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Simple Summary: This study examined how offering larger quantities of food less frequently to
better replicate their natural feeding pattern could affect the health of captive-born cheetahs. For three
weeks, six hand-reared cheetahs were fed four once-daily meals per week, followed by three weeks
in which they were fed two daily rations six days a week for the same duration while maintaining
their total weekly food intake. The studied cheetahs showed higher faecal consistency scores and
activity levels when fed less frequently. The results indicate that reducing feeding frequency could
benefit captive cheetahs’ gastrointestinal health without causing significant stress.

Abstract: Unnatural diet composition and frequent feeding regimes may play an aetiological role
in the multiple diseases prevalent in captive cheetahs. This study investigated the responses of
captive-born (hand-reared) cheetahs (n = 6) to a reduced feeding frequency schedule distinguished by
offering larger quantities of food less frequently. The study cheetahs were fed four once-daily meals
per week during the 3-week treatment period, followed by a 3-week control period in which they
were fed two daily rations six days a week. Total weekly food intake was maintained throughout the
study. Variations in behaviour, faecal consistency score (FCS), and faecal glucocorticoid metabolite
concentration were measured. Less frequent feeding resulted in higher FCS (p < 0.01) and locomotory
behaviour (p < 0.05) among the studied cheetahs. Faecal glucocorticoid metabolite concentration
demonstrated an initial acute stress response to the change in feeding frequency (p < 0.05) and
subsequent adaptation. The results of the FCS analysis suggest that the more natural feeding pattern
could have benefited the studied cheetahs’ gastrointestinal health without a significant behavioural
or physiological stress response overall to the change in feeding frequency.

Keywords: cheetah; captive diet; wildlife husbandry; gastrointestinal health; stress

1. Introduction

In the wild, cheetahs (Acinonyx jubatus) typically prey on small to medium-sized
antelope species with a body mass of between 23 and 56 kg [1] and, if left undisturbed,
can consume a large proportion of the carcass [2]. They seldom eat daily or at a fixed
interval; cheetahs exhibit a feeding pattern alternating between consuming large meals
and periods of limited or no food influenced by irregular prey availability in their natural
habitat [3]. However, captive cheetahs are routinely fed a nonvarying diet of skinned
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muscle meat from livestock species, commercially prepared carnivore diets, carcass parts,
or a combination [4,5] offered at fixed intervals once or twice daily, with only one fast day
per week. A whole carcass diet of the cheetah’s natural prey species and the associated
feeding habits are challenging to replicate in captivity [6]. Some facilities argue that frequent
feeding allows for daily monitoring of the animals’ appetites as an indicator of health and
reduces boredom-induced stress [7]. However, unnatural diet composition and frequent
feeding regimes may play an aetiological role in the prevalence of gastrointestinal (GI) and
metabolic diseases in captive cheetahs [5,8].

One of these diseases, Helicobacter-associated gastritis, causes significant morbidity and
mortality in captive cheetahs worldwide [9–11]. Helicobacter species, spiral bacteria colonis-
ing the stomach, infect most captive and wild cheetahs [12]. Captive cheetahs typically
have some degree of inflammation (gastritis) that can be asymptomatic or associated with
regurgitation, vomiting, the passage of undigested food, and weight loss [13,14]. However,
in free-ranging cheetahs, there is colonisation by abundant spiral bacteria but little to no
associated inflammation [10,15], demonstrating the likely multifactorial aetiopathogenesis
of gastritis.

Diet, as a potential risk factor for GI pathology in captive cheetahs, was previously
dismissed for the most part [10]. More recently, Whitehouse-Tedd et al. [5] found that
feeding horsemeat has a significant (detrimental) relationship with gastritis risk in captive
cheetahs. They attributed this to its high protein content [5] and/or digestibility [16] relative
to other meat types fed to captive cheetahs. Crude protein is anticipated to be high in all
carnivorous diets, including that of free-ranging cheetahs. However, the frequency with
which it is fed in captivity and its quality could affect GI health by changing the amount
of protein reaching the large intestine. Colonic fermentation of poorly digested dietary
protein modifies microbiota composition in favour of proteolytic bacteria, some of which
can be pathogenic in high concentrations [17,18] and produce putrefactive compounds (e.g.,
ammonia, indoles, phenols) associated with various disease states [19–21]. Moreover, horse
(in particular) is commonly fed as muscle meat without low to nondigestible collagen-rich
matter (e.g., bone, tendons, cartilage); therefore, its relative lack of ‘animal fibre’ may
further increase putrefaction of digesta in the intestine [19,20,22,23].

Transforming gut bacteria-derived putrefactants into toxic metabolites negatively
affects multiple other organ systems and metabolic pathways. Uraemic toxicity of in-
doxyl sulphate is associated with the progression of chronic renal failure [24], a significant
cause of death in captive cheetahs [25–28]. The renal lesions in captive cheetahs resemble
diabetic glomerulopathy in humans and chronic progressive nephropathy in rats [25].
High-protein diets, particularly when fed ad libitum and continually, accelerate glomeru-
losclerosis in rats [29–31] and could be a comparable dietary risk factor for kidney damage
in captive cheetahs.

A growing body of evidence suggests that feeding restrictions shape the gut ecosys-
tem, function, and interaction with the host. Intermittent fasting has beneficial regulatory
effects on immune homeostasis and intestinal microbiota composition in human and
rodent models [32–35]. Furthermore, intermittent fasting attenuates the colon tissue in-
flammatory response and oxidative stress [32,36]. Following the adaption of captive lions
(Panthera leo) from a conventional zoo feeding programme of predictable, fixed, small daily
meals to a more natural gorge and fast feeding schedule of larger, more infrequent meals,
Altman et al. [37] reported improved digestibility of a horsemeat-based diet. Considering
similarities in the species’ natural feeding ecology, fasting conditions could have digestive
health benefits for the cheetah as they did for the lion.

This study’s overall aim was to investigate the responses of captive-born (hand-
reared) cheetahs to a reduced feeding frequency schedule distinguished by offering larger
quantities of food less frequently. We hypothesised that a more natural feeding pattern
would beneficially impact the GI ecosystem, including the microbial fermentation process.
In previous studies, faecal consistency scoring has been used as a noninvasive method
of measuring GI health in cheetahs, other exotic felids [5,38], and domestic carnivore
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species [39,40]. We also hypothesised that changing the feeding frequency may result
in a behavioural and/or physiological stress response. Poor faecal consistency has been
linked to GI stress in captive carnivores [38]. Behavioural observations [41] and faecal
glucocorticoid metabolite (fGCM) analysis [42] were used as more established stress-related
markers in the cheetah. In addition, we explored the use of biologging technology to record
body temperature (Tb), heart rate (HR), and locomotor activity (LA) simultaneously (refer
to Appendix A). We predicted that higher fGCM concentrations, Tb, and HR would indicate
a physiological stress response.

2. Materials and Methods
2.1. Study Site and Animals

The experimental trials took place between April and September 2019 at the Cango
Wildlife Ranch and Conservation Centre (33◦33′ S, 22◦12′ E), 4 km north of Oudtshoorn, a
semiarid region in the Western Cape of South Africa. Study months (autumn and mainly
winter) were distinguished by short photoperiods and cold air temperatures (Ta), ranging
from 13 to 17 ◦C.

Three male (CH-2205, -2206, and -2271) and three female (CH-2207, -2276, and -2277)
adult cheetahs (Table 1) habituated to human presence and interacting daily with the
facility’s caretakers in the absence of restraint were assigned to this study. The study
cheetahs were housed off-exhibit at the Jill Bryden-Fayers Reserve, neighbouring the
Cango Wildlife Ranch. They were held in outdoor enclosures ranging from 400 to 1350 m2,
adjoining conspecifics. The enclosures’ topography was varied and naturalistic, consisting
of a dirt substrate, vantage points and marking areas (e.g., rocks, tree stumps), sufficient
vegetation to hide, and a wooden shed for shelter. Enclosures were cleaned once or
twice daily.

Table 1. Demographic information of six captive-born (hand-reared) cheetahs.

Group Identification
Number Housing DOB 1

(YY-MM-DD) BM1 2 (kg) BM2 3 (kg) Sex

1
CH-2205 Paired (with CH-2206) 9 June 2016 45.0 45.0 M 4

CH-2206 Paired (with CH-2205) 9 June 2016 47.15 47.65 M 4

CH-2207 Single 9 June 2016 36.6 37.1 F 5

2
CH-2271 Single 28 August 2017 37.65 41.75 M 4

CH-2276 Paired (with CH-2277) 16 September 2017 39.9 39.35 F 5

CH-2277 Paired (with CH-2276) 16 September 2017 43.05 43.55 F 5

1 DOB: date of birth; 2 BM1: body mass at the start of the experimental trials; 3 BM2: body mass at the end of the
experimental trials; 4 M: male; 5 F: female.

2.2. Experimental Design

The experimental trials commenced following a ≥12-day washout after surgical im-
plantation of the biologgers (refer to Appendix A.1.2. Surgical procedures). In a pilot
study conducted on the study cheetahs, Tb, HR, LA, faecal consistency score (FCS), and
fGCM concentration data demonstrated temporal recovery by postoperative day 10 [43];
therefore, the authors felt ≥12 days after surgery to be sufficiently long to commence the
experimental trials. They were conducted using a within-subject experimental design,
where each cheetah in the study served as their own control. Grouped by their respective
ages, the study cheetahs received the treatment, i.e., a reduced feeding frequency schedule
in an initial 3-week period followed by a 3-week control period, against which the effects
of the treatment were measured (Table 2).
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Table 2. The experimental design used in the study.

Group Identification
Number

Reduced Feeding Frequency Schedule (Treatment)

Washout

Routine Feeding Schedule (Control)

Period
Feeding

Days
Feeding
Time(s)

Amount
Fed/Day

Fasting
Day(s) Period Feeding Days

Feeding
Time(s)

Amount
Fed/Day

Fasting
Day(s)

1

CH-2205 15 May 2019 to
4 June 2019 Mon 1, Tues 2,

Thurs 3, Fri 4 0800–1700 h 2.7 kg Wed 5, Sat 6,
Sun 7

1 day 6 June 2019 to
26 June 2019

Mon 1, Tues 2,
Wed 5, Thurs 3,

Fri 4, Sat 6

0800–1200 h,
1500–1700 h 1.8 kg Sun 7CH-2206

CH-2207 23 April 2019
to 13 May 2019 24 days

2
CH-2271 31 July 2019 to

20 August 2019 Mon 1, Tues 2,
Thurs 3, Fri 4 0800–1700 h 2.5 kg Wed 5, Sat 6,

Sun 7

1 day 22 August 2019
to 11

September 2019

Mon 1, Tues 2,
Wed 5, Thurs 3,

Fri 4, Sat 6

0800–1200 h,
1500–1700 h 1.6 kg Sun 7

CH-2276 9 July 2019 to
29 July 2019

24 days
CH-2277

1 Mon: Monday; 2 Tues: Tuesday; 3 Thurs: Thursday; 4 Fri: Friday; 5 Wed: Wednesday; 6 Sat: Saturday; 7 Sun: Sunday.
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At the Cango Wildlife Ranch, cheetahs are fed a horsemeat-based diet prepared on-
site, weighed, and recorded. To supplement the nutritional composition of horsemeat, i.e.,
moisture: 71.9%, dry matter: 29.1%, crude protein: 19.8%, and crude fat: 6.63% [44], 7.5 g of
predator powder (V-Tech Pty Ltd., Midrand, South Africa; containing 35 g of calcium per
100 g of powder) and 20 g of glycine (WildCat Nutrition Pty Ltd., Pretoria, South Africa)
is added per 1 kg of meat [45]. Regarding paired housing (Table 1), 1 tbsp of uncooked
(nondigestible) rice was thoroughly mixed into the diet of study cheetahs CH-2206 and
CH-2277 once daily to assign individual faecal samples—the facility’s caretakers separate
cheetahs during feeding to reduce competition for food and prevent meal sharing. Meals
are offered at variable intervals to prevent food anticipatory behavioural activity [46].
Once weekly at random, cheetahs are fed horse shank or rib bones with some meat intact
equivalent to the weight of their daily ration in place of the day’s meals to maintain variety
and provide periodontal stimulation. The bones are not consumed by the cheetahs and
are removed and discarded. Leftover meat is removed, weighed, recorded, and discarded.
Water is available ad libitum.

During the 3-week treatment period, the study cheetahs were fed on a reduced feeding
frequency schedule, where meals were offered once daily between 08.00 and 17.00 h,
Monday, Tuesday, Thursday, and Friday (Table 2). Weekly fasting days were assigned
to Wednesday, Saturday, and Sunday. Larger than regular meals were offered on feed
days to maintain total weekly food intake despite additional fast days. The three-year-old
study cheetahs (CH-2205, -2206, and -2207) were fed 2.7 kg per day four days a week,
and the two-year-old study cheetahs (CH-2271, -2276, and -27) were fed 2.5 kg per day
four days a week. During the following 3-week control period, the study cheetahs were
fed on a feeding schedule routinely used at the Cango Wildlife Ranch, where meals were
offered twice daily between 08.00–12.00 and 15.00–17.00 h, Monday to Saturday. Weekly
fasting days are assigned to Sundays. The three-year-old study cheetahs were fed 1.8 kg
per day portioned into two rations six days a week, and the two-year-old study cheetahs
were fed 1.6 kg per day portioned into two daily rations six days a week. There was a
washout between the treatment and control, during which the study cheetahs were fed on
the routine feeding schedule.

Other than the specific intervention being investigated, i.e., a reduced feeding fre-
quency schedule, the study cheetahs’ environment, housing, and management (refer to
Section 2.1. Study Site and Animals) were maintained across the treatment and control,
including bones offered randomly once weekly in place of the day’s meals.

Throughout the study, i.e., in the treatment and control, each cheetah was monitored
regarding (i) behaviour, (ii) FCS, and (iii) fGCM concentration.

2.3. Behavioural Data Collection

Each cheetah in the study was observed 15 times during the treatment and control,
respectively. These observations were conducted between 07.00 and 17.00 h, Monday to
Sunday, within the operating hours of the Cango Wildlife Ranch. During five weekly
60 min observation sessions, the principal investigator (KLB) carried out 12 instantaneous
scan samples [47] with a 5 min interscan interval per enclosure. Regarding paired housing
(Table 1), the study cheetahs were observed together using physical identifiers to assign
individual behaviour. Sampling was conducted on a variable day-and-time basis between
enclosures, randomly selected to prevent time-of-day effects.

The study recorded 15 behaviours categorised as ‘inactive’, ‘active’, and ‘not observed’
(Table 3), informed by the previous literature on felid behaviour (specifically cheetahs) [37,48–50]
and initial observations of the cheetahs being studied. Time spent out of sight (hiding or
staying away from the human observer) was noted as its performance has been linked to a
psychological stress response in felids [51–55].
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Table 3. The behaviours recorded in the study and their definitions.

Inactive

Inactive Laying/asleep, laying/awake, sitting (stationary in a bipedal position)

Active

Individual behaviour

Appetitive behaviour Feeding, food anticipatory activity, stalking

Attention Staring at one area or paying attention to any visual or auditory stimulus

Autogrooming Licking or scratching of the own body

Environmental enrichment Interacting with an enrichment device by biting, dragging, scratching, or carrying it in the mouth

Locomotion Jumping, running, solitary play, walking

Maintenance Drinking, defecating/urinating, yawning

Olfactory exploration Sniffing the air, an object, or the substrate; performing flehmen

Scent marking
Marking substrates or objects in the enclosure by urine-spraying (releasing urine backwards
against a vertical surface or object while standing with tail raised vertically), rolling, and rubbing
(leaving scents on the substrate or on any object, respectively)

Standing Stationary in a quadrupedal position

Stereotypical Pacing (repetitive, apparently functionless locomotory movement along a given route
uninterrupted by other behaviours)

Vocalisation Chirping, growling, purring, stutter-barking, or yowling

Social behaviour

Affiliative behaviour *
Social play (play-fight, chasing, or playing together with an enrichment item), pawing, or rubbing
on a conspecific, social grooming (licking a conspecific or being licked), paying attention to
conspecifics by observing them with interest, and interacting with human caretakers

Agnostic behaviour * Aggression, dominance mount, threat display

Interspecific behaviour Paying attention to another species’ presence

Not observed

Out of sight Focal animal is not visible from the point of observation/behaviour unknown

Informed by the previous literature on felid behaviour (specifically cheetahs) [37,49,50] and initial observations of
the cheetahs being studied. * Includes actions performed or received by the focal animal.

2.4. Faecal Sample Collection and Consistency Scoring

During the operating hours of the Cango Wildlife Ranch (08.00–17.00 h), faeces were
collected within one hour after defecation. Faeces excreted between 17.00–08.00 h, when
the study cheetahs’ enclosures could not be entered, were collected within 16 h after
defecation (4–10 ◦C Ta) [56].

Following sample collection, the principal investigator (KLB) assigned FCS using a
five-point faecal scoring system adapted from that developed by Whitehouse-Tedd et al. [5].
In this study, the five-point faecal scoring system used (grades ranging from 1 to 5, where
grade 1 was the lowest and grades 2–5 were progressively higher) included two points
(grade 4: firm and dry, and grade 5: firm) considered to be ‘normal,’ and three points
(grades 1–3: liquid, soft without shape, and soft with shape) considered to be ‘suboptimal’
according to free-ranging cheetah scat. As a species inhabiting semiarid regions (such
as Oudtshoorn), dry faecal consistency was not considered dissimilar to faeces found in
free-ranging cheetahs [45].

Afterwards, the samples were deposited into appropriately labelled (sample collection
date, study cheetah, and sample identification number) 50 mL polypropylene specimen
containers and frozen at −20 ◦C.
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2.5. Faecal Steroid Extraction and Quantification

Following completion of the experimental trials, faecal samples were transported
frozen to the Endocrine Research Laboratory, University of Pretoria, South Africa. Faecal
steroids were extracted and subsequently analysed for fGCM concentration.

Frozen faecal samples were lyophilised, and the resultant dry faeces were pulverised
and sieved through a mesh strainer to remove fibrous material [57]. Between 0.050 and
0.055 g of faecal powder was weighed per sample and extracted using 3 mL of 80% ethanol.
The suspensions were vortexed for 15 min and centrifuged at 1500× g for 10 min [58].
Supernatants were decanted into 1.5 mL safe-lock microcentrifuge tubes, labelled, and
frozen at −20 ◦C until further analysis.

Immunoreactive fGCM concentrations were quantified using a corticosterone-3-CMO en-
zyme immunoassay (EIA) [56,59] according to procedures described by Ganswindt et al. [60].
Detailed assay characteristics, including full descriptions of the assay components and
antibody cross-reactivities, are provided by Palme and Möstl [59]. The sensitivity of the EIA
used at 90% binding was 3.6 ng/g faecal dry weight (DW). Interassay coefficients of varia-
tion (CV), determined by repeated measurements of low- and high-quality controls, were
11.74% and 12.91%, respectively, and intraassay CV were 5.59% and 6.61%, respectively.
Faecal steroid concentrations are presented as µg/g faecal DW.

2.6. Data Preparation
2.6.1. Behavioural Observations

The frequency with which each cheetah in the study performed each behaviour during
each observation session was calculated as a proportion of the total number of scan samples
carried out during that observation session per study cheetah [48,49]. The resulting data
highlighted the proportion of scan samples in which each behaviour was observed during
the treatment and control and on feeding and fasting days for each study cheetah.

2.6.2. Faecal Consistency Scores and Glucocorticoid Metabolite Concentrations

Cheetahs typically defecate once daily, attenuating diurnal and pulsatory glucocor-
ticoid (GC) secretion variations in the faeces [61]. However, differences in species and
individual traits can affect hormone concentrations and GI transit time [62]. In a study
by Terio et al. [42], peak concentrations of GC metabolites were found in the first faecal
sample collected from cheetahs after administering adrenocorticotropic hormone. This was
comparable to domestic cats’ faecal cortisol excretion rate [63]. This study assumed FCS
and fGCM concentrations to reflect the previous day’s intervention to account for cheetahs’
specific 24 h gut passage rate and excretory pattern. The within-subject experimental design,
where each cheetah served as their own control, eliminated interindividual variability [64].

2.7. Statistical Analysis

Statistical analysis was performed using Microsoft Excel (version 16.0) and JMP
Pro software (version 16.0) for Windows, developed by SAS Institute Inc (Cary, NC,
USA). The variables measured were explored for univariate outliers greater than three
interquartile ranges (IQR) away from the 99.5th or 0.05th percentiles. No outlying values
were detected. Normal distribution and homogeneity of variance were explored using
Anderson-Darling [65] and Levene’s tests [66], respectively. Behaviour, FCS, and fGCM
concentration data were Box–Cox transformed [67] to satisfy the assumption of normality
and homogeneity due to their departure. The data were back-transformed for descriptive
statistics and visual representation to maintain statistical integrity. In this study, a mixed
model for repeated measures (MMRM) analysis [68] was used to investigate the indepen-
dent fixed effects of the study period and feed versus fast day on (i) behaviour, (ii) FCS,
and (iii) fGCM concentration and their interaction to test the moderator effect of the study
period on feed versus fast day. An MMRM analysis investigated the independent fixed
effect of treatment week (one, two, and three) on (i) behaviour, (ii) FCS, and (iii) fGCM
concentration. The study cheetah was included as the random effect in the analyses.
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Multiple pairwise comparisons were explored using Tukey’s honestly significant
difference (HSD) post-hoc tests [69]. Effect sizes of pairwise comparisons were calculated
using the following formula:

d = x1 − x2/
√

SD1
2 + SD2

2/2, (1)

where d = Cohen’s d effect size; x1 and x2 = means of the two groups; and SD1 and
SD2 = standard deviation of the two groups [70]. Root mean square standardised effects
(RMSSE) were interpreted as small (d = 0.2), medium (d = 0.5), and large (d = 0.8) based on
Cohen’s d effect size criteria. Descriptive statistics were reported as median (IQR), and the
significance level, alpha, was set at 0.05.

3. Results
3.1. Behavioural Observations

Three hundred and sixty scan samples per study cheetah were collected during the
treatment (n = 180) and control (n = 180). The study cheetahs spent most of their time
inactive (for the treatment: 40.37% (week one: 37.02%, week two: 40.61%, and week three:
42.13%) and control: 43.72%, and for feeding: 40.11% and fasting days: 51.30%) (Table S1).
The MMRM analysis revealed that the fixed effects of the study period and feed versus fast
day on each behaviour failed to achieve statistical significance; therefore, post-hoc testing
was not performed.

The MMRM analysis revealed that the fixed effect of treatment week on locomotion
was significant (F3,99.87 = 2.90, p = 0.037). Post-hoc comparisons using Tukey’s HSD test
revealed that locomotion was significantly higher (t99.9 = 2.94, p = 0.021) during week three
of the treatment (24.84%) than the control (14.80%) (Table S1).

Effect size calculations using Cohen’s d revealed a medium RMSSE (d = 0.77; t101 = 2.99,
p = 0.004) on locomotion between week three of the treatment and the control (Table 4).

3.2. Faecal Consistency Scores

Two hundred and thirteen faecal samples were collected from the study cheetahs
during the treatment (n = 105) and control (n = 108). The soft with shape faecal grade
was the most frequently recorded in the study cheetahs (for the treatment: 45.71% (week
one: 45.45%, week two: 45.95%, and week three: 45.71%) and the control: 48.15%, and for
feeding: 48.81% and fasting days: 40.00%) (Table S2). The MMRM analysis revealed that
FCS was significantly higher (F1,205.2 = 10.22, p = 0.002) during the treatment (3 (2)) than
the control (3 (1)). The MMRM analysis revealed that the fixed effect of feed versus fast
day on FCS failed to achieve statistical significance. Post-hoc comparisons using Tukey’s
HSD test revealed that FCS was significantly lower on control fasting days (2.5 (1.25)) than
on treatment feeding days (3 (1.25); t205.4 = −2.96, p = 0.018), treatment fasting days (4 (2);
t205.4 = −3.31, p = 0.006), and control feeding days (3 (2); t205.4 = −2.83, p = 0.027) (Figure 1).

The MMRM analysis revealed that the fixed effect of treatment week on FCS failed to
achieve statistical significance; therefore, post-hoc testing was not performed.

Effect size calculations using Cohen’s d revealed a medium RMSSE (d = 0.65; t209 = 3.31,
p = 0.001) on FCS between the treatment and control (Table 4). The RMSSE of feed versus
fast day on FCS by the study period was large between control fasting days and treatment
feeding days (d = 1.07; t209 = 3.17, p = 0.002), treatment fasting days (d = 1.23; t209 = 3.43,
p = 0.001), and control feeding days (d = 1.01; t209 = 3.04, p = 0.003).
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Table 4. Root mean square standardised effects on behaviour, faecal consistency score (grade), and faecal glucocorticoid metabolite concentration (µg/g dry weight
(DW)) for the study cheetahs (CH-2205, -2206, -2207, -2271, -2276, and -2277). Effect sizes were calculated using Cohen’s d.

Variable Effect Level -Level t p df 1 Cohen’s d
95% CI 2 for Cohen’s d

Lower Upper

Behaviour

Locomotion Treatment Wk 3 Treatment (Wk 3 3) Control 2.99 0.004 101 0.77 0.25 1.29

Faecal consistency
score (grade)

Study period Treatment Control 3.31 0.001 209 0.65 0.26 1.03
Study period*feed/fast day Treatment, fast day Control, fast day 3.43 0.001 209 1.23 0.51 1.94
Study period*feed/fast day Treatment, feed day Control, fast day 3.17 0.002 209 1.07 0.40 1.74
Study period*feed/fast day Control, feed day Control, fast day 3.04 0.003 209 1.01 0.35 1.66

Faecal glucocorticoid
metabolite

concentration
(µg/g DW)

Treatment Wk 3 Treatment (Wk 3 2) Control 2.76 0.006 170 0.58 0.16 1.00

Numbers in italics represent a medium magnitude of effect (d = 0.5), while bold numbers represent a large magnitude of effect (d = 0.8). 1 df: degrees of freedom; 2 CI: confidence interval;
3 Wk: week.



Animals 2023, 13, 2783 10 of 27

Animals 2023, 13, x FOR PEER REVIEW 10 of 28 
 

3.2. Faecal Consistency Scores 

Two hundred and thirteen faecal samples were collected from the study cheetahs 

during the treatment (n = 105) and control (n = 108). The soft with shape faecal grade was 

the most frequently recorded in the study cheetahs (for the treatment: 45.71% (week one: 

45.45%, week two: 45.95%, and week three: 45.71%) and the control: 48.15%, and for feed-

ing: 48.81% and fasting days: 40.00%) (Table S2). The MMRM analysis revealed that FCS 

was significantly higher (F1,205.2 = 10.22, p = 0.002) during the treatment (3 (2)) than the 

control (3 (1)). The MMRM analysis revealed that the fixed effect of feed versus fast day 

on FCS failed to achieve statistical significance. Post-hoc comparisons using Tukey’s HSD 

test revealed that FCS was significantly lower on control fasting days (2.5 (1.25)) than on 

treatment feeding days (3 (1.25); t205.4 = −2.96, p = 0.018), treatment fasting days (4 (2); t205.4 

= −3.31, p = 0.006), and control feeding days (3 (2); t205.4 = −2.83, p = 0.027) (Figure 1). 

 

Figure 1. Box and whisker plot of faecal consistency score (grade) for the study cheetahs (CH-2205, 

-2206, -2207, -2271, -2276, and -2277). Effect of feed versus fast day by the study period. Statistics 

were performed using Tukey’s honestly significant difference post-hoc test. 

The MMRM analysis revealed that the fixed effect of treatment week on FCS failed to 

achieve statistical significance; therefore, post-hoc testing was not performed. 

Effect size calculations using Cohen’s d revealed a medium RMSSE (d = 0.65; t209 = 

3.31, p = 0.001) on FCS between the treatment and control (Table 4). The RMSSE of feed 

versus fast day on FCS by the study period was large between control fasting days and 

treatment feeding days (d = 1.07; t209 = 3.17, p = 0.002), treatment fasting days (d = 1.23; t209 

= 3.43, p = 0.001), and control feeding days (d = 1.01; t209 = 3.04, p = 0.003). 

3.3. Faecal Glucocorticoid Metabolite Concentrations 

The MMRM analysis revealed that the fixed effects of the study period and feed ver-

sus fast day on fGCM concentration failed to achieve statistical significance; therefore, 

post-hoc testing was not performed (Figure S1). 

The MMRM analysis revealed that the fixed effect of treatment week on fGCM con-

centration was significant (F3,166.3 = 3.14, p = 0.027). Post-hoc comparisons using Tukey’s 

HSD test revealed that fGCM concentration was significantly higher (t166.3 = 2.85, p = 0.025) 

Treatment Control
Study Period

F
ae

ca
l 

C
o

n
si

st
en

cy
 S

co
re

 (
g

ra
d

e)

2

3

4

5

Feed/ Fast Day

Feed Day

Fast Day
p

p

p

=  0.006

=  0.018

=  0.027

Figure 1. Box and whisker plot of faecal consistency score (grade) for the study cheetahs (CH-2205,
-2206, -2207, -2271, -2276, and -2277). Effect of feed versus fast day by the study period. Statistics were
performed using Tukey’s honestly significant difference post-hoc test.

3.3. Faecal Glucocorticoid Metabolite Concentrations

The MMRM analysis revealed that the fixed effects of the study period and feed versus
fast day on fGCM concentration failed to achieve statistical significance; therefore, post-hoc
testing was not performed (Figure S1).

The MMRM analysis revealed that the fixed effect of treatment week on fGCM concen-
tration was significant (F3,166.3 = 3.14, p = 0.027). Post-hoc comparisons using Tukey’s HSD
test revealed that fGCM concentration was significantly higher (t166.3 = 2.85, p = 0.025) dur-
ing week two of the treatment (1.17 (0.59) µg/g DW) than the control (0.90 (0.43) µg/g DW)
(Figure 2).
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(DW)) for the study cheetahs (CH-2205, -2206, -2207, -2271, -2276, and -2277). Effect of treatment week
(Wk; one, two, and three). Statistics were performed using Tukey’s honestly significant difference
post-hoc test.
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Effect size calculations using Cohen’s d revealed a medium RMSSE (d = 0.58; t170 = 2.76,
p = 0.006) on fGCM concentration between week two of the treatment and the control
(Table 4).

4. Discussion

This study aimed to investigate the responses of captive-born (hand-reared) cheetahs
to a reduced feeding frequency. The results of the FCS analysis support, to some extent, the
researchers’ hypothesis that the more natural feeding pattern would beneficially impact
the GI ecosystem, including the microbial fermentation process. Overall, the findings
indicate that the change in feeding frequency did not result in a significant behavioural or
physiological stress response, contrary to what was predicted.

Animals’ GI tracts harbour essential gut microbes serving various functions [18].
However, disturbance-related deviation in the microbial diversity and abundance pattern
beyond a natural range, i.e., gut dysbiosis, can advance pathophysiology and affect host
health [71]. Considering the purported link with intestinal microbiota composition [72,73],
higher FCS indicates that less frequent feeding could have benefited the studied cheetahs’
GI health. The data present here is consistent with Altman et al.’s [37] work concerning the
impact of a random gorge and fast feeding schedule on the digestion of a horsemeat-based
diet in captive lions.

Studies have shown that chronic or repeated exposure to stressors can disrupt gut
homeostasis [74,75]; therefore, an alternative interpretation of this result may be the stress-
reducing effects of less frequent feeding as a potential form of environmental enrich-
ment (EE). In animal husbandry, the principle of EE is widely used to provide species-
appropriate challenges to captive animals that lack adequate stimuli. This encourages
them to engage actively with their environments, reducing stress and stereotypical be-
haviour [76,77]. One common type of enrichment is food-based, which also applies to
the cheetah [41,48,49,78,79].

Absent hunting opportunities, offering carnivores predictable, fixed, and small daily
meals can worsen their tendency to be inactive in captivity. This can result in obesity and
affect their wellbeing [22]. In this study, the cheetahs spent most of their time inactive,
consistent with previous research on captive cheetahs [79] and other felids [80–86]. The
reduced feeding frequency schedule resulted in numerically lower inactivity and higher
locomotion (the latter significantly so during week three of the treatment). Increased activity
has similarly been reported in captive lions following the adaption from a conventional
zoo feeding programme to a randomised feeding schedule [37].

Stress reduction using EE extends to sympathoadrenal responses. The two branches:
the sympathetic nervous system (SNS) and the hypothalamic–pituitary–adrenal (HPA)
axis, work together to maintain or re-establish homeostasis by orchestrating behavioural
and physiological adaptations to the stressor [87]. The SNS provides the immediate first
wave of the stress response, mediating the rapid release of the catecholamine hormones
epinephrine (E) and norepinephrine from the adrenal medulla [88]. The second wave
is more gradual and involves GCs, the product of the hormonal cascade along the HPA
axis [89]. Multiple hypotheses have been proposed to explain the stress-reducing effects
of EE, some of which are based on the contention that EE itself acts as a mild stressor [90].
By providing challenges appropriate to an animal’s sensory, physical, and cognitive ca-
pacities [91], EE is thought to enable arousal and activation of the physiological stress
response without pushing the animal into high, maladaptive stress levels [92,93]. In this
manner, EE is adaptive, improving animals’ capacity to cope with stressors; that is, stress
resilience [94–96]. Numerically and significantly higher fGCM concentration during weeks
one and two of the treatment, followed by lower values during week three, suggests the
studied cheetahs experienced an acute stress response to the change in feeding frequency
to which they adapted. Having previously been provided EE may have increased the
captive-born cheetahs in this study’s resilience to enrichment-induced arousal.
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More work remains to be carried out before fully understanding the optimal feed-
ing regime(s) to beneficially modulate cheetahs’ intestinal microbiota composition. This
study has at least four potential limitations to be considered. Firstly, faecal consistency
scoring lacks specificity as a discrete measure of GI health and should not be interpreted
as providing empirical evidence of diet suitability for maintaining cheetahs in captivity.
Further research is needed to validate FCS against other measurements of microbiome
health effects, such as digestibility, pH, the incidence of vomiting or diarrhoea, veterinary
diagnosis of GI disease, fermentation byproducts, faecal frequency, dry weight percentage,
and gut microbiota and short-chain fatty acids.

It must also be acknowledged that the present study was conducted on hand-reared
cheetahs. In mammals, there is evidence that the high microbial diversity of infants’
gut communities may be inherited from their biological mothers [97]. Studies have
shown that the rearing method (hand- versus mother-reared) can affect animal gut mi-
crobiota composition [98,99]. Therefore, the findings should be generalised to only some
captive cheetahs.

Secondly, the duration of each period, i.e., treatment, control, and washout, was
selected to accommodate the inverse relationship between the number of Tb, HR, and
LA recordings made using the biologgers and the lifespan of their batteries (refer to
Appendix A). The 3-week treatment and control periods may have needed to be longer to
produce a definitive response in the studied cheetahs, limiting the conclusions that can be
made from the results. For example, in mice, stress-related alterations in the composition
and function of faecal microbiota were described after eight days, while they appeared
after ten days in rats [100,101]. It would be recommendable for future research to lengthen
the current study period and washout to quantify the treatment effects better and prevent
possible carryover effects.

A third potential limitation to consider is GI transit time. Measuring fGCM concen-
trations provides an integrated measure of adrenocortical activity. It reflects the cumula-
tive secretion of plasma GCs over several hours (6–24 h, depending on species-specific
defecation rate), attenuating fluctuations due to secretory patterns [102–105]. However,
dietary intake could affect the faecal excretion of steroid hormone metabolites independent
of a stress response [106]. Due to accelerated GI transit time, larger quantities of food
may decrease the accumulation time of faeces in the intestine and increase metabolite
concentration variability [107].

By design, there were fewer fasting days during the routine feeding schedule than
during the reduced feeding frequency schedule. The days on which the studied cheetahs’
behaviour was observed were not adapted to maintain fast-day observation sessions
equivalent between the treatment and control; therefore, it is possible that fasting days
were over- and underrepresented during the treatment and control, respectively.

5. Conclusions

Though the validity of FCS as a measure of GI health must be established by further re-
search, these results provided preliminary evidence for a reduced feeding frequency sched-
ule to mediate the unnatural composition of horsemeat-based diets routinely fed to captive
cheetahs and as an effective EE strategy. While previous studies have mainly examined the
epidemiological relationship between diet composition and GI disease [5,19,20,22,23], the
findings presented here indicate that feeding regimes may also play a significant role. This
study expands on existing research by Whitehouse-Tedd et al. [5] in developing a global
standard by which captive facilities can score their cheetahs’ faecal consistency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13172783/s1, Table S1. The proportion of scan samples in
which each behaviour was observed for the study cheetahs (CH-2205, -2206, -2207, -2271, -2276, and
-2277) during the treatment (week (Wk) one, two, and three) and control and on feed versus fast day;
Table S2. The proportion of faecal samples collected of each faecal consistency score for the study
cheetahs (CH-2205, -2206, -2207, -2271, -2276, and -2277) during the treatment (week (Wk) one, two,
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and three) and control and on feed versus fast day; Table S3. Biologger recordings for the study
cheetahs during the treatment and control; Figure S1. Box and whisker plot of faecal glucocorticoid
metabolite concentration (µg/g dry weight (DW)) for the study cheetahs (CH-2205, -2206, -2207,
-2271, -2276, and -2277). Effect of feed versus fast day by the study period; Figure S2. Box and whisker
plot of body temperature (◦C) for the study cheetahs (CH-2205, -2206, and -2276). Effect of feed
versus fast day by the study period; Figure S3. Box and whisker plot of body temperature (◦C) for
the study cheetahs (CH-2205, -2206, and -2276). Effect of treatment week (Wk; one, two, and three).
Statistics were performed using Tukey’s honestly significant difference post-hoc test; Figure S4. Box
and whisker plot of heart rate (beats per minute (bpm)) for the study cheetahs (CH-2205, -2206, and
-2276). Effect of treatment week (Wk; one, two, and three). Statistics were performed using Tukey’s
honestly significant difference post-hoc test; Dataset S1.
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Appendix A

Appendix A.1. Materials and Methods

Appendix A.1.1. Body Temperature, Heart Rate, and Locomotor Activity Recordings

Each cheetah in the study had a single cardiac-, temperature-, and movement-sensitive
biologging unit (DST centi-HRT ACT, Star-Oddi, Gardabaer, Iceland) implanted, measuring
46 mm × 15 mm × 15 mm, and weighing approximately 19 g. The biologgers were
calibrated against a high-accuracy thermometer (1504 Tweener Thermometer Readout,
Fluke, Everett, WA, USA) to within 0.1 ◦C. They were set to record triaxial LA, i.e., heave,
surge, sway, for the overall dynamic body acceleration (ODBA) [108] every minute, 24 h
a day throughout the study, i.e., in the treatment and control, and Tb (◦C) and leadless
single-channel electrocardiogram (ECG)-derived HR (beats per minute (bpm)) at 200 Hz
every 5 min. Representative traces of raw ECG recordings were saved every 24 h for
validating the HR measurements’ quality index (QI) (where QI0 was the highest quality
and QI1, QI2, and QI3 were progressively reduced).
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Appendix A.1.2. Surgical Procedures

Before surgical implantation, the biologgers were sterilised using ethylene oxide. Each
study cheetah received a combination of 0.03 mg/kg of medetomidine (Medetomidine
20-mg/mL, Kyron Laboratories, Johannesburg, South Africa) and 0.8 mg/kg of tiletamine–
zolazepam (Zoletil, Virbac Animal Health, Johannesburg, South Africa), administered
intramuscularly (IM) by hand injection while in their enclosures. Once recumbent, the
study cheetahs were placed in crates to which they were habituated and transported by
vehicle within 500 m to an onsite clinic at the Cango Wildlife Ranch. There, they were
intubated with an endotracheal tube of appropriate size and maintained under anaesthesia
with 2–3% isoflurane (Forane, Abbott, Weltevreden Park, South Africa), administered
in 100% oxygen. The depth of anaesthesia and standard anaesthetic parameters were
monitored throughout the procedure. Intravenous lactated Ringer’s solution (B Braun,
Johannesburg, South Africa) was administered to maintain intraoperative normovolemia.

At the commencement of surgical procedures, 5 mL of blood was collected from
the jugular vein of each study cheetah. Blood samples were divided between lithium
heparin and EDTA tubes. Following this, a comprehensive haematological evaluation
(using an onsite HM5 analyser; Abaxis Veterinary Diagnostics, Union City, CA, USA) and
plasma biochemistry profile (using an onsite VetScan VS2 analyser; Abaxis Veterinary
Diagnostics, Union City, CA, USA) were conducted to determine the health status of the
study cheetahs before the onset of the field research. Urine samples were collected via a
6 FG dog urinary catheter and evaluated using a standard multiparameter dipstick and
refractometer (Jorgensen Laboratories, Loveland, CO, USA).

The study cheetahs were placed in a left lateral recumbent position, and a thoracic
incision site was shaved and sterilised with chlorhexidine gluconate (Hibitane, Zeneca,
Johannesburg, South Africa). A 50 mm cranial–caudal incision was made in the skin, and
a single biologging unit was implanted IM between the deep and superficial pectoralis
major muscles without tethering. Wounds were closed with continuous subcutaneous and
intradermal sutures (5/0 Monosyn, B-Braun, Barcelona, Spain) and treated with a topical
antiseptic and ectoparasiticide spray (F10 Germicidal Wound Spray, Health and Hygiene
Pty Ltd., Roodepoort, South Africa).

The study cheetahs were returned to the crates, where the effects of the anaesthesia
were reversed with 0.1 mg/kg atipamezole (Antisedan, Zoetis, Johannesburg, South Africa)
IM. Once recovered from the anaesthetic, they were transported back to their enclosures.
The caretakers conducted daily observations to monitor for signs of surgical site infection
or other postoperative complications.

Following the completion of the experimental trials, the same anaesthesia surgical
protocols were used to remove the biologgers.

Appendix A.1.3. Data Preparation

Battery malfunction of the biologgers implanted in four of the six study cheetahs
(CH-2207, -2271, -2276, and -2277) prevented those units from recording partial Tb, HR,
and LA data for CH-2276 during the control, and whole datasets for CH-2207, CH-2271,
and CH-2277 (Table S3).

The initial examination of the raw HR data for the study cheetahs with functional
biologgers (CH-2205 and -2206), and partial data for CH-2276, revealed values ranging
from 0 to 1005 bpm, the extremes of which were likely due to incomplete, low-quality
readings or implant movement within the pectoral muscle when the study cheetahs were
active. To remove erroneous measurements, ensuring only plausible values were included
in the analyses, upper and lower thresholds were created. At the low end of the range, all
readings of 0 bpm were removed, establishing a new minimum of 30 bpm. For the upper
end, where most unlikely measurements occurred, EGC data available in the literature on
the cheetah [109,110] informed the HR values to be filtered. The values to which QI3 was
assigned (indicating the lowest quality) were also removed. Once filtered, all HR recordings
(n = 30,225/33,443, which represented over 90% of the raw data initially captured) fell
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within the 30 and 200 bpm threshold set. As Tb and LA recordings were not sensitive to
implant movement within the pectoral muscle, they were not filtered, in addition to the
lack of extreme Tb values.

To investigate the circadian patterns of Tb, HR, and LA, data were assigned to six
part-of-the-day categories based on the hour they were recorded during the day, namely (i)
early morning (00.00–04.00 h), (ii) morning (04.00–08.00 h), (iii) late morning (08.00–12.00 h),
(iv) afternoon (12.00–16.00 h), (v) evening (16.00–20.00 h), and (vi) night (20.00–00.00 h).

Appendix A.1.4. Statistical Analysis

Outlying values were detected for LA (n = 40) and subsequently excluded from
descriptive statistics and analyses. Body temperature, HR, and LA data were Box–Cox
transformed to satisfy the assumption of normality and homogeneity due to their departure.
The data were back-transformed for descriptive statistics and visual representation to
maintain statistical integrity. In this study, an MMRM analysis was used to investigate the
independent fixed effects of part of the day and the hour within part of the day on (i) Tb,
(ii) HR, and (iii) LA. An MMRM analysis investigated the independent fixed effects of the
study period and feed versus fast day on (i) Tb, (ii) HR, and (iii) LA and their interaction to
test the moderator effect of the study period on feed versus fast day. An MMRM analysis
investigated the independent fixed effect of treatment week (one, two, and three) on (i) Tb,
(ii) HR, and (iii) LA. An MMRM analysis investigated the independent fixed effects of when
the study cheetahs were feeding versus when they were not (i.e., feeding time (yes versus
no)) and part of the day during which they were offered meals (late morning, afternoon,
and evening) on (i) Tb, (ii) HR, and (iii) LA and their interaction to test the moderator effect
of part of the day on feeding time. The study cheetah was included as the random effect in
the analyses.

Multiple pairwise comparisons were explored using Tukey’s HSD post-hoc tests. Effect
sizes of pairwise comparisons were calculated using Cohen’s d (Equation (1)).

Appendix A.2. Results

The MMRM analysis revealed that the circadian rhythm of Tb fluctuated significantly
during the 24 h day (for part of the day: F5,33417 = 2886.93, p < 0.0001 and for the hour
nested within part of the day: F18,33417 = 171.90, p < 0.0001) (Figure A1 (i)). Throughout
this study, the overall median Tb was higher during the evening (38.0 (0.4) ◦C) between
16.00–16.59 h (38.1 (0.2) ◦C) than the other parts of the day and hours.

The MMRM analysis revealed that the fixed effects of the study period and feed versus
fast day on Tb failed to achieve statistical significance; therefore, post-hoc testing was not
performed (Figure S2).

The MMRM analysis revealed that the fixed effect of treatment week on Tb was signifi-
cant (F3,33418 = 18.34, p < 0.0001). Post-hoc comparisons using Tukey’s HSD test revealed that
Tb was significantly higher during week three of the treatment (37.7 (0.6) ◦C) than in weeks
one (37.7 (0.5) ◦C; t33418 =−4.37, p < 0.0001) and two (37.7 (0.5) ◦C; t33418 = −6.94, p < 0.0001)
of the treatment and the control (37.7 (0.5) ◦C; t33418 = 6.24, p < 0.0001) (Figure S3).

The MMRM analysis revealed that Tb was significantly higher (F1,16698 = 30.41,
p < 0.0001) when the study cheetahs were feeding (37.7 (0.5) ◦C) than when they were not
(37.9 [0.3] ◦C). Post-hoc comparisons using Tukey’s HSD test revealed that Tb was signifi-
cantly higher at feeding time during the afternoon (yes: 38.0 (0.2) ◦C versus no: 37.9 (0.3) ◦C;
t16697 = 3.26, p = 0.014) and the evening (yes: 38.2 (0.3) ◦C versus no: 38.0 (0.4) ◦C;
t16697 = 4.53, p < 0.0001).

Effect size calculations using Cohen’s d revealed a small RMSSE on Tb between week
three of the treatment and weeks one (d = 0.13; t33439 = 6.93, p < 0.0001) and two (d = 0.08;
t33439 = 4.37, p < 0.0001) of the treatment and the control (d = 0.10; t33439 = 6.60, p < 0.0001)
(Table A1). Effect size calculations using Cohen’s d revealed a small RMSSE (d = 0.41;
t16698 = 9.46, p < 0.0001) of feeding time on Tb. The RMSSE of feeding time on Tb by part
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of the day was medium during the afternoon (d = 0.54; t16698 = 6.22, p < 0.0001) and the
evening (d = 0.65; t16698 = 7.24, p < 0.0001).

The MMRM analysis revealed that the circadian rhythm of HR fluctuated significantly
during the 24 h day (for part of the day: F5,30199 = 300.96, p < 0.0001 and for the hour nested
within part of the day: F18,30199 = 81.77, p < 0.0001) (Figure A1 (ii)). Throughout the study,
the overall median HR was higher during the morning (85 (55) bpm) between 07.00–07.59 h
(108 (39) bpm) than the other parts of the day and hours.

The MMRM analysis revealed that HR was significantly lower (F1,30210 = −56.85,
p < 0.0001) during the treatment (76 (39) bpm) than the control (78 (34) bpm). The MMRM
analysis revealed that HR was significantly higher (F1,30221 = 170.83, p < 0.0001) on feeding
days (79 (35) bpm) than on fasting days (69 (41) bpm). Post-hoc comparisons using Tukey’s
HSD test revealed that HR was significantly higher on treatment feeding days (80 (37) bpm)
than on treatment fasting days (67 (44) bpm; t30219 = 17.94, p < 0.0001) and control fasting
days (76 (36) bpm; t30219 = 3.24, p = 0.007) and significantly higher on control feeding days
(78 (33) bpm) than on treatment fasting days (t30219 = 19.26, p < 0.0001) and control fasting
days (t30219 = 3.89, p = 0.001) (Figure A2).
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Figure A1. Circadian rhythm of (i) body temperature (◦C), (ii) heart rate (beats per minute (bpm)),
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for the study cheetahs (CH-2205, -2206, and -2276) throughout the study, i.e., in the treatment and
control. Statistics were performed using a mixed model for repeated measures.
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Table A1. Root mean square standardised effects on body temperature (◦C), heart rate (beats per minute (bpm)), and locomotor activity (overall dynamic body
acceleration (ODBA)) for the study cheetahs (CH-2205, -2206, and -2276). Effect sizes were calculated using Cohen’s d.

Variable Effect Level -Level t p df 1 Cohen’s d
95% CI 2 for Cohen’s d

Lower Upper

Body temperature (◦C)

Feeding time Yes No 9.46 <0.0001 16698 0.41 0.32 0.49
Feeding time*part of the day Yes, evening No, evening 7.24 <0.0001 16698 0.65 0.48 0.83
Feeding time*part of the day Yes, afternoon No, afternoon 6.22 <0.0001 16698 0.54 0.37 0.71

Treatment Wk 3 Treatment (Wk 3 3) Treatment (Wk 3 2) 6.93 <0.0001 33439 0.13 0.09 0.16
Treatment Wk 3 Treatment (Wk 3 3) Control 6.60 <0.0001 33439 0.10 0.07 0.13
Treatment Wk 3 Treatment (Wk 3 3) Treatment (Wk 3 1) 4.37 <0.0001 33439 0.08 0.04 0.12

Heart rate (bpm)

Study period Control Treatment 7.11 <0.0001 30221 0.11 0.08 0.14
Feed/fast day Feed day Fast day 13.26 <0.0001 30221 0.20 0.17 0.23

Study period*feed/fast day Control, feed day Treatment, fast day 18.97 <0.0001 30221 0.31 0.27 0.34
Study period*feed/fast day Treatment, feed day Treatment, fast day 18.05 <0.0001 30221 0.30 0.26 0.33
Study period*feed/fast day Control, fast day Treatment, fast day 7.59 <0.0001 30221 0.20 0.15 0.26
Study period*feed/fast day Control, feed day Control, fast day 4.03 <0.0001 30221 0.10 0.05 0.15
Study period*feed/fast day Treatment, feed day Control, fast day 3.64 0.000 30221 0.09 0.04 0.14

Treatment Wk 3 Control Treatment (Wk 3 2) 10.33 <0.0001 30221 0.17 0.13 0.20
Treatment Wk 3 Treatment (Wk 3 1) Treatment (Wk 3 2) 6.25 <0.0001 30221 0.12 0.08 0.16
Treatment Wk 3 Treatment (Wk 3 3) Treatment (Wk 3 2) 4.34 <0.0001 30221 0.08 0.05 0.12
Treatment Wk 3 Control Treatment (Wk 3 3) 5.12 <0.0001 30221 0.08 0.05 0.11
Treatment Wk 3 Control Treatment (Wk 3 1) 2.85 0.004 30221 0.05 0.01 0.08

Feeding time Yes No 1.97 0.048 14834 0.09 0.00 0.18
Feeding time*part of the day No, late morning Yes, late morning 3.69 0.000 14834 0.14 0.07 0.21

Locomotor activity
(ODBA)

Study period Treatment Control 15.48 <0.0001 33399 0.22 0.19 0.25
Feed/fast day Feed day Fast day 0.38 0.707 33399 0.01 −0.02 0.03

Study period*feed/fast day Treatment, fast day Control, fast day 10.13 <0.0001 33399 0.26 0.21 0.31
Study period*feed/fast day Treatment, feed day Control, fast day 9.39 <0.0001 33399 0.23 0.18 0.27
Study period*feed/fast day Treatment, fast day Control, feed day 14.11 <0.0001 33399 0.22 0.19 0.25
Study period*feed/fast day Treatment, feed day Control, feed day 14.44 <0.0001 33399 0.18 0.16 0.21
Study period*feed/fast day Treatment, fast day Treatment, feed day 2.11 0.035 33399 0.03 0.00 0.06
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Table A1. Cont.

Variable Effect Level -Level t p df 1 Cohen’s d
95% CI 2 for Cohen’s d

Lower Upper

Treatment Wk 3 Treatment (Wk 3 1) Control 16.66 <0.0001 33399 0.25 0.22 0.28
Treatment Wk 3 Treatment (Wk 3 2) Control 14.14 <0.0001 33399 0.21 0.19 0.24
Treatment Wk 3 Treatment (Wk 3 3) Control 8.68 <0.0001 33399 0.13 0.10 0.16
Treatment Wk 3 Treatment (Wk 3 1) Treatment (Wk 3 3) 6.66 <0.0001 33399 0.12 0.09 0.16
Treatment Wk 3 Treatment (Wk 3 2) Treatment (Wk 3 3) 4.56 <0.0001 33399 0.08 0.05 0.12

Feeding time Yes No 7.74 <0.0001 16686 0.33 0.25 0.42

Numbers in italics represent a medium magnitude of effect (d = 0.5). 1 df: degrees of freedom; 2 CI: confidence interval; 3 Wk: week.
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Figure A2. Box and whisker plot of heart rate (beats per minute (bpm)) for study cheetahs (CH-2205,
-2206, and -2276). Effect of feed versus fast day by the study period. Statistics were performed using
Tukey’s honestly significant difference post-hoc test.

The MMRM analysis revealed that the fixed effect of treatment week on HR was signifi-
cant (F3,30218 = 41.46, p < 0.0001). Post-hoc comparisons using Tukey’s HSD test revealed that
HR was significantly lower during weeks one (79 (39) bpm; t30218 = −3.37, p = 0.004), two
(73 (40) bpm; t30218 = −10.85, p < 0.0001), and three (74 (38) bpm; t30218 = −5.57, p < 0.0001)
of the treatment than the control (78 (34) bpm) (Figure S4).

The MMRM analysis revealed that HR was significantly higher (F1,14832 = 6.56,
p = 0.010) when the study cheetahs were feeding (81 (39) bpm) than when they were
not (80 (35) bpm). Post-hoc comparisons using Tukey’s HSD test revealed that HR was
significantly lower (t14833 = −3.69, p = 0.003) at feeding time during the late morning (yes:
80 (44) bpm versus no: 84 (46) bpm).

Effect size calculations using Cohen’s d revealed a small RMSSE of the study period
(d = 0.11; t30221 = 7.11, p < 0.0001) and feed versus fast day (d = 0.20; t30221 = 13.26,
p < 0.0001) on HR (Table A1). The RMSSE of feed versus fast day on HR by the study
period was small between treatment feeding days and treatment fasting days (d = 0.30;
t30221 = 18.05, p < 0.0001) and control fasting days (d = 0.09; t30221 = 3.64, p = 0.000) and
between control feeding days and treatment fasting days (d = 0.31; t30221 = 18.97, p < 0.0001)
and control fasting days (d = 0.10; t30221 = 4.03, p < 0.0001). Effect size calculations using
Cohen’s d revealed a small RMSSE on HR between weeks one (d = 0.05; t30221 = 2.85,
p = 0.004), two (d = 0.17; t30221 = 10.33, p < 0.0001), and three (d = 0.08; t30221 = 5.12,
p < 0.0001) of the treatment and the control (Table A1). Effect size calculations using Co-
hen’s d revealed a small RMSSE of feeding time (d = 0.09; t14834 = 1.97, p = 0.048) on HR.
The RMSSE of feeding time on HR by part of the day was small during the late morning
(d = 0.14; t14834 = 3.69, p = 0.000).

The MMRM analysis revealed that the circadian rhythm of LA fluctuated significantly
during the 24 h day (for part of the day: F5,33377 = 723.70, p < 0.0001 and for the hour nested
within part of the day: F18,33377 = 138.37, p < 0.0001) (Figure A1 (iii)). Throughout the
study, the overall median LA was higher during the morning (55.0 (106.4) ODBA) between
07.00–07.59 h (117.0 (121.6) ODBA) than the other parts of the day and hours.
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The MMRM analysis revealed that LA was significantly higher (F1,33397 = 115.50,
p < 0.0001) during the treatment (40.5 (52.0) ODBA) than the control (33.2 (43.6) ODBA).
The MMRM analysis revealed that LA was significantly higher (F1,33397 = 10.79, p = 0.001)
on fasting days (38.6 (49.6) ODBA) than on feeding days (36.6 (47.6) ODBA). Post-hoc
comparisons using Tukey’s HSD test revealed that LA was significantly higher on treat-
ment fasting days (39.8 (55.3) ODBA) than on treatment feeding days (40.8 (50.6) ODBA;
t33397 = 5.99, p < 0.0001) and control feeding days (33.0 (44.2) ODBA; t33397 = 13.18,
p < 0.0001) (Figure A3).
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Figure A3. Box and whisker plot of locomotor activity (overall dynamic body acceleration (ODBA))
for study cheetahs (CH-2205, -2206, and -2276). Effect of feed versus fast day by the study period.
Statistics were performed using Tukey’s honestly significant difference post-hoc test.

The MMRM analysis revealed that the fixed effect of treatment week on LA was
significant (F3,33397 = 72.22, p < 0.0001). Post-hoc comparisons using Tukey’s HSD test
revealed that LA was significantly higher during week one of the treatment (43.4 (53.2)
ODBA) than in week three of the treatment (35.8 (48.8) ODBA; t33397 = 7.22, p < 0.0001) and
the control (33.2 (43.8) ODBA; t33397 = 13.02, p < 0.0001), significantly higher during week
two of the treatment (42.8 (53.4) ODBA) than in week three of the treatment (t33397 = 4.94,
p < 0.0001) and the control (t33397 = 10.30, p < 0.0001), and significantly higher during week
three of the treatment than the control (t33397 = 4.41, p < 0.0001) (Figure A4).
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Figure A4. Box and whisker plot of locomotor activity (overall dynamic body acceleration (ODBA))
for the study cheetahs (CH-2205, -2206, and -2276). Effect of treatment week (Wk; one, two, and
three). Statistics were performed using Tukey’s honestly significant difference post-hoc test.

The MMRM analysis revealed that LA was significantly higher (F1,16685 = 9.38,
p = 0.002) when the study cheetahs were feeding (52.6 (70.4) ODBA) than when they
were not (39.8 (49.0) ODBA). Post-hoc comparisons using Tukey’s HSD test revealed that
the interaction effect of feeding time on LA by part of the day failed to achieve statistical
significance during the late morning, the afternoon, and the evening.

Effect size calculations using Cohen’s d revealed a small RMSSE of the study period
(d = 0.22; t33399 = 15.48, p < 0.0001) and feed versus fast day (d = 0.01; t33399 = 0.38, p = 0.707)
on LA (Table A1). The RMSSE of feed versus fast day on LA by the study period was small
between treatment fasting days and treatment feeding days (d = 0.03; t33399 = 2.11, p = 0.035)
and control feeding days (d = 0.22; t33399 = 14.11, p < 0.0001). Effect size calculations using
Cohen’s d revealed a small RMSSE between week one of the treatment and week three
of the treatment (d = 0.12; t33399 = 6.66, p < 0.0001) and the control (d = 0.25; t33399 = 16.66,
p < 0.0001), a small RMSSE between week two of the treatment and week three of the
treatment (d = 0.08; t33399 = 4.56, p < 0.0001) and the control (d = 0.21; t33399 = 14.14,
p < 0.0001), and a small RMSSE between week three of the treatment and the control
(d = 0.21; t33399 = 14.14, p < 0.0001). Effect size calculations using Cohen’s d revealed a small
RMSSE of feeding time (d = 0.13; t16686 = 8.68, p < 0.0001) on LA.

Appendix A.3. Discussion

This appendix contains the study’s secondary aim, exploring the use of biologging
technology to record Tb, HR, and LA simultaneously.

Consistent with the reduced feeding frequency schedule as a potential food-based
enrichment was higher LA. It is also possible to interpret the observed increase in activity
among the studied cheetahs as behavioural agitation. Cheetahs and other carnivores in the
wild spend a significant proportion of their activity budget resting [111]. While reducing
the risk of obesity, the motivation for increased activity levels, possibly hunger, could
have negative welfare implications. A lack of satiety is further supported by higher LA on
treatment fasting days (in particular). These results highlight the importance of offering
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sufficiently large meals if additional fasting days are introduced so as not to be contrary to
animals’ wellbeing. By week three of the treatment, LA demonstrated temporal adaptation
to the change in feeding frequency.

Environmental enrichment blunts E release [112] and, as a result, reduces stress-related
increases in HR [113–117]. When the studied cheetahs were fed less frequently, they had
a lower HR, indicating stress reduction [118] to a greater degree as it cooccurred with
increased activity. During physical activity, requirements for oxygen and gluconeogenetic
substrates in skeletal muscle are increased, as are the removal of metabolites and carbon
dioxide [119]. The cardiac output is increased to meet the demand for blood flow by
contracting muscles, attributed to sympathetically mediated increases in HR and stroke
volume. Increased Tb follows an increase in HR due to heat generated during nutrient
conversion to muscular work.

Physiologically, enrichment-induced arousal was attended by higher HR (a salient
feature of the SNS-mediated reaction to stress) on days when the studied cheetahs were fed.
Additionally, higher Tb and HR were observed when they were feeding than when they
were not. Stress-induced hyperthermia has been shown to some extent by a study in which
the increase in Tb of free-ranging cheetahs following a successful hunt was double that of
an unsuccessful chase (mean ± standard deviation (SD); 1.38 ± 0.28 ◦C vs. 0.58 ± 0.18 ◦C),
despite comparable levels of physical activity [120,121]. The authors attributed the hy-
perthermia experienced by hunting cheetahs to the stress associated with vulnerability to
attack and kleptoparasitism by more dominant intraguild predators [120,121]. In this study,
the cheetahs were fed in a space free of interference competition; therefore, the thermal and
cardiac response related to feeding suggests psychological excitation to food consumption
rather than a predator-induced stress response. Alternatively, as higher Tb and HR at
feeding time cooccurred with higher LA, these results could be interpreted as the demands
of increased physical activity.

Recording simultaneous Tb, HR, and LA using biologging technology has tremendous
potential to measure stress in the cheetah; however, a significant limitation of this study was
the battery malfunction of the biologgers implanted in four of the six cheetahs, preventing
those units from recording partial Tb, HR, and LA data or whole datasets. As with any
emerging technological advance, there is a need for further development, including more
reliable and affordable devices, novel attachment or implantation and retrieval methods,
and remote data transmission, before the routine application of biologgers in stress and
animal welfare studies.

It must also be acknowledged that the treatment effects on the measured variables,
though at times statistically significant, were likely irrelevant to the biology of the cheetahs
studied. The magnitude of the differences in numeric values for Tb, HR, and LA may
not have been sufficient for biological significance. For example, Hetem et al. [120,121]
reported a significant difference in Tb increase between successful and unsuccessful hunts
(mean ± SD; 1.38 ± 0.28 ◦C vs. 0.58 ± 0.18 ◦C; p < 0.0001), while the difference in Tb
between when the study cheetahs were feeding and when they were not (median (IQR);
37.7 (0.5) ◦C vs. 37.9 (0.3) ◦C; p < 0.0001) significant here was comparatively less. This
study’s reliance on only six study subjects, made worse by the battery malfunction of four
of the six biologgers, is likely to have reduced our power to detect a biologically relevant
effect. Cheetahs and other large carnivores are typically kept in low population densities
at facilities like the Cango Wildlife Ranch. Future research should increase sample size
through multi-institutional studies to improve the findings’ quality, as Swaisgood and
Shepherdson previously recommended [77].
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