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Abstract 

Geometric and aerodynamic properties of various avian species allow engineers and 

biologists to gain valuable insight into the evolutionary honing of the capabilities of 

natural flyers. Very little research has been done to establish reliable 3D models and 

detailed descriptions of the aerodynamic characteristics of the Grey-headed Albatross. 

Therefore, the purpose of this work was to determine the static and passively morphed 

geometric and aerodynamic characteristics of the Grey-headed Albatross. A laser scanned 

3D point cloud of a Grey-headed Albatross wing specimen was used to obtain spanwise 

airfoils using the PARSEC method, a novel method to the field of avian wings. A single 

objective optimization study using a pseudo 2D computational fluid dynamics model was 

done on an averaged airfoil of the arm section of the Grey-headed Albatross to determine 

the maximum potential aerodynamic efficiency (lift-to-drag-ratio) at a Reynolds number 

of 2 × 105. This delivered the first reliable estimate of the passive morphing that an avian 

wing undergoes. The optimized Grey-headed Albatross airfoil decreased in camber 

creating a more streamlined body when compared to the highly cambered static airfoil. 

The optimized airfoil exhibited a maximum lift-to-drag ratio of 44 (αactual = −0.5∘,

αgeometric = −11.5∘) when compared to the baseline airfoil with a lift-to-drag ratio of 3 (α =

16∘). The increase in lift-to-drag ratio was partly due to the drastic decrease in pressure 

drag from 0.395 to 0.029 between the static and optimized airfoil, a decrease by a factor 

of 13.6. The optimized airfoil geometry was similar to that of a 3D laser scan which was 

done on a GHA wing in the presence of airflow. The increase of the aerodynamic efficiency 

is consistent with the notion that Grey-headed Albatrosses are efficient flyers. 
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1. Background 

Birds are known to fly at speeds and Mach numbers which are similar to unmanned aerial 

vehicles (UAV) of roughly the same size (Harvey and Inman, 2021). The geometrical 

features of avian wings need to be determined after which the aerodynamic characteristics 

of an avian wing can be studied using modern numerical techniques or wind tunnel 

experiments. Gliding and soaring are excellent ways for birds to travel because they use 

less energy compared to flapping flight (Tucker, 1972; Baudinette and Schmidt-Nielsen, 

1974; Sakamoto et al., 2013; Duriez et al., 2014). Albatrosses, in particular, are skilled at 

soaring for long distances, harnessing energy from the wind over the open ocean 

(Richardson, 2011; Sachs et al., 2012). Despite the need to flap their wings more often 

than previously thought (Schoombie et al., 2023), albatrosses have evolved with high 

aspect ratio wings, similar to man-made gliders (Denny, 2009; Anderson, 2012).  

Albatrosses are valuable subjects for studying fixed-wing aerodynamics, especially 

relevant for designing UAVs (unmanned aerial vehicles) at specific Reynolds numbers. 

Numerous researchers have found albatrosses to be useful for improving our 

understanding of this field (Pennycuick and Lighthill, 1982; Lazos, 2005; Henningsson 

and Hedenström, 2011; van Oorschot, Mistick and Tobalske, 2016; Harvey et al., 2019; 

Usherwood et al., 2020; Harvey and Inman, 2021). 

1.1. Present day avian wing geometry analysis 

Herzog (1968) used a sand moulding technique to investigate the wing cross sections of 

46 different species of birds and included the wandering albatross (Diomedea exulans). 

There is little to no evidence of the methods used in doing so and it is believed that this 

could be the source of the Göttingen airfoils, GOE174 and GOE176, also called the 

Albatros 5020 and Albatros 7020, respectively. The moulding process that was used may 

have also altered the shape of the wing due to the weight of the sand packed around the 

wing. The levels of uncertainty are not quantified, and reliable geometrical properties of 

bird wings remain inconclusive.  

More recently, the geometries of a seagull, merganser, teal, owl, and the steppe eagle wing 

has been investigated (Liu et al., 2006; Klän et al., 2009; Carruthers et al., 2010; Wagner 

et al., 2017). Liu et al. (2006) and Klan et al. (2009) use the Birnbaum-Glauert (BG) 

method which dates back to 1943. Klan et al. (2009) notes that the BG method led to non-

realistic airfoil configurations and unsmooth spanwise airfoil shapes. The method used by 

Carruther et al. (2010) usues a polynomial regression technique for which no 
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documentation is supplied through as few as 252 points. This would intuitively require 

large amounts of interpolation (and therfore uncertainty) between points. 

A 3D model of a Grey-headed Albatross (GHA, Thalassarche chrysostoma) wing does not 

exist, and the development thereof will increase the understanding of the geometry of 

avian wings, especially seabirds which is hypothesized to be highly efficient. 

1.2. Bird wing Aerodynamics 

The aerodynamic characteristics of gliding birds have been studied multiple times using 

different approaches (Nachtigall and Wieser, 1966; Withers, 1981; Pennycuick and 

Lighthill, 1982; Liu et al., 2006; Klän et al., 2009; Henningsson and Hedenström, 2011; 

van Oorschot, Mistick and Tobalske, 2016; Wagner et al., 2017; Harvey et al., 2019; Omar, 

Rahuma and Emhemmed, 2020; Usherwood et al., 2020; Cheney et al., 2021; Harvey and 

Inman, 2021; Boughou et al., 2022). The approach that is used affects the estimated 

aerodynamic efficiency (𝐶𝐿/𝐶𝐷, and therefore other aerodynamic characteristics) which 

can lead to different results, ultimately causing disagreement between efficiency 

estimates. Aerodynamic characteristics and efficiency estimates can be obtained by using 

numerical analyses, wind tunnel experimentation, or theoretical methods such as the sink 

speed method. The sink speed method makes use of the ratio between the horizontal 

airspeed and the vertical velocity (called the sink speed) to estimate the maximum lift-to-

drag ratio (Harvey and Inman, 2021). From the three methods, wind tunnel experiments 

on live birds were considered the most reliable method of calculating avian efficiency 

whilst the sink speed method would require sink speed estimates to be accurate to within 

0.01m/s to for reasonable results. 

Computational fluid dynamics (CFD) uses numerical analysis to solve fluid flow fields and 

has been used to estimate the aerodynamic characteristics of avian wings (Omar, Rahuma 

and Emhemmed, 2020; Boughou et al., 2022). Two-dimensional CFD analysis has been 

performed on eagle, stork, hawk and albatross airfoils by Omar, Rahuma and Emhemmed 

(2020). The origin of the airfoils used are unknown, and no clear evidence of how it was 

obtained is given. The study used an open source CFD code, and it was found that the 

chosen turbulence model could achieve agreement between the numerical modelling and 

experimental data by Selig and Guglielmo (1997). The aim of the study was to determine 

the aerodynamic efficiencies of avian airfoils in order to compare the performance thereof 

to a man-made Eppler 193 airfoil at between Re = 105 and Re = 2.7 × 105. It was 
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concluded that the Albatross airfoil had the highest aerodynamic efficiency at an angle of 

attack of 0∘.  

Pseudo two-dimensional (P2D) CFD analysis on an owl-like airfoil inspired by Liu et al. 

(2006) and Wagner et al. (2017) found that 2D Reynolds Averaged Navier-Stokes (RANS) 

can predict the unsteadiness of the aerodynamic coefficients when compared to 3D large 

eddy simulation (LES) results (Boughou et al., 2022). 

None of the studies mentioned above considers the fluid structure interaction of the 

airflow with the wing. Nachtigall and Wieser (1966) and Cheney et al. (2021) both showed 

that the airfoil of an avian wing morphs when comparing a wing with no airflow to a wing 

in the presence of airflow. In both these studies, it was found that the peak camber of an 

airfoil decreases with an increase in flight speed and angle of attack. Changing the camber 

would alter the shape of the airfoil and therefore, it would alter the aerodynamic load 

acting on the wing of the bird. Decreasing the camber would lead to a smaller aerodynamic 

body when viewed from the perspective of the air, essentially decreasing the produced 

(pressure) drag. 

Aerodynamic characteristics of an avian wing has also been investigated using wind 

tunnel experiments. Henningsson and Hedenström (2011) used a live bird (Swift, Barn 

Owl, Tawny Owl and Goshawk) in a tilted wind tunnel (Usherwood et al., 2020). The 

maximum wingspan of the swift used was 0.392m, and that of the barn owl, tawny owl, 

and goshawk were 0.86m, 0.819m, and 1.066m, respectively, where the GHA wingspan 

was 2.18m (Alerstam et al., 1993). Capturing and attempting to train a GHA to fly in a 

tilted wind-tunnel, 2000km from its origin is not feasible.  

An alternative possibility is to use a half span wing, prepared using taxidermy techniques. 

This has been done on glaucous-winged and western gulls and the maximum observed 

𝐶𝐿/𝐶𝐷 was 5 (Harvey et al., 2019). Comparing this to a full span gull wing of Lazos (2005) 

with (𝐶𝐿/𝐶𝐷)max = 22∘ proves the discrepancies between different experimental set-ups. 

More comparisons between studies prove this discrepancy between different experimental 

cases. The maximum lift-to-drag ratio of a western jackdaw wing was 68% lower compared 

to the measurement taken on a live bird in a wind tunnel (Rosén and Hedenström, 2001; 

Lees et al., 2016). So far, only a single wing measurement demonstrated greater 

aerodynamic efficiency than the entire bird. A half-span common swift wing had a 

(𝐶𝐿/𝐶𝐷)max of 17, which was 34% higher than the live wind tunnel measurement (Withers, 

1981; Henningsson and Hedenström, 2011). Nevertheless, a separate study conducted on 
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full-span common swift wings estimated a (𝐶𝐿/𝐶𝐷)max of 10.4, indicating an 18% decrease 

compared to the live wind tunnel measurement (Lentink et al., 2007; Henningsson and 

Hedenström, 2011). These inconsistencies might be attributed to wing preparation 

techniques or variations in experimental methodology. Van Oorschot et al. (2016) studied 

13 species of falcon in a similar way and the highest lift-to-drag ratio obtained was similar 

to that of Harvey et al. (2019). 

Finally, the sink speed method requires observing the horizontal and vertical velocity 

components of the bird in gliding flight in its natural habitat. The aerodynamic efficiency 

is then calculated as the ratio between the horizontal and vertical velocities when the 

glide angle is sufficiently small. All these velocity measurements require that the 

measurements are adjusted for the local wind conditions that the bird encounters. This 

theoretical method has been used by Pennycuick and Lighthill (1982) to estimate the 

maximum aerodynamic efficiency of the GHA and a lift-to-drag ratio of 22 was determined 

for the GHA. 

1.3. Research Gap 

A 3D geometrical model of the GHA (or birds of similar size and clade) does not exist to 

the best of the researcher’s knowledge. There is also no evidence of the aerodynamic 

characteristics (𝐶𝐿 , 𝐶𝐷, and 𝐶𝐿/𝐶𝐷, at different α) of the GHA. Furthermore, the process in 

which a mathematical model of an avian wing is obtained is outdated, using techniques 

predating 1943. Modern methods of quantifying airfoils exist, and these methods can be 

applied to avian airfoils. In addition, the passive morphing of a GHA wing when exposed 

to airflow has not been studied previously. 

1.4. Research Objectives 

This main aim of this research is to obtain the geometry of the GHA wing in the presence 

of airflow. A baseline static airfoil in a parameterized domain is required to obtain a 

passively morphed airfoil. This would enable the optimization of the airfoil to obtain a 

reasonable first estimate of the geometric and aerodynamic characteristics of the GHA 

wing. The following questions are investigated in this work: 

• Can the quantification method of the geometry of avian wings be improved on and 

is there a novel way to do so which enables the creation of more accurate 3D 

models? 
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• Can a 3D model of the GHA wing be developed? Although this study is limited to 

P2D CFD, the development and availability of a 3D model would allow future 

researchers to do CFD analysis on a 3D GHA wing. Furthermore, the development 

of a 3D model could enable the manufacturing of a wing for use in wind tunnels to 

validate CFD methods or obtain further aerodynamic results. 

• If a 3D model is developed using 3D scans of wings subject to zero velocity, how 

can the geometry of a wing subject to airflow be obtained? This is an obvious 

downfall of using 3D scans from static wings, and it is known that avian wings 

undergo geometrical changes due to fluid structure interaction (Nachtigall and 

Wieser, 1966; Ruck and Oertel, 2010; Deshpande and Modani, 2019), but 

quantified deformation results in the presence of airflow of an actual avian wing 

is yet to be studied. 

Following the aerodynamic analyses of the developed GHA wing and airfoils, the specific 

quantitative questions to be answered are: 

• What is the maximum aerodynamic efficiency of the GHA at the flight conditions 

in which it would normally operate? 

• What is the lift and drag polars of a representative GHA airfoil? 

The qualitative questions to be answered are: 

• Can an aerodynamic optimization study aiming to maximize the aerodynamic 

efficiency of an avian wing estimate the morphed geometry of that wing when 

subject to airflow? 

1.5. Scope of work 

The study will not aim to resolve the geometry of the tip of the GHA wing. This is due to 

the thin nature of this region and the inaccuracy involved in extracting the geometry from 

this region.  

This study will be limited to the use of CFD for flow analysis and will not include wind 

tunnel experiments. The CFD will be limited to P2D to speed up the simulation time 

whilst still obtaining results that can capture the 3D flow structures expected in low 

Reynolds number flows. P2D is used rather than 2D because of the chosen transition 

model which is not suited for 2D domains. 3D CFD is not used due to the added complexity 

of the wing geometry itself, and the further complication of the optimization process, 

which aims to obtain an in-flight configuration of the wing/airfoil. P2D therefore serves 
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as the best trade-off between accuracy and complexity. Surface roughness, porosity, 

temperature effects, and the fluid structure interaction of the GHA wing will not be 

accounted for due to the increase in complexity. Finally, the aerodynamic effect of the 

body and tail will not be included. 

1.6. Structure of the dissertation  

Section 2 summarizes relevant literature. The GHA geometry and the flight dynamics of 

birds are discussed. This is followed by an introduction on the chosen airfoil 

parameterization method. The aerodynamics of the expected flow in which GHA operate 

are introduced and the numerical modelling thereof is investigated. This section ends with 

a discussion on the aerodynamic optimization of aerodynamic bodies. 

Section 3 starts with the validation of the PARSEC method as a suitable method to 

quantify airfoils which exhibit outliers. Since the scanned GHA wing will exhibit outliers, 

it is necessary to test whether the PARSEC method can replicate airfoils that contain 

outliers. Afterwards the process which enables the conversion of a point cloud to a 3D 

model of the GHA wing is presented.  

Section 4 verifies and validates the CFD approach to be used in the rest of the study. This 

is done using Richardson extrapolation to ensure that the solution is independent of the 

computational grid used (ASME, 2008). Next, it is compared to a well-known previously 

documented study which will contain similar flow fields and flow phenomena. A meshing 

strategy is developed which will be able to automatically adapt to any airfoil generated 

using the PARSEC method. Results obtained using this meshing strategy for a new airfoil 

can be compared to documented results of the same airfoil to validate the new meshing 

strategy. 

Section 5 shows the setup of a parametric model of the GHA airfoil which will enable 

automatic geometry updating during the optimization study. The baseline case of the arm 

airfoil is quantified using CFD. An optimization study is performed on the parametric 

model of the GHA arm airfoil and the geometric and aerodynamic results are presented 

and discussed in comparison to the baseline case.   

Section 6 concludes the dissertation and makes recommendations for future research in 

the field of the geometry of avian wings and its aerodynamic characteristics. 

.
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2. Literature Review 

2.1. The Grey-headed Albatross 

The physical properties of the Grey-headed Albatross (GHA) are summarized in Table 1. 

Table 1: A summary of the physical properties of the Grey-headed Albatross 

 Catry et al. (2004) Brooke (2004) Alerstam et al. (1993) 

Mass (kg) 3.05 2.7-4.4 (mean = 3.7) 3.79 

Wingspan (m)  2.2 2.18 

Aspect Ratio   13.5 

Ground speed (m/s)   11.0-15.5 (mean = 13.2, sd = 1.5) 

Air speed (m/s)   11.3-15.1 (mean = 13.0, sd = 1.2) 

The anatomy of a bird wing, shown in Figure 1, is similar to of other four-limbed animals. 

The main skeletal features are the humerus which attaches to the shoulder inside the 

body of the bird, and the radius and ulna. These three bones are what is referred to as the 

arm section, shown in Figure 1a. When thin slices of the arm are “removed”, it has 

resembling features of airfoils. The next section is the hand section which consists of the 

manus. The hand section has 10 primary feathers (remiges), and the arm section can have 

in the region of 20 secondary feathers. From Figure 1b the airfoil sections can be seen to 

change in the spanwise direction. Going from the root to the tip, the chord length changes, 

and the thickness and camber decrease (changing the thickness to chord length ratio and 

camber to chord length ratio). The profile at the tip of the wing is seen to be made up of 

just a few feathers (König et al., 2016). 

 

(a) 

 

(b) 

Figure 1: The anatomy of an avian wing (König et al., 2016). 

2.2. Previous work on avian wing geometries. 

Liu et al. (2006) reconstructed 3D models of avian wings (seagull, merganser, teal and 

owl) using 3D scanning and obtaining a point cloud of each wing. The point cloud was 

then sliced into 2D sections at various spanwise locations to form airfoils consisting of 

many randomly ordered points. The data points that form the 2D airfoils were noisy and 
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had to be postprocessed to recreate an avian wing. Each airfoil was then rotated, 

translated, and transformed such that the local airfoil’s leading edge was located at a 

(𝑥, 𝑧) location of (0,0) and the trailing edge was located at (1,0) so that the angle between 

the leading and trailing edge is exactly 0∘, i.e., horizontal chord and the chord length is 1, 

as shown in Figure 2. 

 

Figure 2: Eppler 387 (E387) airfoil used as an example to illustrate the requirements of a postprocessed 

airfoil. 

Next, each airfoil’s camber line was determined by using a three-term approximation 

(Helmbold and Keune, 1943) of the Birnbaum-Glauert camber line equation (Mair, 1961) 

shown in equation (1), for which the coefficients, 𝑆𝑛  were solved using a least squares 

approach, 

𝑧𝑐

𝑐
=

𝑧𝑐, max

𝑐
η(1 − η) ∑ 𝑆𝑛(2η − 1)𝑛−1

3

𝑛=1

(1) 

where 𝜂 =  𝑥/𝑐 is the normalized chordwise coordinate and 𝑧𝑐,max is the maximum camber 

coordinate and 𝑐 is the local wing chord. The thickness distribution was then calculated 

using a four-term approximation of the Birnbaum-Glauert thickness (Mair, 1961) shown 

in equation (2), 

𝑧𝑡

𝑐
=

𝑧𝑡, max

𝑐
∑ 𝐴𝑛(η𝑛+1 − √η)

4

𝑛=1

(2) 

where 𝑧𝑡, max  is the maximum thickness coordinate so that the maximum thickness is 

2𝑧𝑐, max . The constants, 𝐴𝑛, were then solved using a least squares approach. The upper 

and lower surfaces of an individual airfoil was then expressed as the addition and 

subtraction of the camber line with the thickness as shown in equations (3a) and (3b) 

respectively. 

𝑧upper = 𝑧𝑐 + 𝑧𝑡 (3𝑎) 
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𝑧lower = 𝑧𝑐 − 𝑧𝑡 (3𝑏) 

The airfoil slices for which the camber and thickness distributions were calculated were 

joined using information about the change in twist as a function of the wingspan. An 

example of the reconstructed seagull wing can be seen in Figure 3a. 

The same method was followed by Klän et al. (2009), and it was reported that this 

approach resulted in non-realistic configurations when applied to owl wings due to 

varying coefficients of 𝑆𝑛 and 𝐴𝑛  along the span of the wing. This caused discontinuous 

changes in the geometry of the wing in the spanwise direction. Furthermore, 

discrepancies of the maximum camber and maximum thickness of adjacent airfoils were 

very high. This meant that a reconstructed wing would not have a smooth profile in the 

spanwise direction. It was solved by using a least square fit on the coefficients for the 

camber line, 𝑆𝑛, and thickness distribution, 𝐴𝑛, in the spanwise direction which yielded a 

smooth wing surface. An example of the reconstructed wing can be seen in Figure 3b. 

Carruthers et al. (2010) used a different method, for which no documentation is supplied. 

In their method, a spatially averaged surface was constructed using polynomial 

regression techniques to fit a smooth surface through as few as 252 points and doing so 

only for the arm section of the wing. The curved leading edge and trailing edge sections 

(planform) was approximated using a quadratic polynomial. The surface and planform 

curves were then used to model the 𝑧 coordinate of all the points. A reconstructed wing 

using this method can be seen in Figure 3c. 

Waldrop et al. (2020) and Rader et al. (2020) used principal component analysis (PCA) to 

align a 3D point cloud in an (𝑥, 𝑦, 𝑧) 3D space. From this, the spanwise length of the wing 

was calculated. The point cloud was then sectioned into airfoils similar to Liu et al. (2006) 

and Klän et al. (2009). Following this, the only metrics extracted was the chord length 

(𝑥max − 𝑥min) and the maximum section thickness (𝑧max − 𝑧min). These values were then 

used, and the already existing wandering albatross airfoil (Ananda and Selig, 2018), was 

rescaled to match the chord length and thickness of the scanned wing. The albatross 

airfoil used is however not mentioned in Ananda and Selig (2018) but the airfoil shapes 

are said to be “bird-like”. The scaling process was then done to the remaining airfoils in 

the spanwise direction. The reconstructed wing is shown in Figure 3d. This study was not 

necessarily an aerodynamic investigation into bird wings but rather a morphological 

study containing 126 bird types. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3: (a) Seagull wing reconstructed by Liu et al. (2006) (b) Owl wing reconstructed by Klän et al. (2009) 

(c) Steppe eagle wing reconstructed by Carruthers et al. (2010) (d) Unknown wing reconstructed by Waldrop 

et al. (2020) and Rader et al. (2020). 

2.3. Flight performance measurements of avian wings 

2.3.1. Biological and observed evidence 

Gliding and soaring are highly effective modes of transport for birds, and it requires less 

energy than flapping flight. Baudinette and Schmidt-Nielsen (1974) investigated oxygen 

consumption of birds in wind tunnels. The oxygen consumption of birds tended to increase 

when birds required flapping flight when compared to gliding flight. The metabolic rate 

of a laughing gull during gliding flight and at rest were found to be equivalent (Tucker, 

1972). 

Sakamoto et al. (2013) and Duriez et al. (2014) investigated the heart rates of black-

browed albatrosses and griffon vultures respectively. It was found that heart rates would 

increase during the take-off and landing phases of flight. After a certain period of gliding 

flight, heart rates would return to baseline levels. The former showed that flapping flight 

only contributes to 4.6% of the time flying for the black-browed albatross and only 

accounted for 13.3% of the total energy use during cruising flight. The authors’ conclusion 

was that albatrosses achieve energy efficient flight by greatly reducing the time spent 

flapping. 
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Albatrosses have been shown to soar for thousands of kilometres exchanging energy from 

the velocity gradient above the ocean for potential energy, known as dynamic soaring 

(Richardson, 2011; Sachs et al., 2012). 

2.3.2. Experimental estimations of avian flight efficiencies 

The aerodynamic efficiencies of gliding birds have been studied to compare it to those of 

man-made unmanned aerial vehicles (UAVs), with many sources using bird wings as 

inspiration for efficient UAVs (Withers, 1981, Pennycuick and Lighthill, 1982; Lazos, 

2005; Henningsson and Hedenström, 2011; van Oorschot et al., 2016; Harvey et al., 2019; 

Usherwood et al., 2020; Harvey and Inman, 2021). 

Withers (1981) investigated the aerodynamic characteristics of bird wings at Reynolds 

numbers of 1.5 × 104. Morphological features like aspect ratio, camber, nose radius, and 

position of maximum thickness were included. The disparities in aerodynamic properties 

among bird, insect, and airplane wings was primarily attributed to their varying Reynolds 

numbers. Bird wings, which operate at lower Reynolds numbers compared to aerofoils, 

exhibit higher minimum drag coefficients (0.03-0.13), lower maximum lift coefficients 

(0.8-1.2), and lower maximum lift-to-drag ratios (3-17). There was a clear trade-off 

between lift and drag performance. Wings with low drag generally had lower maximum 

lift coefficients, while those with high maximum lift coefficients tended to have higher 

drag coefficients. The flow pattern over bird wings, as observed through pressure-

distribution data, aligned with aerodynamic theory for airplane wings at low Reynolds 

numbers, corroborating the observed lift and drag coefficients. The highest performing 

bird in this study was the swift with (𝐶𝐿/𝐶𝐷)max = 17. 

Lazos (2005) studied biologically inspired fixed-wing configurations. In this research it 

was stated that natural flyers were expected to have been optimized to provide enhanced 

efficiency. He investigated 4 different wing configurations using an SD7032 airfoil in a 

series of wind tunnel tests. Results showed two of the biologically inspired wings, one 

based on a combination of a shark pectoral and dorsal fin and the other, based on a seagull 

in a high-speed glide exhibit maximum lift-to-drag ratios of 22.43 and 19.88, respectively. 

A review by Harvey and Inman (2021) on the aerodynamic efficiency of gliding birds 

highlighted the differences in efficiency estimation of gliding birds. In the review, 

theoretical and experimental methods were compared. It was concluded that the efficiency 

estimates which use the sinking speed, 𝑈𝑠, of gliding birds need to be accurate to the order 

of 0.01ms−1, which is difficult to achieve. The maximum efficiency (or glide ratio) of the 
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GHA was estimated by Pennycuick and Lighthill (1982) as 22 using the sink speed method 

mentioned earlier and the speed at which this was achieved was 14ms−1. 

Efficiency estimations using live birds in controlled environments deliver the most 

reliable minimum estimate of avian gliding efficiency but is highlighted as a difficult task. 

Henningsson and Hedenström (2011) used particle image velocimetry (PIV) to sample the 

wake of a gliding common swift in a tilted wind tunnel. The maximum reported lift-to-

drag ratio was ±12. Strong emphasis was placed on the aerodynamic effect of the tail of 

the bird. This was also studied on a gliding barn owl, tawny owl and goshawk, reporting 

coefficient of lift (𝐶𝐿) values of 0.69, 1.06, 1.01 respectively. These values were also 

computed using PIV (Usherwood et al., 2020). 

Another method of estimating the efficiency of bird wings is to use prepared specimens. 

Prepared specimens include full birds or half span wings prepared by taxidermy 

techniques or manufactured replicas. Using these kinds of specimens allow for direct force 

measurement in wind tunnels whilst eliminating behavioural considerations. Knowing 

that birds are active gliders, these test specimens may not accurately replicate the bird’s 

true gliding posture (Harvey and Inman, 2021). 

Harvey et al. (2019) extensively investigated the aerodynamic pitch stability and 

aerodynamic performance of different wing configurations due to different skeletal 

positions in two distinct types of gulls. Single cadaver wings were placed in wind tunnels 

and were tested at Reynolds numbers between 9.2 × 104 and 1.79 × 105 . Testing included 

pitch angles between −50∘ and 50∘ and aerodynamic forces were measured. For the 

different wing configurations, the highest lift-to-drag ratio was found to be ±5. 

Van Oorschot et al., (2016) performed similar wind tunnel tests on single wings of 13 

species of falcon. The average lift-to-drag ratio for an extended wing glide and swept wing 

glide was the highest at ±4.5 when compared to those for extended and swept flapping. 

Maximum 𝐶𝐿  values for the four different configurations were in the angle of attack range 

of 17.5∘ to 45∘. 

2.4. Relevant aerodynamic considerations 

The Reynolds number of the flow over a wing gives a quantification of the ratio between 

the inertial forces to the viscous forces. The Reynolds number is a dimensionless quantity 

used to categorize fluid flow and is given as, 
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Re =
ρ𝑉𝑙

μ
 (4) 

where ρ is the density of the freestream air, 𝑉 is the freestream velocity, 𝑙 is a 

characteristic length (chord length, 𝑐, when applicable to wings) and μ is the dynamic 

viscosity of the fluid.  

The following descriptions of the force coefficients are used in this work: 

𝐶𝐿 =
𝐿

1
2ρ𝑉2𝑆

(5) 

and 

𝐶𝐷 =
𝐷

1
2

𝜌𝑉2𝑆
(6) 

where 𝐿 and 𝐷 are the lift and drag forces respectively, ρ is the freestream density, and 𝑆 

is the projected area of the wing onto a horizontal plane. The coefficient of pressure is 

calculated as, 

𝐶𝑃 =
𝑃 − 𝑃∞

1
2 ρ𝑉2

(7) 

where 𝑃 and 𝑃∞ denote the local pressure on the wing/airfoil and the freestream pressure 

respectively. This dimensionless quantity gives an indication of the pressure distribution 

and gradients on the surface of the wing. The skin friction coefficient is given as, 

𝐶𝐹 =
τ𝑤

1
2 ρ𝑉2

(8)
 

where 𝜏 is the wall shear stress on the surface of the wing. The skin friction coefficient 

gives an indication on regions on the wing/airfoil which might experience separation and 

reverse flow. 

Gliding albatross have been shown to operate at Reynolds numbers of 2 × 105 (Harvey 

and Inman, 2021). The Reynolds number given above will further in the text be referred 

to low Reynolds numbers. Low Reynolds number flows over wings are difficult to model 

and measure using experimental or numerical methods and results are sensitive to 

geometry, environment, and numerical modelling techniques (Tank et al., 2017). This is 

partly because low Reynolds numbers typically introduce flow features which are not 

present at fully developed turbulent flow.  
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Batill and Mueller (1980) experimentally showed that at low Reynolds numbers, laminar 

separation bubbles (LSB), shown in Figure 4, might occur which could introduce non-

symmetric 𝐶𝐿 . The formation of a laminar separation bubble is caused by the boundary 

layer over the suction surface of the airfoil that remains laminar into the adverse pressure 

gradient region. The laminar boundary layer cannot develop through the adverse pressure 

gradient and would cause the boundary layer to separate from the surface of the airfoil. 

This causes an increase in drag and a decrease in lift which leads to a sudden decrease in 

𝐶𝐿/𝐶𝐷. If the separation location is early enough, the separated boundary layer could 

transition to a turbulent state and reattach to the airfoil surface due to increased mixing 

and momentum transfer from the outer flow toward the airfoil. When this reattachment 

takes place, a recirculating region called a LSB forms. 

 

Figure 4: 2D Laminar Separation Bubble formation (Horton, 1968). 

 

2.5. Numerical modelling of low Reynolds number flow over airfoils 

The shear stress transport (SST) 𝑘 − ω turbulence model is commonly used for low 

Reynolds number flows in which separation and LSBs are expected (Babajee and Arts, 

2013; Choudhry et al., 2015; Collison et al., 2017; Carreño Ruiz and D’Ambrosio, 2022). 

The specific SST 𝑘 − ω transition model used is the γ − Reθ model, developed by Menter 

et al. (2006) and Langtry et al. (2006). This transition model is specifically formulated for 

unstructured CFD codes and provides an approach to predict the onset of transition in a 

turbulent boundary layer.  

Most recently, Carreño Ruiz and D’Ambrosio (2022) investigated the γ − Reθ transition 

model for airfoils operating in the low Reynolds number regime. The model was validated 

against existing experimental data and high fidelity CFD simulations using direct 
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numerical simulation (DNS) and LES. A parabolic domain extending 1000 chord lengths 

to the outlet were used with a polyhedral mesh which sped up simulation convergence 

because information spreading was enhanced due to more neighbouring cells when 

compared to quadrilateral or triangular grids. Two-dimensional CFD was performed on 

three low Reynolds number airfoils (E387, SD7003, and Ishii at Re = 2.3 × 104 to Re =

2 × 105), comparing the aerodynamic coefficients of lift and drag and separation bubble 

lengths with experimental and numerical results available in the literature.  

For this transition model, a 𝑦+ value of less than 1 is required to properly resolve the wall 

region according to Langtry et al. (2006). This study concluded that the γ − Reθ transition 

model reproduced the transition behaviour in 2D airfoils. It was further found that the 

lift and drag coefficients compared to experimental data increased with an increase in 

Reynolds number, but prematurely predicted stall. There were also limitations regarding 

2D simulations when comparing polars of the E387 airfoil to existing data, which showed 

that flow around the airfoil had 3D structures and that it affected the pressure 

distribution on the body. These types of structures could not be reproduced by 2D 

domains. 

Chen et al. (2020) investigated the aerodynamic performance and transition prediction 

using the 𝑘 –  ω turbulence model using the γ − Reθ transition model and concluded that 

CFD results using this method predicted lift within 1% and drag within 3% of 

experimental results on a FX 63-137 airfoil at Re = 2 × 105. This was compared to the 

Spalart-Almaras (S-A) turbulence model which was found to overpredict the drag by 34%. 

The domain used was 2D and extended 40 chord lengths upstream and 60 chord lengths 

downstream. Again, it is noted that a 𝑦+ < 1 was crucial in seeking results that correctly 

predict the transition and aerodynamic coefficients. Results showed oscillatory behaviour 

in the lift and drag coefficients as the simulation progressed. Oscillations in these 

coefficients were seen to be higher in magnitude as the angle of attack increased. 

Counsil and Goni Boulama (2012) validated the use of unsteady RANS (URANS) in 

conjunction with the 𝑘 − ω turbulence model using the γ − Reθ transition model over a 

pseudo 2D NACA0012 airfoil. The mesh used was bullet shaped, extending 20 chord 

lengths to the outlet and using a 20 chord length inlet radius. Results were compared to 

DNS results from Shan et al. (2005) and it was found that instantaneous and mean flow 

features were satisfactorily similar. 
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Choudhry et al. (2015) performed 2D CFD on a thick, symmetric NACA0021 airfoil at 

Re = 1.2 × 105 to investigate the effects of long separation bubbles. An O-type mesh with 

the airfoil in the centre using a radius of 20 chord lengths was used. The quadrilateral 

mesh made use of 30 boundary layer (prism layer) cells, and it was ensured that 𝑦+ ≤ 1. 

It was found the γ − Reθ model underpredicted the lift and drag coefficients when 

compared to experimental results by Hansen et al. (2011) at the same Reynolds number. 

The study compared the γ − Reθ model to the laminar kinetic energy (𝑘 − 𝑘L −  ω) model 

(Walters and Cokljat, 2008), which is not available in STAR-CCM+ and showed that the 

latter was better suited to thick airfoils which exhibited long separation bubbles. 

Collison et al. (2017) investigated the E387 airfoil in 2D and P2D using the γ − Reθ 

transition model at Re = 2 × 105. The results were compared to existing experimental data 

(McGhee and Walker, 1989) and the laminar separation and turbulent reattachment 

locations were predicted within 4% and 6%. The domains were bullet shaped, using an 

inlet radius and outlet length of 5 chord lengths. Thirty and fifty prism layers were used 

for the 2D and P2D simulations, respectively. The P2D simulations used 220 nodes on the 

airfoil. 

To reasonably resolve fluid domains at low Reynolds numbers, there are some key 

considerations based on the literature to consider: 

▪ Domain shape of the computational mesh: The bullet shaped mesh is commonly 

used. 

▪ Two- or three-dimensional models: P2D analyses (or 3D analyses) is often required 

since the flow exhibits 3D structures in low Reynolds number cases. 

▪ Selection of the turbulence and transition models: The 𝑘 − ω turbulence model 

paired with the γ − Reθ transition model is commonly used.  

▪ Steady or unsteady solvers: Steady RANS solvers can lead to oscillatory results 

compared to stable results when using URANS. Time averaged oscillatory results 

can relate to unsteady results without the time penalty of resolving a full unsteady 

simulation. 

2.6. Automated mesh refinement in CFD. 

In the current research, it is expected that many different airfoil geometries will be 

generated in the CFD. Automated adaptive meshing is used to simplify the application of 

different meshes for different geometries. The commercial CFD software used in this 

research (Siemens Simcenter STAR-CCM+) allows for automation of mesh refinement, 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

17 

 

but the criteria which decides whether cells are to be refined or coarsened is programmed 

by the user. This important choice is highly dependent on the type of flow expected. 

Carreño Ruiz and D’Ambrosio (2022) used adaptive mesh refinement based on a linear 

combination of the magnitudes of the pressure and velocity gradients on a logarithmic 

scale. The weights of the linear combinations were dependent on the type of flow and the 

Reynolds number. Therefore, the weights of the linear combination and the lower and 

upper thresholds had to be manually tuned to get results that were sufficient.  

Michal et al. (2020) compared different adaptive mesh criteria using different flow 

adaptive mesh refinement methods on a multi-element airfoil at Re = 5 × 106. One of the 

methods used a weighted combination of the first and second spatial derivatives of the 

Mach number (which is related to the velocity magnitude). The second method that was 

used controlled the 𝐿2-norm of a chosen scalar field developed by Loseille et al. (2007). 

This method was based on the multiplication of a Hessian of a scalar field and the 

determinant of the same Hessian. The Hessian, which is a square matrix of second order 

spatial derivatives, quantifies the curvature of a scalar field. The 𝐿2-norm, therefore, gives 

the magnitude of the second order derivatives of a scalar field at a certain location. This 

method, again, made use of the Mach number as the scalar field. From this work it is 

noted that the scalar fields used in both applications can be changed to be any scalar field 

and it is not limited to the use of only the Mach number. 

Wackers et al. (2017) used a criterion based on the square root of the absolute value (𝐿2-

norm) of the pressure field multiplied by the cell size, squared. The investigation was 

extended to compare this criterion to one which uses the maximum of 4 flow variables 

(pressure and the three components of velocity). Results showed little refinement when 

only using the pressure-based refinement criteria. The refinement criteria making use of 

the 4 flow variables, however, showed good refinement in the wake regions. 

The STAR-CCM+ documentation (Siemens Digital Industries Software, 2022a) proposes 

a method for smoothly varying scalar field solutions, such as for applications in 

aerodynamics, to make use of the Laplacian of a representative solution variable. 

From the literature above, two strategies were used. The difference being the usage of 

either first derivatives or second derivatives. First derivative adaption criteria were used 

by Carreño Ruiz and D’Ambrosio (2022) and Michal et al. (2020) (the first criteria 

mentioned in their research). The scalars used were either velocity based only or a 

combination of velocity and pressure, giving the idea of total pressure.  
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Second derivative criteria such as the 𝐿2-norm of a Hessian matrix of a scalar variable is 

the same as the Laplacian of a scalar variable. The Laplacian of the total pressure 

mentioned in the STAR-CCM+ user guide is similar to the method introduced by Carreño 

Ruiz and D’Ambrosio (2022), using both velocity and pressure gradients, except that the 

former uses a first derivative approach. The second method in the research of Michal et 

al. (2020) and developed by Loseille et al. (2007) is a second derivative method based on 

the Mach number, but it can be substituted for any flow field variable. Wackers et al. 

(2017) also used a second derivative approach but did so independently between 4 flow 

variables. The Laplacian captures both first and second derivative effects, and the total 

pressure captures the pressure and velocity fields. Therefore, this will be the choice for 

the refinement criteria going forward. 

2.7. Aerodynamic optimization of parameterized wings to capture dynamic 

morphing of wings 

An avian wing subject to airflow undergoes deformation due to fluid structure interaction 

which may lead to changes in the associated aerodynamic forces (Nachtigall and Wieser, 

1966; Ruck and Oertel, 2010; Deshpande and Modani, 2019). If the geometry used in the 

CFD analysis is obtained from a wing scan subject to zero velocity, the expected passive 

morphing taking place in a live bird will not be captured. 

It is hypothesized that the geometry of the wing will morph to a shape that maximizes 

the aerodynamic efficiency, 𝐶𝐿/𝐶𝐷. Norberg (1990, 2006) indicated that birds aim to 

maximize their lift and minimize their drag, so in a sense, maximizing their lift to drag 

ratio. Van Oorschot et al. (2016) states that “wing morphing appears to be ubiquitous 

among flying birds, and it is generally hypothesized that such morphing optimizes 

aerodynamic performance”. The estimation of the geometry of an avian wing in the 

presence of airflow can therefore be seen as an optimization problem. Starting from a 

baseline case (no airflow) and allowing the parameters which define the airfoil geometry 

to be changed to achieve the highest aerodynamic efficiency could therefore deliver the 

geometry of a GHA airfoil in flight or at least a realistic estimation thereof. 

Two optimization methods are available in STAR-CCM+. The first is adjoint optimization 

and the second, a multiple search strategy optimizer using the SHERPA algorithm 

(defined below). With the adjoint method, the objective function is a function of the flow 

field variables, 𝑤, and the physical shape of the discretized domain, 𝑆. The optimization 

yields a sensitivity, δ𝑆, which transforms the shape of the discretized domain to minimize 
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or maximize the objective function. Note that minimizing the objective function, posed as 

𝑓(𝑥) is the same as maximizing an objective function posed as −𝑓(𝑥). The disadvantage 

of the adjoint method is the fact that it is not compatible with large geometrical changes. 

Since large geometrical changes are expected when an avian airfoil is subject to airflow, 

this method will not be used. 

The SHERPA (Simultaneous Hybrid Exploration that is Robust, Progressive, and 

Adaptive) algorithm, employs multiple search strategies at once and adapts to the 

problem as it “learns” about the design space. The advantages of the SHERPA algorithm 

are that the number of different search methods used can range between 2 and 10 at once. 

Traditional optimization algorithms require that tuning parameters (not to be confused 

with the design parameters) be chosen manually. SHERPA modifies these tuning 

parameters automatically as it learns more about the design space and better chooses the 

extent to which the different search methods are used (Siemens Digital Industries 

Software, 2022b). 

Beneke (2018) used the SHERPA algorithm in STAR-CCM+ to optimize the nose and tail 

geometry of a high-speed train for drag minimization and crosswind stability. In this work 

the Ahmed body is optimized to minimize the drag and it served as a benchmark since the 

optimized inclination angle of the body is known to be a certain angle. The range of angles 

that could be used varied from 1∘ to 35∘ and the known optimal angle of 9∘ could be found 

using the SHERPA algorithm within 2.5% and 18.7% using the Reynolds stress 

turbulence model and the 𝑘 − ω turbulence model respectively. As few as 40 designs were 

completed using each turbulence model. 
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3. The Geometry of the Grey-headed Albatross 

Converting an airfoil from a list of coordinates in 𝑥 and 𝑧 (which consists of hundreds of 

points) to a domain which uses but a few parameters need to be investigated. The reason 

for introducing an airfoil parameterization method is twofold. The first reason for doing 

this is to smooth the noisy airfoils that are obtained using 3D scanning (see Figure 7). The 

second reason is to produce an airfoil that is optimizable. Recalling the goal of this 

research, which is to obtain an in-flight geometry of a GHA airfoil, a parameterized 

version of the airfoil can be optimized. 

3.1. Proposing a new airfoil parameterization method for avian wings. 

The PARSEC parameterization method (Sobieczky, 1997, 1999) shown in Figure 5 and 

described in Table 2 is a well-established parameterization method which has not been 

applied to the investigation of avian airfoils. 

 

Figure 5: An airfoil showing the 12 PARSEC parameters and their geometrical meaning [Reproduced from 

Sobieczky (1997, 1999)]. 

Table 2: The 12 PARSEC Parameters 

Parameter Definition 

𝑟le, lo Lower leading edge radius 

𝑟le, up Upper leading edge radius 

𝑋lo Lower crest horizontal coordinate 
𝑋up Upper crest horizontal coordinate 

𝑍lo Lower crest vertical coordinate 
𝑍up Upper crest vertical coordinate 

𝑍xx, lo Lower crest curvature (second derivative) 

𝑍xx, up Upper crest curvature (second derivative) 

αte Trailing edge direction 
βte Trailing edge wedge angle 
𝑍te Trailing edge vertical offset 
Δ𝑍te Trailing edge thickness 
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The parameterization method makes use of 12 parameters and effectively controls the 

important aerodynamic and geometric features of an airfoil instead of arbitrary 

coefficients like that obtained by the Birnbaum-Glauert airfoils. The benefit in using the 

PARSEC method is the ability to have non-zero trailing edge thicknesses and non-zero 

trailing edge vertical offsets, which are not possible using the Birnbaum-Glauert airfoils.  

The PARSEC method described is slightly modified to allow different upper and lower 

leading edge radii, similar to that done by Hájek (2011), Arias-Montano et al. (2012), Jung 

et al. (2016) and Akram and Kim (2021). This is later proven to be essential when 

considering airfoils with sharp leading edges. The PARSEC method is a widely used and 

more flexible approach towards developing airfoil profiles (Akram and Kim, 2021; Raul 

and Leifsson, 2021) compared to the Birnbaum-Glauert approach.  

Using the 12 parameters shown in Figure 5 and Table 2 ,the coefficients, 𝑎𝑛 and 𝑏𝑛 where 

𝑛 =  1,2, … ,6 is solved from the following two equations. 

 

(9) 

 

 

(10) 
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With the 12 coefficients (𝑎𝑛 and 𝑏𝑛) known, the upper and lower surfaces are calculated 

given a horizontal distribution 𝑥 which is a set of points between 0 and 1 using equations 

(11) and (12). 

𝑍upper = ∑ 𝑎𝑛

6

𝑛=1

𝑥𝑛−
1
2 (11) 

𝑍lower = ∑ 𝑏𝑛

6

𝑛=1

𝑥𝑛−
1
2 (12) 

Classically, the PARSEC method starts with 12 parameters and yields an airfoil. In this 

study, the airfoil is known, and the PARSEC parameters are extracted, essentially 

reversing the order in which it is commonly used. 

3.2. Validation of the PARSEC Method 

The PARSEC parameters are the parameters to be determined, given a list of coordinates 

which define an airfoil. A simple flow diagram is given in Figure 6 which describes the 

steps followed in the next paragraph. 

Consider an airfoil represented in 2D space by 𝑥 and 𝑧 coordinates. The calculation of the 

PARSEC parameters is an optimization problem. An airfoil’s 𝑧 coordinates, is cast into 

vector form 𝒛 = {𝑧1, 𝑧2, … , 𝑧𝑛}𝑇 where 𝑛 is the number of points. The design vector is the 

PARSEC parameters, given as 𝑷 = {𝑟le, lo, 𝑟le, up, … , Δ𝑍te}
𝑇 . The initial guess for the 

PARSEC parameters is denoted as 𝑷𝟎 and the vector which minimizes the objective 

function (i.e., the optimal vector) is denoted by 𝑷∗. The objective function is defined as the 

mean squared error (MSE) of the actual airfoil, denoted by 𝒛actual and the calculated airfoil, 

denoted by 𝒛model. The sequence of the values in the 𝒛 vectors are important and is chosen 

to be ordered (or indexed) from the upper trailing edge to the leading edge and back to the 

lower trailing edge. The residual, 𝒓, is defined as 

𝒓 = 𝒛actual − 𝒛model (13) 

and can then be used to calculate the MSE, which is the objective function, 𝑓(𝑷), as 

𝑓(𝑷) =
𝒓𝑇𝒓

𝑛
(14) 

This is therefore an unconstrained optimization problem that can be formulated as 

minimize 𝑓(𝑷) (15) 
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Figure 6: Flowchart showing the process for determining the PARSEC parameters given the coordinates 

which makes up an airfoil. 

Known airfoils were used to verify whether this workflow can compute the PARSEC 

parameters from a set of coordinates. A random value in the range of [-0.005,0.005] was 

added to each 𝑧 coordinate for the airfoil (which have chord lengths of unity) to incorporate 

outlier data. This introduced the uncertainty similar to the fitting of the actual GHA 

airfoils.  

The next step was to choose an appropriate optimization algorithm. There are two 

algorithms that can be used. The first is a common gradient descent (GD) algorithm, 

which evaluates the influence of an infinitesimal change in each parameter and evaluates 
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the resulting objective function value. The gradient is calculated between the original 

objective function value and the next iteration’s objective function value. The design space 

is then traversed in the direction opposite to the calculated gradient with a certain step 

size. This will cause the optimizer to find a local minimum (Cauchy, 1847). 

The other method that can be used is a metaheuristic algorithm. The specific optimizer 

used is that of differential evolution (DE, Storn and Price, 1997). This optimization 

algorithm does not work by computing gradients, and it does not require that the objective 

function be differentiable and continuous. DE optimizes a problem by presenting a 

population of candidate solutions. New candidate solutions are computed by combining 

existing ones according to the simple governing formula. Candidates which have the best 

score (referred to as fitness) are kept in the candidate solutions and candidates with low 

scores are eliminated. The further the solution progresses, increasingly more fit 

candidates are paired, giving better “children” (or next candidate solutions).  

The two optimizers, the robustness thereof, and the ability to match the known airfoil was 

tested. This was done by attempting to recreate airfoils with known geometries. The 

optimization was done in Python using the optimize module in SciPy. The two functions 

used were, minimize and differential evolution. 

Both optimizers take inputs which specify the lower and upper bound of each PARSEC 

parameter. The bounds were chosen at an arbitrary range of (-30, 30) to serve as an 

infinitely large search space for the airfoil (with a chord length of 1). All parameters were 

assigned these bounds (with the angular parameters having units of degrees), except for 

the parameters, 𝑟le, lo, 𝑟le, up, 𝑋lo, and 𝑋up whose lower bounds were set to 0. The reason for 

this is simple when looking at equations (9) and (10). The 4 parameters mentioned are 

encountered in terms where fractional powers are applied and therefore would produce 

non-real numbers when containing negative values. The reason for the other bounds being 

set to a range of (-30, 30) was simply to enlarge the design space.  

These values could have been much larger, but it would increase the time to calculate the 

PARSEC parameters. Bounds smaller than this could lead to restrictions in the size of the 

design space. For clarity, the bounds are also shown in Table 3. The airfoils recreated 

using the PARSEC method is shown in Figure 59 through Figure 66 in Appendix A. The 

deviation of the calculated airfoil using both optimizers are also shown along with the 

time taken in seconds to calculate the PARSEC parameters. It is noted that the DE 
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optimizers takes 15 to 150 times longer to compute the correct PARSEC parameters. An 

example of a recreated airfoil is shown in Figure 7. 

Table 3 Bounds used to determine PARSEC parameters of common airfoils using two different methods of 

optimization. 

 𝑟le, lo 𝑟le, up 𝑋lo 𝑋up 𝑍lo 𝑍up 𝑍xx, lo 𝑍xx, up 𝛼te 𝛽te 𝑍te Δ𝑍te 

Lower Bound 1e-5 1e-5 1e-5 1e-5 -30 0 -30 -30 -30 -30 -30 0 

Upper Bound 30 30 1 1 -30 1 30 30 30 30 30 30 

 

 

Figure 7: Recreated E387 airfoil with the upper and lower errors with GD and DE. Times: GD: 0.25s, DE: 

38.57s 

The MSE using the DE optimizer was on average 6.5 × 10−6 whereas the GD optimizer 

was on average 3.12 × 10−5. The MSE between the airfoil with outliers and normal airfoil 

was on average 7.38 × 10−6, showing that the DE optimizer is able predict the actual 
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airfoil with the smallest MSE. This indicates that the PARSEC method using a DE 

algorithm is a reasonable method to extract the 12 PARSEC parameters from an airfoil 

containing outliers and recreate it without outliers. This method will be applied to the 

GHA wing. 

The accuracy was however at the cost of time. The GD algorithms took on average less 

than a quarter second to calculate the PARSEC parameters from the airfoil provided, 

whereas the DE algorithm took in the order of 15 seconds, an increase of almost 100 times. 

This time penalty was acceptable since the focus was on developing a realistic geometry 

which has 30 airfoils along the span of the wing. The PARSEC method is a feasible 

approach to airfoil parameterization and was therefore used in the rest of the study. 

3.3. Pre-processing Point Cloud data 

Converting a real-life wing specimen to a useable 3D model (whether it be for simply 

quantifying the geometry of the wing, manufacturing a wing, or performing numerical 

analysis on a wing) is an interest which divides many authors (Liu et al., 2006; Klän et 

al., 2009; Carruthers et al., 2010; Rader et al., 2020; Waldrop et al., 2020) and therefore 

the methods employed to do so varies drastically between publications as shown in Section 

2.2. 

The process used in this study started with 3D laser scanning the wing which produced a 

point cloud, each point having its own (𝑥, 𝑦, 𝑧) coordinate in space. The point cloud could 

simply be meshed to form a useable model, if it were not for two fundamental problems 

about bird wings. The first problem was the thin nature of the wings (and other avian 

wings in general). It was found that there were sections on the trailing edge which were 

essentially a few microns thick, and the 3D laser scanner simply did not have the 

capability to capture this type of resolution. This caused “open” sections in the wing 

surface and the final model should ideally be watertight (shown in the orange region in 

Figure 8). 

The second problem was the presence of feathers which were out of place, i.e., outlier 

feathers (shown in the green region in Figure 8). This could have been caused by many 

factors, such as transportation, handling, or the curing process through which the wings 

went. 
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Figure 8: A raw scatter plot of a 3D scanned airfoil of the GHA showing examples of open sections (orange) 

and outlier regions (green). 

Therefore, the 3D point cloud had to be smoothed using consistent mathematical models. 

This is a one of the two reasons why the PARSEC method was used (remembering that 

the two reasons were smoothing noisy airfoils and creating an airfoil in a parameterized 

domain). The PARSEC method enables smoothing and interpolation between open 

sections in a way that is airfoil-like (made for creating airfoils).  

In this study the point cloud was generated by a handheld 3D scanner (Einscan Pro HD, 

Shining 3D). The point cloud was then imported into CloudCompare, an open-source point 

cloud processing software. The points were transformed to a coordinate system roughly 

located at the tip of the wing. The sectioning function in CloudCompare was used to 

extract airfoils at different spanwise locations, shown in Figure 9. 

Individual airfoils were exported as .txt files containing (𝑥, 𝑦, 𝑧) coordinates. The exported 

points were not in a typical order for defining airfoil surfaces (i.e., looping from the top 

trailing edge to the leading edge and back to the lower trailing edge).  
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(a) 

 

(b) 

Figure 9: The airfoil creation process in CloudCompare showing (a) the lines where the sections were to be 

taken and (b) the result of the sectioning process. 

The airfoil extraction process started with importing the points, shown in Figure 10, using 

only the 𝑥 and 𝑧 coordinates. 

The points were rotated manually so that airflow in the positive 𝑥 direction would meet 

the leading edge before the trailing edge, shown in Figure 11. The solid blue lines connect 

consecutive data points according to their index number. This showed that the points were 

randomly ordered. 

 

Figure 10: Imported points as exported from 

CloudCompare. 

 

Figure 11: Manually rotated points which aimed to 

ensure that airflow in the positive 𝑥 direction would 

meet the leading edge first. 

The points were then sorted in increasing 𝑥 so that if the data were plotted, lines would 

roughly move between the upper and lower surface, shown in Figure 12. 
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Next, three transformations were applied. The first being a translation, the second a 

rotation and the third a scaling transformation. The translation transformation located 

the leading edge (i.e., the point with the minimum 𝑥 value) and recorded the 𝑥 and 𝑧 

coordinate. All points were then moved so that this point was located exactly on the origin, 

shown in Figure 13. 

 

Figure 12: Data sorted in increasing 𝑥 

 

Figure 13: Translating the data to have the leading 

edge located at the origin. 

The rotation transformation was applied to align the chord line to the 𝑥 axis with the 

added benefit of calculating the local twist angle. The rotation transformation located the 

trailing edge by searching for the minimum 𝑧 value in the second half of the data (i.e., to 

the right of the vertical line which would split the data in two). The local twist angle was 

then simply calculated as θ = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑧te/𝑥te) as the leading edge was already located at 

the origin. The rotated points were then computed as follows and is shown in Figure 14. 

rotated points = [

𝑥1 𝑧1

𝑥2 𝑧2

⋮ ⋮
𝑥𝑛 𝑧𝑛

] [
𝑐𝑜𝑠(−θ) 𝑠𝑖𝑛(−θ)

− 𝑠𝑖𝑛(−θ) 𝑐𝑜𝑠(−θ)
] (16) 

 

Figure 14: Rotating the points to ensure that the leading and trailing edges are exactly horizontal. 

The data was shifted and rotated until both criteria were satisfied. In the example given, 

this was not required but it had to be implemented in some cases. This was done to ensure 
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that the rotation transformation did not unintentionally introduce a new leading edge. 

The monitored quantities that were used to determine whether a new leading edge was 

introduced was the 𝑥 and 𝑧 location of the leading edge (which should both be equal to 0 

in the end), the rotation 𝜃 and the trailing edge 𝑧 coordinate. In this example, the 

transforms did not induce a new leading edge but in some cases this happened. The 

translations and rotations are shown in Figure 15. 

The maximum 𝑥 coordinate was determined, and all the points’ 𝑥 and 𝑧 values were 

divided by this value, to scale the data. This caused the 𝑥 data to be between 0 and 1 

which normalized the chord length, shown in Figure 16. The total translation, 

(𝑥translate , 𝑧translate), rotation, θ, and scaling, 𝑐, (which is also just the local chord length) was 

stored for later use. 

 

Figure 15: The quantities that were being monitored to ensure that the transforms did not induce new 

leading and/or trailing edges.  

The next important consideration was the indexing of the data. The Birnbaum-Glauert 

camber line was calculated according to equation (1), shown in Figure 16 using 𝑧c, max =

0.3. It was found that the value of 𝑧c, max did not play a significant role in the actual location 

of the maximum camber. This was again done using a least squares approach to calculate 

the values of 𝑆𝑛 where 𝑛 =  1, 2, 3. 

The calculated camber line was then used to split the data into a top and bottom surface 

by simply checking whether the 𝑧 value of the airfoil data point was above or below the 

camber 𝑧 coordinate, shown in Figure 17. 
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Figure 16: The points were scaled to a chord length of 

unity and the Birnbaum-Glauert camber line was fit 

to the data for the purpose of splitting the upper and 

lower surfaces. 

 

Figure 17: The upper and lower surfaces split using 

the Birnbaum-Glauert camber line. 

The top and bottom surfaces had 𝑥 spacings which were irregular lengths between 

successive points. The 𝑧 data from the airfoil was interpolated against a self-defined 

distribution of 𝑥 values. The 𝑥 values which were used for the interpolation was a 

sequence created using the following formula, 

𝑥𝑖 =
1

2
[sin [

−π

2
+ (𝑛 − 1) (

π

50 − 1
)] + 1] , for 𝑖 = 1,2, … ,50 (17) 

The calculated distribution is shown in Figure 18, and points were concentrated higher at 

the leading and trailing edges as the curvature in these regions were generally higher and 

more points were required to capture the data well. 

 

Figure 18: Sinusoidal spacing of 𝑥 values used for the interpolation of the airfoil data. 

The top and bottom surfaces were interpolated against the 𝑥 values shown, and the data 

was then joined in the correct sequence. The data was indexed from the top point of the 

trailing edge (index 0), around the leading edge (some intermediate index), to the bottom 

point of the trailing edge (last index or index -1), shown in Figure 19. 

All of these steps were repeated on each airfoil and the next step was to use of all the 

processed airfoils to create a quantified geometry of the GHA wing. 
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Figure 19: Interpolated and sequenced data ready for use in the next part of the geometry investigation. 

 

 

3.4. Quantified geometry of the Grey-headed Albatross Wing 

The airfoil data was used to calculate new airfoils using the PARSEC method as well as 

the Birnbaum-Glauert method used by Liu et al. (2006) and Klän et al. (2009). The 

PARSEC method was implemented exactly like that shown in section 3.2, Figure 6, using 

the DE optimizer. The airfoil camber and thickness profiles were estimated using the 

Birnbaum-Glauert method. The coefficients 𝐴𝑛 and 𝑆𝑛 were calculated from equations (1) 

and (2) using a least squares approach. These coefficients were then used to calculate the 

camber and thickness using equations (3). The PARSEC method results had to be broken 

down into thickness and camber lines in order to compare results to the Birnbaum-

Glauert method. The camber was simply the average of the 𝑧 coordinates of corresponding 

𝑥 values and the thickness was the difference between the top surface 𝑧 values and the 

camber 𝑧 values for corresponding 𝑥 values. The quantified geometry of the GHA using 

the Birnbaum-Glauert and PARSEC method as well as the deviations between the two 

methods and the actual scanned quantities are shown in Figure 20 and Figure 21. 

Figure 20 shows the Birnbaum-Glauert camber calculation and the PARSEC method 

camber calculation and it was evident that the Birnbaum-Glauert method had small 

regions of higher deviations from the actual measured camber, especially at the root 

section. The BG and PARSEC method shows bands of deviations as well as small local 

points of error, such as at the wrist section for the BG method and the root section for the 

PARSEC method. 
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Significant differences between the two methods were evident upon investigation of the 

calculated thickness distributions (Figure 21a). The average thickness deviation of the 

BG method has a magnitude of 0.0057𝑐 whereas the PARSEC method had an average 

deviation of 0.002𝑐 (Figure 21b). The BG thickness deviation exhibited broad bands of 

high deviation whereas the PARSEC method thickness did not. The PARSEC method 

therefore provides a more realistic description of the GHA wing geometry compared to 

that of the BG method. Although there were small locations of high deviations in both 

cases, these locations were consistent with the locations encountered in the camber 

deviations. 
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(a) 

 

(b) 

Figure 20: A comparison between the PARSEC method and the Birnbaum-Glauert method for calculating 

the (a) camber and (b) calculating the deviation between the actual camber (absolute value), and the 

PARSEC and Birnbaum-Glauert methods normalized by 𝑐 = 0.2m. 
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(a) 

 

(b) 

Figure 21: A comparison between the PARSEC method and the Birnbaum-Glauert method for calculating 

the (a) thickness and (b) calculating the deviation between the actual thickness (absolute value), and the 

PARSEC and Birnbaum-Glauert methods normalized by 𝑐 = 0.2m. 
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The quantities of chord length, twist, sweep, and dihedral are all plotted against the 

normalized spanwise coordinate in Figure 22. Airfoils and data thereof were not extracted 

for spanwise locations near to the tip of the wing since the small chord length eventually 

terminates at a chord length of zero. 

The chord length is simply the value which was used to scale the airfoils to a chord length 

of unity, which was previously calculated. The twist of each airfoil was the sum of all the 

rotation transformations applied. The sweep and dihedral were the only quantities which 

required a bit more work to obtain.  

For the sweep values, the quarter chord locations of the different airfoils were used. To 

determine this, the 𝑥 translation of an airfoil was used in conjunction with the chord 

length. Visualizing an 𝑥𝑦 plane, which would represent the planform of the wing this 

concept can be easily understood. Knowing the location of the leading edge, i.e., the 𝑥 

translation and the chord length, can yield the trailing edge 𝑥 location. The quarter chord 

position was simply the addition of 0.25𝑐 with the 𝑥 location of the leading edge in the 

direction of the trailing edge. Doing this with each airfoil yielded a set of points which 

described the quarter chord line, from the root to the tip in the spanwise direction. The 

sweep values reported was the displacement in the 𝑥 direction relative to the quarter 

chord position of the root airfoil. The idea is visually explained in Figure 23. 
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Figure 22: Local chord length, local twist, sweep, and dihedral as functions of the normalized wingspan of 

the GHA. The original data is plotted using the circular markers and the smoothed data is plotted using the 

line. 

 

Figure 23: Visualization of the quarter chord location from the 𝑥 translation and 𝑐 values captured, for three 

arbitrarily spaced airfoils in the spanwise direction. The light grey line can be seen running through the 

quarter chord positions. The sweep angle is indicated by 𝛽. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

38 

 

After all the quarter chord 𝑥 coordinates were known, the 𝑧 coordinate of quarter chord 

position had to be determined. This was done in the same way as the 𝑥 locations shown 

in Figure 23, except in this case on the 𝑦𝑧 plane. Visualizing the dihedral on the 𝑦𝑧 plane 

simplifies this concept, as shown in Figure 24. 

 

Figure 24: Visualization of the quarter chord location from the 𝑧 translation and the 𝑐 values captured, for 

three arbitrarily spaced airfoils in the spanwise direction. The light grey line can be seen running through 

the quarter chord positions. The dihedral angle is indicated by 𝛾. 

The dihedral reported is the 𝑧 displacement between the root and the specific airfoil 

normalized by the wingspan using a half span length (single wing length) of 650mm. The 

original data shown in Figure 22 cannot be used unprocessed, since the sudden changes 

in these parameters would cause discontinuities in the geometry. To account for these 

discontinuities, a cubic spline was fitted to the data. This spline requires an input called 

a smoothing value which ranges between 0 and 1. A smoothing value of 1 will have no 

smoothing and will include all points through which the interpolation will happen. A 

value of 0 will fit a least-squares straight line through the data. The smoothed data is also 

shown in Figure 22. 

Using the chord length, twist, sweep and dihedral data (Figure 22), the wing was 

reconstructed as a smooth model shown in Figure 25. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

39 

 

 

Figure 25: Recreated GHA wing constructed from the macro wing parameters. (Grey lines on the Side View 

and Top View are included to indicate the twist). 

The 3D computer-aided design (CAD) model was created using a loft action in SolidWorks. 

At least two guide curves are required to perform a loft action. The two guide curves in 

this case were the leading and trailing edge curves, shown in Figure 25. These curves are 

a set of (𝑥, 𝑦, 𝑧) coordinates which are used to enforce the twist, chord length, and spanwise 

profile of the wing. The two profiles that were used were the average hand section airfoil 

(located at the tip), and the average arm section airfoil (located at the root), shown in 

Figure 26. The fidelity of the 3D model can be increased if more airfoils are used as loft 

profiles between the two extremes (root and tip). Since the outcome of this part of the 

research is stated as simply aiming to provide a methodology and concept for 3D model 

creation, using two airfoils are sufficient. 
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Table 4: Average PARSEC parameters and standard deviations for the arm and hand section of the GHA 

wing. 

Parameter Arm  Hand  

𝑟le, lo 0.1405 0.09 0.0441 0.06 

𝑟le, up 0.2485 0.09 0.1348 0.07 

𝑋lo 0.4230 0.11 0.3774 0.07 
𝑋up 0.3683 0.02 0.3431 0.07 

𝑍lo 0.1131 0.03 0.0728 0.02 
𝑍up 0.2616 0.04 0.1509 0.03 

𝑍xx, up -2.0722 0.50 -1.0825 0.40 

𝑍xx, lo -1.2498 0.65 -0.7354 0.74 

αte -32.593 6.93 -18.491 11.49 
βte 17.691 14.12 -2.758 13.04 
𝑍te 0.0106 0.01 0.0130 0.01 
Δ𝑍te 0.0200 0.02 0.0054 0.01 

 

 

Figure 26: Average arm and hand section airfoils as calculated using the PARSEC parameters. 

An example of a 3D CAD model created using all the information presented above is 

shown in Figure 27. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 27: GHA 3D CAD model created using the data presented in this section compared to a raw 3D scan 

showing the (a,b) top view (c,d) left view (e,f) front view, and (g,h) isometric view. 
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4. Validation of the numerical approach 

In this section the CFD approach is validated. An Eppler 387 (E387) airfoil was chosen as 

a test geometry. This is a cambered low Reynolds number airfoil which is similar to the 

geometry of the GHA wing that was used later in the study. The experimental data that 

was used in this section was that obtained by McGhee and Walker (1989) at the Langley 

Low-Turbulence Pressure Tunnel (LTPT), Althaus and Wortmann (1981) in Stuttgart, 

and Volkers (1977) in Delft. The domain and mesh are validated before the generated 

results are compared to these literature sources. 

4.1. Pseudo Two-Dimensional Domain Set-up 

A P2D domain was used to capture 3D effects on the model. The outlet length of the 

domain was 60𝑐 downstream of the wing, the inlet radius was 30𝑐 and the width was 0.1𝑐, 

as shown in Figure 28. The values for the flow variables and reference lengths and areas 

used in the numerical analyses is given in Table 5. 

 

 

Figure 28: Domain used for the pseudo two-dimensional study showing the (a) right view and (b) front view. 

Table 5: Flow variables used in the numerical analyses. 

Quantity Symbol Value 

Inlet Velocity 𝑉 15.7ms−1 

Freestream Pressure 𝑃∞ 101.325kPa 

Freestream Density ρ 1.1768kgm−3 

Freestream Dynamic Viscosity μ 1.855 × 10−5 kg(ms)−1 

Chord length 𝑐 0.2m 

Area 𝑆 4 × 10−3m2 
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The SST 𝑘 − ω turbulence model with the γ − Reθ transition model (Menter et al., 2006), 

is selected with low 𝑦+ wall treatment similar to other low Reynolds number studies 

(Choudhry et al., 2015; Chen et al., 2020). The initial mesh, shown in Figure 29, 

incorporated downstream wake refinement parallel to the incoming flow vector which 

extended 30𝑐 downstream with cell sizes of 0.02𝑐. This was staggered with another 

downstream wake refinement region which was also 30𝑐 (i.e., to the outlet length of the 

domain) with cell sizes of 0.08𝑐. The prism layer mesh on the surface of the airfoil used 

eighty prism layers, with a first prism layer height of 0.01mm (5 × 10−5𝑐) and a total 

thickness of 14mm (0.07𝑐). The 80 prism layers were necessary to resolve both the velocity 

gradients introduced by the boundary layer and the separation bubble formation due to 

the adverse pressure gradient. The target surface cell size was 2mm (0.01𝑐). The solution 

was initialized using the grid sequencing method which aimed to speed up the initial 

convergence of the simulation. 

 

(a) 
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(b) 

Figure 29: The mesh used for the P2D study showing the (a) the entire domain with the two refinement 

regions (black arrow with cell sizes of 0.02𝑐 and red arrow with cell sizes of 0.08𝑐) and (b) the near airfoil 

mesh showing the prism layers. For this example, the flow vector is parallel to the arrows in (a). 

Results are shown in Figure 30a. This shows the coefficient of pressure as a function of 

the normalized chord length, 𝑥/𝑐, at α = 4∘ and Re = 2 × 105 using the default turbulence 

intensity of 1%. The laminar separation and turbulent reattachment locations are also 

shown as solid lines on the same figure. The iterations were stopped when the 𝐶𝐿  and 𝐶𝐷 

values differed less than 1% for the previous 50 iterations, or when the simulation reaches 

1000 iterations at which time it would either have reached a steady state or constant 

oscillating frequency. The wake refinement length was decreased from 60𝑐 to 2𝑐 behind 

the airfoil changing the cell count of 1.7M to 430k with no change in the 𝐶𝐿  and 𝐶𝐷 values. 

This decrease in cell count did not affect results, but decreased the mesh size by 4, 

decreasing the computational time penalty. Considering the final objective of an 

optimization study which will run in the order of 500 simulations it was justified to keep 

the cell counts as low as possible, and the decision was made to continue using the wake 

refinement length of 2𝑐. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

45 

 

 

(a) 

 

(b) 

Figure 30: Results using (a) 60 chord lengths of wake refinement and (b) 2 chord lengths of wake refinement 

at 𝛼 = 4∘ and Re = 2 × 105 showing the laminar separation and turbulent reattachment locations as solid 

lines.  

The locations of the laminar separation and turbulent reattachment correlated well when 

considering that the experimental values for these quantities were determined using 

visual oil flow separation lines (McGhee and Walker, 1989). The difference between the 

obtained 𝐶𝐿and 𝐶𝐷 was 4% and <1% respectively when compared to the experimental data. 

The pressure distributions around the airfoils also matched well, with one slight 

inaccuracy being the pressure increase through the adverse pressure gradient caused by 

the formation of the laminar separation bubble.  

The effect of mesh refinement was investigated using the Richardson extrapolation 

(ASME, 2008). Relevant aerodynamic coefficients (in this case, 𝐶𝐿  and 𝐶𝐷) were compared 

between three meshes of increasing cell count to see whether the solution obtained was 
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mesh independent. The mesh convergence process is given in more detail in Appendix C 

and Appendix D. The type of prism layer mesh had to be changed to the advancing layer 

mesh which eliminated the collapsing cells at the trailing edge and the number of prism 

layers were reduced to 50. The aerodynamic coefficients are plotted against the cell counts 

in Figure 31. 

 

Figure 31: Change in 𝐶𝐿 and 𝐶𝐷 for the successive refinements 

The lift and drag coefficients remained similar for the case where 1.1M cells were used 

and where 280k cells were used. This increase in cell size (and the computational time 

penalty) does not justify that the mesh is made larger than 280k cells. 

4.2. Benchmark Results 

An angle of attack sweep of α = 0∘, 2∘, 4∘, 6∘, 8∘ was done to further investigate the 

performance of the computational model used. Figure 32 shows 𝐶𝐿  at different α and has 

less than 3% average difference between the CFD and experimental results. The CFD lift 

slope (Δ𝐶𝐿/Δα) difference for the angles of attack between 0∘ and 6∘ is on average 1%, but 

for the range between 6∘ and 8∘ the CFD lift slope value is 30.4% less than that of McGhee 

and Walker (1989). The same figure shows the 𝐶𝐿  at different 𝐶𝐷 values, where there is a 

2.8% average difference in drag slope (Δ𝐶𝐷/Δα) of the CFD compared to the experimental 

results of McGhee and Walker (1989) between the angles of attack of 0∘ to 6∘ and 106.3% 
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difference between the angles of attack of 6∘ to 8∘. This difference between the CFD and 

the experimental data of McGhee and Walker (1989) is acceptable and when looking at 

the difference between the McGhee and Walker (1989) data and the other two sets of data 

between the angles of 6∘ and 8∘. This confirms the difficulty in experimentally modelling 

low Reynolds number flows. On Figure 32 the drag measurement of the CFD matched 

well with the experimental data of Althaus and Wortmann (1981) at the higher angles of 

attack (i.e., higher coefficients of lift). 

 

Figure 32: 𝐶𝐿 and 𝐶𝐷 results obtained for the angle of attack sweep for the E387 airfoil. 

Figure 33 shows the 𝐶𝑃 at 𝑥/𝑐 for various α, also showing the laminar separation and 

turbulent reattachment locations as predicted by the CFD and experimental data (using 

the blue and orange vertical lines; lines closer to the leading edge are laminar separation 

and points closer to the trailing edge are turbulent reattachment). The laminar separation 

and relocation locations were extracted by looking at the 𝑥/𝑐 location where the value of 

𝐶𝐹  is less than 1 × 10−4 as well as a local minimum. The pressure distributions match the 

experimental data of McGhee and Walker (1989) sufficiently for angles of attack 0∘ to 6∘. 

The pressure distribution for α = 8∘ obtained using CFD underpredicts the suction on the 

top surface of the airfoil, which explains the underpredicted 𝐶𝐿  for the CFD. This is due 
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to the natural separation occurring at this angle of attack and the difficulty modelling 

this type of separated flow. For all the other angles of attack it is seen that the only region 

of an incorrectly predicted pressure is in the region where the LSB exists. The adverse 

pressure gradient is underpredicted in the CFD and is the cause for the overpredicted 𝐶𝐿  

values for α = 0∘ to α = 6∘. 

Figure 34 shows the laminar separation and turbulent reattachment locations at various 

angles of attack (omitting α = 8∘ due to the natural separation) compared to McGhee and 

Walker (1989) and Shen et al. (2017). Solid lines indicate the laminar separation and 

dashed lines indicate the turbulent reattachment. The laminar separation locations 

obtained using CFD differed on average by -3.6% and -0.4% and the turbulent 

reattachment location differed on average by -0.3% and 3.4% compared to Shen et al. 

(2017) and McGhee and Walker (1989) respectively. The trend of the laminar separation 

and turbulent reattachment locations moving toward the leading edge of the airfoil as the 

angle of attack increases, was similar between the CFD and the experimental data used. 

The separation locations for the CFD were obtained by locating the 𝑥/𝑐 corresponding to 

the lowest value of 𝐶𝐹  on the airfoil (excluding stagnation points). 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 

Figure 33: Pressure coefficient (𝐶𝑃) results obtained from an angle of attack sweep at (a) 𝛼 = 0∘(b) 𝛼 = 2∘ (c) 

𝛼 = 4∘ (d) 𝛼 = 6∘ (e) 𝛼 = 8∘using the advancing layer mesher, compared to result obtained by McGhee and 

Walker (1989). The laminar separation and turbulent reattachment locations are shown as solid lines. 
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Figure 34: Laminar separation (solid lines) and turbulent reattachment (dashed lines) locations as the angle 

of attack changes compared to experimental results in the literature. 

The results were acceptable for the purposes of this study when considering the findings 

of Tank et al. (2017). In this study it was proved that low Reynolds number flows over 

wings are notoriously difficult to model and measure using numerical and experimental 

methods and results are sensitive to geometry, environment, and numerical modelling 

techniques. The discrepancies between the three different sets of data further prove this 

point. 

4.3. Meshing refinement strategy for optimization of different geometries 

In the optimization study, airfoils with different geometries will be created using the 

PARSEC method. Knowing the “global” mesh settings, such as prism layer thickness, 

surface cell sizes etc., the effect of different geometries now had to be accounted for. This 

means that the same meshing strategy should be applicable to an airfoil such as the E387 

and an airfoil such as that shown in Figure 26. 

This refinement strategy is validated using two different airfoils. The E387 and the S1223 

airfoils were simulated using the same meshing strategy, Reynolds number and angles of 

attack. The results were compared to experimental results available in the literature 

[E387: McGhee and Walker (1989); S1223: Selig and Guglielmo (1997)]. 
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Adaptive mesh refinement (AMR) is a built-in model in STAR-CCM+ and it was used to 

refine or coarsen the initial mesh based on functions coded by the user. The function used 

for the refinement was the Laplacian of the total pressure, given as 

∇2𝑃0 =
∂2𝑃0

∂𝑥2
+

∂2𝑃0

∂𝑦2
(18𝑎) 

where the total pressure, 𝑃0, was calculated as 

𝑃0 = 𝑃 +
1

2
ρ𝑉2 (18𝑏) 

To account for cells of varied sizes, the function used was the Laplacian of the total 

pressure multiplied by the adaptation cell size squared, giving 

∇2𝑃0 ⋅ Δ𝑥2 (18𝑐) 

where Δ𝑥2 can be thought of as the cell area. The adaption cell size indicates the current 

cell size in the volume mesh. Specifically, it is calculated as double the maximum distance 

between the cell centroid and any vertex of the cell and can be thought of as the diameter 

of a sphere enclosing a specific cell. 

The bounds for the adaptive mesh refinement were manually tuned, and it was found that 

bounds of [10Pa,15Pa] were adequate to refine cells which were expected to be refined. 

Cells were refined when the scalar value shown in equation (18c) is above 15Pa, coarsened 

below 10Pa and kept as is between these two values. The maximum refinement level was 

set to 2, meaning that each polyhedral cell could successively only be refined twice. AMR 

uses midpoint subdivision to create refined cells. The midpoint subdivision of a polyhedral 

cell typically results in 12-15 child cells. The exact number of child cells is equal to the 

number of vertices present in the parent cell. 

The mesh generated for the E387 at an angle of attack α = 8∘ is shown in Figure 35 as an 

example. The cells in the wake region of the airfoil were refined by the adaptive mesher 

to approximately 3.5c downstream. The decision was also made to manually increase the 

cell size of the wake and increase the length of the wake refinement to 20c with a cell size 

of 0.08c since it was expected that the AMR would refine cells where necessary. 

The advancing layer mesh (boundary layer cells) is shown in Figure 35c and it is seen that 

the prism layer cells wrap around the trailing edge, eliminating the collapsing cell 

phenomena associated with the standard prism layer mesher. The cells inside the 
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advancing layer mesh cannot be adaptively refined. The final mesh increased from 270k 

to 350k after implementing the adaptive mesh refinement. 

 

(a) 

 

(b) 

 

(c) 

Figure 35: The mesh generated and adaptively refined using the AMR technique discussed above for 𝛼 = 8∘. 

The black arrow shows the 20𝑐 wake refinement done manually, and the red arrow shows the region where 

the mesh was adaptively refined. 
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Figure 36 provides an overview of the results. The simulated 𝐶𝐿  values for the unsteady 

solver correlated well, with an average error of 4% to the experimental data. The 𝐶𝐿  vs α 

plot shows the lift might be overestimated for α = 8∘ but the 𝐶𝐿  vs 𝐶𝐷 trends correlated 

well with McGhee and Walker (1989). The average difference between the CFD with AMR 

and the results from McGhee and Walker (1989) regarding the 𝐶𝐷 vs 𝐶𝐿  plot was on 

average 7.4%. When AMR was not used the 𝐶𝐿  error was 3% and the 𝐶𝐷 error was 17.6%. 

It is evident that AMR is therefore better suited to predict the 𝐶𝐷.x 

 

Figure 36: 𝐶𝐿 and 𝐶𝐷 as function of 𝛼. 

Figure 37 shows the coefficient of pressure results for three angles of attack, namely  α =

[0∘, 4∘, 8∘]. The mesh was visually inspected, and it was found that the adaptively refined 

regions of the mesh were as expected (i.e., in the wake of the airfoil at almost the same 

angle as the angle of attack used). The coefficient of pressure plots indicates the laminar 

separation and turbulent reattachment locations using solid lines. The lines toward the 

left are the laminar separation locations and the lines to the right are the turbulent 

reattachment locations. There was no separation and reattachment for α = 8∘. The 

simulation with AMR for α = 8∘ had a closer resemblance to the experimental data. The 

only other difference was the pressure increase through the adverse pressure gradient at 

𝑥/𝑐 =  0.75. 
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(a) 

 

(b) 
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(c) 

Figure 37: The coefficient of pressure results for the E387 using AMR compared to results from the 

literature fore (a) 𝛼 = 0∘ (b) 𝛼 = 4∘ (c) 𝛼 = 8∘ . The vertical blue and orange lines indicate the laminar 

separation and turbulent reattachment locations on the airfoil. The blue lines indicate the locations of this 

study, and the orange lines indicate the locations of McGhee and Walker (1989). 

The next airfoil was the S1223, developed for low Reynolds number flows (Re =

1 × 105 to Re = 3 × 105). The airfoil features a much higher camber than the E387. The 

purpose of this evaluation was to estimate the AMR’s capability to solve the correct flow 

field by meshing regions where higher gradients were expected.  

It was observed that steady RANS simulations exhibited highly oscillatory results, as 

shown in Figure 38. If the solver was switched to URANS, the results converged 

asymptotically toward the final value. The mean values of the oscillating aerodynamic 

coefficients were almost equal to those obtained using an unsteady solver for α = 0∘ and 

α = 4∘, except for α = 8∘. The URANS simulations took on average 5 times longer to 

converge than the steady RANS simulations that has reached a steady state oscillation. 
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(a) 

 

(b) 

Figure 38: (a) 𝐶𝐿 and (b) 𝐶𝐷 plotted against the number of iterations comparing the steady and unsteady 

solver. 

The unsteady effects were due to cyclically growing and bursting laminar separation 

bubble (LSB) on the suction side of the S1223 airfoil at higher angles of attack, as shown 

in Figure 39. In this specific example, the steady result is taken at the instance where the 

LSB has burst and has been detached from the top surface of the airfoil. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

58 

 

 

Figure 39: Normalized velocity magnitude contour plot comparing the steady and unsteady solver at Re =
2 × 105 and 𝛼 = 8∘ for the S1223. 

Figure 40 shows the 𝐶𝐿  and 𝐶𝐷 polars for the S1223, comparing the different solvers to 

values obtained experimentally by Selig and Guglielmo (1997) and with XFOIL, which 

yields rapid results that can act as an estimation of the expected values. The XFOIL 

computations were done on the same airfoil (S1223) at 𝛼  =  4°,  6°,  8° for Re  =  2 × 105. A 

viscous analysis using the default 𝑁crit = 9 value is used to trigger boundary layer 

transition. The steady solver 𝐶𝐿  absolute average error for α = 0∘ and α = 4∘ is within 2% 

(maximum of -2.2%) and 𝐶𝐷 within 10.2% (maximum of 10.9%) but for α = 8∘ the 𝐶𝐿  error 

is 70% lower and 𝐶𝐷 is 400% higher than expected. The 𝐶𝐿  predicted using the unsteady 

solver differed on average by -0.2% (maximum of 3.6%) and the 𝐶𝐷  on average differed by 

16% (maximum of 20%) from the experimental results. In practice, if higher angles of 

attack are considered the unsteady solver should be used for more reasonable predictions. 

The results obtained for the S1223 airfoil were consistent with conclusions from Carreño 

Ruiz and D’Ambrosio (2022), stating that results obtained for higher angles of attack were 

more accurate using an unsteady solver. Typically, airfoils at these angles have bursting 

LSB that allow URANS to better predict the fluid behaviour. The findings were consistent 

with Pauley et al. (1990) in which it was shown that a time-averaged solution using RANS 

produces a closed separation bubble, like that obtained when using URANS. 

The steady RANS solver is used in the optimization due to the drastic time increase 

associated when using the unsteady solver. However, the final optimized airfoil will be 

evaluated using URANS to ensure any oscillatory behaviour is captured.  
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Figure 40: 𝐶𝐿, 𝐶𝐷 as function of 𝛼 compared to results obtained from XFOIL and Selig and Guglielmo (1997). 
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5. Aerodynamic Optimization of the Parametric model 

5.1. The Parametric model of the Grey-headed Albatross 

STAR-CCM+ makes use of global parameters that take any value and unit the user 

allocates to it. A global parameter was created for each PARSEC parameter in the 

simulation file (remembering that the 12 PARSEC parameters control the geometry of 

the airfoil). This simulation file was then used inside the STAR-CCM+ Design Manager 

to choose new values for following simulations based on the optimization algorithm 

output. 

First, each PARSEC parameter was extracted from the simulation and saved as a double-

precision floating point value. These values were used to create the 6 × 6 matrices, and 

the column vector on the right-hand side in equations (9) and (10). The column vector 

containing the coefficients 𝑎𝑛 and 𝑏𝑛 was calculated using the Jama package. The 𝑍upper 

and 𝑍lower distributions were calculated using equations (11) and (12), with an 𝑥 

distribution calculated using equation (17). The 𝑍upper and 𝑍lower values and the 𝑥 values 

were multiplied with the chord length (0.2m) and appended to an open .csv file. A final 

column containing values of 𝑦 = 0 was added to save and close a .csv file with three 

columns forming 101 ordered (𝑥, 𝑦, 𝑧) coordinates. The same approach was followed in the 

Python program as in Section 3.2. 

5.2. Calculating the Design Space 

Typically, in airfoil design, the PARSEC parameterization did not describe a method used 

to assign upper and lower bound parameters. In this work, careful consideration of the 

design space led to two limiting factors regarding these parameters. First, the biological 

limitations of a cross section of the wing, i.e., certain geometries are just not physically 

possible due to the skeletal and structural properties of the bird. Second, the mathematics 

which govern the geometry of an airfoil created by the PARSEC method to produce 

feasible geometries. 

Self-intersecting geometry was a problem associated with design spaces that were too 

large. An intuitive example of this is the case where 𝑍up ≤ 𝑍lo for 𝑋up ≃ 𝑋lo, demonstrated 

in Figure 41. This would inevitably cause the top and bottom surface of the wing to 

intersect. 
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Figure 41: An airfoil showing the self-intersecting geometry caused when 𝑍up ≤ 𝑍lo for 𝑋up ≃ 𝑋lo 

There are many other combinations of parameters that cannot be used together. To 

determine these combinations, two approaches can be taken. The first approach is to 

deduct the bounds and interdependencies between the parameters using equations (9) 

through (12), to determine the allowable ranges for each parameter. The simplest 

parameter constraint can be demonstrated by the following. A viable airfoil is when, 

𝒛upper > 𝒛lower (19𝑎) 

for all points, 𝑥𝑖 ∈ 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑘]. Considering a single point, this is rewritten as, 

∑ 𝑎𝑛

6

𝑛=1

𝑥
𝑖

𝑛−
1
2 > ∑ 𝑏𝑛𝑥

𝑖

𝑛−
1
2

6

𝑛=1

(19𝑏) 

from equations (11) and (12) and expanded as, 

𝑎1𝑥𝑖

1
2 + 𝑎2𝑥𝑖

3
2 + ⋯+ 𝑎6𝑥𝑖

11
2 > 𝑏1𝑥𝑖

1
2 + 𝑏2𝑥𝑖

3
2 + ⋯+ 𝑏6𝑥𝑖

11
2 (19𝑐) 

which is seen to be exactly the second equations in (9) and (10) if 𝑥𝑖 = 𝑋lo = 𝑋up. Therefore, 

𝑍up > 𝑍lo (19𝑑) 

This example demonstrates a single case in which a constraint on the parameters is 

calculated. Calculating additional constraints are challenging due to the nonlinear nature 

of equations (9) through (12). The coefficients 𝑎𝑛 and 𝑏𝑛 where 𝑛 =  1,2, … ,6 can in no 

possible way be written in an explicit analytic form where 𝑎𝑛 = 𝑓(𝑋up, 𝑍te , … , 𝑟le, up), and 

similarly, for 𝑏𝑛. This led to the second method of calculating the design space which was 

to use statistical methods. 

Using the PARSEC parameters for the arm and hand section shown in Table 4, 

respectively, bounds were inferred by adding and subtracting a certain percentage, δ, from 
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the base design. This value was initially chosen as 50%. The upper and lower bounds were 

then calculated as, 

𝑷𝑙 = 𝑷0 − δ|𝑷0| (20𝑎) 

and 

𝑷𝑢 = 𝑷0 + δ|𝑷0| (20𝑏) 

where 𝑷𝑙 and 𝑷𝑢 are the lower and upper bounds for the PARSEC parameters, 𝑷0 is the 

baseline parameters from Table 4 and δ is the increment, set to 50%. Latin hypercube 

sampling was used to determine the success rate for the specific lower and upper bounds. 

A Latin hypercube sample generates 𝑛 designs between [0,1)𝑑 where 𝑑 denotes the 

number of dimensions associated with the problem. It was obvious that the PARSEC 

parameters used did not range between 0 and 1, but between the lower and upper bounds 

calculated according to equations (20). Therefore, the following transform was used. 

(𝑏 − 𝑎) × sample + 𝑎 (21) 

where 𝑎 and 𝑏 are the upper and lower bounds. For example, let 𝑑 = 2 and 𝑛 = 5, the 

sample can look as follows. 

sample =

[
 
 
 
 
0.09 0.01
0.72 0.24
0.47 0.89
0.34 0.60
0.80 0.49]

 
 
 
 

 

And now scaled between the values of 1 and 10 for the first variable and 5 and 50 for the 

second. 

sample =

[
 
 
 
 
1.85 5.07
7.55 15.84
5.31 45.11
4.13 32.28
8.23 27.39]

 
 
 
 

 

The first column of the Latin hypercube sample ranges exactly between 1 and 10, and the 

second column between 5 and 50, essentially mapping the initial Latin hypercube sample 

to a new sample with a different coordinate system. Previously, it was mentioned that a 

success rate will be determined. This success rate is simply calculated as, 

success rate = 1 −
𝑛failed

𝑛total

(22) 
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where 𝑛failed and 𝑛total are the number of failed designs and total number of designs 

respectively. A design is said to have failed if one of the following criteria is met, 

𝑧𝑖,upper ≤ 𝑧𝑖,lower for any 𝑥𝑖  where 𝑖 ∈ [𝑥1, 𝑥2, … , 𝑥𝑘] (23𝑎) 

or 

𝑧𝑖,upper > 𝑍up 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥𝑖  where 𝑖 ∈ [𝑥1, 𝑥2, … , 𝑥𝑘] (23𝑏) 

The STAR-CCM+ documentation for using the SHERPA algorithm states that the number 

of failed designs should not exceed 80%. Therefore, the bounds were expanded to values 

that kept the success rate above 80%. The Latin hypercube sample was generated by the 

Quasi-Monte Carlo (qmc) submodule in the Stats module from the SciPy library. The 

LatinHypercube function was used to generate 1000 designs with 12 dimensions scaled 

using equations (20) and (21). Each design was then used to generate an airfoil using the 

PARSEC method. The specific design was then flagged if it failed according to equations 

(23) and the parameters which were used was stored. The matrix containing all failed 

designs was investigated using statistical methods to determine which parameters or 

combinations of parameters were the cause of failure. The failure matrix, 𝑓, is shown to 

be, 

𝒇 = [

𝑷1

𝑷2

⋮
𝑷n, failed

] (24) 

where, 

𝑷𝑖 = [𝑟le, lo 𝑟le, up 𝑋lo 𝑋up 𝑍lo 𝑍up 𝑍xx, lo 𝑍xx, up αte βte 𝑍te Δ𝑍te] 

for 𝑖 = 1,2, … , 𝑛failed 

The data had to be normalized to obtain accurate statistical conclusions. The 

normalization method used was mean centering and scaling according to the standard 

deviation. Mean centering subtracts the mean of each column vector from the original 

column vector after which the data is scaled to have a standard deviation of 1. Consider a 

single column vector, 𝒑 = [𝑝1, 𝑝2,… , 𝑝𝑛failed
], of 𝒇, which represents all values causing failure 

for any of the 12 PARSEC parameters from the failure matrix 𝒇. The data is mean 

centered and scaled according to, 

𝑝𝑖
′ =

𝑝𝑖 − 𝑝

σ
, for 𝑖 = 1,2, … , 𝑛failed (25) 
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where 𝑝 and σ represent the mean and standard deviation of 𝑝 respectively. This was done 

to all 12 columns of 𝒇, resulting in the centered and scaled failure matrix, 𝑭. Next, the 

covariance matrix was calculated as 

𝑪 =
𝑭𝑇𝑭

𝑛failed − 1
(26) 

The covariance matrix is a 12 × 12 square matrix and aided in showing the covariance 

between two independent observations and it pointed out which PARSEC parameters 

could cause failure. The investigation into the actual determination of the design space is 

given in Appendix F, showing that the design space created could achieve the 80% success 

rate whilst incorporating the biological limitations of the GHA wing. 

The optimization of an airfoil is expected to behave like that shown by Nachtigall and 

Wieser (1966). The morphing of an airfoil in the presence of airflow is studied on a Pigeon 

wing at different angles of attack and airspeeds. Figure 42 shows the trailing edge 

location, which is represented as 𝑍te in this study, shifted vertically upwards. This 

movement of the trailing edge “decreased” the true angle of attack the airfoil experiences. 

 

Figure 42: Pigeon wings at 𝑉1 = 5ms−1, 𝑉2 = 7.5ms−1, 𝑉3 = 10ms−1 at a constant angle of attack of 𝛼 = 10∘ 

(Nachtigall and Wieser, 1966). 

It was therefore important to ensure that the bounds were adequate to capture these types 

of morphed airfoils. This was done by simply estimating what the airfoil might look like 

under an aerodynamic load. An estimation of this is shown in Figure 43, together with 

the airfoil created using the PARSEC parametrization and having the bounds set to those 

developed earlier. The accurate matching between the hypothesised airfoil (an airfoil with 

a lifted trailing edge in Figure 42) and the airfoil created by the PARSEC method proved 

that the kind of morphing under an aerodynamic load can be accurately captured within 

the set bounds. 
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Figure 43: Hypothesised GHA arm section wing under aerodynamic load and the airfoil produced by the 

PARSEC method using the bounds developed. 

5.3. Optimized geometry of a Grey-headed Albatross airfoil 

The optimization of the parameterized GHA arm airfoil was completed using Siemens 

STAR-CCM+ in Design Manager as described in sub-section 5.1. In addition to the 12 

PARSEC parameters, the angle of attack was also set to be a parameter which could be 

changed. The parameters can be changed subject to the design space calculated earlier. 

The starting design is the static GHA arm airfoil. The optimization aimed to maximize 

the 𝐶𝐿/𝐶𝐷. Each design was terminated at either 1000 iterations, or earlier, if it was found 

that both the 𝐶𝐿  and 𝐶𝐷 values differ less than 1% for the previous 50 iterations. 800 

designs were completed using the SHERPA algorithm, resulting in a total simulation time 

of 28.5 days including the meshing and initialization time of 10 hours. The optimization 

was performed on 5 CPU cores (Intel Core i7-3930K). 

In Figure 44, the evolution of the aerodynamic coefficients of interest is shown for all the 

designs with a plateau reached after, approximately 600 designs. The 𝐶𝐿  and 𝐶𝐷 scatter 

plots indicate that the optimization aimed to reduce the 𝐶𝐷 to increase the 𝐶𝐿/𝐶𝐷 and not 

to increase the 𝐶𝐿  to achieve the same goal. The 𝐶𝐿  increased by a factor of 2, whilst the 

𝐶𝐷 was decreased by a factor of 9.1. 
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f 

Figure 44: Aerodynamic quantities changing and improving as the number of designs tested increase. The 

red line shows the evolution of the best design. 

The optimization strategy mentioned previously can be visualized in Figure 45. In this 

scatter plot, each design’s 𝐶𝐿  and 𝐶𝐷 is indicated together with the aerodynamic efficiency 

represented by the colour. 

 

Figure 45: Scatter plot showing each design's 𝐶𝐷 and 𝐶𝐿. The aerodynamic efficiency is also indicated. The 

red line shows the evolution of the best design. 
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The change in each PARSEC parameter as well as the angle of attack for each design 

iteration is shown in Figure 46 which indicates the search trends for each parameter 

followed towards obtaining an optimum. Starting from 𝑋lo, shown at the top of Figure 46, 

this value was decreased to almost as low as possible within the bounds. It was expected 

that the camber would decrease, shifting the 𝑋lo value toward the middle of the airfoil, 

but upon further inspection, this value was responsible for the concave indentation formed 

on the lower side of the airfoil.  

The other parameter to be mentioned with 𝑋lo, is 𝑍lo. This value was not changed 

drastically, but the effect of this value was exaggerated in conjunction with the low 𝑋lo 

value. The upper crest location, (𝑋up, 𝑍up) was shifted much further to the right with the 𝑧 

coordinate almost staying the same. The upper and lower curvatures, 𝑍xx, up and 𝑍xx, lo, 

were increased (i.e., more positive). This enabled the smooth surface between the upper 

crest location and the trailing edge, dictated by the value 𝑍te, which is seen to increase 

drastically. The lower surface curvature was also responsible for the concave indentation 

near the leading edge.  

The only two other PARSEC parameters which had a direct geometrical influence on the 

airfoil was the upper and lower leading-edge radii, 𝑟le, up and 𝑟le, up. These two values 

decreased from the original airfoil. The 𝑟le, up value was responsible for the slight concave 

indentation on the upper surface near the leading edge. The small 𝑟le, lo value mimicked 

the sharp leading edge encountered on the GHA airfoil shown in Figure 45, but it could 

not recreate the sharp feature which looks like it should almost be discontinuous. This 

sharp discontinuous edge was not possible using the PARSEC method, but the extremely 

low 𝑟le, lo value showed that it tended to a sharp leading edge. The remaining quantities 

(αte, βte, and Δ𝑍te) allowed streamlining of the trailing edge of the airfoil. They also allowed 

a thin trailing edge region to be generated mimicking few feathers at the trailing edge. 
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Figure 46: Scatter plot showing each PARSEC parameters changing for different designs. The aerodynamic 

efficiency is indicated with the colour of each design to give an indication on how it increases as the number 

of designs increase. 

Figure 47 and Figure 48 show the evolution of the PARSEC parameters and the angle of 

attack. These figures give the PARSEC parameters and angle of attack of 6 different 

designs, each increasing in aerodynamic efficiency roughly by a count of 10 to show how 
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the geometry is transformed from the baseline to the optimized airfoil. In Figure 47, each 

PARSEC parameter as well as the angle of attack was scaled between the lower and upper 

bounds given in Table 9b (Appendix F) to produce scaled values between 0 and 1. The 

following equation was used:  

𝑝∗ =
𝑝 − 𝑝𝑙

𝑝𝑢 − 𝑝𝑙

(27) 

where 𝑝∗ represents the scaled PARSEC parameter (or angle of attack in this case), 𝑝 

represents an arbitrary PARSEC parameter (or angle of attack), and 𝑝𝑙 and 𝑝𝑢 represent 

the lower and upper bounds of the parameters. The primary focus of Figure 47, is the 

paths followed for designs with increasing aerodynamic efficiency as well as the trend 

within the design space. There are many different airfoils which have the same 

aerodynamic efficiency and the results given in Figure 47 and Figure 48 are merely 

showing the types of airfoils created during the optimization together with their PARSEC 

parameters and angles of attack. 

Figure 47: Spider plot showing the PARSEC parameters and angle of attack of 6 different designs, each 

increasing by roughly a count of 10 from the baseline design, shown in blue. 
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Figure 48: Airfoils created using the PARSEC parameters shown in Figure 47, each increasing in 

aerodynamic efficiency by roughly a count of 10. 

The optimized airfoil is given in Figure 49 and the PARSEC parameters are given in Table 

6. The aerodynamic efficiency is 𝐶𝐿/𝐶𝐷 = 48.5. As hypothesised, the camber decreased 

dramatically, similar to the work of Nachtigall and Wieser (1966) and Cheney et al. 

(2021). The other notable change in the airfoil was the “bump” on the pressure side of the 

airfoil. When inspecting an airfoil obtained from laser scan done in the presence of airflow 

at 𝑉 = 15ms−1, shown in Figure 50, it was observed that separating feathers resulted in 

a similar “bump” on the pressure side. 

 

Figure 49: The optimized airfoil of the GHA arm wing showing the aerodynamic efficiency and the angle of 

attack at the maximum efficiency. The dashed grey line indicates the baseline airfoil. The geometric angle of 

attack of the aerofoil is −11.52∘ due to the TE deflection and the flow angle is 11∘. The net angle of attack 

(chord relative to airflow) is therefore −0.52∘. 
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Figure 50: Airfoil of the GHA in the presence of airflow at 𝑉 = 15ms−1 showing similar geometrical features 

when compared to the optimized airfoil. 

Table 6: PARSEC parameters of the optimized GHA arm airfoil compared to the baseline values indicating 

the change in each parameter. 

Parameter Optimized Baseline Change 

𝑟le, lo 0.0702 0.1405 -50% 

𝑟le, up 0.16406 0.2485 -34% 

𝑋lo 0.3067 0.4230 -27.5% 

𝑋up 0.4957 0.3683 +34.6% 

𝑍lo 0.0566 0.1131 +49.9% 

𝑍up 0.1831 0.2616 +29.6% 

𝑍xx, up -1.0361 -2.0722 +50% 

𝑍xx, lo -0.9249 -1.2498 +26% 

αte -22.8148 -32.593 +42.1% 

βte 8.8457 17.691 -50% 

𝑍te 0.1008 0.0106 +850% 

Δ𝑍te 0.0106 0.0200 -47% 

5.4. Aerodynamic findings of the optimized GHA airfoil 

5.4.1.  Steady and unsteady state validation study 

Although Section 4 indicated that an unsteady solver would more realistically capture the 

flow variables for certain geometries and high angles of attack, the computational cost 

was exorbitant. Therefore, the optimization was done using the steady solver following 

the findings of Pauley et al. (1990) who showed time averaged results from the steady 

solver correlate within reason to unsteady solver results. 

However, to provide a comprehensive overview of the optimized GHA airfoil that was 

developed from the steady solution, further investigations were all completed using the 

unsteady solver. Time sensitive quantities such as lift and drag coefficients and 

separation locations would also not require time averaging. The difference between the 

steady solver (which was used for the optimization) and an unsteady solver were 

investigated and compared to ensure that the objective function on which the optimization 

was based was reasonable. Figure 51 shows the 𝐶𝐿 , 𝐶𝐷 and 𝐶𝐿/𝐶𝐷 polars using both the 

steady and unsteady solver for the optimized GHA airfoil at a variety of angles of attack. 
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Figure 51: The polars computed for the optimized GHA arm airfoil at Re = 2 × 105 used to compare the two 

different solvers. 

The steady and unsteady results for angles of attack before stall showed an average 

difference of 5% and 3% with regards to the 𝐶𝐿  and 𝐶𝐷 respectively For the sake of 

accuracy, the results presented in the remainder of this section was computed using the 

unsteady solver since it was seen to be more stable at higher angles of attack when 

considering Figure 51.  

5.4.2. Unsteady results of aerodynamic analyses on optimized GHA airfoil 

Figure 52 shows the 𝐶𝐿  vs α polars for the optimized airfoil and the baseline arm airfoil at 

Re = 2 × 105. The optimized airfoil and the baseline airfoil exhibit very similar polars, and 

the only difference is that the angle of attack is shifted by 6∘ between the two. This value 

is consistent with the angle of the optimized airfoil’s geometric chord, which is 

approximately −6∘ relative to a horizontal flow vector. 
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Figure 52: 𝐶𝐿 vs 𝛼 polar comparison for the optimized airfoil and the baseline airfoil at Re = 2 × 105. 

Figure 53 shows the 𝐶𝐷 vs α polars for the optimized and baseline airfoils. The (𝐶𝐷)min 

value of the baseline airfoil is 437% higher than the optimized airfoil. The drastic 

difference between the (𝐶𝐷)min values between the optimized GHA and the baseline GHA 

show one of the strategies used by the optimization to increase the aerodynamic efficiency. 

The shape of the optimized airfoil’s 𝐶𝐷 vs α curve is like that found on other airfoils. The 

baseline case however shows a linear dependency on the angle of attack, mimicking that 

of a bluff body.  
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Figure 53: 𝐶𝐷 vs 𝛼 polar comparison for the optimized airfoil and the baseline airfoil at Re = 2 × 105. 

The drag can be split into the friction (𝐶𝐷,𝑓) and pressure (𝐶𝐷,𝑃) drag components to 

describe the difference in the total drag values between the optimized and baseline GHA 

airfoils. The 𝐶𝐹  vs 𝑥/𝑐 plots and velocity scalar fields are presented in Figure 54 and Figure 

55. Figure 54a shows the separation and reattachment locations on the baseline airfoil at 

the angle of attack at which the maximum efficiency is encountered. Flow separation 

occurred at 𝑥/𝑐 =  0.2 and 𝑥/𝑐 =  0.03 on the top and bottom surfaces, respectively. The 

flow on the top surface did not reattach, but the flow on the bottom surface reattached at 

𝑥/𝑐 =  0.7.  

The size of the wake was visually larger and representative of a bluff body rather than a 

streamlined aerodynamic body. The optimized airfoil had multiple short separation and 

reattachment regions shown in Figure 54b. On the optimized airfoil, flow separation 

occurred at 𝑥/𝑐 =  0.05 and reattached at 𝑥/𝑐 =  0.23 on the bottom surface. The flow was 

attached on the bottom surface until the trailing edge. The flow on the top surface 

separated 𝑥/𝑐 =  0.46 and reattached at 𝑥/𝑐 =  0.7. This caused a separation bubble with 

a length of 0.24𝑐. A final separation occurred at 𝑥/𝑐 = 0.95. 
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(a) 

 

(b) 

Figure 54: 𝐶𝐹 vs 𝑥/𝑐 at Re = 2 × 105 for the (a) baseline GHA airfoil at 𝛼 = 15∘ and the (b) optimized GHA 

airfoil at 10∘ showing the separation and reattachment locations as vertical lines. 

The separation and reattachment locations are shown as vertical red lines on the 

normalized velocity contour plots shown in Figure 55. Figure 55a shows the natural 

separation at 𝑥/𝑐 = 0.2 on the top surface of the baseline GHA airfoil as well as the 

separation and reattachment on the bottom surface. The separation and reattachment on 

the bottom surface was not a separation bubble but merely a separation at the leading 

edge followed by flow which reencountered the bottom surface of the airfoil again at 𝑥/𝑐 =

0.7. Figure 55b shows the separation bubbles at 𝑥/𝑐 =  0.05 on the bottom surface and 

𝑥/𝑐 = 0.46 on the top surface of the optimized airfoil. The 𝐶𝐷,𝑓 values of the baseline and 

optimized airfoils were 0.002 (0.6% of total drag) and 0.005 (15% of total drag) 

respectively. Since a larger section of the flow remained attached to the surface of the 
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optimized airfoil there was an increase in the friction drag component. The percentage of 

attached flow was 26.5% (𝑥/2𝑐 =  0.53) and 76.5% (𝑥/2𝑐 =  1.53) on the baseline and 

optimized airfoils respectively (adding the top and bottom surfaces, hence using 2𝑐). 

 

(a) 

 

(b) 

Figure 55: Normalized velocity magnitude contour plot for the (a) baseline GHA airfoil and the (b) optimized 

GHA airfoil. 

The 𝐶𝐷,𝑃 for the baseline and optimized airfoils were 0.395 and 0.029 respectively. The 

pressure drag for the baseline case was therefore a factor of 13.6 times more than the 

optimized case. Figure 56 shows the normalized 𝑥 velocity profiles for different 
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streamwise stations comparing the wake sizes between the baseline and optimized 

airfoils. At all the streamwise stations, the minimum velocity of the baseline case was 

much lower (and at 𝑥/𝑐 = 1 and 𝑥/𝑐 =  2 it is negative), which indicates that the wake of 

the baseline airfoil would take much longer to dissipate when compared to the optimized 

airfoil.  

The momentum deficit observed at the different streamwise locations for the two airfoils 

show a clear reduction in the energy loss. The baseline airfoil had a larger bluffness as 

experienced from the flow leading to a thicker wake profile, compared to the optimized 

airfoil that has significantly reduced the wake thickness. This increase in bluffness is 

supported by the findings of Nachtigall and Wieser (1966) and Cheney et al. (2021) which 

shows the decrease of camber of avian airfoils when in flight (also see Figure 42). This can 

be interpreted as decreasing the bluffness of the airfoil i.e., turning it from a bluff body 

shape to a streamlined shape. 

 

Figure 56: Normalized velocity profiles in the 𝑥 direction as a function of the vertical height for different 

streamwise stations. 
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Figure 57 shows the 𝐶𝐿/𝐶𝐷 vs α polars for the baseline and optimized airfoils. The 

optimized airfoil and the baseline airfoil have (𝐶𝐿/𝐶𝐷)max values of 44.5 and 3.1, 

respectively. The efficiency increased 1335% from the baseline to the optimized case. The 

improvement in efficiency was partly due to the decrease in pressure drag. 

 

Figure 57: 𝐶𝐿/𝐶𝐷 vs 𝛼 polar comparison for the optimized GHA airfoil and the GHA arm airfoil. 

.
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6. Conclusions and Recommendations 

6.1. Reconstructing the GHA wing 

The Grey-headed Albatross (GHA) is a highly efficient sea bird (Pennycuick and Lighthill, 

1982) and it is known that birds morph their wings to generate the highest aerodynamic 

efficiency (Norberg, 1990, 2006). A reliable geometrical model needs to be created, to 

investigate the aerodynamic performance of the GHA wing. The point cloud data of a GHA 

wing was obtained using a 3D laser scanner. Thirty airfoils along the span of the wing 

were extracted and used to determine the geometrical characteristics of a GHA wing in 

the absence of airflow (static). The static undeformed geometry of the GHA wing was 

extracted and compared to methods used previously. The methods used are novel to the 

field of avian airfoils.  

The new methodology used the PARSEC parameterization method, and it was found that 

it consistently recreated airfoils of different geometries. The same set of mathematical 

rules and equations were used for any given airfoil and as few as 12 geometrical 

parameters were required to recreate a given airfoil, even if the airfoil contains sporadic 

outliers. The PARSEC parameters were calculated from 2D airfoil data from the scanned 

wing using a differential evolution optimization algorithm aiming to minimize the mean 

squared error between the actual airfoil and the airfoil created using the PARSEC 

method. This was done for each of the 30 airfoils extracted on the GHA wing in the 

spanwise direction.  

The traditionally used Birnbaum-Glauert method (Liu et al., 2006; Klän et al., 2009). as 

well as the PARSEC method was used to generate two sets of separate airfoil data for the 

entire wing (30 airfoils per wing). The two sets of data could then be used to compare the 

two methods to the actual scanned wing geometry. Each set consisted of a thickness 

distribution and a camber distribution. It was found that both methods could recreate the 

camber distribution of the wing within a reasonable error without any obvious geometrical 

deviations. The thickness distribution comparisons however indicated that the PARSEC 

method was more capable of recreating the actual scanned geometry with average 

deviations of 0.002𝑐 when compared to the actual scanned geometry. The Birnbaum-

Glauert method had larger average deviations from the actual geometry of 0.0057𝑐, 

proving the need for a new method to mathematically quantify the geometry of avian 

wings. 
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The macro geometrical parameters of sweep, camber, twist and chord length, of the GHA 

wing was determined and used in conjunction with averaged airfoils of the arm and hand 

section to create a 3D model of the GHA wing. The static undeformed geometry of the 

GHA wing was modelled using the PARSEC parameterization method and compared to 

methods used previously. 

6.2. Modelling the aerodynamics of the GHA wing 

The second part of the work aimed to determine the ‘in-flight” geometry of the arm section 

airfoil of the GHA wing. The method to determine the morphed geometry is a new 

approach to the field of avian wings. An aerodynamic optimization study was done using 

CFD (Siemens STAR-CCM+ and Design Manager) utilising the SHERPA optimization 

algorithm. 

The CFD approach was validated using the E387 airfoil which has well documented 

results using wind tunnel experiments and CFD. A highly automated meshing approach 

to flows around low Reynolds number airfoils was developed, and it was found that this 

meshing strategy enabled the use of the same numerical “template” which was essentially 

the same domain, boundary conditions, solver etc., but the computational grid changes 

automatically for whichever geometry was used. The average 𝐶𝐿  and 𝐶𝐷 error was 4% and 

7.6%, and 0.2% and 16% for the E387 and S1223, respectively. 

The design space had to be determined, to perform an optimization study. A novel 

investigation into the bounds used for an optimization on a PARSEC airfoil was done. 

Using statistical methods, the largest design space was developed whist ensuring that the 

airfoils created by the PARSEC method did not have “failing” geometries more than 20% 

of the time. The anatomical and skeletal features of the wing was also accounted for to 

ensure that geometries could originate from the baseline (static) geometry. 

The evolution of the PARSEC parameters during the optimization shows similar results 

compared to Nachtigall and Wieser (1966), and Cheney et al. (2021) where the peak 

camber of the airfoil decreases. The other result, consistent with Nachtigall and Wieser 

(1966) was that the trailing edge of the airfoil moved vertically up in order to create a 

more streamlined airfoil. The aerodynamic coefficients of lift and drag were compared 

between the optimized and baseline case. 

Further investigations were conducted using the unsteady solver, to provide a more 

comprehensive overview of the optimized GHA airfoil developed from the steady solution, 

The results for angles of attack before stall indicated an average difference of 5% and 3% 
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for the lift and drag coefficients, respectively, between the steady and unsteady solutions. 

Therefore, the optimized airfoil was simulated using an unsteady solver before evaluating 

the results. 

The optimized airfoil and the baseline airfoil have nearly identical lift polars, with the 

only discernible difference being a shift in angle of attack by to 6∘. The baseline airfoil 

experiences an 8.6% higher maximum 𝐶𝐿  than the optimized airfoil. Total drag is 

decomposed into friction and pressure components to explore the differences. Comparing 

the friction drag, it was noted that the 𝐶𝐷,𝑓 values of the baseline and optimized airfoils 

are 0.002 (0.6% of total drag) and 0.005 (15% of total drag) respectively. The baseline 

airfoil therefore had less friction drag and could not be the cause of the high drag 

associated with it. It is important to note that the static arm section baseline airfoil likely 

represents the worst-case scenario with regards to aerodynamic efficiency. Sections of the 

wing toward the tip would likely achieve higher efficiencies, contributing to the overall 

performance.  

The 𝐶𝐷,𝑃 for the baseline and optimized airfoils are 0.395 (99.4% of total drag) and 0.029 

(85% of total drag) respectively. The pressure drag for the baseline case is therefore a 

factor of 13.6 times more than the optimized case. This was also further supported by 

investigating the momentum deficit at different streamwise locations. This revealed a 

marked decrease in energy loss for the optimized airfoil. The baseline airfoil exhibited a 

larger bluffness, resulting in a thicker wake profile, while the optimized airfoil showed a 

significantly more streamlined profile, leading to a reduction in wake thickness. Typical 

drag values reported are 0.03 for a swift at (𝐶𝐿/𝐶𝐷)max = 17 (Withers, 1981), 0.025 for a 

gull at (𝐶𝐿/𝐶𝐷)max = 19.88, and roughly 0.045 for a GHA using (𝐶𝐿/𝐶𝐷)max = 22 and 𝐶𝐿 =

1.00 (Pennycuick and Lighthill, 1982). The calculated 𝐶𝐷 = 0.029 at (𝐶𝐿/𝐶𝐷)max = 44 is 

consistent with the drag values mentioned previously. 

6.3. Recommendations for Future Work 

The aerodynamics of low Reynolds number flyers is an exciting prospect and being able 

model these to a reasonable degree can allow key insights into the future of the 

development of similar low Reynolds number aircraft. 

Further work on the GHA airfoil should include the following recommendations: 

• The number of PARSEC variables can be increased. The bump on the bottom side 

of the airfoil is likely to be caused by a mathematical shortcoming of using the 
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PARSEC method as it is implemented in the study, shown in Figure 58. The fourth 

equation of the linear algebra problem posed in equations (9) and (10) controls the 

first derivative of the upper and lower surfaces. At 𝑋lo and 𝑋up, the gradient for the 

upper and lower crests are controlled. The value to which it is equated normally is 

zero, which forces a local minimum or maximum at the respective location (either 

[𝑋lo, 𝑍lo] or [𝑋up, 𝑍up]). If the trailing edge is anticipated to be positioned at a 

moderately high 𝑍te value, it is crucial for the upper and lower crest gradient values 

to be non-zero (the dashed lines connecting the upper and lower crests to the 

trailing edge have a non-zero gradient). This non-zero value will facilitate a 

gradient, enabling a seamless transition between the crest location and the trailing 

edge. The standard value of 0 could be the cause for the bump on the underside of 

the airfoil. A new pair of PARSEC parameters could therefore be required in future 

applications. This new value can be introduced as 𝑍x, lo and 𝑍x, up (read as the first 

derivative of 𝑍 in 𝑥) and would be called the lower and upper crest gradients 

respectively. This would increase the number of PARSEC parameters to 14. 

 

Figure 58: Optimized airfoil of the GHA showing the upper and lower crest locations which are required to 

have gradient of zero. 

• Extend the scope of work to a three-dimensional CFD analysis of the wing to gain 

an understanding of the possible spanwise flows present. 

This research offers a first step to understand the aerodynamic and geometric morphing 

properties and characteristics of the GHA and concrete conclusions are not able to be 

made when only considering a 2D case as done in this research
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Singularitätenverfahrens. [München] (Bericht der Ernst-Heinkel-Flugzeugwerke, 

Seestadt Rostock). 

Henningsson, P. and Hedenström, A. (2011) ‘Aerodynamics of gliding flight in common 

swifts’, Journal of Experimental Biology, 214(3), pp. 382–393. Available at: 

https://doi.org/10.1242/jeb.050609. 

Herzog, K. (1968) ‘Anatomie und Flugbiologie der Vögel’, in. 

Horton, H. (1968) Laminar separation bubbles in two and three dimensional 

incompressible flow. PhD. University of London. 

Jung, S. et al. (2016) ‘An Implementation of Self-Organizing Maps for Airfoil Design 

Exploration via Multi-Objective Optimization Technique’, Journal of Aerospace 

Technology and Management, 8(2), pp. 193–202. Available at: 

https://doi.org/10.5028/jatm.v8i2.585. 

Klän, S. et al. (2009) ‘Experimental analysis of the flow field over a novel owl based airfoil’, 

Experiments in Fluids, 46(5), pp. 975–989. Available at: https://doi.org/10.1007/s00348-

008-0600-7. 

König, H.E. et al. (2016) Avian Anatomy : Textbook and Colour Atlas. 2nd edn. Sheffield: 

5m Publishing. 

Langtry, R.B. et al. (2006) ‘A Correlation-Based Transition Model Using Local Variables—

Part II: Test Cases and Industrial Applications’, Journal of Turbomachinery, 128(3), pp. 

423–434. Available at: https://doi.org/10.1115/1.2184353. 

Lazos, B.S. (2005) ‘Biologically Inspired Fixed-Wing Configuration Studies’, Journal of 

Aircraft, 42(5), pp. 1089–1098. Available at: https://doi.org/10.2514/1.10496. 

Lees, J.J., Dimitriadis, G. and Nudds, R.L. (2016) ‘The influence of flight style on the 

aerodynamic properties of avian wings as fixed lifting surfaces’, PeerJ, 4, p. e2495. 

Available at: https://doi.org/10.7717/peerj.2495. 

Lentink, D. et al. (2007) ‘How swifts control their glide performance with morphing wings’, 

Nature, 446(7139), pp. 1082–1085. Available at: https://doi.org/10.1038/nature05733. 

Liu, T. et al. (2006) ‘Avian Wing Geometry and Kinematics’, AIAA Journal, 44(5), pp. 954–

963. Available at: https://doi.org/10.2514/1.16224. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

87 

 

Loseille, A. et al. (2007) ‘Achievement of Global Second Order Mesh Convergence for 

Discontinuous Flows with Adapted Unstructured Meshes’, in 18th AIAA Computational 

Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and 

Astronautics. Available at: https://doi.org/10.2514/6.2007-4186. 

Mair, W.A. (1961) ‘Aerofoil Sections. By F. W. R IEGELS . Translated from the German 

by D. G. RANDALL. London: Butterworths, 1961. 281 pp. £10.’, Journal of Fluid 

Mechanics, 11(04), p. 637. Available at: https://doi.org/10.1017/S0022112061220799. 

McGhee, R.J. and Walker, B.S. (1989) ‘Performance Measurements of an Airfoil at Low 

Reynolds Numbers’, in, pp. 131–145. Available at: https://doi.org/10.1007/978-3-642-

84010-4_11. 

Menter, F.R. et al. (2006) ‘A Correlation-Based Transition Model Using Local Variables—

Part I: Model Formulation’, Journal of Turbomachinery, 128(3), p. 413. Available at: 

https://doi.org/10.1115/1.2184352. 

Michal, T.R. et al. (2020) ‘Comparing Unstructured Adaptive Mesh Solutions for the High 

Lift Common Research Model Airfoil’, in AIAA AVIATION 2020 FORUM. Reston, 

Virginia: American Institute of Aeronautics and Astronautics. Available at: 

https://doi.org/10.2514/6.2020-3219. 

Nachtigall, W. and Wieser, J. (1966) ‘Profilmessungen am Taubenfl�gel’, Zeitschrift f�r 

Vergleichende Physiologie, 52(4), pp. 333–346. Available at: 

https://doi.org/10.1007/BF00302288. 

Norberg, U.M. (1990) Vertebrate Flight. Berlin, Heidelberg: Springer Berlin Heidelberg. 

Available at: https://doi.org/10.1007/978-3-642-83848-4. 

Norberg, U.M.L. (2006) ‘Flight And Scaling Of Flyers In Nature’, WIT Transactions on 

State-of-the-art in Science and Engineering, 3. 

Omar, A., Rahuma, R. and Emhemmed, A. (2020) ‘Numerical Investigation on 

Aerodynamic Performance of Bird’s Airfoils’, Journal of Aerospace Technology and 

Management [Preprint], (12). Available at: https://doi.org/10.5028/jatm.v12.1182. 

van Oorschot, B.K., Mistick, E.A. and Tobalske, B.W. (2016) ‘Aerodynamic consequences 

of wing morphing during emulated take-off and gliding in birds’, Journal of Experimental 

Biology [Preprint]. Available at: https://doi.org/10.1242/jeb.136721. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

88 

 

Pauley, L.L., Moin, P. and Reynolds, W.C. (1990) ‘The structure of two-dimensional 

separation’, Journal of Fluid Mechanics, 220, pp. 397–411. Available at: 

https://doi.org/10.1017/S0022112090003317. 

Pennycuick, C.J. and Lighthill, M.J. (1982) ‘The flight of petrels and albatrosses 

(procellariiformes), observed in South Georgia and its vicinity’, Philosophical 

Transactions of the Royal Society of London. B, Biological Sciences, 300(1098), pp. 75–

106. Available at: https://doi.org/10.1098/rstb.1982.0158. 

Rader, J.A. et al. (2020) ‘Functional Morphology of Gliding Flight II. Morphology Follows 

Predictions of Gliding Performance’, Integrative and Comparative Biology, 60(5), pp. 

1297–1308. Available at: https://doi.org/10.1093/icb/icaa126. 

Raul, V. and Leifsson, L. (2021) ‘Surrogate-based aerodynamic shape optimization for 

delaying airfoil dynamic stall using Kriging regression and infill criteria’, Aerospace 

Science and Technology, 111, p. 106555. Available at: 

https://doi.org/10.1016/j.ast.2021.106555. 

Richardson, P.L. (2011) ‘How do albatrosses fly around the world without flapping their 

wings?’, Progress in Oceanography, 88(1–4), pp. 46–58. Available at: 

https://doi.org/10.1016/j.pocean.2010.08.001. 

Rosén, M. and Hedenström, A. (2001) ‘Gliding flight in a jackdaw: a wind tunnel study’, 

Journal of Experimental Biology, 204(6), pp. 1153–1166. Available at: 

https://doi.org/10.1242/jeb.204.6.1153. 

Ruck, S. and Oertel, H. (2010) ‘Fluid–structure interaction simulation of an avian flight 

model’, Journal of Experimental Biology, 213(24), pp. 4180–4192. Available at: 

https://doi.org/10.1242/jeb.041285. 

Sachs, G. et al. (2012) ‘Flying at No Mechanical Energy Cost: Disclosing the Secret of 

Wandering Albatrosses’, PLoS ONE, 7(9), p. e41449. Available at: 

https://doi.org/10.1371/journal.pone.0041449. 

Sakamoto, K.Q. et al. (2013) ‘Heart rate and estimated energy expenditure of flapping 

and gliding in black-browed albatrosses’, Journal of Experimental Biology [Preprint]. 

Available at: https://doi.org/10.1242/jeb.079905. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

89 

 

Schoombie, S., Wilson, R. and Ryan, P. (2023) ‘Wind driven effects on the fine-scale flight 

behaviour of dynamic soaring wandering albatrosses’, Marine Ecology Progress Series, 

WIND. Available at: https://doi.org/10.3354/meps14265. 

Selig, M.S. and Guglielmo, J.J. (1997) ‘High-Lift Low Reynolds Number Airfoil Design’, 

Journal of Aircraft, 34(1), pp. 72–79. Available at: https://doi.org/10.2514/2.2137. 

Shan, H., Jiang, L. and Liu, C. (2005) ‘Direct numerical simulation of flow separation 

around a NACA 0012 airfoil’, Computers & Fluids, 34(9), pp. 1096–1114. Available at: 

https://doi.org/10.1016/j.compfluid.2004.09.003. 

Shen, X. et al. (2017) ‘Computational methods for investigation of surface curvature 

effects on airfoil boundary layer behavior’, Journal of Algorithms & Computational 

Technology, 11(1), pp. 68–82. Available at: https://doi.org/10.1177/1748301816665527. 

Siemens Digital Industries Software (2022a) ‘Simcenter STAR-CCM+ User Guide, version 

2022.1’, in Adaptive Mesh General Workflow. Siemens, pp. 3283–3284. 

Siemens Digital Industries Software (2022b) ‘Simcenter STAR-CCM+ User Guide, version 

2022.1’, in The SHERPA Algorithm. Siemens, pp. 6988–6989. 

Sobieczky, H. (1997) ‘Geometry Generator for CFD and Applied Aerodynamics’, in New 

Design Concepts for High Speed Air Transport. Vienna: Springer Vienna, pp. 137–157. 

Available at: https://doi.org/10.1007/978-3-7091-2658-5_9. 

Sobieczky, H. (1999) ‘Parametric Airfoils and Wings’, in, pp. 71–87. Available at: 

https://doi.org/10.1007/978-3-322-89952-1_4. 

Storn, R. and Price, K. (1997) ‘Differential Evolution – A Simple and Efficient Heuristic 

for global Optimization over Continuous Spaces’, Journal of Global Optimization, 11(4), 

pp. 341–359. Available at: https://doi.org/10.1023/A:1008202821328. 

Tank, J., Smith, L. and Spedding, G.R. (2017) ‘On the possibility (or lack thereof) of 

agreement between experiment and computation of flows over wings at moderate 

Reynolds number’, Interface Focus, 7(1), p. 20160076. Available at: 

https://doi.org/10.1098/rsfs.2016.0076. 

Tucker, V. (1972) ‘Metabolism during flight in the laughing gull, Larus atricilla’, 

American Journal of Physiology-Legacy Content, 222(2), pp. 237–245. Available at: 

https://doi.org/10.1152/ajplegacy.1972.222.2.237. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

90 

 

Usherwood, J.R. et al. (2020) ‘High aerodynamic lift from the tail reduces drag in gliding 

raptors’, Journal of Experimental Biology, 223(3). Available at: 

https://doi.org/10.1242/jeb.214809. 

Volkers, D.F. (1977) ‘Preliminary results of windtunnel measurements on some airfoil 

sections at Reynolds numbers between 0.6 x 10^5 and 5.0 x 10^5’, in. 

Wackers, J. et al. (2017) ‘Can adaptive grid refinement produce grid-independent 

solutions for incompressible flows?’, Journal of Computational Physics, 344, pp. 364–380. 

Available at: https://doi.org/10.1016/j.jcp.2017.04.077. 

Wagner, H. et al. (2017) ‘Features of owl wings that promote silent flight’, Interface Focus, 

7(1), p. 20160078. Available at: https://doi.org/10.1098/rsfs.2016.0078. 

Waldrop, L.D. et al. (2020) ‘Functional Morphology of Gliding Flight I: Modeling Reveals 

Distinct Performance Landscapes Based on Soaring Strategies’, Integrative and 

Comparative Biology, 60(5), pp. 1283–1296. Available at: 

https://doi.org/10.1093/icb/icaa114. 

Walters, D.K. and Cokljat, D. (2008) ‘A Three-Equation Eddy-Viscosity Model for 

Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow’, Journal of Fluids 

Engineering, 130(12). Available at: https://doi.org/10.1115/1.2979230. 

Withers, P.C. (1981) ‘An Aerodynamic Analysis of Bird Wings as Fixed Aerofoils’, Journal 

of Experimental Biology, 90(1), pp. 143–162. Available at: 

https://doi.org/10.1242/jeb.90.1.143. 

  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

91 

 

Appendix A – Optimizer comparison for calculating PARSEC 

Parameters 

 

Figure 59: E387 GD: 0.25s, DE: 38.57s 
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Figure 60: E423 GD: 0.14s, DE: 13.25s 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

93 

 

 

Figure 61: GOE176 GD: 0.20s, DE: 11.10s 
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Figure 62: GOE676 GD: 0.18s, DE: 11.68s 
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Figure 63: NACA0012 GD: 0.14s, DE: 15.01s 
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Figure 64: NACA0024 GD: 0.44s, DE: 14.93s 
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Figure 65: NACA6409, GD: 0.18s, 14.59s 
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Figure 66: S1223, GD: 0.20s, DE: 17.42s
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Appendix B – Airfoils of the GHA 

 

Figure 67: The airfoils created using the PARSEC method for different spanwise locations 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

100 

 

y rleup alphate betate zte deltazte xup zup zxxup xlo zlo zxxlo rlelo

0 0.253 -33.791 -1.454 0.003 0.002 0.390 0.278 -1.734 0.427 0.134 -0.636 0.079

17 0.242 -13.579 40.000 0.020 0.014 0.397 0.303 -1.834 0.505 0.150 -0.584 0.195

35 0.305 -45.348 29.674 0.016 0.034 0.380 0.311 -3.667 0.433 0.147 -1.194 0.166

53 0.256 -22.564 40.000 0.008 0.030 0.376 0.291 -2.125 0.474 0.154 -1.292 0.084

71 0.187 -27.954 35.882 0.021 0.045 0.365 0.278 -1.890 0.478 0.171 -1.029 0.190

89 0.388 -25.882 37.417 0.040 0.084 0.414 0.298 -1.976 0.419 0.180 -1.764 0.082

107 0.260 -29.730 -6.255 0.021 0.036 0.390 0.279 -1.622 0.351 0.136 -2.127 0.127

125 0.365 -36.959 36.922 0.002 0.003 0.363 0.299 -2.704 0.349 0.128 -1.728 0.116

143 0.320 -41.055 4.581 0.013 0.037 0.353 0.283 -1.915 0.348 0.114 -1.918 0.102

161 0.290 -38.930 11.994 0.018 0.031 0.364 0.284 -2.544 0.355 0.108 -1.330 0.147

179 0.345 -36.476 3.231 0.008 0.020 0.354 0.277 -2.366 0.325 0.102 -1.953 0.075

197 0.227 -31.647 13.369 0.007 0.011 0.358 0.258 -2.273 0.332 0.084 -1.534 0.163

215 0.283 -38.779 23.718 0.002 0.000 0.365 0.260 -2.434 0.348 0.100 -1.395 0.099

233 0.286 -31.744 16.317 0.009 0.012 0.367 0.242 -1.812 0.698 0.088 -1.166 0.090

251 0.140 -28.502 15.558 0.007 0.008 0.359 0.235 -2.222 0.712 0.070 -0.946 0.089

269 0.257 -32.650 18.577 0.006 0.008 0.367 0.241 -1.647 0.298 0.092 -2.389 0.097

287 0.331 -37.855 15.333 0.002 0.003 0.366 0.237 -1.758 0.343 0.089 -1.563 0.127

305 0.135 -37.056 0.797 0.001 0.010 0.354 0.207 -1.365 0.430 0.072 -0.001 0.198

323 0.025 -29.704 14.836 0.004 0.005 0.357 0.169 -1.618 0.411 0.054 0.000 0.489

341 0.075 -31.648 3.332 0.004 0.005 0.328 0.201 -1.939 0.426 0.088 -0.448 0.094

345 0.022 -6.079 -10.956 0.028 0.000 0.333 0.186 -1.488 0.476 0.080 -0.001 0.178

380 0.118 -17.036 -18.325 0.033 0.000 0.304 0.172 -1.401 0.381 0.078 -1.032 0.049

415 0.147 -26.922 -2.365 0.008 0.018 0.330 0.167 -1.417 0.393 0.056 -0.001 0.050

450 0.229 -28.454 12.030 0.003 0.002 0.316 0.162 -1.264 0.328 0.062 -1.133 0.029

485 0.221 -34.398 -8.751 0.006 0.019 0.302 0.140 -0.864 0.449 0.066 -0.826 0.003

520 0.125 -16.537 20.653 0.002 0.000 0.312 0.124 -0.855 0.353 0.059 -0.001 0.000

555 0.081 -0.009 -11.593 0.012 0.000 0.505 0.107 -0.288 0.263 0.108 -2.155 0.000

590 0.169 -12.594 -8.414 0.001 0.001 0.382 0.104 -0.296 0.286 0.105 -1.981 0.000

625 0.346 -30.218 0.287 0.001 0.002 0.366 0.111 0.000 0.309 0.116 -1.774 0.000  
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Appendix C – Mesh Independence Study Prism Layer Mesher 

For each mesh, the cell counts, denoted by 𝑁1, 𝑁2, and 𝑁3, where the subscript, 1, refers to 

the fine mesh and the subscript, 3, refers to the coarsest mesh is used to calculate a 

representative cell size as, 

ℎ = (
1

𝑁
𝑉)

1
3

(28) 

where 𝑉 is the volume of the domain and 𝑁 is the number of cells in the mesh. The 

refinement factor is then calculated as 𝑟 = ℎfine/ℎcoarse between two successive mesh 

refinements. It is suggested that the refinement value be at least a value of 1.3. Now, ℎ1 <

ℎ2 < ℎ3, and having 𝑟21 = ℎ2/ℎ1 and 𝑟32 = ℎ3/ℎ2, the apparent order of the method is 

calculated as, 

𝑝 =
1

ln(𝑟21)
|ln |

ϵ32

ϵ21
| + 𝑞(𝑝)| (29) 

𝑞(𝑝) = ln(
𝑟21

𝑝
− 𝑠

𝑟21
𝑝

− 𝑠
) (30) 

𝑠 = 1 × (
ϵ32

ϵ21
) (31) 

where ϵ32 = ϕ3 − ϕ2 and ϵ21 = ϕ2 − ϕ1, and ϕ is simply the engineering quantity of 

interest. The apparent order, 𝑝, is solved iteratively using equations (29) and (30). 

Negative values of 𝑠 indicate oscillatory convergence. Next, the extrapolated values are 

calculated as, 

ϕext
21 =

𝑟21
𝑝 ϕ1 − ϕ2

𝑟21
𝑝 − 1

(32) 

And the value, ϕext
32  is calculated similarly. The following errors are then calculated, 

starting with the approximate relative error, 

𝑒𝑎
21 = |

ϕ1 − ϕ2

ϕ1
| (33) 

and the extrapolated relative error, 

𝑒ext
21 = |

ϕext
21 − ϕ1

ϕext
21 | (34) 

and finally, the fine-grid convergence index, 
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GCIfine
21 =

1.25𝑒𝑎
21

𝑟21
𝑝

− 1
(35) 

The results comparing the pressure distributions, separation locations and 𝐶𝐿  and 𝐶𝐷 

values for the first iteration of the mesh refinement are shown in Figure 68 and Figure 

69 and Table 7. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 68: Pressure distributions for (a) coarse mesh (b) medium mesh and (c) fine mesh showing the 

separation and reattachment locations and 𝐶𝐿 and 𝐶𝐷 values. 
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Figure 69: Change in 𝐶𝐿 and 𝐶𝐷 for the successive refinements 

Table 7: Quantities calculated for the mesh independence study performed at 𝛼 = 4∘ and Re = 2 × 105 

 𝐶𝐿 𝐶𝐷 

𝑁 [1183952, 429567, 165787] [1183952, 429567, 165787] 

ℎ1, ℎ2, ℎ3 [0.01508, 0.02114, 0.0290] [0.01508, 0.02114, 0.0290] 

𝑟21, 𝑟32 [1.4021, 1.3735] [1.4021, 1.3735] 

ϕ1, ϕ2,ϕ3 [0.7938, 0.8019, 0.8095] [0.0134, 0.0136, 0.0133] 

𝑒21, 𝑒32 [0.0081, 0.0076] [0.0002, -0.0003] 

𝑠 1 -1 

𝑝 0.0027 1.1209 

ϕext
21 , ϕext

31  [-8.2243, -8.208] [0.0130, 0.0143] 

𝑒𝑎
21 0.0010 0.0015 

𝑒ext
21 1.0975 0.0498 

GCIfine
21  14.2005 0.0419 

 

From Table 7 the solution of the finest mesh was not independent of the mesh, indicated 

by a grid convergence index (GCI) value of 14.2005, which should be almost zero for a 

mesh-independent solution. Increasing the number of cells in the mesh was not a viable 

option, since the mesh used for the optimization would have been too large when 

considering the number of simulations required. The choice was therefore made to 

investigate the difference in the meshing strategies used. 

The initial meshes made use of the so-called prism layer mesher which extrudes prismatic 

cells from the surface to which it is applied. The prismatic cells near the trailing edge of 
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the wing were visually inspected, and it was evident that these cells collapsed near the 

trailing edge as shown in Figure 70a The so-called advancing layer mesher was used 

instead which eliminated the collapsing prismatic cells, as shown in Figure 70b 

 

(a) 

 

(b) 

Figure 70: The trailing edge prismatic cells using the (a) prism layer mesher and (b) the advancing layer 

mesher. 

For the new meshes generated by the advancing layer mesh, a new mesh independence 

study was performed to investigate whether improved trailing edge prismatic cells caused 

the prior simulations to be dependent on the mesh. Furthermore, the number of prism 

layers were changed during the mesh refinement to ensure that cell aspect ratios and 

sizes between the final prism layer cell and the first core polyhedral cell were uniform. 

For the fine mesh, 80 prism layers were used, for the medium mesh, 50 prism layers were 

used and for the coarse mesh, 30 prism layers were used. 
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Appendix D – Mesh Independence Study Advancing Layer Mesh 

The pressure distribution results showing the laminar separation and turbulent 

reattachment location compared to experimental results are shown in Figure 59. The 

variation in the aerodynamic coefficients of interest, 𝐶𝐿  and 𝐶𝐷 as functions of the mesh 

size is shown in Figure 60, and the calculation of the grid convergence index is shown in 

Table 9. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 71: Pressure distributions for (a) coarse mesh (b) medium mesh and (c) fine mesh showing the 

separation and reattachment locations and 𝐶𝐿 and 𝐶𝐷 values. 
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Figure 72: Change in 𝐶𝐿 and 𝐶𝐷 for the successive refinements 

Table 8: Quantities calculated for the mesh independence study performed at 𝛼 = 4∘ and Re = 2 × 105 

 𝐶𝐿 𝐶𝐷 

𝑁 [1085769, 345544, 141471] [085769, 345544, 141471] 

ℎ1, ℎ2, ℎ3 [0.0156, 0.02273, 0.0303] [0.0156, 0.02273, 0.0306] 

𝑟21, 𝑟32 [1.465, 1.345] [1.465, 1.345] 

ϕ1, ϕ2,ϕ3 [0.7994, 0.7966, 0.7941] [0.0139, 0.0145, 0.0156] 

𝑒21, 𝑒32 [-0.0028, -0.0025] [0.0005, 0.0012] 

𝑠 1 1 

𝑝 0.4535 2.7886 

ϕext
21 , ϕext

31  [0.8141, 0.8141] [0.0136, 0.0136] 

𝑒𝑎
21 0.0035 0.0423 

0.0215 0.00661 0.0498 

GCIfine
21  0.0230 0.0279 

The GCI values were in the order of 2% (Table 8) which was a significant improvement 

and viable to use. Therefore, the mesh to be used was the medium mesh, containing ∼ 

350k cells. This would be the most practical compromise between mesh size (keeping the 

final mesh size used in the optimization in mind) and accurate results. The advancing 

layer mesh also improved on the pressure distributions which correlated better with the 

experimental data than the prism layer mesher. As a final check, an angle of attack sweep 

using α = 0∘, 2∘, 4∘, 6∘, 8∘ was done to verify whether results are applicable to a range of 

flow directions.  
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Appendix E – JAVA macro used for geometry updating 

// Simcenter STAR-CCM+ macro: getParamsToCSV.java 

// Written by Simcenter STAR-CCM+ 17.02.007 

package macro; 

 

import java.util.*; 

import java.lang.Math; 

import Jama.*; 

import java.io.*; 

 

import star.common.*; 

import star.base.neo.*; 

import star.vis.*; 

import star.cadmodeler.*; 

import star.meshing.*; 

 

public class PARSEC_update_2d extends StarMacro { 

 

  public void execute() { 

 

    Simulation Sim = getActiveSimulation(); 

 

    // Root Airfoil 

 

    ScalarGlobalParameter ParAlpha_te = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("alpha_te")); 

    ScalarGlobalParameter ParBeta_te = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("beta_te")); 

    ScalarGlobalParameter ParDelta_Y_te = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("delta_Y_te")); 

    ScalarGlobalParameter ParR_le_lo = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("r_le_lo")); 

    ScalarGlobalParameter ParR_le_up = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("r_le_up")); 

    ScalarGlobalParameter ParX_lo = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("X_lo")); 

    ScalarGlobalParameter ParX_up = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("X_up")); 

    ScalarGlobalParameter ParY_lo = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("Y_lo")); 

    ScalarGlobalParameter ParY_te = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("Y_te")); 

    ScalarGlobalParameter ParY_up = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("Y_up")); 

    ScalarGlobalParameter ParY_xx_lo = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("Y_xx_lo")); 
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    ScalarGlobalParameter ParY_xx_up = ((ScalarGlobalParameter) 

Sim.get(GlobalParameterManager.class).getObject("Y_xx_up")); 

   

 

    // Root 

 

    double alpha_te = ParAlpha_te.getQuantity().getSIValue(); 

    double beta_te = ParBeta_te.getQuantity().getSIValue(); 

    double delta_Y_te = ParDelta_Y_te.getQuantity().getSIValue(); 

    double r_le_lo = ParR_le_lo.getQuantity().getSIValue(); 

    double r_le_up = ParR_le_up.getQuantity().getSIValue(); 

    double X_lo = ParX_lo.getQuantity().getSIValue(); 

    double X_up = ParX_up.getQuantity().getSIValue(); 

    double Y_lo = ParY_lo.getQuantity().getSIValue(); 

    double Y_up = ParY_up.getQuantity().getSIValue(); 

    double Y_te = ParY_te.getQuantity().getSIValue(); 

    double Y_xx_lo = ParY_xx_lo.getQuantity().getSIValue(); 

    double Y_xx_up = ParY_xx_up.getQuantity().getSIValue(); 

 

   

    //Root 

 

    double [][] A_up = {{1,1,1,1,1,1,}, 

                        {Math.pow(X_up,0.5),Math.pow(X_up,1.5),Math.pow(X_up,2

.5),Math.pow(X_up,3.5),Math.pow(X_up,4.5),Math.pow(X_up,5.5)}, 

                        {0.5,1.5,2.5,3.5,4.5,5.5}, 

                        {0.5*Math.pow(X_up,-

0.5),1.5*Math.pow(X_up,0.5),2.5*Math.pow(X_up,1.5),3.5*Math.pow(X_up,2.5),4.5*

Math.pow(X_up,3.5),5.5*Math.pow(X_up,4.5)}, 

                        {-0.25*Math.pow(X_up, -1.5), 0.75*Math.pow(X_up, -

0.5), (15.0/4.0)*Math.pow(X_up, 0.5), (35.0/4.0)*Math.pow(X_up, 1.5), 

(63.0/4.0)*Math.pow(X_up, 2.5), (99.0/4.0)*Math.pow(X_up, 3.5)}, 

                        {1,0,0,0,0,0} 

     

     

    }; 

 

    double [][] b_up = {{Y_te+0.5*delta_Y_te},  

                        {Y_up},  

                        {Math.tan((2*alpha_te - beta_te)/2)}, 

                        {0},  

                        {Y_xx_up}, 

                        {Math.pow(r_le_up,0.5)} 

    }; 

 

     

    double [][] A_lo = {{1,1,1,1,1,1,}, 
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                        {Math.pow(X_lo,0.5),Math.pow(X_lo,1.5),Math.pow(X_lo,2

.5),Math.pow(X_lo,3.5),Math.pow(X_lo,4.5),Math.pow(X_lo,5.5)}, 

                        {0.5,1.5,2.5,3.5,4.5,5.5}, 

                        {0.5*Math.pow(X_lo,-

0.5),1.5*Math.pow(X_lo,0.5),2.5*Math.pow(X_lo,1.5),3.5*Math.pow(X_lo,2.5),4.5*

Math.pow(X_lo,3.5),5.5*Math.pow(X_lo,4.5)}, 

                        {-0.25*Math.pow(X_lo, -1.5), 0.75*Math.pow(X_lo, -

0.5), (15.0/4.0)*Math.pow(X_lo, 0.5), (35.0/4.0)*Math.pow(X_lo, 1.5), 

(63.0/4.0)*Math.pow(X_lo, 2.5), (99.0/4.0)*Math.pow(X_lo, 3.5)}, 

                        {1,0,0,0,0,0} 

     

    }; 

 

    double [][] b_lo = {{Y_te - 0.5*delta_Y_te},  

                        {Y_lo},  

                        {Math.tan((2*alpha_te + beta_te)/2)}, 

                        {0},  

                        {Y_xx_lo}, 

                        {-1.0*Math.pow(r_le_lo,0.5)}}; 

 

    // Root 

    Matrix A_up_M = new Matrix(A_up); 

    Matrix b_up_M = new Matrix(b_up); 

    Matrix A_lo_M = new Matrix(A_lo); 

    Matrix b_lo_M = new Matrix(b_lo); 

 

    //Root 

    Matrix a_matrix = A_up_M.solve(b_up_M); 

    Matrix b_matrix = A_lo_M.solve(b_lo_M); 

     

    //Root 

    double [][] a = a_matrix.getArray(); 

    double [][] b = b_matrix.getArray(); 

    

 

    int N = 50; //number of points to use 

 

    //Root 

    double xu; 

    double yu; 

    double xl; 

    double yl; 

    double[] xu_a = new double[N+1]; 

    double[] yu_a = new double[N+1]; 

    double[] xl_a = new double[N+1]; 

    double[] yl_a = new double[N+1]; 

    for (int i = 0; i < N + 1; i++){ 
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      double i_d = (double) i; 

      double N_d = (double) N; 

      double xi = i_d/N_d; 

 

      //Root 

      xu = (Math.sin((xi - 0.5)*Math.PI) + 1.0)/2.0; 

      xl = (Math.sin((xi - 0.5)*Math.PI) + 1.0)/2.0; 

      yu = 0.0; 

      yl = 0.0; 

       

      for (int n = 0; n < 6; n++){ 

        //Root 

        yu += a[n][0] * Math.pow(xu, ((float) n + 1.0) - 0.5); 

        yl += b[n][0] * Math.pow(xl, ((float) n + 1.0) - 0.5); 

      } 

      //Root 

      yu_a[i] = yu; 

      xu_a[i] = xu; 

      yl_a[i] = yl; 

      xl_a[i] = xl; 

 

    } 

 

    String Dir = Sim.getSessionDir(); 

 

    //Root 

    String fileName = Dir + File.separator + "PARSEC.csv"; 

    Sim.println("Root saved to " + fileName); 

   

    double root_chordlength = 2e-01; 

    double te_u_root_pt = 0.; 

    double te_l_root_pt = 0.; 

 

    FileWriter fw; 

    try { 

        fw = new FileWriter(new File(fileName)); 

        //Write the CSV file header 

        //fw.write("x,y,z"); 

        //fw.write(System.lineSeparator()); 

        //Write table until N 

        for (int i = 0; i < N + 1; i++) { 

            fw.write(String.format(Locale.US, "%f,%f,%f", xu_a[N-

i]*root_chordlength, yu_a[N-i]*root_chordlength, 0.0)); 

            fw.write(System.lineSeparator()); 

            if (i==0){ 

                te_u_root_pt = yu_a[N-i]*root_chordlength; 

                // Sim.println("Up - Root - Done"); 

            } 
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        } 

        for (int i = 1; i < N + 1; i++) { 

            fw.write(String.format(Locale.US, "%f,%f,%f", 

xl_a[i]*root_chordlength, yl_a[i]*root_chordlength, 0.0)); 

            fw.write(System.lineSeparator()); 

            if (i==N){ 

                te_l_root_pt = yl_a[i]*root_chordlength; 

                // Sim.println("Lo - Root - Done"); 

            } 

        } 

         

        fw.close(); 

 

        // Sim.println("CSV file was created successfully !!!"); 

 

    } catch (Exception ex) { 

        Sim.println("OOPS !?!"); 

    } 

 

    CadModel cadModel_0 =  

      ((CadModel) Sim.get(SolidModelManager.class).getObject("Domain")); 

     

 

    Sim.get(SolidModelManager.class).editCadModel(cadModel_0); 

 

    Sim.println("#############################################################

#####################################"); 

    Sim.println("Starting with Root"); 

 

    Sketch3D sketch3D_0 =  

      ((Sketch3D) cadModel_0.getFeature("Root")); 

    cadModel_0.getFeatureManager().rollBack(sketch3D_0, false); 

    cadModel_0.getFeatureManager().rollForward(sketch3D_0, true, false); 

    sketch3D_0.setAutoPreview(true); 

    cadModel_0.allowMakingPartDirty(false); 

    cadModel_0.getFeatureManager().updateModelForEditingFeature(sketch3D_0); 

    cadModel_0.getFeatureManager().startSketch3DEdit(sketch3D_0); 

    SplineSketchPrimitive3D splineSketchPrimitive3D_0 =  

      ((SplineSketchPrimitive3D) sketch3D_0.getSketchPrimitive3D("Spline 1")); 

    Sim.println("Fetching Root from " + fileName); 

    sketch3D_0.replaceSketchPrimitive3d(splineSketchPrimitive3D_0, fileName); 

    sketch3D_0.setIsBodyGroupCreation(false); 

    cadModel_0.getFeatureManager().markDependentNotUptodate(sketch3D_0); 

    sketch3D_0.markFeatureForEdit(); 

    cadModel_0.allowMakingPartDirty(true); 

    cadModel_0.getFeatureManager().stopSketch3DEdit(sketch3D_0, false); 

    cadModel_0.getFeatureManager().markDependentNotUptodate(sketch3D_0); 
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    Sim.println("#############################################################

#####################################"); 

    Sim.println("Starting with Domain Subtraction"); 

 

    cadModel_0.getFeatureManager().rollForwardToEnd(false); 

 

    Sim.get(SolidModelManager.class).endEditCadModel(cadModel_0); 

 

    Sim.println("Model Successfully Updated"); 

 

     

  } 

} 
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Appendix F – PARSEC Parameter Bound Investigation 

The initial case where δ = 0.5, and the upper and lower bounds calculated using equations 

(22), the covariance matrix is shown in Figure 73. (The values of the bounds used are 

given in at the end of the subsection in Table 9). 

 

Figure 73: Covariance matrix of the failed designs with 𝛿 = 0.5. 

Another visual way of identifying which parameters caused the designs to fail was to 

simply plot each parameter as a function of every other parameter. Clusters of many 

points which do not seem form part of the rest of the points indicated which parameters 

were too high or too low. 
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Figure 74: Scatter plots of each PARSEC parameter as a function of every other PARSEC parameter for all 

failed designs with 𝛿 =  0.5. 

It is obvious that presenting more plots like that shown in Figure 74 would be unnecessary 

due to the size thereof. From only Figure 74, the idea behind the cluster formations can 

be seen when looking at the 𝑋lo and 𝑋up data. There are thicker bands formed for lower 𝑋lo 

values. Similarly, there are thicker bands formed for lower values of 𝑋up. This fact is 

exactly pointed out in Figure 73, where the covariance matrix values for 𝑋lo and 𝑋up are 

clearly the largest in absolute value. 

An attempt can now be made to slightly increase the lower bounds of 𝑋lo and 𝑋up because 

of the thicker bands formed at the lower range of 𝑋lo and 𝑋up according to Figure 74 (Table 

9 at the end of the subsection shows the new bounds used to investigate if the success rate 
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increased). The lower bounds were increased to Xlo = 0.3 and Xup = 0.35, a 30% and 5% 

decrease from the baseline values, instead of 50%, which made morphological sense given 

that the maximum thickness of the GHA wing would always be at the bone and very little 

deviation is expected in the chordwise direction. The 𝑍te upper bound was changed to 0.15 

to accommodate the expected morphing of the trailing edge, a characteristic of feathered 

wings (Nachtigall and Wieser, 1966). The new covariance matrix was obtained and shown 

in Figure 75. From this figure it can be seen that the success rate increased, drastically, 

to above 80%. This method was therefore useful to obtain the largest design space 

possible, while still maintaining the morphological accuracy of a real GHA wing. If the 

success rate had to be increased to 100%, the same method can be used, and the next 

parameter to be changed is likely 𝑍up, but this is not recommended as an increase in 𝑍up 

upper limit may result in geometries outside the natural morphological limits of the GHA 

wing (i.e., the skin and feathers above the bone are not expected to deform significantly 

when the bird is in flight). Thus, the success rate of > 80% is deemed sufficient for the 

purposes of this study.  

Figure 75: Covariance matrix of the PARSEC parameters after adjusting the bounds. 
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The original and new lower and upper bounds of the arm and hand airfoil of the GHA is 

shown in Table 9 and Table 10. 

Table 9: PARSEC parameters bounds and baseline values for the arm section (a) before (50% success rate) 

and (b) after (80% success rate) updating the 𝑋lo, 𝑋up,𝛽te, and 𝑍te bounds. 

(a) 

Parameter Lower 

Bound 

Baseline Upper 

Bound 

𝑟le, lo 0.0702 0.1405 0.2107 

𝑟le, up 0.1243 0.2485 0.3728 

𝑋lo 0.2115 0.4230 0.6346 
𝑋up 0.1841 0.3683 0.5524 

𝑍lo 0.0566 0.1131 0.1697 
𝑍up 0.1308 0.2616 0.3924 

𝑍xx, up -3.1084 -2.0722 -1.0361

𝑍xx, lo -1.8747 -1.2498 -0.6249

αte -48.8888 -32.5926 -16.2963
βte 8.8457 17.6914 26.5371 
𝑍te 0.0053 0.0106. 0.0159 
Δ𝑍te 0.0100 0.0199 0.0299 

(b) 

Parameter Lower 

Bound 

Baseline Upper 

Bound 

𝑟le, lo 0.0702 0.1405 0.2107 

𝑟le, up 0.1243 0.2485 0.3728 

𝑋lo 0.3000 0.4230 0.6346 
𝑋up 0.3500 0.3683 0.5524 

𝑍lo 0.0566 0.1131 0.1697 
𝑍up 0.1308 0.2616 0.3924 

𝑍xx, up -3.1084 -2.0722 -1.0361

𝑍xx, lo -1.8747 -1.2498 -0.6249

αte -48.8888 -35.5926 -16.2963
βte 8.8457 17.6914 30 
𝑍te 0.0053 0.0106 0.1500 
Δ𝑍te 0.0100 0.0199 0.0299 

Table 10: PARSEC parameters bounds and baseline values for the hand section (a) before (50% success rate) 

and (b) after (80% success rate) updating the 𝑋lo, 𝑋up,𝛽te, and 𝑍te bounds. 

(a) 

Parameter Lower 

Bound 

Baseline Upper 

Bound 

𝑟le, lo 0.0221 0.0441 0.0662 

𝑟le, up 0.0674 0.1348 0.2021 

𝑋lo 0.1887 0.3774 0.5661 
𝑋up 0.1715 0.3431 0.5146 

𝑍lo 0.0364 0.0728 0.1092 
𝑍up 0.0755 0.1509 0.2264 

𝑍xx, up -1.6237 -1.0825 -1.5412

𝑍xx, lo -1.1031 -0.7354 -0.3677

αte -27.7361 -18.4907 -9.2454
βte -4.1369 -2.7579 -1.3790
𝑍te 0.0065 0.0130 0.0195
Δ𝑍te 0.027 0.0054 0.0081

(b) 

Parameter Lower 

Bound 

Baseline Upper 

Bound 

𝑟le, lo 0.0221 0.0441 0.0662 

𝑟le, up 0.0674 0.1348 0.2021 

𝑋lo 0.3000 0.3774 0.5661 
𝑋up 0.2900 0.3431 0.5146 

𝑍lo 0.0364 0.0728 0.1092 
𝑍up 0.1200 0.1509 0.2264 

𝑍xx, up -1.6237 -1.0825 -1.5412

𝑍xx, lo -1.1031 -0.7354 -0.3677

αte -27.7361 -18.4907 -9.2454
βte -4.1369 -2.7579 30.0000 
𝑍te 0.0065 0.0130 0.1 
Δ𝑍te 0.027 0.0054 0.0081 
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