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Abstract: Pigeonpea (Cajanus cajan (L.) Millsp.) is an important grain legume, which, like several
other legumes, depends on the process of biological nitrogen fixation for its nitrogen (N2) requirement
by forming a symbiotic association with rhizobia. Compared to other tropical legumes, however,
the productivity of pigeonpea in South Africa is low, despite the extensive interests in developing it
for wider markets. To assist this process, the objectives of the current study were to (i) characterize
putative indigenous rhizobial strains that were previously derived from local soils with no previous
history of legume cultivation and (ii) confirm their nodulation abilities on a local landrace and a
genetically improved (exotic) genotype of pigeonpea. DNA-based analyses using the 16S rRNA
and recA genes showed that the strains predominantly represented Rhizobium and Bradyrhizobium,
although we also recovered Phyllobacterium and Paraburkholderia. These rhizobia nodulated both the
local landrace and the improved pigeonpea genotype that were included for comparative purposes.
In many cases, rhizobia performed similarly on the two genotypes, although the locally sourced
landrace mostly performed better in terms of nodulation and plant biomass. While the current
study generated vital information regarding the diversity of indigenous rhizobia associating with
pigeonpea, further screening (including field inoculation trials) would be necessary to identify
possible elite nitrogen fixing rhizobial strains for development as inoculants to enhance South African
pigeonpea production.

Keywords: grain legume; nodulation; plant growth promotion; alphaproteobacteria; betaproteobacteria

1. Introduction

Biological nitrogen fixation is one of the most important processes necessary for plant
growth and yield improvements. This property is associated with two of the six subfamilies
(i.e., Papilionoideae and Caesalpinioideae) of the Leguminosae/Fabaceae [1]. Specifically,
these legumes make use of symbiotic nitrogen fixation (SNF), which relies on the association
with a group of soil bacteria capable of inducing the formation of novel plant structures
called nodules on either the stem or roots of the host, within which the fixation process
happens [2]. Bacteria with the ability to induce such nitrogen-fixing nodules are referred to
as rhizobia [3].

Like most other legumes, pigeonpea (Cajanus cajan) also derives its nitrogen mainly
through the process of SNF [4,5]. Pigeonpea is widely cultivated for human consumption
as a source of protein and food grain particularly in low-income communities. It serves
as a valuable forage and green manure crop, and its cultivation contributes to soil fertility
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through SNF [6–9]. Due to its consumption by both humans and livestock, pigeonpea can
be traded in both informal and formal markets, thereby generating household income [10].
However, the productivity of pigeonpea is generally low, particularly in smallholder
cropping systems [11–13]. For example, in Tanzania an average yield of only 0.4 t/ha was
reported for the growing season of 2002 to 2003 [12].

In terms of its agronomic and economic value, pigeonpea is a low-input crop with
no chemical fertilizer requirements, as nitrogen is supplied through the natural symbiosis
with rhizobia [14]. The legume is generally compatible with rhizobia that form part of
the cowpea miscellany group, which commonly also nodulate legumes such as cowpea
(Vigna unguiculata), siratro (Macropitilium atropurpureum), lima bean (Phaseolus lunatus), and
peanut (Arachis hypogaea) [15–18]. This broad host-range group is indigenous to African
soils and represent slow-growing rhizobia from the genus Bradyrhizobium [19]. Various
studies from Africa have also shown that the interactions between these rhizobia and
their legume hosts are promiscuous, especially in terms of their symbiosis with peanut,
cowpea, and cowpea relatives [19–22]. However, despite the general lack of host-specificity
in the cowpea miscellany group, all its members are not equally able to nodulate different
legumes. For example, in one of the first studies to characterize this trait, some symbionts
of groundnut and Vigna species could also nodulate pigeonpea, while others could not [18].

Pigeonpea is among the most drought-tolerant legumes and regarded as having great
potential for cultivation in the water-stressed and semi-arid regions of Africa [23]. Although
its origins are still debatable, the species is thought to have been introduced from India to
East Africa, from where it was moved to other parts of Africa [23]. This includes South
Africa, where perennial varieties of pigeonpea are predominantly grown as single plants in
home gardens in the Kwazulu-Natal, Limpopo and Mpumalanga provinces [24]. However,
in recognition of its potential for cultivation in the drought prone regions of South Africa,
local stakeholders are using various initiatives to increase awareness about the benefits of
pigeonpea cultivation and to promote it as a commercial crop in South Africa [25].

An important factor in pigeonpea cultivation is the availability of compatible rhizobia
to allow efficient SNF. It rarely requires rhizobial inoculants due to the legume’s inherent
promiscuity making it compatible with resident soil rhizobia [11,23], and thus, commercial
inoculants are not available for this crop. In other words, the limited instances of pigeonpea
cultivation in South Africa are achieved without the application of inoculum, as the legume
associates with compatible rhizobia already present in the soil [26,27]. There is a dearth of
reliable information regarding the identity and diversity of the rhizobial partners of pigeon-
pea, especially from South Africa, where the crop is cultivated on a non-commercial scale.
Rhizobia are polyphyletic and consist of species which belong to 18 genera of the alpha-
proteobacteria (alpha-rhizobia) and beta-proteobacteria (beta-rhizobia) [28,29]. However,
previous studies elsewhere indicated that pigeonpea was associated with rhizobia from sev-
eral genera including Bradyrhizobium spp. [30], Mesorhizobium [31], Rhizobium spp. [32,33]
Sinorhizobium/Ensifer [34,35]. Although the Paraburkholderia genus consists of mostly plant-
beneficial bacteria, including strains that are capable of SNF [36], some of the strains from
this genus were associated mainly with mimosoid legumes [37,38]. However, little is
known regarding the host range of rhizobia native to South African soils, nor whether they
would sustain SNF with pigeonpea. This is particularly relevant given that not all cowpea
miscellany group rhizobia are equally capable of nodulating pigeonpea. It would thus be
important to determine whether South African soils contain rhizobia suitable for pigeonpea
nodulation and nitrogen fixation. Such knowledge would be invaluable for improving
production in the current growing areas as well as for the expansion of production into
new areas in the country.

Therefore, the goal of this study was to characterize individual indigenous rhizo-
bial strains that were previously derived from local soils with no previous history of
legume cultivation and confirm their nodulation abilities on a locally sourced landrace
and a genetically improved genotype of pigeonpea. This was achieved by using putative
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pigeonpea-nodulating rhizobia that were isolated using trapping experiments with South
African soils and diverse genotypes of the legume in a previous study [26].

2. Materials and Methods
2.1. Pigeonpea Genotypes and Rhizobial Strains

Two piegonepea genotypes were used in the study to confirm their nodulation abilities
with each of the putative rhizobial strains. The genotypes consisted of a locally sourced
landrace (PP1-3018) and an improved genotype (PP5-3021) (Table 1). A set of 39 randomly
selected putative rhizobial strains was used in the study for inoculating the seed of the
pigeonpea genotypes during planting as described below (Table 2). All the putative
rhizobial strains were obtained originally from soil samples (that were collected from
diverse locations across South Africa) and used for inoculating and trapping experiments
involving five distinct pigeonpea genotypes in a glasshouse [26].

Table 1. Pigeonpea germplasm used in the study.

Genotype Seed Colour Status (Source)

PP1-3018 Grey Unimproved landrace (locally sourced)

PP5-3021 White/Cream
Improved germplasm, (International
Crops Research Institute for the
Semi-Arid Tropic)

2.2. Glasshouse Trial Establishment

The seeds of each pigeonpea genotype were pretreated with 70% ethanol for 30 s,
and surface sterilized with 3.5% sodium hypochlorite for 3 min. After rinsing 5 times
with sterile distilled water, the seeds were imbibed in sterile distilled water for 3–4 h at
room temperature. The seeds were then germinated overnight at 28 ◦C on water agar
medium containing 20 g/L bacteriological agar (Merck, Midrand, South Africa). Three
seeds of each genotype were planted separately in a 2.0 L Leonard jar containing sterilized
sand and nitrogen-free Hoagland’s plant growth solution [39]. The soil was saturated
with sterile distilled water, followed by planting the seeds and inoculating each genotype
separately with each of the rhizobial strains [26]. The Leonard jars were then placed in a
temperature-controlled glasshouse with a day length set at 14 h and temperature set at
28 ◦C, and night length set at 10h and temperature set at 20 ◦C.

2.3. Experimental Design, Measurements and Statistical Analysis

A randomized complete block design with three replications was used for the study.
After six weeks of growth, prior to harvesting, the color of leaves and root nodules were as-
sessed for evidence of nitrogen fixation. Plants with yellow, chlorotic leaves were expected
to either lack nodules or have ineffective nodules with white interiors suggesting absence
of nitrogen fixation [40]. In contrast, the plants with dark green leaves as well as nodules
with pink to red interiors indicated successful nitrogen fixation. The latter is indicative of
the presence of leghemoglobin, a protein produced by the host essential to the function of
the oxygen-sensitive nitrogenase [41]. Upon harvesting the plants, four nitrogen fixation
variables, namely, number of root nodules (NN), nodule fresh weight (NFW), root fresh
weight (RFW), and shoot fresh weight (SFW), were measured for each plant after which
the nodule dry weight (NDW), root dry weight (RDW), and shoot dry weight (SDW) were
determined following oven-drying to a constant weight at 70 ◦C. The quantitative data
sets for each of the seven nitrogen fixation variables for each pigeonpea genotype were
analyzed using the standard analysis of variance procedure followed by mean separation
at the 5.0% probability level of the least significance difference (LSD) test in the Statistical
Analysis Software (SAS version 9.1, Cary, NC, USA) package [42].
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Table 2. Rhizobial strains used in the study.

Rhizobial Strain
Rhizobial Species

Code Designated Name

R1 8b2p1 Rhizobium sp.
R2 8a2p3 Bradyrhizobium sp.
R3 32b2p5 Rhizobium sp.
R4 32b1p5 Rhizobium sp.
R5 6bp3 Bradyrhizobium sp.
R6 7a2p3 Bradyrhizobium sp.
R7 30bp3 Rhizobium sp.
R8 30a2p3 Paraburkholderia sp.
R9 11a2p3 Bradyrhizobium sp.

R10 10ap3 Rhizobium sp.
R11 39a3p3 Rhizobium sp.
R12 16a2p1 Rhizobium sp.
R13 15ap1 Rhizobium sp.
R14 18ap3 Rhizobium sp.
R15 35ap3 Rhizobium sp.
R16 35bp1 Rhizobium sp.
R17 37ap4 Rhizobium sp.
R18 5b2p1 Rhizobium sp.
R19 27b2p5 Bradyrhizobium sp.
R20 31b1p5 Rhizobium sp.
R21 31b2p3 Rhizobium sp.
R22 31b1p3 Rhizobium sp.
R23 31ap4 Phyllobacteriumsp.
R24 38a1p5 Rhizobium sp.
R25 33ap4 Bradyrhizobium sp.
R26 17ap1 Rhizobium sp.
R27 17a1p3 Rhizobium sp.
R28 14a1p5 Rhizobium sp.
R29 13b1p4 Rhizobium sp.
R30 13bp3 Bradyrhizobium sp.
R31 23ap5 Rhizobium sp.
R32 19bp5 Bradyrhizobium sp.
R33 36ap5 Rhizobium sp.
R34 34a2p5 Rhizobium sp.
R35 22ap1 Rhizobium sp.
R36 29ap1 Rhizobium sp.
R37 29a1p2 Rhizobium sp.
R38 29a2p2 Rhizobium sp.
R39 26bp3 Rhizobium sp.
R40 Control water

2.4. DNA-Based Identification of Rhizobial Strains

Representatives of the rhizobial strains that were previously isolated from pigeonpea
were identified using DNA sequences for both the 16S ribosomal RNA (rRNA) subunit
gene and the recA house keeping gene [43–45]. To achieve this, the respective bacteria were
used to inoculate tubes containing 5 mL of sterile tryptone yeast extract broth (TYB), which
consisted of 5 g/L tryptone (Oxoid, Midrand, South Africa), 3 g/L yeast extract (Biolab,
Midrand, South Africa), and 15 g/L agar (Merck, Midrand, South Africa). The inoculated
tubes were incubated for 24 to 48 h at 28 ◦C and 150 rpm on a rotary shaker. Bacterial cells
were then harvested by centrifugation and subjected to DNA extraction using the WIZARD
genomic DNA purification kit (Promega, Madison, WI, USA).

The extracted DNA was used to PCR amplify the relevant regions. For 16S rRNA, the
primers 27F (5′ AGA GTT TGA TCC TGG CTC AG 3′) and 1485R (5′ TAC CTT GTT ACG
ACT TCA CCC CA 3′) were employed [46]. Each 50 µL-reaction 5 ng/µL DNA, 1.5 mM
MgCl2, 800 µM dNTPs, 0.5 µM of each primer and 0.025 U/µL SuperTherm Taq polymerase
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(Promega, Madison, WI, USA) together with its reaction buffer. PCR amplification was
carried out in an Eppendorf Master Cycler Gradient apparatus (Applied Biosystems, San
Francisco, CA, USA). The cycling conditions entailed and initial denaturation at 94 ◦C was
for 4 min, followed by 35 cycles of denaturation at 94 ◦C for 1 min, annealing at 60 ◦C for
30 s, and extension at 72 ◦C for 1 min, after which a final extension step was performed at
72 ◦C for 1 min.

For the recA PCR, four different sets of primers were used. The primers recA63F
(‘5 ATC GAG CGG TCG TTC GGC AAG GG 3′) and recA504R (‘5 TTG CGC AGC GCC TGG
CTC AT 3′) were used to amplify a portion of recA in strains representing Bradyrhizobium,
Paraburkholderia, and Phyllobacterium, as well as some strains of Rhizobium [46]. For Rhi-
zobium strains, we also used primers recA6F (‘5 CGK CTS GTA GAG GAY AAA TCG
GTG GA 3′) and recA555R (‘5-CGR ATC TGG TTG ATG AAG ATC ACC AT 3′). In both
these cases, the reaction mixtures were constituted the same as for the 16S rRNA PCRs
(except that the relevant recA primers were used) and optimum cycling conditions were
applied [46]. For those strains in which the initial two sets of recA primers did not work,
we used a third set of primers, TSrecAf5 (‘5 CAC TGC MYT GCG TAT YGT CGA AGG 3′)
and TsrecAr3 (‘5 GAT CTT CAT SCG GAT CTG GTT GATG 3′) [46]. For these reactions,
we employed FastStart High-Fidelity Taq and its MgCl2 and buffer (Roche Diagnostics,
Midrand, South Africa) and optimum cycling conditions were applied.

All PCR products were purified with Exonuclease 1 and FASTAP alkaline phosphatase
(Thermo Scientific, Johannesburg, South Africa). The PCR products were sequenced in
both directions (using the original PCR primers) with an ABI PRISM BigDye Terminator
v3.1 Cycle Sequencing Kit on an ABI3100 Automated Capillary DNA sequencer (Applied
Biosystems, San Francisco, CA, USA). All raw sequence files were inspected and edited
using Chromas Lite version 2.0 (Technelysium, Brisbane, Australia) and BioEdit version
5.0.9 [47]. The 16S rRNA sequence for each strain was compared to all publicly available
sequences in the GenBank database of the National Centre for Biotechnology Information
using the BLASTN software [48]. A separate dataset was constructed for representatives
for each of the genera recovered in this study. The type strain information necessary
to construct the datasets was obtained from a list of prokaryotic names with standing
in nomenclature [49] and included multiple-sequence alignment files together with the
pigeonpea rhizobial sequences generated in this study. All sequences generated during this
study were submitted to National Center for Biotechnology Information using the Genbank
submission portal National Institute of Health and were assigned the following accession
numbers: 16S rRNA OK376606-OK384775, OK392633-OK393635, OP010913-OP010918, and
OP013027-OP013030.

All 16S rRNA datasets were aligned with the online server of MAFFT (multiple
alignment using fast Fourier transformation [50]), taking secondary structure into account
by using the Q-INS-I strategy [51]. The recA datasets were aligned manually in BioEdit,
based upon the inferred amino acid sequences. Sequences which were too short for
meaningful comparison (for type strains as well as pigeonpea strains) were excluded from
the alignments. To determine the appropriate evolutionary models for the alignments,
jModelTest v2.1.7 was used [52,53]. For those datasets that did not use the general time
reversible (GTR) model, maximum-likelihood analyses were performed in PhyML v3.1
while the analysis of those datasets using this model was performed with PhyML v.3.0
on the Montpellier bioinformatics platform [54]. Branch support was evaluated using
bootstrap analysis [55] performed using 1000 pseudoreplicates.

3. Results
3.1. Glasshouse Nodulation Test Experiment

Bacterial strains from the current study were tested for nodulation on an indigenous
pigeonpea landrace (PP1-3018) and an improved genotype (PP5-3021). Effective nodulation
was evident from the plants’ healthy appearance and green color, while those in which
nodulation was ineffective or lacking were small, with yellow to light green leaves (Figure 1).
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Inspection of roots also revealed that the healthy plants had numerous nodules with pink
interiors, while those of the less healthy plants lacked nodules or harboured ineffective,
small nodules, lacking leghemoglobin. The uninoculated control plants were also stunted
with yellow leaves, and their roots did not have nodules. In all cases, inoculation of the
two genotypes and subsequent DNA sequence analysis confirmed that the inocula used in
the various treatments were indeed responsible for the observed phenotypes.
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Figure 1. Pigeonpea plants of the (a) local landrace genotype PP1-3018 and (b) the exotic improved
genotype PP5-3021. Genotype PP1-3018 appears a much healthier with a dark green color, while
some of the plants of genotype PP5-3021 appear less healthy with light green/yellow leaves; (c) most
of the plants with yellow leaves, as well as the uninoculated controls, lacked nodules (left) while the
healthy-looking plants had roots bearing numerous indeterminate nodules (right).



Agriculture 2023, 13, 30 7 of 14

Of the set of 39 strains that were used in the study, 32 nodulated the indigenous
landrace effectively, while 34 effectively nodulated the improved genotype. Of the 32
which nodulated the indigenous genotype, 1–32 nodules/plant were produced on average,
depending on the bacterial inoculum used. For those nodulating the improved genotype,
this ranged from 1–27 nodules/plant, depending on the bacterial inoculum used. The
highest NN was induced by the rhizobial strain 10ap3 (identified as Rhizobium sp 10)
(Figure 2). In certain cases, strains capable of inducing most nodules and yielding the
highest biomass on the indigenous genotype, were also able to do so on the improved
genotype. Significant examples are strains 10ap3 (identified as Rhizobium sp 10) and 16a2p1
(identified as Rhizobium sp 12) (Figure 2).
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Figure 2. The effects of inoculation with rhizobial strains on the number of nodules per plant of
the landrace and improved pigeonpea genotypes. The identity of each rhizobial strain (R1–R40)
is described in Table 2 and the results of the statistical analysis are reported in Tables S1 and S2
(depending on the genotype).

The results also showed that the Bradyrhizobium strain 13bp3 (coded R30) produced
NDW with the landrace genotype, but not with the improved genotype (Figure 3). In
contrast, two Rhizobium sp (22ap1 and 29ap1) produced no detectable NDW with both
pigeonpea genotypes (Figure 3). The SDW was similar between the landrace and the
improved genotype with some of the rhizobial strains, for instance Phyllobacterium sp
31ap4 (code R23) and Paraburkholderia sp 30a2p3 (coded R8) (Figure 4). Two Bradyrhizobium
strains (7a2p3 and 33ap4) and one Rhizobium strain (39a3p3) induced significantly high
RDW in the improved genotype while inoculation with the Rhizobium sp 30bp3 resulted
in a significantly high RDW in the landrace genotype (Figure 5). The respective fresh
weights (of the nodules, shoots, and roots) showed some variable responses among the
two pigeonpea genotypes but were considered less reliable indicators of nitrogen fixation
(Supplementary Tables S1 and S2).

3.2. DNA-Based Identification of Rhizobial Strains

To identify the bacteria at species level, we utilized the phylogenies inferred from the
16S rRNA (diagram not shown) and recA alignments that were generated for the Rhizobium
(Figure 6) and Bradyrhizobium (Figure 7). For this purpose, phylogenetic distances among
known species were compared to those among the strains from this study. This approach
was used in combination with the species delineation method which assumes that members
of a species would consistently group together in different gene trees [21,34]. The strains
that belong to the same genus or species mostly formed the same grouping either on the
16S rRNA or the recA phylogeny. For instance, in the Rhizobium genus, the Rhizobium sp
5b2p1, 10ap3, and 30bp3 formed the same cluster with R. lusitanum, R. multihospitium and
R. tropici in the recA tree (Figure 6). In addition, the Bradyrhizobium strain 33ap4 is a close
relative of B. ferriligni and B. elkanii (Figure 7). From the phylogenetic standpoint, these
approaches revealed that all the strains isolated in the current study are likely new.
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Figure 4. The effects of inoculation with rhizobial strains on the shoot dry weight per plant of
the landrace and improved pigeonpea genotypes. The identity of each rhizobial strain (R1–R40)
is described in Table 2 and the results of the statistical analysis are reported in Tables S1 and S2
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Figure 6. A recA maximum-likelihood phylogeny of Rhizobium strains associated with pigeonpea.
The strains in red originated from pigeonpea nodules. Bootstrap support for the groupings above 50%
are indicated. Information regarding the type strain is provided while the GenBank accession number
or locus tag for each species is indicated in brackets. Species names which appear in inverted commas
(‘ . . . ’) are combinations which have not yet been validly published. The scale bar corresponds to the
number of nucleotide changes per site. The model used is GTR + I + G with invariable proportion
site value 0.4310 and gamma value 0.8190.
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Figure 7. A recA maximum-likelihood phylogeny of Bradyrhizobium strains associated with pigeonpea.
The strains in red originated from pigeonpea nodules. Bootstrap Bootstrap support for the groupings
above 50% are indicated. Information regarding the type strain is provided while the GenBank
accession number or locus tag for each species is indicated in brackets. Species names which appear
in inverted commas (‘ . . . ’) are combinations which have not yet been validly published. The scale
bar corresponds to the number of nucleotide changes per site. The model used is GTR+ I+ G with
invariable proportion site value 0.4986 and gamma value 0.6930.
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4. Discussion

This study characterized the rhizobial strains which were originally sampled from
diverse locations (virgin or grasslands transects) that had no history of pigeonpea cultiva-
tion across South Africa. In these regions, some studies on edible legumes such as cowpea,
dry bean, and soybean were conduted previously, but little is known about their symbi-
otic efficiency with pigeonpea [24]. We thus aimed to characterize pigeonpea-nodulating
bacteria from soils that were previously collected from different regions of South Africa,
and then evaluate their ability to nodulate and promote the growth of pigeonpea using
an indigenous and an improved genotype (Figure 3). The results of the nodulation test
indicated that some rhizobial strains that were evaluated (for instance, Bradyrhizobium
strain 13bp3) could nodulate with the indigenous genotype (Figure 3) but could not nodu-
late with the improved genotype, thus suggesting that some soils had strains with low
nodulation and nitrogen fixation efficiencies as compared to soils from other locations such
as those with strains 23ap5, 34a2p5, and 22ap1. Similarly, some rhizobial strains (35bp1,
14a1p5 and 22ap1) failed to nodulate the improved genotype suggesting that there was
host genotype x rhizobial strain incompatibility between some strains and the improved
pigeonpea genotype. Nevertheless, there were nodulation compatibilities with similar
rhizobial strains, such as 32b2p5, 10ap3, and 16a2p1, in both genotypes.

Our results revealed that diverse bacteria from both the α-proteobacteria and β-
proteobacteria may occupy the root nodules of pigeonpea. We further assembled con-
firmed rhizobia, belonging to distinct genera, namely, Rhizobium, Bradyrhizobium, and
Phyllobacterium, and one strain from the genus Paraburkholderia in the β-proteobacteria.
In addition to the rhizobia, other non-rhizobial bacteria were also isolated and partially
identified with 16S rRNA. These mostly represented Bacillus, Pseudomonas, Burkholderia,
and Paenibacillus, which have no known history of nodulation [56]. However, these genera
are known to contain endophytes and plant growth promoting rhizobacteria (PGPR) [57].
Another study identified endophytes in nodules of groundnut improving plant growth [58].
In addition, PGPR, Burkholderia sp. Nafp2/4-1b (SARCC-3049) could improve the growth
of maize, while coinoculation of Burkholderia and rhizobia on Medicago sativa increased the
number of nodules and plant biomass of Medicago sativa [59]. Future research should thus
seek to investigate their potential for promoting the growth of pigeonpea, as previous work
has shown that they can benefit legume growth in various ways.

Rhizobium and Bradyrhizobium appear to be common symbionts of pigeonpea (Figure 2)
across the sample areas in South Africa. This was consistent with the observation that
pigeonpea-nodulating rhizobial strains native to African soils belong to the broader B.
japonicum and B. elkanii groups [60]. In addition, slow-growing Bradyrhizobium sp of the
cowpea miscellany group and fast-growing Rhizobium sp nodulated pigeonpea [61]. Simi-
larly, other studies identified Bradyrhizobim species as a commonly nodulating pigeonpea
on the coast of West Africa in Côte d’ Ivoire, while Rhizobium species commonly nodulated
pigeonpea in semi-arid regions of India [33,62].

Our study also showed for the first time that members of Phyllobacterium and
Paraburkholderia can nodulate pigeonpea (Figure 3). In previous studies, endophytic strains
of the genus Paraburkholderia that exhibited antimicrobial potential against Fusarium udum
were isolated from the leaves, roots, and stems of pigeonpea [63]. Nonetheless, some strains
from this genus that could fix N were associated mainly with mimosoid legumes [37,38].
Similarly, there are no reports of symbiotic strains of Phyllobacterium that were isolated from
pigeonpea. Therefore, this legume is thus compatible with diverse symbionts, and some of
these less commonly encountered bacteria might have potential in agriculture. Moreover,
the availability of diverse inoculants would contribute to the expansion of pigeonpea to
new areas. The indigenous genotype of pigeonpea performed better than the improved
genotype. Our findings correlate with those from other studies, which also found that
pigeonpea can grow well in natural environments without artificial inoculation [64]. The
indigenous pigeonpea genotype interacted more effectively with indigenous soil rhizobia
in comparison to the imported genotype. Therefore, indigenous rhizobia and unimproved
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pigeonpea genotypes may be are better suited to one another when grown in these environ-
ments. However, field trails will be necessary before proposing these strains for commercial
inoculum production. They could also be tested on more genotypes, with the emphasis on
climate change, e.g., by testing at higher temperatures and under semi-arid conditions.

In conclusion, this study revealed that pigeonpea is compatible with diverse groups
of rhizobia occurring in South Africa which include both α- and β-proteobacteria as their
symbiotic partners. Furthermore, Rhizobium and Bradyrhizobium from South African soils
are the common symbionts of pigeonpea. In addition, the indigenous pigeonpea genotypes
appear to be more compatible with the indigenous strains than the improved genotypes.
For future studies, several strains from this study can be used for co-inoculating pigeonpea
seed to determine if a significant improvement in the crop productivity will be achieved.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture13010030/s1, Table S1: The nodule fresh weight of the
improved genotype and landrace of pigeonpea; Table S2: The shoot fresh weight of the improved
genotype and landrace of pigeonpea.
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