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a b s t r a c t

Process controllers are abundant in the industry and require attentive tuning to achieve optimal
performance. While tuning controllers by the most primitive method of trial and error is possible, it
often leads to sub-optimal performance if not conducted by a skilled expert. It is much more appealing
to develop an on-line, sample efficient, automated tuner which can optimise the performance of a given
controller to the task at hand. The automatic tuning procedure can be conducted during commissioning,
when poor controller performance is observed or when process conditions have changed. The problem
statement is formulated as the minimisation of an objective function constructed to achieve the
desired controller performance. In this context the automatic tuning problem of multi-input multi-
output (MIMO) controllers is considered within the framework of Bayesian optimisation and applied in
simulation to an ore milling circuit with three manipulated and three controlled variables. Regulatory
and set point tracking controllers are tuned automatically and are shown to achieve better performance
than a reference controller.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Process controllers and especially proportional integral deriva-
ive (PID) controllers are abundant in the industry. Although
he use of model predictive control (MPC) is widespread [1],
ID is by far the most common feedback controller due to its
tability and simplicity. A survey of eleven thousand controllers
n the continuous process industry indicated that 97% of those
ontrollers implemented the PID algorithm [2]. PID controllers are
lso implemented extensively as part of decentralised controllers
or multi-input multi-output (MIMO) processes [3].

Numerous PID tuning methods have been researched and
ublished. Better known methods include Ziegler–Nichols [4],
ohen–Coon [5], IMC [6], SIMC [7], and AMIGO [8]. Luyben [9]
escribes the LACEY procedure which implements the biggest
og-modulus tuning (BLT) method to tune decentralised PID con-
rollers of MIMO processes with interaction between control
oops.

In spite of the abundance of PID tuning methods available to
he industry, Desborough and Miller [2] indicate that only a third
f controllers provide an acceptable level of performance. This is
artly due to the fact that the process of obtaining optimal tuning
arameters can be expensive as it is time consuming to conduct
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959-1524/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
system identification experiments which require the attention
of domain experts and process downtime. Furthermore, frequent
retuning may be required due to changing process conditions and
ageing equipment. It is therefore evident that a need exists to
optimally tune industrial controllers in an inexpensive manner.
For that reason, this paper investigates the use of auto-tuners to
optimally tune controllers.

Auto-tuning is not a novel concept and has enjoyed significant
attention since the relay feedback method of Åström and Häg-
glund [10]. The relay feedback method was primarily intended
to tune simple regulators of the PID type, and due to its suc-
cess has subsequently received much research attention which
has expanded its application to more complex controllers [11–
17]. In light of the success of the relay feedback research, auto-
tuners based on the relay feedback method have been commer-
cialised [18].

Advancements made in computer processing capabilities and
machine learning has provided an alternative approach to auto-
tuning controllers by introducing self-learning techniques such
as reinforcement learning [19]. Reinforcement learning has been
used in auto-tuning applications since the turn of the century and
application include the tuning of Ford Motors Zetec engines [20],
a simulated inverted pendulum model [21], a CE150 helicopter
model [21], flow rate of a desalination unit [22], and a non-linear
tank system [23].

Neumann-Brosig et al. [24] considers the ideal auto-tuner to
be on-line, model free, controller agnostic, data efficient and
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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lobally optimal (minimises the objective function). The ideal
uto-tuner must interact with the live process, sample proposed
uning parameters, evaluate the performance of the proposal,
nd continue until the performance requirement of the controller
as been optimised. Process sampling must be efficient and be
onducted in as few as possible steps to minimise the expense
f process downtime and production loss during performance
valuation.
This paper investigates Bayesian optimisation as a candidate

or ideal auto-tuning of an industrial process. Bayesian optimi-
ation is used to optimally tune a decentralised multivariable
ontroller that controls an ore milling circuit in simulation. Such
uning can in theory be done on process models of ore-milling
ircuits that are available from the literature (e.g. [25]), but signif-
cant skill and effort are required to fit these models to an actual
ndustrial process. Olivier and Craig [26] report that operators
ften do not understand the dynamics of the process and also
o not know how to tune the controllers. Furthermore, Olivier
nd Craig [26] report that most grinding mill circuits are con-
rolled using single-loop PID controllers for what is inherently
multivariable process (see also [27]). This is in contrast to the
rocess industries in general where model-based controllers such
s model predictive control dominate [28]. On-line, auto-tuners
an be used to retune controllers when poor performance is
bserved due to plant-model mismatches that developed due to
rocess disturbances. These factors make Bayesian optimisation
n attractive alternative for the tuning of grinding mill circuit
ontrollers.
The problem statement is defined as a fit for purpose objective

unction to be minimised by attentively selecting tuning param-
ters from a constrained search domain. Unlike reinforcement
earning, Bayesian optimisation does not require off-line models
or training and can be applied directly to the process.

Bayesian optimisation has been demonstrated to optimise the
uning paraments of a quadrotor vehicle [29]. Neumann-Brosig
t al. [24] used Bayesian optimisation to find optimal tuning pa-
ameters of an active disturbance rejection controller (ADRC) for a
hrottle valve without the need for a process model and achieved
etter performance than trial-and-error tuning after only 10 ex-
eriments. Fiducioso et al. [30] used safe contextual Bayesian op-
imisation to optimise the PID parameters of a room temperature
ontroller without human intervention. Lucchini et al. [31] and
orourifar et al. [32] respectively applied Bayesian optimisation to
une MPCs for torque vectoring of high performance electrical ve-
icles and a continuously stirred tank reactor to notably improve
erformance. Lu et al. [33] shows than Bayesian optimisation with
reference model can effectively locate the global minimum in

ewer iterations compared to traditional Bayesian optimisation
ethods. Paulson et al. [34] develops the adversarially robust
ayesian optimisation method for auto-tuning problems with
ignificant time-invariant uncertainties.
Bayesian optimisation is well suited for the optimisation of

nknown (i.e. black box) objective functions that are expensive
o evaluate [35]. The expense can be expressed in any sense
ncluding computational effort, production down-time, cost of
xpertise or capital cost of evaluation. Snoek et al. [36] shows
hat Bayesian optimisation can reach or surpass human expert-
evel tuning of hyperparameters for machine learning algorithms.
am et al. [37] applies Bayesian optimisation to address aerospace
ngineering applications where a finite budget of evaluations is
vailable. The results of a black-box optimisation challenge held
n 2020, demonstrates the benefits of Bayesian optimisation over
andom search methods for the tuning of hyperparameters [38].

This paper builds on the approach of Van Niekerk et al. [39]
here Bayesian optimisation was applied to a tailings treatment

lant. In this paper, Bayesian optimisation is applied to an ore

2

Fig. 1. Feedback controller.

illing circuit which is considered to be more challenging to con-
rol, given the increased dimensions of the plant and the stronger
nteractions between the manipulated and controlled variables.
an Niekerk et al. [39] implements an intuitive approach to
etermine the constraints of the search domain, whereas this
aper applies robust stability analysis to analytically determine
he constraints of the search domain. Not only does this novel ap-
roach increase the probability of including the global minimum
f the objective function, but also eliminates the possibility of un-
table iterations that could lead to personnel injury or equipment
amage.
The paper is structured as follows: Section 2 presents the

roblem statement of auto-tuning a MIMO process controller and
he objective function to be optimised. Information on Bayesian
ptimisation, Gaussian processes and acquisition functions is pro-
ided in Section 3. Section 4 describes the process to be con-
rolled, the approach to determining constraints and construct-
ng objective functions. Minimisation of objective functions to
chieve desired performance by means of Bayesian optimisa-
ion is demonstrated by simulation. The results are discussed in
ection 5 and concluding remarks are provided in Section 6.

. Problem statement

Consider a dynamic MIMO process of an industrial plant pre-
ented by

ẋ(t) = f (x(t), u(t), d(t)) (1a)

(t) = h(x(t), d(t)) (1b)

hat is to be controlled by a feedback controller where x(t) are
the process states, u(t) are the manipulated variables, y(t) are
the observed process variables and d(t) are the disturbances. The
process model is not known a priori.

Assume that the plant of (1) is controlled by a controller in
a unity feedback configuration as shown in Fig. 1. The controller
can be represented by

u(t) = K (e(t), α) (2)

were K is the controller, e(t) are the control errors which are the
difference between the set points r(t) and the observed process
ariables, and α are the controller tuning parameters.
The tuning parameters of the controller that would provide

optimum performance are unknown and must be sought. The
tuning parameters α ∈ A are constrained in the domain A ⊆ Rd.
he performance of the tuning parameters are quantified in this
ork by evaluating each of the observed process variables in
erms of time domain performance indices. These performance
ndices for controller evaluation could typically include the in-
egral of squared error (ISE), integral of absolute error (IAE),
ntegral of time multiplied squared error (ITSE), integral of time
ultiplied absolute error (ITAE), rise time, settling time, over-
hoot, output usage, decay ratio, etc. [40–42]. These indices are
ependent on the inputs used with step changes being the most
ypical input variation.
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Where multiple performance indices are used to evaluate a
controller, they must be scaled according to the required re-
sponse. The performance associated with each process variable
is weighted and combined to provide an objective function rep-
resenting the performance of the controller as a single scalar
quantity. The objective function for a MIMO controller can be
expressed as

Q =

n∑
i=1

ωi

⎛⎝ p∑
j=1

βijqj(α)

⎞⎠ (3)

where Q is the objective function, n is the total number of process
variables, ωi is the process variable performance weighting, p
is the total number of performance indices selected per process
variable, qj is the performance index and βij is a scaling factor
to scale the contribution of each performance index. The selec-
tion of the weighting, performance index, and scaling factor will
determine the performance of the optimised controller. These
parameters remain fixed during the optimisation processes since
the required performance of the optimised controller does not
change as the iterations progress.

The form of the performance indices as functions of the tuning
parameters is unknown, but can be calculated from experiments
conducted on the process (1). Candidate tuning parameters are
identified and selected for each experiment, the closed loop re-
sponse is observed and the performance indices qj and objective
function Q are calculated. The experiments are performed iter-
atively, with a new set of tuning parameters selected for each
iteration, until the global minimum of the objective function
is found. The tuning of the controller can be expressed as a
function to be optimised to find the set of tuning parameters that
minimises

min
α∈A

= Q (α) (4)

where α is a vector consisting of the all tuning parameters as
determined by the structure of the controller.

3. Bayesian optimisation

The Bayesian approach to optimisation is to first specify prior
knowledge about the unknown objective function using a prob-
abilistic surrogate model, and then to locate the global optimum
of that model using an acquisition function [43]. Unlike random
search and grid search optimisation techniques where past per-
formance is not considered to locate the global optimum [44],
Bayesian optimisation makes decisions based on the performance
of previously sampled parameters. Such thoughtful choices of
parameter selection characterise the sample-efficient nature of
Bayesian optimisation [45].

The surrogate model is computationally cheaper to evaluate
and optimise compared to an unknown objective function. The
acquisition function evaluates the surrogate model to select the
next set of parameters to be sampled on the objective function.
In this way the cheap evaluation effort of the surrogate model is
maximised while minimising the expensive evaluation effort of
the objective function.

In this work the surrogate is modelled as a Gaussian pro-
cess [46]. Gaussian processes not only provide predictions of
unsampled inputs, but also the confidence of those predictions
that can be interpreted in a natural way [47]. Several acquisi-
tion functions exist that can interpret Gaussian processes and
identify the next input to be sampled. Compared to other sur-
rogate models, Gaussian processes have a small number of train-
ing parameters [48]. The computational complexity of Gaussian
processes increases cubically as the number of sampling points
increase [49], but since it is an objective to limit the number of
expensive experiments, this limitation is not of concern in this
work.
3

3.1. Gaussian processes

Gaussian processes are described by their mean and covari-
ance function and can be written as

Q (α) ∼ GP(m(α), k(α,α′)) (5)

here m(α) is the mean function, which is normally taken to
e zero for notational simplicity, and k(α,α′) is the covariance
unction of Q (α). The covariance function is selected to capture
rior knowledge about the shape of the objective function such
s smoothness and rate of change. In contrast, the unrealistic
moothness of the commonly used squared exponential function
akes it impractical for optimisation problems. To aid in the
election of the covariance function, Snoek et al. [36] propose the
utomatic relevance determination (ARD) Matérn parameter 5/2
ernel as the covariance function. This function is used in this
ork.
Gaussian processes learn the input–output relationships from

training dataset. For the problem statement defined in (3) and
4), the input is the tuning parameter vector α and the output
s the objective function value Q (α). Noisy observations can be
odelled as

= Q (α) + ε (6)

here Q̂ is the observed noisy objective function. The difference
etween the function value and observed value is due to additive
oise assumed to have a Gaussian distribution with zero mean
nd variance σ 2

n

∼ N (0, σ 2
n ). (7)

The inputs and outputs can be combined to form the training
ataset D = {(αi, Q̂i)|ni=1} of n observations. Of primary interest
s the knowledge gained about the function by incorporating the
raining dataset and prior distribution. The joint distribution of
he observed function values and test outputs according to the
rior is[
Q̂
Q ∗

]
∼ N

(
0,

[
K (A, A) + σ 2

n I K (A, A∗)
K (A∗, A) K (A∗, A∗)

])
(8)

here A denotes the design matrix consisting of all n inputs αi as
olumn vectors. The observations Q̂i are collected in the column
ector Q̂ so that D = {(A, Q̂ )}. Q ∗ is the objective function
rediction corresponding to test inputs A∗ and K (· , · ) denotes
ovariances of the datapoints.
The predictive equations are obtained by deriving the condi-

ional distribution from the joint distribution.

∗|A, Q̂ , A∗ ∼ N (Q̄ ∗, cov(Q ∗)) (9)

here,

Q̄ ∗ = k∗
⊤
[K + σ 2

n I]
−1Q̂ (10a)

ov(Q ∗) = k∗∗ − k∗
⊤
[K + σ 2

n I]
−1k∗. (10b)

Q̄ ∗ is the mean prediction and the variance is the diagonal
elements of cov(Q ∗). The compact notations are K = K (A, A),
k∗∗ = K (A∗, A∗) and k∗ = K (A, A∗).

3.2. Acquisition function

In Bayesian optimisation, acquisition functions are used to
search the parameter space to acquire the next input location
to be sampled based on the predictive mean and variance of
the surrogate objective function. The objective of the acquisition
function is not to learn the entire unknown objective function,
but only to locate the global minimum (or maximum, depending
on the objective function) within the constraints provided [50].
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The acquisition function balances the trade-off between ex-
ploration and exploitation. Focussing the search to where the
predictive mean is low promotes exploitation while searching
where the variance is high favours exploration [50].

Acquisition functions identify the next input location to be
sampled by finding the point where the acquisition function L
is maximised, with [36]

α∗ = argmax
α∈A

L(α|D) (11)

where α∗ is the next input location to be sampled given the
training dataset D.

Acquisition functions that can interpret Gaussian processes
include amongst other, expected improvement (EI), Gaussian
process upper confidence bound, and probability of improve-
ment [36]. In this work EI [51] is selected, as it has been shown
to escape local optimums [52], is better behaved than probability
of improvement, and does not require a tuning parameter such
as the Gaussian process upper confidence bound [36].

EI is the maximum expected improvement over the current
best input location and is defined as

EI(α) = Emax[0, Q̂ (αmin) − Q̂ (α)] (12)

where αmin is the location of the current best (minimum) poste-
rior mean. When the posterior distribution is Gaussian, EI can be
solved analytically [53] as

EI(α) =

{
Ψ (α) +Φ(α), if σ (α) > 1
0, if σ (α) = 0

(13)

where,

Ψ (α) = (Q̂ (αmin) − Q̄ ∗(α))ψ(Z) (14a)

Φ(α) = σ (α)φ(Z) (14b)

Z =
(Q̂ (αmin) − Q̄ ∗(α))

σ (α)
. (14c)

σ (α) is the predicted standard deviation at α, φ and ψ de-
ote the probability density function (PDF) and cumulative dis-
ribution function (CDF) of the normal distribution respectively.
q. (12) is differentiable and can be maximised with a gradient
ased optimiser to obtain α∗.

Algorithm 1: Bayesian optimisation
1: for n = 1,2, . . . ,pre-set value do
2: select new α∗ by maximising acquisition function L

α∗ = argmaxα∈A L(α|Dn)
3: sample process at α∗ to observe Q̂n+1

4: augment data set Dn+1 = {Dn, (α∗, Q̂n+1)}
5: update posterior distribution
6: end for

Bayesian optimisation is a cyclic process that progresses as fol-
lows:

• The acquisition function identifies the next input location α∗

to be sampled.
• The process is sampled by means of an on-line experiment

at α∗.
• The next input location α∗ to be sampled and the observed

objective function Q̂n+1 of the on-line experiment is ap-
pended to the previous training dataset to create a new
augmented dataset D.

• The posterior distribution (surrogate model) of the objective
function is updated using the augmented dataset.
4

Fig. 2. ROM ore milling circuit.

This process repeats itself until a predetermined number of cycles
has been reached. Refer to Algorithm 1 for the pseudocode of
the process [50]. The global minimum is min(Q̂ ), which is the
minimum of all the observations accumulated and not necessarily
the result of the last acquisition cycle.

To apply Bayesian optimisation to a process, as in the case
study below, it is necessary to define the objective function and
the constraints for the search domain. Whereas the objective
function and any associated weights and scaling parameters are
process specific, a robust stability analysis can be used to obtain
the constraints for the search domain.

4. Simulation

4.1. Plant

The controller selected to optimise by means of Bayesian
optimisation is the controller for a run of mine (ROM) ore milling
circuit. A brief introduction of the process is provided here.

Fig. 2 illustrates the process flow of a milling circuit with
single stage classification. The semi-autogenous (SAG) mill is fed
with ROM ore, water and steel balls. The steel balls are normally
batched by an operator but for the purposes of this study are
assumed to be continuously fed. Slurry is discharged from the mill
through a screen and collected in the sump where it is diluted
with sump feed water. The aperture of the screen determines
the particle size distribution of the discharge slurry. The slurry is
pumped to a hydrocyclone for classification were the lighter par-
ticles that are within specification overflow to the downstream
process. The heavier out of specification particles are returned via
the cyclone underflow to the mill for further grinding.

Table 1 lists the milling circuit variables of interest. The con-
trolled variables are the fraction of the mill filled with charge
(yLOAD), the level of the slurry in the sump (ySLEV ) and the fraction
f particles in the product with a size smaller than 75 µm (yPSE).

The manipulated variables are the feed rate of ore to the mill
(uMFO), feed rate of dilution water to the sump (uSFW ) and feed
ate of diluted slurry to the cyclone (uCFF ). The feed rate of water
o the mill (uMIW ) can be used to extend the control range of
PSE [54], but for the purposes of this study will not be used as
manipulated variable. Instead, it will be set at a constant flow
ate. The variable constraints and steady state operating points
re listed in Table 2. At an ore feed rate of uMFO = 100 t/h, the
ill is filled to yLOAD = 0.45 and the sump level is maintained at

= 5 m3 to provide a product with y = 0.8 [25,55,56].
SLEV PSE
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Table 1
Variable descriptions.
Variable Description

Controlled variables

ySLEV Sump level [m3]
yPSE Product particle size estimate [fraction < 75 µm]
yLOAD Total charge in the mill [fraction]

Manipulated variables

uCFF Cyclone feed flow rate [m3/h]
uSFW Sump feed flow rate [m3/h]
uMFO Mill feed ore [t/h]

Table 2
Variable constraints and operating point.
Variable Min Max Operating point

ySLEV 2 9.5 5
yPSE 0.6 0.9 0.8
yLOAD 0.3 0.5 0.45
uCFF 400 500 443
uSFW 0 400 267
uMFO 0 200 100

4.2. Optimisation of set point tracking

Consider the scenario where the milling circuit is controlled
y decentralised controllers tuned using the SIMC method [7]
uring a desktop study prior to commissioning. The SIMC method
equires a linear model to design the controllers. Such a linear
odel (15) is derived from the non-linear model from Coetzee
t al. [56] and Le Roux et al. [25] and is presented in the form

= Gp(s)u + Gd(s)d (15)

here

=
[
ySLEV , yPSE, yLOAD

]T (16)

=
[
uCFF , uSFW , uMFO

]T
. (17)

The plant transfer function is

Gp(s) =

[gp11 gp12 gp13
gp21 gp22 gp23
gp31 gp32 gp33

]
(18)

here

p11 =
−0.29

s
(19a)

p12 =
0.42
s

(19b)

gp13 = 0 (19c)

gp21 =
−0.00035(1 − 0.63s)

(1 + 0.54s)
e−0.011s (19d)

p22 =
0.0055

1 + 0.24s
e−0.011s (19e)

gp23 =
−0.0043
1 + 0.58s

e−0.065s (19f)

gp31 =
0.0028(1 + 0.876s)

(1 + 3.868s)
e−0.0115s (19g)

p32 = 0 (19h)

p33 =
0.01
s
. (19i)
5

The disturbance transfer function is

Gd(s) =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.24
(1 + 0.54s)

e−0.014s

1.86 × 10−3

(1 + 14.9s)
e−0.438s

0.58
(1 + 1.41s)

e−0.089s

⎤⎥⎥⎥⎥⎥⎥⎦ (20)

here the disturbance d = ηf , and ηf is the hardness of the ore
xpressed in terms of power per ton of fines produced ηf [kWh/t].
The steady state relative gain array (RGA) [57] suggest input–

utput pairings of uCFF − ySLEV , uSFW − yPSE , and uMFO − yLOAD for
ecentralised control. With the absence of second order terms
n the transfer function, derivative action can be omitted, and
he decentralised controller K α can be structured with only PI
ontrollers on the diagonal.

α =

[k11 0 0
0 k22 0
0 0 k33

]
(21)

The PI controllers in Laplace domain are of the form [41]

jj = kPjj(1 +
1
τIjjs

), j = 1, 2 (22)

where kP is the proportional gain and τI is the integral time
constant measured in hours. By applying the SIMC tuning rules
of first-order and integrating processes, to an assumed diagonal
plant, the PI controller parameters are calculated to be

kP11 = −22.989, τI11 = 0.6 (23a)

kP22 = 206.807, τI22 = 0.24 (23b)

kP33 = 500, τI33 = 0.8. (23c)

Consider that post commissioning, as part of production per-
formance evaluation, closed-loop set point step tests are con-
ducted on the full model of (18) using the controller K α de-
fined by (21) through (23) to gauge the performance. The results
captured in Figs. 8 and 9 show that the response of yPSE is
overdamped with a settling time of 1.47 h. The response of yLOAD
is underdamped with a peak overshoot of approximately 14% and
a settling time of 2.09 h. The performance may be considered in-
adequate due to plant-model mismatch, equipment replacement
or deterioration of equipment performance. Improving the set
point tracking ability of the controller is required to benefit the
supervisory layer of a production or economic optimiser [58,59].
To this end, Bayesian optimisation is applied as an on-line and
automated tuner to retune the controller for improved set point
tracking. To implement Bayesian optimisation, constraints must
be set and a suitable objective function selected as discussed in
the following sections.

4.2.1. Constraints
Bayesian optimisation is a constrained regression process, and

the constraints must be considered with care. The constraints
determine the domain within which the Bayesian optimisation
algorithm must search for the optimal tuning parameters to min-
imise the objective function. The search domain must be suf-
ficiently large to include the optimum, but also restricted to
prevent unstable iterations.

To expand the search space around the tuning parameters
of the known controller K α , a robust stability analysis [40,60]
is conducted on an initial set of constraints to determine how
much uncertainty over and above the initial constraints can be
tolerated. The initial gain constraints are cautiously selected as a
factor of 2 in the direction of instability, and boldly selected as
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Fig. 3. Robust stability structured singular value (µ) plot with tuning parameters
onstrained as per (24).

factor of 0.2 in the opposite direction. Selection of the initial
ntegral time constraints follows the opposite approach, i.e. a
actor of 0.5 in the direction of instability and a factor of 5 in the
pposite direction. The Robust Control Toolbox of MATLAB pro-
ides the stability margins for the uncertain system incorporating
ontrollers with uncertain tuning parameters. The robust stability
nalysis provides the maximum parameter uncertainty that can
e tolerated before the worst-case uncertainty yields instability.
he maximum parameter uncertainty determines the constraints
f the search domain, which are

P11 ∈ [−52.69,−0.539] (24a)

τI11 ∈ [0.262, 25.55] (24b)

P22 ∈ [4.413, 473.2] (24c)

τI22 ∈ [0.105, 10.22] (24d)

P33 ∈ [11.71, 1146] (24e)

τI33 ∈ [0.349, 34.07]. (24f)

By expanding the search domain to the threshold of instability
as given in (24), the probability of including the optimal tuning
parameters to find the global minimum of the objective function
is increased. While inclusion of the global optimum cannot be
guaranteed because the robust stability analysis is conducted
on a linear system model, it is likely that the global minimum
is contained in the search space. By excluding parameters that
yield instability from the search domain, exploration can take
place on-line without exposing operators or equipment to unsafe
operations caused by unstable tuning parameters’’.

Fig. 3 shows the robust stability µ plot with the tuning param-
eter search domain constrained as per (24). Since µ < 1 for all
frequencies, it confirms that the closed-loop transfer function of
Gp and K α , with the parameter ranges of (24), will remain stable
during Bayesian optimisation. In addition, the µ values are close
to 1 over the frequency range of interest, as they should be given
that parameter ranges of (24) represent the closed-loop system
at the threshold of instability.

4.3. Objective function for set point tracking

The objective function selected to retune controller K α for
improved set point tracking, presented in the form of (3), is

Qtrack = ω1β11q1 + ω2β22q2. (25)

Qtrack consists of two terms. The first term represents evalu-
ation of yPSE and the second the evaluation of yLOAD. Each term
requires a step test to evaluate and therefore each Bayesian
 o

6

optimisation iteration will consist of two step tests, e.g., yPSE is
stepped and observed before yLOAD is stepped and observed. The
performance weights ω1 and ω2 are selected to penalise a partic-
ular output to promote a favourable response. Both outputs are
considered to be of equal importance and therefore the weights
are chosen as ω1 = ω2 = 1.

The sump acts as a buffer to absorb disturbances and a regula-
tory controller should aim to keep the sump from overflowing or
running dry. Improvement of the sump level set point tracking
performance will carry the overhead of an additional step test
with no economic benefit. Evaluation of the sump level perfor-
mance is therefore excluded from the set point tracking objective
function.

Performance index q1 is the ITAE of yPSE and q2 is the ITAE
of yLOAD in response to a set point step change. Using ITAE as
the performance index has the benefit that the objective function
value can be calculated without having to wait for all the tran-
sient dynamics to die out, which reduces the evaluation period
of each iteration. A further beneficial property of ITAE is that it
penalises both the absolute error as well as the persistence of the
error making it useful for set point tracking evaluation. Figs. 8 and
9 show that the transient dynamics of K α have mostly decayed
after 2 h which is therefore selected as the evaluation period.

Settling time (time taken for the error to stay within 2% of
|yfinal − yinitial|) was also evaluated as a candidate performance in-
dex. Using settling time as performance index has the benefit that
no scaling factor is required since both responses will be mea-
sured against the same time scale with comparable magnitudes.
The drawback of settling time is that the evaluation period must
be long enough to allow the response of the candidate tuning
parameters to settle. Should the response not settle within the
provided evaluation period, the settling time cannot be measured,
the objective function cannot quantify the performance and the
result of the iteration does not contribute towards the training
dataset D, i.e., it is a wasted iteration. Due to the large integral
time and small proportional gain parameter values included in
the search space, the response of the slower controllers takes
more than 20 h to settle. Evaluation periods of 20 h per step tests
are impractical if step tests require production down time while
there are other options to consider such as ITAE.

The inconvenience of using ITAE is that the terms are not
similar in magnitude and need to be scaled. The scaling factors
used in (25) are β11 =

1
0.914 and β22 =

1
0.75 . The scaling factors

are the inverse ITAE values in response to set point step changes
of controller K α integrated over a 2 h period which requires a
step test to calculate.

4.4. Optimisation of disturbance rejection

Consider the scenario where the milling circuit feed is sourced
from ore stockpiles with different physical properties such as
hardness and size distribution. The varying physical properties
manifest as disturbances which may lead to solids hold-up in the
mill, fluctuations in the circulating load and inconsistent product
particle sizes [61]. Karageorgos et al. [62] describes the general
trend towards a reduction of surge capacity and the need to
maintain stability regardless of disturbances.

Hardness and size distribution are known to be correlated,
i.e., the harder the ore the coarser the feed. Therefore the only
disturbance considered is ore hardness [61].

Bayesian optimisation is applied to retune controller K α for
mproved disturbance rejection. The search domain constraints
emain the same as for set point tracking but a fit for purpose
bjective function is required.
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.5. Objective function for disturbance rejection

The objective function selected to retune controller K α for
mproved disturbance rejection, presented in the form of (3), is

reject = ω1β11q1 + ω2β22q2 + ω3β33q3. (26)

Qreject consists of three terms representing ySLEV , yPSE and yLOAD
espectively. The weights are selected to be ω1 = ω2 = ω3 = 1
ince the disturbance rejection of all three outputs are considered
o be of equal importance.

Performance index q1 is the ITAE of the sump level, q2 is the
TAE of the yPSE , and q3 is the ITAE of yLOAD in response to an
re hardness step change. Performance indices q1, q2 and q3 are
alculated from a single step test per iteration, which reduces the
ntegration period compared to an objective function requiring
ultiple step tests.
The ITAE scaling factors in (26) are β11 =

1
12353 , β22 =

1
380

and β33 =
1

511 . The scaling factors are the inverse ITAE values in
response to a disturbance step change of controller K α integrated
over an 8 h period.

5. Results

Closed-loop step tests are conducted on the MIMO plant model
by stepping set points or disturbances. For the case of evaluating
set point step changes, the objective function requires two step
tests. For the case of disturbance step changes, a single step
is sufficient for each Bayesian optimisation iteration since the
objective function is constructed for a single disturbance input.

5.1. Set point tracking

Figs. 4 and 5 show how the controlled variables and ma-
nipulated variables respond to a yPSE set point step change and
ow Bayesian optimisation explores the search space by applying
andidate tuning parameters to minimise the objective function.
he best iteration is highlighted and represents the response of
ontroller K track. K track is the best result of optimising K α in (21)
y minimising Qtrack in (25). The yPSE set point is stepped from

a fraction of 0.8 to 0.9. Control of yPSE is paired with uSFW and
herefore uSFW immediately increases in response to the increased
PSE demand. ySLEV rises due to the increased uSFW and as a result
CFF increases to prevent the sump from overflowing. Interaction
etween uCFF and yLOAD causes yLOAD to surge. uMFO is throttled
o recover from the increased yLOAD and returns yLOAD to the
perating point. During the iteration process the controlled and
anipulated variables all remain within operational bounds by

imiting the size of the set point step change and constraining
he search domain to robust stability margins.

Figs. 6 and 7 show how the controlled variables and ma-
ipulated variables respond to a set point step change in yLOAD.
he yLOAD set point is stepped from a fraction of 0.45 to 0.5.
ontrol of yLOAD is paired with uMFO and therefore uMFO imme-
iately increases in response to the increased demand in yLOAD.
PSE decreases due to the increased uMFO and as a result the uSFW
ncreases to stabilise the yPSE . The increased uSFW causes ySLEV to
ise, and uCFF is increased to prevent the sump from overflow-
ng. During the iteration process the controlled and manipulated
ariables all remain within operational bounds.
Figs. 8 and 9 show the response of yPSE and yLOAD to step

hange and compares the tracking performance of controller K α

nd the controller retuned using Bayesian optimisation K track.
bjective function (25), selected to improve set point tracking,
an be seen to improve the yPSE settling time from 1.47 to 0.32 h.
he y settling time is reduced from 2.09 to 0.22 h and the
LOAD

7

Fig. 4. Response of the controlled variables to a yPSE set point step change during
Bayesian optimisation using objective function Qtrack .

Fig. 5. Response of the manipulated variables to a yPSE set point step change
during Bayesian optimisation using objective function Qtrack .

peak amplitude reduced from a fraction of 0.507 to 0.5. Table 3
lists the ITAE value reduction which is the basis of objective
function (25). It provides a statistical evaluation comparing the
root mean square error (RMSE), and compares the settling time
of the controllers. The ITAE and RMSE values are calculated over
a 2 h period.

Table 4 shows the results of iterations 6 through to 15 of the
Bayesian optimisation simulation using objective function (25).
Column Qtrack represents the objective function value for each set
of tuning parameters evaluated. During simulation, the step test
response is evaluated over a period of 2 h. With each Bayesian
iteration requiring two step tests, the 15 iterations as suggested in
Table 4 will require no less than 60 h to complete in practice. The
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Fig. 6. Response of the controlled variables to a yLOAD set point step change
during Bayesian optimisation using objective function Qtrack .

Fig. 7. Response of the manipulated variables to a yLOAD set point step change
uring Bayesian optimisation using objective function Qtrack .

Table 3
Comparison of set point tracking properties of controllers K track and K α . The
mprovement that controller K track offers is indicated as a percentage.
Performance K track K α Impr. (%)

yPSE ITAE 0.21 0.914 77.1
yLOAD ITAE 0.123 0.75 83.7
yPSE RMSE 0.030 0.044 31.5
yLOAD RMSE 0.015 0.021 28.0
yPSE SettlingTime 0.32 1.47 86.7
yLOAD SettlingTime 0.22 2.09 89.5

best result is found by iteration 13. The results achieved as shown
in Figs. 8 and 9 are satisfactory and conducting further iterations
8

Fig. 8. Comparison of the set point tracking performance of controllers K track
and K α in response to a yPSE set point step change. The markers indicate the
settling time of the responses.

Fig. 9. Comparison of the set point tracking performance of controllers K track
and K α in response to a yLOAD set point step change. The markers indicate the
settling time of the responses.

in search of the global minimum at an overhead of 4 h per
iteration does not warrant any further increase in performance.

The tuning parameters corresponding to the best iteration
are

kP11 = −50.772, τI11 = 2.741 (27a)

kP22 = 466.81, τI22 = 0.154 (27b)

kP33 = 1144.2, τI33 = 21.105. (27c)
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Table 4
Results of Bayesian optimisation simulation using
objective function (25), iterations 6 through 15.
Iteration Qtrack

6 7.767
7 0.881
8 0.511
9 6.714
10 0.665
11 2.164
12 0.492
13 0.393
14 1.047
15 0.558

Fig. 10. Response of the controlled variables to an ore hardness step change
during Bayesian optimisation using objective function Qreject .

.2. Disturbance rejection

Figs. 10 and 11 show how the controlled variables and ma-
ipulated variables respond to a 2.5% reduction in ore hardness
nd how Bayesian optimisation explores the search space by
pplying candidate tuning parameters to minimise the objective
unction. K reject is the best result of optimising K α in (21) by
inimising Qreject in (26). The reduction in ore hardness causes

an increase of yPSE and reduction of ySLEV and yLOAD. The controller
eacts by increasing the uSFW and uCFF . uMFO drops to counter
he effect of reduced ore hardness before returning to the initial
eed rate. The manipulated variables do not saturate during the
ptimisation process. The sump is shown to run dry during one of
he iterations. uCFF is close to the maximum limit indicating that
he plant and decentralised controller will not be able to cater
or ore hardness disturbances much greater than 2.5% before uCFF
aturates and the sump overflows.
Fig. 12 compares the disturbance response of K reject and K α

o a step change in the feed ore hardness. The objective function
erformance criteria were selected to minimise the ITAE of the
esponse and as a beneficial consequence the absolute error and
he persistence of the error too. The ITAE values of the controlled
ariable responses are listed in Table 5 and shows how Bayesian
ptimisation brought about the reduction of 42.7%, 59.5% and
.85% for the ITAE values of y , y and y respectively. The
SLEV PSE LOAD

9

Fig. 11. Response of the manipulated variables to an ore hardness step change
during Bayesian optimisation using objective function Qreject .

Table 5
Comparison of disturbance rejection properties of controllers K reject and K α . The
improvement that controller K reject offers is indicated as a percentage.

Performance K reject K α Impr. (%)

ySLEV ITAE 7083.2 12353 42.7
yPSE ITAE 154.1 380.7 59.5
yLOAD ITAE 461.4 511.7 9.85
ySLEV RMSE 0.115 0.2 42.5
yPSE RMSE 0.004 0.007 47.1
yLOAD RMSE 0.01 0.011 13.0
ySLEV Peak 0.331 0.517 36.0
yPSE Peak 0.023 0.030 22.7
yLOAD Peak 0.028 0.040 30.1

yLOAD ITAE shows a significantly smaller improvement compared
to the ySLEV and yPSE ITAE improvement. The peak disturbance
f ySLEV , yPSE and yLOAD improved by 36%, 22.7% and 30.1% re-
pectively. The ITAE and RMSE values are calculated over an 8 h
eriod.
While the ITAE and peak performance criteria showed good

mprovement, the comparatively poor performance of yLOAD could
e improved by adjustment to the objective function to penalise
he yLOAD ITAE. Simulation showed that doubling the yLOAD per-
ormance weight and rescaling the objective function with ITAE
alues from Table 5 led to a significant improvement in the
LOAD ITAE at the expense of the yPSE ITAE. A consistent yPSE
as shown to result in better downstream product recovery and
herefore improving yLOAD disturbance rejection in favour of yPSE
isturbance rejection was not pursued.
From Fig. 12 it is evident that the transients due to distur-

ances take much longer to decay compared to the set point
tep changes of Figs. 8 and 9. The transient times (time it takes
or the error to stay within to 2% of the peak error) for ySLEV ,
PSE and yLOAD are 8.4, 6.7 and 7.0 h respectively. Transient time
iffers from settling time in that transient time is a function of the
aximum error caused by the disturbance while settling time is
function of the output change (|yfinal − yinitial|) in response to a
et point step change.
Simulations show that evaluation periods of up to 24 h are

equired for the objective function to provide a useful training
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Fig. 12. Comparison of the disturbance rejection performance of controllers
reject and K α in response to an ore hardness step change. The markers indicate
he peak disturbance error of the responses.

Table 6
Results of Bayesian optimisation simulation using
objective function (26), iterations 6 through 15.
Iteration Qreject

6 0.049
7 0.087
8 0.035
9 0.136
10 0.023
11 0.056
12 0.013
13 0.017
14 0.44
15 0.085

dataset D making transient time an unsuitable performance index
for disturbance rejection.

Table 6 shows the results of iterations 6 through to 15 of the
ayesian optimisation simulation using objective function (26).
uring simulation, the step test response was evaluated over a
eriod of 4 h to calculate the ITAE. From Fig. 12 it can be seen
hat the disturbance peaks have decayed after 4 h. With each
ayesian optimisation iteration only requiring a single step, the
5 iterations as suggested in Table 6 would require no less than
0 h to complete in practice. The best result is found by iteration
3. Note that the iterations do not stop once the global minimum
s located but continues until the pre-set number of 15 iterations
re complete.
The tuning parameters corresponding to the best iteration are

P11 = −45.607, τI11 = 0.684 (28a)

kP22 = 247.97, τI22 = 0.115 (28b)

kP33 = 956.8, τI33 = 32.947. (28c)

6. Conclusion

Despite the abundance and diverse range of control tech-
nologies at the disposal of the process control engineer, PID
10
controllers are indispensable in the control hierarchy due to their
simplicity and practicality. In spite of their benefits, frequent re-
tuning may be required due to changing process conditions. This
work demonstrates that Bayesian optimisation is a data efficient,
on-line tuning method that can locate optimal tuning parameters
within 15 iterations for a MIMO milling circuit. The research
shows that objective functions can be constructed to promote
either set point tracking or disturbance rejection of a controller.
ITAE based objective functions are found to be well suited for the
ore milling circuit given the large time constants. The method
shows potential to optimally tune existing PI controllers of MIMO
systems using robust stability margins to constrain the parameter
search domain. Future work will evaluate an approach to reduce
the impact on plant downtime during optimisation iterations
and present comparisons against alternative methods such as
reinforcement learning.
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