level verification n days % days 
RTBC (a) Correctly assigned nest activity (active or inactive) 37 61.7%

(b) Missed active nesting 6 10.0%
(c) Incorrectly detected active nesting 17 28.3%

GBC (a) Correctly assigned nest activity (active or inactive) 43 62.3%
(b) Missed active nesting 15 21.7%
(c) Incorrectly detected active nesting 11 15.9%

At the level of individual detections, precision was moderate and many false positives were 
returned (Table 2). In total, the recognizers returned a total of 1388 detections for the Kangaroo 
Island glossy black-cockatoo and 1136 detections for the south-eastern red-tailed black-
cockatoo. Calls were correctly assigned (i.e., nesting adults or nestlings) in 70.2% of detections 
for the south-eastern red-tailed black-cockatoo and 39.2% of detections for the Kangaroo Island 
glossy black-cockatoo. For both subspecies, fledged nests had the greatest precision in all time 
periods, but false positive detections were returned for every nest type (fledged, failed and 
unsure) and every time period (Table 2). The relative proportion of true positive detections was 
generally highest mid-stage in the recording periods (time 2). 
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Table 2. Precision (% TP) of binary point matching call recognizer for detecting nesting calls of the south-eastern red-tailed black-cockatoo (RTBC), Calyptorhynchus banksii 
graptogyne, and the Kangaroo Island glossy black-cockatoo (GBC), Calyptorhynchus lathami halmaturinus. Total detections (n total), number of nests for which detections 
were returned (n nests), and mean number of detections per nest (mean n per nest) are shown. Times 1, 2 and 3 represent early, mid and late stages of the recording periods. 
Precision = true positives / (true positives + false positives). 

   Time 1 Time 2 Time 3 
  n 

nests 
n 
detections 
(total) 

n nests 
(detections 
returned) 

n detections 
(mean/nest) 

% TP n 
detections 
(total) 

n nests 
(detections 
returned) 

n detections 
(mean/nest) 

% TP n 
detections 
(total) 

n nests 
(detections 
returned) 

n detections 
(mean/nest) 

% TP 

RTBC Fledged 4 76 4 19.0 85.5% 295 4 73.8 96.9% 49 3 16.3 49.0%
Failed 9 128 8 16.0 68.0% 87 6 14.5 28.7% 70 7 10.0 4.3%
Unsure 7 166 6 27.7 68.7% 220 7 31.4 78.2% 45 4 11.3 46.7%
Total 20 370 18 20.6 71.9% 602 17 35.4 80.2% 164 14 11.7 29.3%

GBC Fledged 11 355 7 50.7 41.4% 419 11 38.1 55.6% 216 7 30.9 19.4%
Failed 9 45 5 9.0 35.6% 14 6 2.3 35.7% 56 6 9.3 8.9%
Unsure 3 95 3 31.7 1.1% 136 3 45.3 34.6% 52 2 26.0 36.5%
Total 23 495 15 33.0 33.1% 569 20 28.5 50.1% 324 15 21.6 20.4%
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4. Discussion 

In this study we examined the utility of open-source call recognizers in a bioacoustic nest 
monitoring program for two endangered subspecies of black-cockatoo. We aimed to test the 
utility of a bioacoustic program, including post-processing of the acoustic data with monitoR, 
in a regime appropriate for a monitoring program of these subspecies. Specifically, for each 
nest, we tested the call recognizer on three recording days representing early, mid and late 
stages of the recording period (named time 1, time 2 and time 3). In practice, this approach 
would help to, in the first instance, confirm nest activity (nesting active or inactive) across the 
duration of the recording period, which can be up to four months if recorders are deployed soon 
after egg laying. This information can then inform additional recording days to be interrogated, 
if any. This is more efficient than using the call recognizer on all survey days. With this 
approach, we were able to determine daily nest activity with a moderate level of success. At 
the level of the survey day, recognizer performance was similar for both subspecies. Nest 
activity was correctly assigned in 61.7% of recording days for the red-tailed black-cockatoo 
and 62.3% of recording days for the glossy black-cockatoo. Most errors were incorrect 
detections of nest activity, where the nest was inactive but false positive detections were 
returned. As such, manual verification is required, and the recognizers' outputs should not be 
accepted without inspection. This concurs with many previous studies that show semi-
automated methods to be most reliable (Sugai et al., 2019). 

For these subspecies, a direct measure of nest success is the presence of vocal behaviors that 
characterize the fledging event (Teixeira et al., 2021). Where a fledging event was recorded 
(n = 6 nests for the glossy black-cockatoo; n = 2 nests for the red-tailed black-cockatoo), the 
recognizer successfully detected fledging in all cases. This direct measure of fledging greatly 
improves our ability to measure breeding success, since monitoring fledging has not been 
viable with human observers; breeding success is estimated from in-field observations at nests 
(e.g., large nestlings are assumed to fledge) for the glossy black-cockatoo, or post-breeding 
flocks for the red-tailed black-cockatoo (Berris et al., 2018; Russell et al., 2018). One benefit 
of bioacoustics over traditional methods is that it allows for more direct measures of some 
behaviors that are otherwise difficult to record (Teixeira et al., 2019). For example, 
vocalizations can indicate copulation in elephants (Payne, 2003; Poole, 2011), the birth of a 
calf in killer whales (Weiß et al., 2006), mother-pup reunions in Weddell seals (Collins et al., 
2011) and foraging in sperm whales (McDonald et al., 2017). For glossy and red-tailed black-
cockatoos, there are at least six behavioral contexts vocally indicated at nests (Teixeira et al., 
2020). Some changes in calling behavior and nestling call structure can be seen through 
nestling development (Teixeira et al., 2021). For cockatoos and other species with a wide vocal 
repertoire, this vocal complexity offers a range of data that can be collected in bioacoustic 
monitoring programs. Fledging vocalizations are among the most useful signals for bioacoustic 
monitoring as it relates to breeding. For conservation, understanding how nest outcome varies 
by spatial location and resource availability can help prioritize management actions that seek 
to maximise reproductive success. 

Most studies investigating recognizer performance have done so at the level of the individual 
call or detection, albeit inconsistently (Knight et al., 2017). For comparison, we also quantified 
performance at this level by manually verifying all detections returned. Relative to the survey 
day, recognizer performance was good for the red-tailed black-cockatoo but moderate for the 
glossy black-cockatoo when considering each detection individually. Of the 1388 detections 
returned by the recognizer for the glossy black-cockatoo, only 39.2% were correct. For the red-
tailed black-cockatoo, 70.2% of 1136 recognizer detections were correct. False positives (i.e., 
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lower precision) are often generated by calls of other species (Cragg et al., 2015). The better 
precision for the south-eastern red-tailed black-cockatoo reflects the unusually quiet 
environment in which this subspecies nests. All nests occurred as paddock trees, and most were 
isolated from other nest trees and vegetation by hundreds of metres. Common sources of 
biological noise were livestock, little ravens Corvus mellori, yellow-tailed black-cockatoos 
Calyptorhynchus funereus, and sulphur-crested cockatoos Cacatua galerita (a common source 
of false positives), but the soundscape was quiet relative to more natural habitats. As such, calls 
from the nesting birds were usually the loudest vocalizations which would have improved 
precision. On Kangaroo Island, glossy black-cockatoo nests occur in close proximity to other 
nests and vegetation, and the soundscape can be very noisy. The recognizer did incorrectly 
detect vocalizations from other glossy black-cockatoos, but the major source of false positive 
detections, albeit unquantified, appeared to be galahs Eolophus roseicapilla, which were very 
common at the study sites. Poor precision can greatly increase the burden of post-processing if 
every call requires verification, such as in studies seeking to detect rare or cryptic species 
(Dema et al., 2018; Frommolt and Tauchert, 2014; Schroeder and McRae, 2020) or to obtain 
population metrics from call rate (Borker et al., 2014). While this does not apply to nest 
monitoring in black-cockatoos, which operates at the level of the survey day, improving 
precision would reduce the number of days at which nests are incorrectly deemed to be active. 
This would improve the method overall and options to achieve this should continue to be 
investigated. 

Our findings align with many studies that have tested call recognizers under natural conditions; 
recognition can be helpful, but it is not yet a perfect solution (Sugai et al., 2019). Difficulties 
arise from extraneous source of noise and vocalizations of sympatric species, as well as the 
varying quality of the vocalizations for the species of interest (e.g., with distance from the 
sound recorder) (Cragg et al., 2015; Heinicke et al., 2015; Sebastián-González et al., 2015; 
Zwart et al., 2014). More sophisticated methods may improve performance but, even if they 
exist, they are often not easily available to the people responsible for on-ground monitoring. 
Currently, options for ecologists are more limited unless they collaborate with computer 
scientists. Nonetheless, ecologists using call recognizers, whether commercial or open-source, 
should carefully consider the choice of algorithm and its construction, particularly the quality 
of training data used. 

Recognizer construction should ideally be an adaptive process whereby training data are tested 
and refined to improve performance. In our case, we chose call templates following a large 
pilot study of 108 candidate calls (per subspecies), which were tested on verified sound clips 
where the target species were present or absent. We included both adult and nestling calls in 
our pilot study. Since nestling calls are most indicative of active nesting (Teixeira et al., 2020), 
we expected these to be included in the final recognizers. While this was true for the Kangaroo 
Island glossy black-cockatoo, pilot testing for the south-eastern red-tailed black-cockatoo 
showed that templates of adult flight calls were better at confirming nesting activity. This 
result, in addition to large variations in performance between templates (Tables S1 and S2), 
highlights the importance of rigorously testing template calls, as well as construction 
parameters (e.g. here, score cut-off and amplitude cut-off) prior to recognizer construction, 
whenever possible. Lastly, in addition to recognizer performance, the design of a bioacoustic 
program, including its recording schedule, is critically important. While bioacoustics is 
appealing in its ability to collect more data than other methods, appropriately reducing 
recording times (e.g., targeting optimal times of day) can lessen the burden of post-processing 
(Law et al., 2015; Wimmer et al., 2013). For species such as black-cockatoos that typically 
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only provision their nestlings mid-morning and late afternoon to early evening (Higgins, 1999), 
this is an important consideration. 

5. Conclusion 

Black-cockatoo nesting is well suited to monitoring using bioacoustic methods. The birds 
vocalize loudly, at predictable times each day, and have call repertoires that indicate various 
nesting behaviors (Teixeira et al., 2020). In this study, we used simple open-source call 
recognizers, in combination with manual verification, to detect daily nest activity and nest 
outcome (fledging or failure) at 43 known nests of the Kangaroo Island glossy black-cockatoo 
and the south-eastern red-tailed black-cockatoo. We conclude that the non-intrusive approach 
suggested in this study can be an appropriate tool for ecologists to monitor nest outcomes in 
these endangered subspecies. 

Despite many false positive detections, acoustic visualization software (such as Raven Pro 1.6 
used here) makes detection verification a relatively streamlined process. As bioacoustic 
technology continues to advance and become more affordable, it is foreseeable that large 
numbers of sound recorders could be deployed at both known and potential nests. Indeed, by 
providing reliable daily data on nesting from more nests than could reasonably be monitored 
by human observers, the ability to scale-up monitoring would likely offset the effort of 
verifying detections. The method could also be applied to other less-studied populations of 
glossy black-cockatoo and red-tailed black-cockatoo. This would allow, for the first time, a 
comprehensive understanding of nest use across large spatial areas for these species. Lastly, 
this work demonstrates the utility of a different approach to call recognizer testing, whereby 
the species' behaviors and research questions directly inform the level at which performance is 
measured. Applying this approach to other species and issues will allow for more practical 
discussions of bioacoustics' utility to wildlife monitoring. 
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Appendix A. Supplementary data 

Results of pilot study for the south-eastern red-tailed black-cockatoo, Calyptorhynchus banksii 
graptogyne and the Kangaroo Island glossy black-cockatoo, Calyptorhynchus lathami 
halmaturinus. The performance of each template at its optimal score cut-off is shown. 
Performance was calculated as TP + TN / n where TP is the number of true positive survey 
files, TN is the number of true negative survey files and n is the total number of survey files 
tested. Template names state the associated amplitude cut-off (prefix), the call type, and the 
unique ID (suffix) of the nest from which the call was recorded. Templates with an asterisk (*) 
are those that were selected to form the final recognizer. 
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