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a b s t r a c t

A flotation circuit is controlled in simulation using an extremum seeking control (ESC) approach to keep
the cells operating at the optimal operating point, as represented by peak air recovery. It is assumed
that optimal performance is achieved at this operating point where the froth layer is stable, and the
mineral recovery of the flotation cell is maximized. Two gradient-based ESCs, a classical perturbation-
based ESC and a time-varying ESC, as well as a non-gradient-based direct search Nelder–Mead simplex
ESC, are compared on the flotation circuit to steer the plant through an unknown static map towards
the peak in air recovery. The three ESCs can respectively optimize the flotation circuit and find the peak
air recovery operating point. The simplex ESC can converge quickly to the optimum but does not adapt
to changing conditions. The gradient-based ESCs can track the time-varying peak air recovery operating
point and adapt to an external disturbance. Although the three ESC methods are not dependent on a
process model to optimize the plant, their convergence times are relatively slow. The ESCs are ideally
suited for model-independent long-term automated optimization of a flotation circuit with a slow
time-varying optimal operating point.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Flotation is a separation process that concentrates minerals by
sing the hydrophobicity properties of the minerals. A flotation
ell is used to separate the hydrophobic particles from the hy-
rophilic particles in a three-phase system [1]. The three phases
efer to the mineral particles (solid), water (liquid) and air (gas)
hat interacts with each other inside a flotation cell. The aim of
he flotation process is for the valuable mineral particles to attach
o air bubbles introduced in the flotation tank and flow to the top
f the tank while the gangue flows to the bottom. In the industry,
lotation cells are connected in flotation banks, and each bank
as a specific function in the flotation process. The functions of
he flotations banks can be divided into three sections: rougher,
cavenger and cleaner banks [2].
The success of a flotation process depends on two main per-

ormance indicators: mineral recovery and product grade. The
ecovery is the fraction of the total amount of valuable min-
rals in the feed that are concentrated, and the grade is the
atio of valuable minerals to gangue in the final product. The
ontrol objective of each flotation cell is to maximize grade and
ecovery, but there is an inverse relationship between grade and
ecovery [2,3]. Flotation is a complicated process with many
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interacting variables that makes the process difficult to model
accurately. Without an accurate model, advanced process control
for flotation optimization becomes challenging to implement and
less effective [4].

In the mineral processing industry, there is an incentive for
improved optimization control, especially long-term automated
advanced optimization [5–7]. One possible solution for optimiza-
tion control of a flotation circuit is peak air recovery. Hadler and
Cilliers [8] report that the optimal performance of a flotation cell
can be found by maximizing the air recovery of the cell and oper-
ating at the peak air recovery point. The froth is stabilized at this
optimal operating point, and the mineral recovery is maximized
while the grade is kept at an acceptable level [9].

The use of peak air recovery as an optimization objective
differs from typical optimization approaches such as mass pull
control, the direct control of grade and recovery, or economic
control by optimizing the net smelter return. Using two case stud-
ies, Hadler et al. [9] demonstrated that an increase in mass pull
does not necessarily yield an increase in mineral recovery. Rather,
there is a potential for improved performance when operating
at peak air recovery conditions. Peak air recovery optimization
can also be advantageous over grade and recovery or economic
controllers as it is only dependent on a single measurement of
air recovery that can be obtained from a vision-based system
and does not require any elemental assays. An impediment to
using peak air recovery for optimization control is that the peak
is time-varying, and the required aeration rate that results in
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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eak air recovery continuously shifts [10]. The fluctuation in air
ecovery may be due to changing ore characteristics or upstream
onditions that propagate to the flotation circuit [11]. This makes
t difficult to operate the flotation plant optimally at all times.
he solution proposed in this article is to use extremum seeking
ontrol (ESC) to maximize the air recovery and keep the flotation
ell operating at the time-varying peak air recovery.
ESC is an optimization technique that maximizes an objective

unction by exploring an unknown static map and steering the
ystem towards the optimal operating condition [12,13]. ESC is
model-free adaptive controller and does not use any explicit
nowledge of the process dynamics. This is an advantage for
lotation control due to the challenges of accurately modeling the
rocess. However, ESC has some drawbacks, the most important
eing the slow convergence time to the optimum compared to
odel-based adaptive controllers [14]. ESC is best suited in the
ptimization layer of a control framework, operating on top of
he supervisory and regulatory control layers to steer a process
ariable such as air recovery to the optimum. Therefore, ESC
s ideally suited to track and maintain peak air recovery for a
lotation cell.

This work expands on Wepener et al. [15] and describes the
irst application of ESC to a flotation circuit. In particular, a
ewly developed flotation circuit model [16], verified on indus-
rial data, is used to illustrate the feasibility of applying ESC to
lotation and the impact that it may have on optimizing the
rocess. Continuously maximizing the air recovery in a flotation
ell can be achieved with an ESC by directly manipulating the
eration rate to the cell leading to increased recovery of the
lotation circuit. This paper explores three different ESC meth-
ds: two gradient-based methods (a perturbation-based and a
ime-varying method), and a non-gradient-based Nelder–Mead
implex method.
The flotation process is described in Section 2, the process

odel description is given in Section 3, and air recovery is dis-
ussed in Section 4. In Section 5, an overview is given of the
hree ESCs that are investigated, and in Section 6, the simulation
etup is presented. The results are presented and discussed in
ection 7, and the work is concluded in Section 8 by discussing
he advantages and shortcomings of the ESCs.

. Process description

The mineral processing chain consists of two main stages: the

omminution stage and the separation stage. The run-of-mine

2

ore first passes through the comminution stage, most often a
grinding circuit, where the ore is ground into fine particles and
mixed with water to form a slurry. The slurry then flows to the
separation stage, where the valuable minerals are separated from
the gangue. There are many types of separation circuits, but this
study will focus only on flotation. In industry, flotation tanks
are connected in flotation banks, with each bank performing a
specific function. The functions of the flotations banks can usually
be divided into three sections: rougher, scavenger and cleaner
banks [2]. The flotation circuit used in this simulation study
includes four flotation cells in the rougher section. The four cells
are connected in series, as shown in Fig. 1.

The slurry from the comminution stage flows into the first
flotation cell with a flow rate, QF1 . The tailings flow rates of the
slurry flowing out of the cells are given by QTk , where k is the
cell number. The aeration rate to each cell, QAirk , gives the flow
rate of air flowing into the cell, forming bubbles that rise through
the slurry. The measurement of the aeration rate is the superficial
gas velocity. As the air bubbles rise, the valuable mineral particles
attach to the bubbles because of their hydrophobicity and collect
in the froth layer at the top of the cell. The froth height is denoted
by hfk while Lk is the pulp level in each cell. The air bubbles in the
froth layer flow over the cell lip into the concentrate launder with
flow rates, QCk , and collect in the concentrate hopper. The slurry
level in the hopper is given by LH . The concentrate is pumped
away from the hopper for further processing with a flow rate of
QH .

3. Model description

The dynamic model of a four-cell flotation circuit, as shown
in Fig. 1 and given in [16], is used to simulate the performance
of the proposed controller. Each of the flotation cells has the
following states, the cell pulp level (Lk), the masses in the cell
(M i,j

k ), the air recovery (αk) and the top of froth bubble size (DBFk ).
The superscript, i, represents the different mineral species in the
cell (gangue or valuable minerals), and j represents the different
sub-classes within the mineral class for minerals with different
flotabilities or sizes. This simulation study simplifies the model
to include only two mineral species, valuable minerals (i = 0)
and gangue (i = 1). It is also assumed that there are no sub-
classes, and j will therefore be omitted. A comprehensive model

description can be found in [16].
Fig. 1. Flotation circuit configuration.
Source: Adapted from [16].
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Table 1
Description of flotation model variables.
Variable Unit Description

i – Superscript for mineral species: valuable mineral (i = 0) and gangue (i = 1)
k, H – Subscript for unit (flotation cell k, or hopper, H)
□ – Subscripts for feed (□ = F ), tails (□ = T ), concentrate (□ = C)
Ak, AH m2 Surface area of cell k or hopper H
hk m Difference in height between cell k and k + 1
ρ i
s kg/m3 Density of mineral species i

λout – Plateau border length per volume of froth
K i – Pseudo rate-constant of mineral species i
λairk s Average froth residence time in cell k
Sbk s−1 Bubble surface area flux in cell k
Ent iFrac – Entrainment factor of mineral species i
Q□k , QH m3/h Volumetric flow rate associated with cell k or hopper H
Qairk m3/h Volumetric air flow rate to cell k
Ṁ i

□k
kg/h Mass flow rate of mineral species i associated with cell k

Cvk m5/2/h Valve constant for cell k
vk – Valve position for cell k
hfk mm Froth depth of cell k
Jgk mm/s Superficial gas velocity for cell k
JgSPk mm/s Superficial gas velocity setpoint for cell k
τjgk s First order time constant of the air valve response of cell k
The change in the pulp level of each cell is modeled using the
olume balance in the cell,

d
dt

Lk =
QFk − QTk − QCk

Ak
, (1)

where Ak is the surface area of cell k. The effect of a change in gas
oldup on the change in level is not included in the model as it
s relatively small compared to the effect of the flow rates, and it
hanges on a much slower time scale. The tailings flow rate from
he cell (QTk ) is the feed flow rate into the next cell (QFk+1 ) and is
modeled according to [17],

QTk = Cvkvk
√
Lk − Lk+1 + hk, (2)

where Cvk is the valve constant for valve position, vk, and hk is
the physical difference in height between the two cells. A mass
balance is used to model the change in mass in each cell,

d
dt

M i
k = Ṁ i

Fk − Ṁ i
Tk − Ṁ i

Ck , (3)

where Ṁ i
□k

is the mass flow rate associated with the feed (□ = F ),
ailings (□ = T ) or concentrate (□ = C) of cell k. The tailings
ass flow rate of cell k is the feed flow rate of the next cell,

Ṁ i
Fk+1

= Ṁ i
Tk
, and is calculated by,

˙ i
Tk =

M i
k

LkAk
QTk . (4)

he concentrate mass flow rate includes true flotation and en-
rainment components. True flotation occurs when a particle
ollides with a bubble, attaches to its surface and rises to the
roth. Entrainment occurs when the particle is dragged to the
roth by the liquid between the bubbles. The concentrate mass
low rate is given by,

˙ i
Ck = K iM i

kSbkαk + Ent iFrac
M i

k

AkLk
QCk , (5)

where K i is a pseudo rate-constant, M i
k is the mass of mineral i in

cell k, Sbk is the bubble surface area flux, αk is the air recovery (see
(9)), and Ent iFrac is the entrainment factor. The concentrate flow
rate is calculated from water recovery and true flotation models,
3

Table 2
Description of flotation model states.
Variable Unit Description

Lk, LH m Pulp level in cell k or hopper H
M i

k, M i
H kg Masses of mineral species i in cell k or hopper H

αk – Air recovery in cell k
DBFk mm Top of froth bubble diameter in cell k

QCk

Ak
=

⎧⎪⎪⎨⎪⎪⎩
J2gkλout

k1
(1 − αk)αk +

d
dt

M i
TFk

/ρ i
s 0 < αk < 0.5

J2gkλout

4k1
+

d
dt

M i
TFk

/ρ i
s αk ≥ 0.5

, (6)

where d
dtM

i
TFk

= K iM i
kSbkαk is the mass flow rate of mineral i to

the froth phase in cell k due to true flotation, and ρ i
s is the density

of the mineral. Jgk is the superficial gas velocity for cell k, and k1
is a constant. The superficial gas velocity is linearly related to the
aeration rate,

Jgk = 3.6
QAirk

Ak
. (7)

The Plateau border length (λout ) per volume of froth is inversely
proportional to the square of the top of froth bubble diameter
(DBFk ),

λout ≈
6.81
D2
BFk

. (8)

The models for air recovery and the bubble size are empirical
models derived by [16] using industrial data. The change in air
recovery is,
d
dt

αk =
αSSk − αk

λairk
, (9)

where λairk is the average froth residence time,

λairk =
hfk

Jgk
. (10)

The steady-state model of air recovery, αSSk , is given by,

α = K
(
J − K − K h

)2
+ α . (11)
SSk αJg gk αJgk αhf fk OSk
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Table 3
Description of flotation model empirical parameters.
Variable Description

αSSk Steady-state value of air recovery in cell k
KαJgk

Value of the superficial gas velocity in cell k where air recovery is maximized when hfk = 0
KαJg

Effect of the difference between Jgk and KαJgk
squared on air recovery

Kαhf
Effect of a change in hfk on the superficial gas velocity where air recovery is maximized

αOSk Offset included in steady-state air recovery in cell k
KBFJg Effect of the superficial gas velocity on the mean top-of-froth bubble diameter
KBFλ Effect of the average froth residence time on the mean top-of-froth bubble diameter
DOSk Offset included in steady-state top-of-froth bubble diameter in cell k
The parameters, KαJg
, KαJgk

, Kαhf
and αOSk are empirically fitted.

αJg
is a negative constant to create a parabolic shape in the air

ecovery as a function of the aeration rate. The parabola has a
eak in air recovery where Jgk = KαJgk

+ Kαhf
Kαhf

. The rate of
hange in bubble size is,

d
dt

DBFk =

KBFJg Jgk + KBFλλairk − DOSk

λairk
, (12)

where KBFJg , KBFλ and DOSk are empirically fitted parameters. The
dynamic responses of superficial gas velocities (Jgk ) to setpoint
changes (JgSPk ) are defined with first-order models with unity
gains,

d
dt

Jgk =
JgSPk − Jgk

τjgk

, (13)

here τjgk is the first order time constant of the air valve response
f cell k. The concentrate hopper has two states, the hopper level
LH ) and the masses in the hopper (M i

H ). The state equations are,

d
dt

LH =
QC1 + QC2 + QC3 + QC4 − QH

Ak
, (14)

d
dt

M i
H =

4∑
k=1

Ṁ i
Ck −

M i
H

LHAH
QH . (15)

he total mass pull rate of the hopper is given by,

˙ Tot
H =

(
Ṁ0

H + Ṁ1
H

) QH

LHAH
. (16)

he concentrate grade in the hopper is the ratio of the desired
ass to the total mass in the hopper,

rade =
M0

H

M0
H + M1

H
. (17)

An instantaneous mineral recovery is given by,

Recovery =

∑4
k=1 Ṁ

0
Ck

Ṁ0
F1

, (18)

here Ṁ0
Ck

is the desired element mass flow rate in the concen-
rate stream of cell k and Ṁ0

F1
is the desired element mass flow

rate in the feed stream. Although recovery is generally calculated
at steady-state, the instantaneous recovery is a useful real-time
pproximation.
The variables used in the flotation model are summarized in

able 1, and the model states are given in Table 2. Table 3 shows
ll the empirical parameters to be estimated. The nominal values
f the variables, states and estimated empirical parameters are
aken from Oosthuizen et al. [16].

. Air recovery

Air recovery is the fraction of the air that enters the flotation
ell and overflows the lip of the cell inside unburst bubbles. Air
4

recovery can be seen as a measure of the stability of the froth in
the flotation cell. Therefore, it is an indicator that can be used to
evaluate the efficiency and performance of the flotation process.
The equation for air recovery is given by [9],

α =
vf · h · w

QAir
, (19)

where vf is the overflow velocity of the froth, h is the overflow
froth height above the cell lip, w is the overflow length, and
QAir is the inlet air flow rate. In industrial flotation plants, the
air recovery can be measured with a froth vision system, and
laser-based froth height measurement [10,18]. For the simulation
study, a simplified air recovery model is used as given in (9)–(11)
in Section 3.

Fig. 2 shows the steady-state simulation of air recovery for
different aeration rates and froth heights using the model de-
scribed in Section 3. Although the surfaces for an industrial plant
would contain more noise and would be time-varying, the general
parabolic shape remains [7–10]. Air recovery initially increases
with an increase in the aeration rate, but it reaches a peak,
after which a further increase in the aeration rate lowers the
air recovery. At a low aeration rate, the bubbles rise slowly
through the slurry to produce highly laden, well-drained froths.
The bubbles often collapse before overflowing the cell lip. The low
aeration rate results in a high concentrate grade but with low air
recoveries and low mineral recoveries. At a high aeration rate,
past the air recovery peak, the air moves fast through the cell,
creating unstable bubbles that burst before they reach the top.
These bubbles have a higher water content as the water becomes
trapped between the bubbles, which reduces the grade.

The steady-state model simulations of the mineral recovery
and grade, measured in the concentrate hopper, shown in Fig. 2,
show the inverse relationship between grade and recovery. The
aeration rates that create the peaks on the recovery curve also
correspond approximately to the low points on the grade curve.

The froth height (hfk ) has a much smaller effect on the air
recovery than the aeration rate, and the plant is able to reach the
peak air recovery operating point at any froth height by changing
the aeration rate. When controlling for air recovery only, the
benefits of controlling the froth height as well as the aeration
rate do not outweigh the disadvantages that come with the added
complexity of implementing a multiple-input controller and the
possibility of reduced froth stability. Throughout the rest of the
study, the froth heights were kept constant at a setpoint, and only
the aeration rate was varied. Fig. 3 shows the effect of the aeration
rate on the air recovery, grade and recovery while the froth height
is kept constant at a setpoint.

5. Extremum seeking control

ESC is a control approach that is used to optimize a system by
maximizing an objective function. The plant can be considered
as a reference-to-output map that has an extremum which is the
operating point where the objective function is maximized. Three
different ESC approaches are considered and compared in this
study.
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Fig. 2. 3D surface map of the steady-state model simulation showing the effect
f the aeration rate and froth height on air recovery, grade and recovery,
espectively. Only the air recovery for cell 1 is shown, but the shape is
epresentative of all of the cells.

.1. Perturbation-based extremum seeking control

When the reference-to-output map is unknown or contains
ncertainty, it is necessary to use some sort of adaptation to find
he extremum that maximizes the output [12]. A perturbation-
ased ESC (PESC) uses a slow periodic signal added to the input
f the system to perturb the plant and steer the plant through
he map towards the extremum. The controller adjusts the input
ased on the gradient extracted from the measured objective
unction as it changes due to the perturbations added to the
nput. The continuous perturbations allow the ESC to track an
nknown time-varying optimum over time, even in the presence
f external disturbances. One advantage of ESC is that the con-
roller is model-free. Therefore, as long as the objective function
as a maximum and is convex, the controller does not require
ny knowledge of the process to steer the process to the optimal
perating point [19].
Fig. 4 shows the peak-seeking feedback scheme of a

erturbation-based ESC. In the diagram, the flotation process is
epresented by the functions ẋ = f (t, x, θ ) and y = h(t, x, θ ).
he process dynamics are unknown to the controller, and the
 p

5

Fig. 3. Steady-state model simulation showing the effect of the aeration rate
on air recovery, hopper grade and hopper mineral recovery, respectively, at a
constant froth height.

Fig. 4. Extremum seeking control scheme.
Source: Adapted from [12].

functions f and h are considered as unknown black-box functions
that take an input, θ , and provide an output, y, which is the
measured objective function. The dither signal is a slow periodic
perturbation, a sin(ωt), where a is the amplitude, and ω is the
perturbation frequency. The dither signal is added to θ̂ , the best
estimate of the optimal operating point (θ∗). The perturbations
create a periodic response in the output, which the high-pass
filter isolates by removing the steady-state component from y,
resulting in the filtered output, y − η. The periodic response in
the output will either be in or out of phase with the dither signal
depending on the location of θ̂ relative to θ∗. The product of
y − η and the dither signal contains the gradient, ξ , which is
extracted with the low-pass filter. The sign of the gradient, ξ ,
rovides the direction to the integrator for moving θ̂ towards θ∗.
he integrator gain, k, controls how aggressive the ESC will be and
as to be selected sufficiently small to ensure convergence [12],
ut not too small as that would negatively affect the transient
erformance of the controller. The closed-loop system dynamics
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f Fig. 4 are summarized as,

ẋ = f (t, x, θ) , (20a)

y = h (t, x, θ) , (20b)
˙̂

= kξ, (20c)

ξ̇ = −ωlξ + ωl (y − η) a sin (ωt) , (20d)

˙ = −ωhη + ωhy. (20e)

For the ESC to operate effectively, the perturbation frequency
has to be slow enough that the reference-to-output map of the
plant appears as a static map. The static map ensures that the
plant dynamics do not interfere with the ESC and that the con-
troller can search along the static map for the optimum operating
point. The system, therefore, has three time scales with suffi-
cient separation between the scales. The fastest time scale is
the process dynamics of the plant, together with the stabilizing
and regulatory controllers. The next time scale is the periodic
perturbations, which must be slower than the process dynamics.
The filters in the ESC scheme are the slowest time scale, as the
cut-off frequencies have to be lower than the frequency of the
perturbation signal. The amplitude of the dither signal should
be selected to be larger than the expected input noise and large
enough that the plant response to the dither signal is detectable
in the measurement noise of the objective function. However,
since the measured objective function is representative of the
performance of the plant, a too-large dither signal may reduce
the performance of the plant.

5.2. Time-varying extremum seeking control

The time-varying ESC (TESC) is based on the estimation of
the gradient as a time-varying parameter which removes the
need for averaging the results and minimizes the impact of the
dither signal choice by providing more freedom in tuning the ESC
to improve the transient performance [20]. The controller first
estimates the time-varying parameter, θ , the gradient of the static
map, which is defined as,

θ =
∂ℓ

∂u
, (21)

here ℓ is the static map and u is the time-varying input. y is the
objective function to be maximized,

y(t) = ℓ(u(t)). (22)

his estimate of the gradient, θ̂ , is then used in the controller to
achieve the extremum seeking task. The estimation error is given
by

e = y − ŷ. (23)

The closed loop ESC system is shown in Fig. 5, and the system
quations are,

ẋ = f (t, x, u) , (24a)

y = h (t, x, u) , (24b)

u̇ = −kθ̂ + d, (24c)
˙̂
θ = Proj

(
Σ−1(c(e − η̂) − σ θ̂ ), θ̂

)
, (24d)

˙̂η = −K η̂, (24e)

ċ = −Kc + u̇, (24f)
˙̂y = u̇T θ̂ + Ke + cT ˙̂

θ, (24g)

Σ̇−1
= −Σ−1(ccT )Σ−1 + kTΣ−1

− 2σΣ−2, (24h)
6

Fig. 5. Time-varying extremum seeking control scheme.
Source: Adapted from [13].

where K and kT are estimation gains. K is defined as,

K = kη1 + kη2c
T c. (25)

The positive gains kη1 , kη2 , σ , kT , k and the dither signal d =

a sin(ωt) are all tuning parameters that can be selected such
that the ESC system converges to the optimization extremum of
(22) [13]. The projection in (24d) is given by,

˙̂
θ =

⎧⎪⎨⎪⎩
φ if P(θ̂ ) > 0 or ∇θ̂P(θ̂ )φ ≤ 0(
I −

∇θ̂P(θ̂ )T∇θ̂P(θ̂ )

∥∇θ̂P(θ̂ )∥2

)
φ otherwise,

(26)

here φ = Σ−1
(
c(e − η̂) − σ θ̂

)
and the function P(θ̂ ) is defined

s,

(θ̂ ) = ∥θ̂∥
2
− z2θ , (27)

with its gradient,

∇θ̂P(θ̂ ) = 2θ̂ T . (28)

The constraint, zθ is the upper limit on the size of the norm of
the gradient estimate, θ̂ .

The diagram in Fig. 5 shows the TESC control scheme imple-
mented on the flotation process with unknown dynamics. The
dashed block is the prediction model given in (24d)–(24h). The
optimization gain, k, controls the speed of the response, but an
increase in k reduces the effect of the dither signal on u, which
negatively affects the estimation routine. In general, there exists
a maximum value of the gain k that can be achieved [20]. A small
value for parameter σ ensures that Σ does not become too small
which could impede the estimation routine. However, zθ has to
increase as σ becomes smaller.

5.3. Simplex extremum seeking control

The Simplex ESC (SESC) is based on the Nelder–Mead al-
gorithm [21]. This method has limitations when used in time-
varying conditions and in the presence of disturbances, but was
selected because it is a simple heuristic controller with a fast
convergence time that is easy to implement and tune. The algo-
rithm works by creating a simplex of function values with n + 1
vertices, where n is the number of variables in the objective
function. The simplex adapts to the static map and contracts
to the extremum by replacing the lowest vertex with a new
point for each iteration. Three operations are used to replace the
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oint - reflection, contraction and expansion. This iterative direct
earch method can efficiently find the extremum of the objective
unction without using any gradient information. The algorithm
s shown in the flow diagram in Fig. 6. In the initialization step,
simplex is created around the initial input value. The simplex
onsists of n + 1 vertices, labeled as v1, . . . , vn, vn+1, and the
objective function is evaluated at each of the vertices to find the
function values,

f (v1), . . . , f (vn), f (vn+1). (29)

The next step is to order the vertices from best to worst. Since
the aim of the simplex method is to minimize the objective
function1, the minimum function value (best point) will be f (v1),
and the maximum function value (worst point) will be f (vn+1).
The simplex is then ordered to be,

f (v1) ≤ · · · ≤ f (vn) ≤ f (vn+1). (30)

The flow diagram in Fig. 6 is then followed, moving through the
operations until a new point is accepted. The operation equations
are given by,

vr = v̄ + α(v̄ − vn+1), (reflection) (31a)

ve = vr + γ (vr − v̄), (expansion) (31b)

vco = v̄ + ρ(vr − v̄), (outside contraction) (31c)

vci = v̄ + ρ(vr − vn+1), (inside contraction) (31d)

where v̄ is the centroid of the simplex,

v̄ =

∑n
k=1 vk

n
. (32)

he last operation is a shrink step where all the points in the
implex except for the best point are shrunk according to,

i = v1 + σ (vi − v1), i = 2, . . . , n + 1. (33)

he coefficients used in the operations should satisfy,

> 0, γ > 1, γ > α, 0 < ρ < 1, and 0 < σ < 1. (34)

When a non-shrink step occurs (reflect, expand, contact out-
side or contract inside), the worst vortex vn+1 is discarded and
replaced by the new accepted point. When a shrinking step
occurs, only the best point is kept, and the rest are all replaced.
The new simplex is then sorted, and the process repeats with a
new iteration.

When the simplex method is applied to a dynamic process, the
function evaluations take place by assigning the calculated vertex
value (vr , ve, vco or vci) to the input of the process and allowing
a sufficient time period (Ts) for the process to reach steady-state
before measuring the output of the process and assigning it to the
function value (f (vr ), f (ve), f (vco) or f (vci)). To prevent undesired
plant behavior, such as overshoot and aggressive plant responses
due to large step sizes, a ramp function can be used to linearly
interpolate the operating point between step changes [22]. The
controller is set up to linearly ramp the process input value to
the new vortex value in Ts/2 h and then keep the input constant
for Ts/2 h.

The advantage of SESC is that the controller can make rel-
atively large step changes and potentially reach the extremum
quicker than, for example, the other two ESC approaches dis-
cussed previously. The controller evaluates the objective function
itself and not the gradient. As a result, the method is much
more resistant to noise and variations in the objective function.
The size of the simplex decreases as the process approaches

1 For the flotation circuit, the objective function will be the negative of the
ir recovery as the aim is to maximize air recovery.
7

Fig. 6. Simplex extremum seeking control scheme flow diagram.

the extremum, resulting in increasingly smaller perturbations.
However, this also means that the controller loses the ability to
track a time-varying extremum. If the optimum changes after
the controller converged to a point, the algorithm would not be
able to adapt and track the new optimum unless the method
is reinitialized with a new simplex so that the optimization can
start again. The frequency of reinitialization needs to be selected
carefully to prevent unnecessary disturbances or reduced tracking
performance. An alternative solution is to limit the minimum
simplex size to allow the method to continue to perturb the
process and track any changes in the optimum [23].

6. Simulations

The purpose of the simulations is to demonstrate how well
each of the different ESCs works as an optimization controller
on a flotation circuit and to compare the relative performances.
Fig. 7 shows a diagram of the flotation cells and controllers
implemented. Each of the four flotation cells has a cross-sectional
area of 8.82m2 and a cell height of 1.4m, and the nominal feed
flow rate to the first cell is 730m3/h. The flotation cells are
modeled with the dynamic flotation model given in Section 3. On
the tailings stream of each of the cells, as well as the outflow
of the hopper, PI-controllers are implemented to stabilize the
pulp levels, Lk. The levels are controlled to a setpoint while the
froth height of each cell, hfk , is kept constant. These regulatory
controllers keep the cell levels and hopper level constant in the
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Fig. 7. The control architecture for the flotation circuit used in the simulation study.
resence of any disturbance in the plant. The regulatory con-
rollers handle all the constraints of the flotation circuit and keep
he plant operating within the allowed operating ranges. The ESC
ontrollers do not include any constraints explicitly.
A separate ESC is implemented on each of the cells to maxi-

ize the air recovery, αk, by manipulating the aeration rate to the
ells. The local optimization problem of finding the aeration rate
hat produces the maximum air recovery can be solved in each of
he cells independently of how the other cells are being operated.

The flotation plant model and the ESC controllers are simu-
ated with a 4th order Runge–Kutta numerical integration method
sing a fixed time-step of 10 s. White Gaussian noise with a noise
evel of −50 dB is added to Jgk and −30 dB is added to hfk as
nput noise. White Gaussian noise with a noise level of −50 dB
s added to αk and −50 dB is added to Lk and LH to evaluate the
erformance of the controllers in the presence of measurement
oise. Process noise is also added to the model parameters of
he air recovery model to replicate operating conditions similar
o what is found in industry. White Gaussian noise with a level
f −33 dB is added to αOSk and noise with a level of −47 dB is

added to KαJgk
.

6.1. Controller tuning

The four ESC controllers on the four flotation cells are all
tuned with the same tuning parameters which are given in Ta-
ble 4. These parameters are not necessarily the optimal choices
but have been tuned to find a good balance between the tran-
sient response and robustness and should therefore enable a fair
comparison between the controllers.

The three frequency tuning parameters used in the PESC
method (ω, ωl, and ωh), are dependent on the plant dynamics and
should be selected to create the required time-scale separation
between the plant, dither, and optimization. The response time
of the air recovery in a flotation cell, when a Jgk step occurs, has
been measured to be less than 5min and as low as 1.5min under
ideal conditions and no noise. To create the time-scale separation,
the period of the dither signal is selected to be 5min, giving a
frequency of ω = 75 rad/h. The high-pass cutoff frequency is
selected to be slightly lower than the dither frequency so that the
filter can isolate the periodic response, and the low-pass cutoff
frequency is selected much lower to extract only the gradient, ξ .
The dither amplitude, a, and the integration gain, k, are tuned
together with trial and error until a good balance is achieved
between the transient performance and robustness. For a smaller
amplitude, a larger integration gain is required to achieve similar
8

Table 4
ESC parameters.
Method Tuning parameter Description

PESC

a = 0.05 Dither amplitude
ω = 75 rad/h Dither frequency
ωh = 72 rad/h High-pass cutoff frequency
ωl = 0.36 rad/h Low-pass cutoff frequency
k = 250 Integrator gain

TESC

a = 0.0008 Dither amplitude
ω = 75 rad/h Dither frequency
kT = 0.02 Estimation gain
kη1 = 0.25 Estimation gain constant
kη2 = 0.25 Estimation gain constant
k = 0.007 Optimization gain
σ = 0.0001 Positive constant
zθ = 1 Uncertainty set radius

SESC

α = 0.65 Reflection coefficient
γ = 2 Expansion coefficient
ρ = 0.5 Contraction coefficient
σ = 0.5 Shrinking coefficient
Ts = 0.25 h Time to reach steady-state

transient performance, and for a larger amplitude, the gain should
be reduced to ensure robustness.

For the TESC controller, the dither signal frequency and am-
plitude, and the optimization gain can be tuned similarly to the
dither and integrator gain of the PESC controller. However, since
the dither signal is added before the integrator, instead of after as
in the PESC controller, a much smaller amplitude is required to
produce a similar perturbation to the plant. The rest of the tuning
parameters are less intuitive to select because the parameters are
interconnected and dependent on each other and require some
trial and error to find appropriate values. The estimation gain and
estimation gain constants determine how aggressive the estima-
tion of the time-varying parameter is. These parameters should
be as large as possible to improve the transient response while
keeping the controller stable and robust. The positive constant, σ ,
is selected to be small to improve the gradient estimation routine
and zθ is selected large enough to not constrain the gradient
estimation.

The SESC controller is easy to tune, and the standard values for
the coefficients as described in Nelder and Mead [21] (α = 1, γ =

2, ρ = 0.5, and σ = 0.5) often lead to optimal performance. Only
the reflection coefficient was reduced from the standard value to
α = 0.65 to make the controller less aggressive. The setting time
parameter, Ts, should be selected based on the plant dynamics.
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he time should be chosen as small as possible to improve the
ransient performance of the controller, but still large enough to
llow the plant to reach a steady state before making the next
ontrol move. The parameter was selected to be Ts = 15min
hich means that control input is adjusted linearly to a new value
ver 7.5min and then kept constant for 7.5min to allow enough

time for the plant to reach steady state before the next control
move takes place.

6.2. Simulation scenarios

Three simulation scenarios are considered:
1. The optimization ability of ESC (t = 0 h to t = 120 h).
In this scenario, only the ability of the ESC to find the optimum

is evaluated. The simulation starts at a sub-optimal operating
point, and the ESCs optimize the flotation circuit over a period
of 5 days (120 h). During this time period, there are no external
disturbances or changes to the process.

2. The disturbance rejection ability of ESC (t = 120 h to t =

240 h).
In this scenario, the ability of the ESC to reject disturbances is

evaluated. Continuing from the previous scenario, at t = 140 h,
the plant is subjected to a large disturbance that significantly
changes the peak air recovery operating point. In reality, the dis-
turbances in industrial plants are usually much smaller and more
gradual. The disturbance was made by decreasing KαJgk

in (11) by
15% and decreasing αOSk by 5% over a 3 h period. Since the effect of
individual specific disturbances such as changes in mineral grade
and percentage solids are not modeled, the step-changes in KαJgk
and αOSk aim to simulate any combination of disturbances that
influence the optimal peak air recovery operating point. These
parameter changes cause the curves in Fig. 2 to shift, and the
operating point essentially moves to a different place on the curve
for which the controller needs to find the peak again.

3. The tracking ability of ESC (t = 240 h to t = 360 h).
In this scenario, the ability of the ESC controllers to track a

time-varying optimum is evaluated. Starting at t = 260 h, the
aeration rate that results in maximum air recovery, as well as the
maximum air recovery value, are continuously varied until t =

360 h. A time-varying random walk is added to the parameters,
KαJgk

and αOSk , which updates with a new random gradient every
5 h. The random gradients of the two parameters are determined
by White Gaussian processes with magnitudes of −10 dB and
−30 dB for the gradients of KαJgk

and αOSk respectively.

7. Results and discussion

7.1. The optimization ability of ESC (t = 0 h to t = 120 h).

The simulation results for the first 120 h are first shown sep-
arately for each of the three different controllers in Figs. 8–10
and then shown together on the same plot in Fig. 11. The top
left plot is the air recovery (αk) that has to be maximized, and
below it, the aeration rate (Jgk ) plot shows the control inputs that
the controllers use to steer the plant to that optimum. On the top
right, the hopper grade (17) and mineral recovery (18) are plotted
against time, and the middle plot shows the grade-recovery curve
that can be used to evaluate the overall performance of the
flotation plant quickly. Since the simulation allows the plant to
reach steady-state over a long time period, the instantaneous
recovery shown is not expected to differ significantly from the
true recovery. The bottom plot is a projection of the air recovery
on the 3D surface plot showing the effect of the entire range
of input values. Since the froth height is controlled to a set
point, the path that the controller takes will not vary much in
9

Fig. 8. PESC optimization simulation results. The dashed lines show the optimal
aeration rates. The initial conditions are indicated by ▽▽▽ and 333 is the final
ptimized operating point.

Table 5
Convergence time of the ESC controllers.
Controller Convergence time

PESC 8.71 h
TESC 5.65 h
SESC 1.09 h

the hfk−dimension. Fig. 12 also shows the projections of the
ir recovery, grade and recovery of all the controllers on the
D surface plots from Fig. 2. The convergence time of the ESC
ontrollers is measured as the time it takes the air recovery of
ll the cells to settle within 1% of the peak air recovery point. A
min moving average is used for the calculation to ensure that
he noise does not affect the convergence time. The convergence
imes of the ESC controllers are summarized in Table 5. Figs. 11
nd 12 show that the process starts at a sub-optimal operating
oint, and for the first 20 h the controllers are deactivated while
he plant operates under regulatory level controllers only. At
= 20 h, the ESC controllers are activated and start to optimize
he flotation plant by maximizing the air recovery. The PESC
nd TESC controllers, shown in Figs. 8 and 9 respectively, take
ery similar paths towards the peak air recovery point. The main
ifference is the speed of the convergence. As shown in Table 5,
he TESC is able to react quicker than the PESC and is able to reach
he peak air recovery more than 3 h faster than the PESC. The
ESC controller is also more aggressive and noisy than the PESC
ontroller and the aeration rate can be seen to vary much more
round the optimal operating point. Once the peak air recovery
s reached in each of the cells, the perturbations continue to keep
he process at the optimal operating point.

The SESC controller, shown in Fig. 10, is quite different from
he PESC and TESC controllers, resulting in a much more aggres-
ive transient response due to larger step sizes. The ESC converges
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Fig. 9. TESC optimization simulation results. The dashed lines show the optimal
eration rates. The initial conditions are indicated by ▽, and 3 is the final

optimized operating point.

Fig. 10. SESC optimization simulation results. The dashed lines show the optimal
aeration rates. The initial conditions are indicated by ▽, and 3 is the final
optimized operating point.

to the peak air recovery point more than 4.5 h faster than the
TESC and more than 7.6 h faster than the PESC. As a result of
10
Fig. 11. Comparison of the optimization simulation results of PESC, TESC and
SESC. The dashed line shows the optimal aeration rate. The initial conditions
are indicated by ▽ and 3 is the final optimized operating points. Only the air
recovery and aeration rate for cell 1 are shown. The other cells have similar
plots.

the relatively aggressive control action, the SESC controller can
be seen to overshoot the optimal Jgk operating point, and it also
oscillates around the optimal point before settling. The larger step
sizes of the SESC algorithm can be seen on the grade-recovery
curve of Fig. 10, especially at the start of the optimization routine
when the simplex is still relatively large. Since the simplex be-
comes increasingly smaller after the extremum has been reached,
the SESC control input, Jgk , has very small perturbations, if any,
unlike the more noisy signals of the PESC and TESC controllers.

There is very little difference in the final optimized air re-
covery, hopper grade and recovery operating point where the
controllers settle as all the ESCs are successful in finding the peak
air recovery point. The ESCs increase the recovery up to 88.8%
here it stabilizes close to the theoretical maximum mineral
ecovery of 89% as shown in Fig. 3. This increase in hopper
ineral recovery comes at a cost of a reduced hopper grade which
rops to below 26.9%. On the grade-recovery curves, the operat-
ng point moves from the bottom right at a high grade and low
ecovery towards the top left, where the recovery is maximized at
reduced grade. This relationship is also demonstrated in Fig. 12
here the grade is steered towards the valley while the recovery

s being maximized.

.2. The disturbance rejection ability of ESC (t = 120 h to t =

40 h).

The simulation results from the second 120 h are summarized
n Fig. 13, showing how the different controllers react to the large
isturbance simulated at t = 140 h. When the disturbance takes
lace, at t = 140 h in Fig. 13, operating conditions change, and
he peak air recovery point is no longer at the same aeration rate
s before, which causes the air recovery to drop to 35%. The PESC



D.A. Wepener, J.D. le Roux and I.K. Craig Journal of Process Control 129 (2023) 103033
Fig. 12. Comparison of the optimization simulation results of PESC, TESC and
SESC projected on the 3D surface maps. The initial conditions are indicated by ▽
and 3 is the final optimized operating points. The data shown in this plot have
been filtered to remove some of the noise and show the paths more clearly. Only
the air recovery surface plot for cell 1 is shown. The other cells have similar
surface plots.

and SESC controllers react to the disturbance by optimizing the
air recovery again until the new peak air recovery operating point
has been reached. The convergence times of the ESC controllers
to reach the peak air recovery again after the disturbance are
summarized in Table 6. The TESC controller is once again faster
to react and reaches the optimum faster than the PESC controller.
The ESC controllers decrease the aeration rate to steer the process
to the peak air recovery operating point as the disturbance shifted
the operating point to the other side of the parabola peak in
Figs. 2 and 3. This is confirmed by the different shape of the
grade-recovery curve in Fig. 13 and both the hopper grade and
recovery that increases as the optimization continues. At the
new peak air recovery operating point, the recovery is lower at
84.5%, but the grade is better at 28.9%. The theoretical maximum
mineral recovery under these new operating conditions is 85%.
The SESC controller cannot adjust to the disturbance because the
simplex is already too small to provide a perturbation to steer
the plant to the new optimum. Therefore, the SESC controller
will keep operating at the sub-optimal operating point until the
controller is reinitialized with a new simplex, and the optimiza-
tion can start over.
11
Fig. 13. Comparison of the optimization simulation results of PESC, TESC and
SESC after the disturbance. The dashed line shows the optimal aeration rate. The
initial conditions are indicated by ▽, # is when the disturbance takes place, and
3 is the final optimized operating points. Only the air recovery and aeration
rate for cell 1 are shown. The other cells have similar plots.

Table 6
Convergence time of the ESC controllers after the disturbance.
Controller Convergence time

PESC 9.11 h
TESC 6.15 h
SESC ∞

7.3. The tracking ability of ESC (t = 240 h to t = 360 h).

The simulation results from the third 120 h are shown in
Figs. 14–16, showing how well the different controllers can track
a time-varying optimum which starts at t = 260 h. Both the
gradient-based ESC controllers, PESC and TESC can track the
optimal aeration rate as it changes. The SESC does not have the
ability to track the time-varying optimum and the controller does
not react to the changes. Even if the controller is reinitialized, it
would only find the optimum once and then keep that operating
point until the next re-initialization. The tracking performance of
the TESC controller, shown in Fig. 15, is superior to the tracking
performance of the PESC controller. This algorithm is ideally
suited to tracking the changes in the optimal aeration rate and the
system is kept close to the peak air recovery at all times. The PESC
also track the changes sufficiently well in the long term, however,
the controller is slower to respond to sudden changes which can
result in reduced performance.

7.4. Comparison

Comparing the three ESCs, each has some clear advantages and
disadvantages. All the controllers are successful in optimizing the
flotation circuit from a sub-optimal operating point to the peak



D.A. Wepener, J.D. le Roux and I.K. Craig Journal of Process Control 129 (2023) 103033

a

Fig. 14. PESC tracking simulation results. The dashed lines show the optimal
aeration rates.

Fig. 15. TESC tracking simulation results. The dashed lines show the optimal
aeration rates.

Fig. 16. SESC tracking simulation results. The dashed lines show the optimal
eration rates.
12
Table 7
Comparison of convergence times of the ESC controllers.
Controller Convergence time

Optimization Disturbance rejection

PESC 8.71 h 9.11 h
TESC 5.65 h 6.15 h
SESC 1.09 h ∞

air recovery operating point by adjusting only the aeration rate.
The PESC is simple to tune, but the performance can be limited
by the choice of dither signal and the dynamics of the plant.

The TESC provides more freedom to tune the controller to
improve the performance beyond the choice of dither signal.
However, the many tuning parameters can be difficult to tune
well. The TESC can also perform well with a smaller dither sig-
nal than the PESC, i.e., in this example, the chosen TESC dither
amplitude is much smaller than the PESC dither amplitude (Ta-
ble 4). The convergence times of the different controllers are
summarized in Table 7. SESC has the fastest convergence time
and is also dither-free with no perturbations visible in the output
that can reduce the plant performance at the optimum. The SESC
controller can tolerate higher noise levels because of the lack
of dependence on gradient information. The SESC controller is
unsuitable for tracking a time-varying extremum due to changes
in the operating conditions. An operator will need to reinitialize
the SESC to track a new extremum when they are aware of
significant changes in the operating conditions.

Both the PESC and TESC controllers are capable of tracking a
time-varying extremum and the controllers will keep the plant
operating at the optimal operating point continuously. TESC has
superior tracking performance and can efficiently track relatively
fast changes in the extremum. A big advantage of all the con-
trollers is that they are not dependent on a plant model to
optimize the process. The ESCs can operate effectively with only
basic knowledge of the response time and dynamics of the plant.

8. Conclusion

This paper demonstrates in simulation that the three different
ESCs investigated are all able to manipulate the aeration rate of
a flotation circuit to maximize air recovery. The ESCs move the
flotation circuit from a suboptimal operating point to the peak
air recovery operating point. The gradient-based PESC and TESC
are successful in continuously tracking the optimum, and after
a simulated disturbance, the ESCs can adapt to the time-varying
extremum and once again reaches the new peak air recovery
operating point. The SESC is able to optimize to the extremum
relatively quickly but then maintains the same operating point
and does not adapt after the introduction of the disturbance
or changes in the plant conditions. The SESC must be reinitial-
ized when the operating conditions change to keep tracking the
optimum.

In summary, when comparing the ESC controllers, PESC is
simple to tune but is quite slow, and the performance can be
limited by the choice of dither signal and the dynamics of the
plant. TESC provides more freedom for tuning to improve the
transient performance and can use a smaller dither signal but can
be more challenging to tune well. SESC is easy to tune, has the
fastest convergence time and is dither free, but is not suitable to
track a constantly varying extremum.

The ESCs take a relatively long time to converge to an opti-
mum. If the peak air recovery operating point changes quickly
because of a large disturbance, it is difficult to effectively track the
changing optimum. Phillpotts et al. [10] suggest that a controller
with a convergence time of 3 h is sufficient to track a time-
varying optimum. This is possible with the SESC controller, even if
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he current operating point is relatively far from the optimum. If
he other two controllers start close to the optimum, they should
lso be able to track a change in the optimum for relatively slow
isturbances.
The ESC controllers are model-free and do not need a plant

odel to optimize the plant. This is an important advantage since
lotation models are often very complicated and difficult to fit
o industrial data. Air recovery measurements can sometimes
e unreliable and can cause the ESCs to operate the flotation
ircuit at a different point from where true peak air recovery oc-
urs, resulting in sub-optimally performance. However, Phillpotts
t al. [10] demonstrated that air recovery measurements can
uccessfully be used for control.
The measurement noise in industrial plants, especially in the

easurement of air recovery using vision systems, can reduce
he performance of the ESC controllers. For very noisy environ-
ents, the perturbation amplitude may need to be increased

or the change in air recovery to be visible amid the noise. As
ong as a change is visible, the controller will be able to move
he process to a more optimal operating point. Air recovery
easurements will continue to improve as froth image analysis

echnology advances [24].
In future work, the convergence time of the ESC controller can

otentially be improved by setting up a fast air recovery control
oop that manipulates the aeration rate. The ESC controller can
hen be used to manipulate the setpoint of this loop. Alterna-
ively, the SESC controller can be combined with either the PESC
r TESC controller to form a hybrid controller to benefit from
he advantages of both controllers. The hybrid controller will first
se the SESC to find the initial optimum and then switch over
o either PESC or TESC to track the optimum. The controller can
witch back to a reinitialized SESC when a large disturbance or
perating change is observed. The advantages of the SESC and
ESC controllers are that they are relatively simple for an operator
o understand and maintain for implementation on an industrial
lant.
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