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Abstract

A simple way of deducing the two-body potential from a given two- or three-body
wave function is suggested. This method makes it possible to numerically obtain an
unknown potential acting between the particles A and B when we know the potentials
of their interaction with a third particle C and know the characteristics of the three-
body bound state (ABC). Using the examples of the systems (nnp) and (ΛΛα),
we show that even very simple three-body wave functions constructed on the basis of
the general reasoning and the knowledge of the binding energies and sizes of these
systems, allow us to deduce reasonable and realistic nn and ΛΛ potentials. Within this
approach, any artificially constructed wave function automatically becomes an exact
solution of the corresponding Schrödinger equation with the AB-potential that the
method produces. This fact suggests yet another possible application of this method
when the AB-potential is known. In such a case we can find a bound state solution
of the Schrödinger equation by looking for such values of the free parameters in an
artificially constructed wave function that minimize the difference between the deduced
and the exact AB-potentials.

∗Deceased

1

Manuscript Click here to access/download;Manuscript;psi2v.tex

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/fbsy/download.aspx?id=73284&guid=df290254-e815-469b-a984-87b0c4d5b239&scheme=1
https://www.editorialmanager.com/fbsy/download.aspx?id=73284&guid=df290254-e815-469b-a984-87b0c4d5b239&scheme=1
Sergei
Belyaev, V.B., Rakityansky, S.A. & Gopane, I.M. 
Recovering the Two-Body Potential from a Given Three-Body Wave Function. 
Few-Body Systems (2023) 64:4
https://doi.org/10.1007/s00601-022-01785-7



1 Introduction

In many publications dealing with the few-body problems, it is a commonplace to say that
a three-body system can reveal some additional information about the two-body subsystems
involved. It is however difficult to find any practical implementation of such a statement. At
the most, the few-body calculations are used to test how good the guess of the unknown
two-body forces is. In contrast to this, in the present paper, we suggest a way to directly
obtain the two-body potential, using available information on a three-body system where the
two bodies in question are included.

What kind of the three-body information are we speaking about? Suppose we want to
find out how the particles A and B interact with each other. However for some reason it is not
possible to study the AB-scattering. At the same time we know the potentials that describe
the interactions of these particles with a third particle, C, and they form a bound state (ABC)
whose energy can be determined experimentally. As we will show shortly, in such a situation, in
order to obtain the AB-potential, we need to know the three-body wave function. Of course,
one cannot calculate the (ABC) wave function if all the two-body forces keeping this system
together, are not known. Very often, however, one can make a reasonable assumptions as to
the size of the system and its density distribution. Guessing the wave function in this way, one
then can obtain a reasonable guess for the two-body potential.

In some cases, when the AB scattering data are not available this might be the only way
to “derive” the AB-potential from experimental data. In the present paper, as an example,
we look for the singlet ΛΛ potential.

The advantage of such an approach is that thus constructed potential generates the bound
state at exactly the given experimental energy. At this point it should be emphasized that the
method we are proposing here is not intended to compete with the sophisticated approaches
developed in the inverse scattering theory. Our goal is much more modest. What we are
trying to do is to roughly find the shape of the potential when very little is known about it.
We therefore cannot hope to deduce the correct angular dependence of the potential if it is
non-central, i.e. we assume that the potential is spherically symmetric, V (~r ) ≡ V (r). Due
to the same reason it is logical to approximate the wave function by its dominant component.

2 Two-Body Problem

To begin with, let us obtain the potential V that binds a two-body system with the reduced
mass µ, assuming that we know the bound-state wave function, ψ(~r ) = 〈~r |ψ〉, and the
corresponding energy E. The state vector |ψ〉 obeys the Schrödinger equation,

V |ψ〉 = (E −H0)|ψ〉 , (1)
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where H0 is the free-motion hamiltonian. Writing this equation in the coordinate representa-
tion, we immediately find the potential,

V (~r ) =
1

ψ(~r )

(
E − ~2

2µ
∆

)
ψ(~r ) . (2)

In principle, Eq. (2) gives us a recipe to deduce a non-central potential, if we know E and the
corresponding complete wave function depending on the three-dimensional vector ~r. However,
as was mentioned above, we are only intended to look for the general properties of an unknown
potential using an approximate wave function and therefore will ignore various fine details of it.
This means that among all possible partial-wave components of ψ we only use the dominant
one,

ψ(~r ) =
∑
[`′]

R[`′](r)Y[`′](~̂r ) ≈ R[`](r)Y[`](~̂r ) , (3)

where R[`] is the radial wave function; the multi-index [`] ≡ {`, s, J,M} includes the orbital
angular momentum `, the two-body spin s, the total angular momentum J , and its third
component M ; the symbol ~̂r represents the spherical angles of vector ~r; and Y[`](~̂r ) is the
spin-angular part of the wave function in a single partial wave,

Y[`](~̂r ) =
∑
msz

CJM
`msszY`m(~̂r )χssz . (4)

Here CJM
`mssz

and χssz are the Clebsch-Gordan coefficients and the two-body spin function,
respectively. Just to simplify notation, we furtherdown omit where possible the quantum
numbers J and M . For the same reason, in some places we omit even the multiindex [`]. This
should not cause confusion since R(r) is supposed to describe the motion in a single partial
wave for which we are constructing a spherically symmetric potential, V (r), acting in that
state [`].

Formally, we can get rid of the angular dependence by projecting Eq. (1) onto a particular
spin-angular state,

〈Y[`]|V |ψ〉 = 〈Y[`]|(E −H0)|ψ〉 , (5)

which replaces Eq. (2) with

V (r) = E − ~2`(`+ 1)

2µr2
+

~2

2µR(r)

[
2

r
R′(r) +R′′(r)

]
, (6)

where all unnecessary subscripts are omitted and the prime means the derivative with respect
to r.

It should be noted that since the bound-state wave function R(r) is a factor in both the
numerator and denominator of Eq. (6), the normalization of this function can be arbitrary.
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2.1 Exactly solvable example: Coulomb Potential

Let us check if we can recover the Coulomb potential with the help of Eq. (6), starting with
exactly known wave function of the ground state of the hydrogen atom,

ψ100(~r ) =
2

a
3/2
0

exp

(
− r

a0

)
Y00(~̂r ) , (7)

where

a0 =
~2

µe2
.

The function ψ100 describes the state with ` = 0 and the energy

E = −µe
4

2~2
= − e2

2a0

.

When evaluating the derivatives in Eq. (6), we can use non-normalized radial part of the
function (7),

R(r) = e−r/a0 . (8)

Performing the differentiations, we obtain:

V (r) = − e2

2a0

− ~2

µa0r
+

~2

2µa2
0

= −e
2

r
, (9)

as was expected.

2.2 Numerical example: triplet NN-potential

In Sec. 2.1 it has been demonstrated how Eq. (6) works in the simplest case when all the
derivations can be done analytically, which allows us to trace all the steps and to see mutual
cancellations of some extra terms. How would this work if analytic derivations were not possi-
ble? Can the potential be accurately recovered if the derivatives are evaluated numerically? Do
the extra terms still cancel each other? To answer these questions, we consider here another
example, namely, the triplet NN -potential that generates the proton-neutron bound state, i.e.
the deuteron.

Let us consider the system consisting of a proton and a neutron. When their spins are
parallel and the total spin is 1 (the triplet state), the attaraction between these two nucleons
is sufficient to bind them in a stable nucleus, the deuteron, with experimentally known binding
energy 2.224566 MeV [1] and the RMS-radius 2.128 fm [2].
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Figure 1: Triplet Malflied-Tjon potential (10) and the radial probability density, R2(r) [fm−3],
for the S-wave bound state generated by this potential.

It is not our intention to accurately describe the deuteron. Its energy and size for us are
merely the reference characteristics of a quantum state for which we are going to artificially
construct a wave function and then to generate the corresponding two-body potential.

In order to do the test, we choose a simple NN -potential, numerically obtain the deuteron
wave function, and using this wave function try to numerically recover the NN -potential from
which we started. As such a potential, we use the triplet NN -potential proposed by R. A.
Malfliet and J. A. Tjon in Ref. [3] (its slightly modified parameters, which we use, are given
in Ref. [4]). It is a combination of two Yukawa terms,

V (r) = −λA
e−µAr

r
+ λR

e−µRr

r
, (10)

where λA = 626.885 MeV, λR = 1438.72 MeV, µA = 1.55 fm−1, µR = 3.11 fm−1, and it is
assumed that ~2/mN = 41.47 MeV · fm2 with mN being the nucleon mass.
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This potential supports an S-wave bound state with E = −2.2307 MeV and the RMS-
radius 1.985 fm. The Malflied-Tjon potential and the radial dependence of the probability
density for the bound state, are shown in Fig. 1. For locating the bound state and calculating
its wave function, we used the Jost-function method described in Refs. [5, 6].

Numerically obtained radial wave function R(r) was used then in Eq. (6) to re-construct
the potential. Thus recovered potential turned out to be practically indistinguishable from the
one shown in Fig. 1.

r (fm)
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potentials
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0.05
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Figure 2: Triplet Malflied-Tjon potential (10) and the corresponding probability density for
the deuteron (dashed curves) are compared with a “hand-made” density (solid curve) and the
corresponding potential that was obtained from it (solid curve).

In the examples that we used so far the wave function was known or calculated exactly.
The main idea of the method we propose here is to uncover general features of a completely
unknown potential, when the bound state energy is known and one can guess the space
distribution of the probability density. Therefore a question arises: how stable is the method
to unavoidable deviations of the guessed wave function from the unknown exact one? To shed
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some light on this, let us examine how significant would be the changes in the potential if we
slightly distort the wave function of the deuteron.

As a distorted radial wave function, we use the following parametrization (this function is
not normalized):

R(r) =
r

r0

arctan
[
4(r/r0)2

]
e−3r/r0 +

6r0

πr
arctan

[
(r/r0)2

]
exp

(
−
√

2µ|E|
~2

r

)
, (11)

where r0 = 1 fm and E = −2.2307 MeV is the same as for the Malfliet-Tjon potential. Since
κ =

√
2µ|E|/~2 = 0.2319 fm−1 � 3 fm−1, the first term in Eq. (11) vanishes much faster

when r →∞, and thus this function has the correct asymptotic behaviour determined by the
second term.

The radial probability distributions, [R(r)]2, for the Malflied-Tjon deuteron model and for
the normalized distorted function, are shown in Fig. 2. The distorted function (11) near the
origin vanishes faster, but is slightly above the Malflied-Tjon one at large distances (the latter
is not visible in the figure). As a result the distorted probability is shifted to the right, and the
RMS-radius is a bit larger, namely, 2.071 fm (which is a bit closer to the experimental value,
2.128 fm [2], by the way).

If we denote
A(r) =

r

r0

arctan
[
4(r/r0)2

]
(12)

and

B(r) =
6r0

πr
arctan

[
(r/r0)2

]
, (13)

then
R(r) = A(r)e−3r/r0 +B(r)e−κr , (14)

R′(r) =

[
A′(r)− 3

r0

A(r)

]
e−3r/r0 + [B′(r)− κB(r)] e−κr , (15)

and

R′′(r) =

[
A′′(r)− 6

r0

A′(r) +
9

r2
0

A(r)

]
e−3r/r0 + (16)

+
[
B′′(r)− 2κB′(r) + κ2B(r)

]
e−κr ,

where the derivatives of the auxiliary functions are:

A′(r) =
1

r
A(r) +

8r0r
2

r4
0 + 16r4

, (17)
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A′′(r) =
1

r
A′(r)− 1

r2
A(r) + 16r0r

r4
0 − 16r4

(r4
0 + 16r4)2

, (18)

B′(r) = −1

r
B(r) +

12r3
0

π(r4
0 + r4)

, (19)

B′′(r) =
1

r2
B(r)− 1

r
B′(r)− 48r3

0r
3

π(r4
0 + r4)2

. (20)

Substituting the above R, R′, and R′′ in Eq. (6), we obtain the potential, V (r), for which the
function (11) is an exact solution of the radial Schrödinger equation with the binding energy
|E|. For the sake of comparison, we choose |E| = 2.2307 MeV, i.e. the same as for the
potential (10), but in principle we can use any other value for it.

The Malflied-Tjon potential and the potential reconstructed from the distorted function
(11) are compared in the same Fig. 2. As we see, the suppression of the probability near the
origin results in a larger repulsive core (as one would expect). Despite the fact that the analytic
expression for the reconstructed potential is very complicated, there are no drastic changes in
the general features of the potential when we change the wave function. In other words, the
reconstruction procedure based on Eq. (6) is rather stable against variations (errors) of the
wave function.

3 Three-Body Problem

In the case of three interacting particles, the Schrödinger equation formally looks exactly the
same as Eq. (1), but now the operator V is the sum of three two-body potentials,

V = V12 + V13 + V23 , (21)

where the subscripts are the particle labels. Let the potentials V13 and V23 be known while
the potential acting between the particles 1 and 2, unknown. It is convenient to re-write the
Schrödinger equation in the form,

V12|ψ〉 = (E − V13 − V23 −H0)|ψ〉 , (22)

where the unknown potential is separated.
Let |~r, ~ρ 〉 be the state with definite values of the Jacobi coordinates shown in Fig. 3.

Multiplying Eq. (22) by 〈~r, ~ρ | from the left and assuming that all the potentials are local and
spherically symmetric, we obtain

V12(r)ψ(~r, ~ρ ) =

[
E − V13(r13)− V23(r23) +

~2

2µr
∆~r +

~2

2µρ
∆~ρ

]
ψ(~r, ~ρ ) , (23)
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✉

✉

✉1

2

3

~r

~ρ
θ

Figure 3: Jacobi coordinates (~r, ~ρ) for the three particles 1, 2, and 3.

where ψ(~r, ~ρ ) = 〈~r, ~ρ |ψ〉 is the wave function of the three-body bound state, µr and µρ are
the reduced masses associated with the motion along the corresponding Jacobi coordinates,
and the radial variables r13 and r23,

r13 =

∣∣∣∣ m2

m1 +m2

~r + ~ρ

∣∣∣∣ =

√(
m2

m1 +m2

)2

r2 + ρ2 +
m2

m1 +m2

rρ cos θ , (24)

r23 =

∣∣∣∣ m1

m1 +m2

~r − ~ρ
∣∣∣∣ =

√(
m1

m1 +m2

)2

r2 + ρ2 − m1

m1 +m2

rρ cos θ , (25)

are the inter-particle distances in the particle pairs (1,3) and (2,3). Here m1 and m2 are the
particle masses and θ is the angle between vectors ~r and ~ρ.

Perhaps it should be reiterated once more that the method we propose here is intended for
just a very rough estimating of the unknown potential that describes the interaction between
the particles 1 and 2. When doing this we know exactly the energy, E, of the bound state
but need to guess (i.e. to construct “by hand”) the corresponding wave function, ψ(~r, ~ρ ).
Of course we can hope to make a reasonable guess only for the ground state and only for the
main component of such a function. Similarly to Eq. (3), we therefore take it as

ψ(~r, ~ρ ) ≈ R(r, ρ)Y00(~̂r )Y00(~̂ρ )χ , (26)

where it is assumed that all orbital angular momenta are zero and the total angular momentum,
J , is built from the particle spins,

χ = |((s1s2)s12s3)JJz〉 . (27)

In order to leave in Eq. (23) only one “free” variable, r, which the potential V12 depends
on, we multiply this equation by ψ†(~r, ~ρ ) from the left and integrate over ~ρ as well as over the
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spherical angles ~̂r. When integrating over ~̂ρ, we choose the z-component of ~ρ along vector ~r.
This makes the polar angle of ~ρ coinciding with θ. As a result, we obtain:

V12(r) = E − 1

2D(r)

∫ ∞
0

dρ

∫ π

0

dθ ρ2 sin(θ)R2(r, ρ)
[
〈V13(r13)〉+ 〈V23(r23)〉

]
+

+
~2

2D(r)

∫ ∞
0

dρ ρ2R(r, ρ)

[
1

µrr2
∂r(r

2∂r) +
1

µρρ2
∂ρ(ρ

2∂ρ)

]
R(r, ρ) , (28)

where

D(r) =

∫ ∞
0

R2(r, ρ)ρ2 dρ (29)

is the two-body density of the particles 1 and 2; the symbols 〈V13〉 and 〈V23〉 denote the
averages of the corresponding potentials in the spin space, i.e.

〈V13〉 = χ†V13χ and 〈V23〉 = χ†V23χ . (30)

For calculating these averages, it is convenient to represent the potentials in terms of the
operators P (sij) projecting onto the states with certain values of the two-body spin, sij, of
the particles i and j,

V13(r13) =
∑
s13

V [s13]
13 (r13)P (s13) and V23(r23) =

∑
s23

V [s23]
23 (r23)P (s23) . (31)

Writing the projection operators in the form

P (s13) = |((s1s3)s13s2)JJz〉 〈((s1s3)s13s2)JJz〉 | (32)

and
P (s23) = |((s2s3)s23s1)JJz〉 〈((s2s3)s23s1)JJz〉 | , (33)

we can express the spin-averaging via the 6j-symbols (see Ref. [7]) as follows:

〈V13(r13)〉 =
∑
s13

V [s13]
13 (r13)(2s12 + 1)(2s13 + 1)

{
s3 s1 s13

s2 J s12

}2

, (34)

〈V23(r23)〉 =
∑
s23

V [s23]
23 (r23)(2s12 + 1)(2s23 + 1)

{
s3 s2 s23

s1 J s12

}2

. (35)

As is seen the square of the radial wave function is present in both the numerator and denom-
inator of Eq. (28) and therefore it is not necessary to use it with the proper normalization.

10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 Test: recovering nn-potential from the triton-data

In order to test how accurately an unknown potential can be recovered with the help of the
procedure described in the preceding section, we consider the three-body bound system nnp
(triton), where all the potentials are actually known. However, we pretend that the neutron-
neutron potential is unknown and try to recover it using Eq. (28) and the properties of triton.

Referring to Fig. 3, the proton is particle number 3 and the neutrons are particles 1 and
2. Neutron can interact with proton either in the singlet or triplet spin-state via the potentials
V s
NN and V t

NN , respectively. Due to the Pauli principle, the nn sytem with ` = 0 can only
be in the singlet state. Therefore, if our method works, then as a result of the recovering we
should obtain the singlet NN -potential for the “unknown” nn-interaction.

In the sums (34, 35), we have s12 = 0 (nn-spin) and J = 1/2 (triton spin). The
summation involves only two terms and gives:

〈V13(r13)〉 =
1

4
V s
NN(r13) +

3

4
V t
NN(r13) , (36)

〈V23(r23)〉 =
1

4
V s
NN(r23) +

3

4
V t
NN(r23) . (37)

As the triplet NN -potential, V t
NN , we take the Malflied-Tjon one given by Eq. (10) with

the parameters listed just after that equation. The singlet potential, V s
NN , has exactly the

same functional form and almost all the same parameters except the first one, namely, λA =
513.968 MeV for the singlet state [4].

The main question in the proposed procedure of the unknown potential recovering is how
to make a reasonable guess of the three-body wave function. We assume that we can only
know the binding energy and perhaps (but not for sure and not always) the RMS-radius of the
three-body state.

The knowledge of the energy gives us the asymptotic behaviour of the wave function at
large distances. Indeed, it is known (see, for example, Ref. [8]) that the main contribution
to the asymptotics of a three-body bound-state wave function comes from the out-going
hyper-spherical wave, namely,

R(r, ρ) −→
ζ→∞

∼ e−κζ

ζ5/2
, (38)

where ζ is the hyperradius,

ζ =

√
µ12

µ
r2 + ρ2 , (39)

and κ is the imaginary part of the momentum corresponding to the negative energy of the

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



bound state,

κ =

√
2µ|E|
~2

. (40)

It is clear that the hyper-spherical wave (38) cannot be used as the function R at all distances.
Indeed, the right hand side of Eq. (38) becomes singular when ζ → 0, which is unphysical.
This problem can be circumvented by introducing a positive parameter α in the denominator,

R(r, ρ) ∼ e−κζ

α + ζ5/2
, (41)

which removes the singularity and keeps the behaviour (38) when α� ζ5/2.
The expression (41) is still not a satisfactory choice even as a very rough approximation of

the wave function because it is monotonically decreasing while a realistic wave function should
have a maximum somewhere at the distances corresponding to the size (RMS-radius) of the
system. Such a maximum can appear if we introduce a factor suppressing the probability of
finding the particles at short distances. The physical reason for such a factor is the strong
repulsion of the particles at distances ∼ 1 fm (the hard or soft core in the two-body potentials).
In nuclear theory such factors are known as Jastrow factors (see, for example, chapter 3 of
the book [9]).

Of course the Jastrow factor can be constructed in many different ways. We found that
for our problem of triton a good choice is the following (please take note that this function is
not normalized):

R(r, ρ) =
1

r
arctan

(
γr3/2

) e−κζ

α + ζ5/2
. (42)

With the parameters γ = 0.81 fm−3/2 and α = 29.0 fm5/2 this wave function gives the RMS-
radius of triton 1.745 fm, which is within the uncertainty interval of its experimental value
(1.7591 ± 0.0363) fm [10]. As the binding energy of triton, we used the experimental value,
|E| = 8.481798 MeV, [11].

Two things should be explained concerning the approximate wave function (42). Firstly, it
does not involve explicit Jastrow factors that would suppress approaching of the first and the
second neutrons to the proton. In fact, such factors are not needed because the motion along
both Jacobi coordinates is in the S-wave states. Thefore the proton can approach any of the
two neutrons only at the centre of mass where all three particles meet. Such a configuration
is already suppressed by the factor depending on r, and thus no additional Jastrow factors are
needed. Secondly, the function (42) is symmetric only with respect to the permutations of the
neutrons. This fact might be seen as violation of the Pauli principle. However, protons and
neutrons, in fact, are not identical. The isotopic invariance is an approximate symmetry. We
therefore are not obliged to construct a completely symmetric wave function.
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−80 ←− triplet NN potential

←− singlet NN potential

Figure 4: The neutron-neutron potential (solid curve) numerically recovered using Eq. (28)
with the approximate (guessed) wave function (42) of triton and with its experimentally known
ground-state energy E = −8.481798 MeV. For the sake of comparison, the singlet and triplet
Malfliet-Tjon NN -potentials are shown by the upper and lower dashed curves, respectively.

Eq. (28) involves the first and second derivatives with respect to the radial variables r
and ρ. In principle, all necessary differentiations of the function (42) can be done explicitly.
However, to avoid cumbersome derivations and to reserve the possibility of changing the
functional form of the wave function, we calculated all the derivatives numerically using simple
finite difference formulae,

f ′(x) =
f(x+ h)− f(x− h)

2h
, f ′′(x) =

f(x+ h) + f(x− h)− 2f(x)

h2
, (43)

which give stable results with the step h = 10−5 fm.
The neutron-neutron potential obtained in this way using Eq. (28) is shown in Fig. 4 by

the solid curve. For the sake of comparison the singlet and triplet Malfliet-Tjon NN -potentials
are shown in that figure by the dashed curves. As is seen, the recovered potential is almost
correct, i.e. it almost reproduces the singlet potential. This successful test allows us to hope
that the proposed method can indeed give a reliable estimate of a truly unknown potential
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in any other physical system even if its wave function is constructed on the basis of general
reasoning and intuition.

5 Recovering the ΛΛ-potential

Due to the obvious reasons it is not possible to study the ΛΛ-interaction in the direct colli-
sions of these two particles. The only experimental information from which one can deduce
some general features of the forces acting between them, is the information on the double-Λ
hypernuclei. Therefore various ΛΛ-potentials can only be constructed on the basis of either
the quark or boson-exchange theories. Validity of such potentials is tested in the calculations
of the properties of various double hypernuclei whose characteristics are known experimentally.

Examples of the soft-core boson-exchange ΛΛ-potentials can be found in Ref. [12]. They
are known as the Nijmegen Soft-Core (NSC97) potentials. Since there are some ambiguities in
the constructing of them, several versions of such potentials are available. For the purposes of
the few-body calculations these potentials are usually simulated in the coordinate representa-
tion by a simple functional form, VΛΛ(r), (see, for example, Refs. [13–15]) with the parameters
adjusted to make VΛΛ(r) either phase-equivalent to the corresponding Nijmegen potentials or
to exactly reproduce the measured binding energy of the hypernucleus 6

ΛΛHe. The observation
of this hypernucleus was so important that nowadays it is known as the NAGARA event [16].

The method we are developing in the present work may also make a contribution to
the constructing of such a VΛΛ(r). Of course we do not expect to propose a very reliable
ΛΛ-potential. As it was emphasized from the very beginning, our method can only deduce
some general features of a potential, such as, for example, its approximate depth, range, etc.
However, in the case of the ΛΛ-interaction even this limited information can be helpful in
choosing the most adequate one among many available potentials.

Following the same line of reasoning as in Sec. 4, we construct the following (not nor-
malized) wave function of the hypernucleus 6

ΛΛHe in the three-body model ΛΛα:

R(r, ρ) = arctan
(
γr5/2

) e−κζ

α + ζ5/2
. (44)

Here r and ρ are the Jacobi distances shown in Fig. 3, where 4He is the particle number 3, and
ζ is the hyperradius (39). The momentum parameter (40) corresponds to the binding energy of
the three-body system (ΛΛα), |E| = 7.25 MeV determined in the NAGARA experiment [16].
The other two parameters, α = 35 fm5/2 and γ = 2.5 fm−5/2, were chosen such that the
function (44) gives the following geometric sizes:√

〈r2〉 = 3.80 fm ,
√
〈ρ2〉 = 2.35 fm . (45)
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These RMS-distances are within the corresponding intervals obtained in Refs. [14, 17] for
various ΛΛ-potentials, namely,

3.09 fm 6
√
〈r2〉 6 4.09 fm , 2.11 fm 6

√
〈ρ2〉 6 2.35 fm . (46)

We assume that the Λα potential is known. We take it the same as in Ref. [14], namely, as

VΛα(r) = Λ1 exp
(
−r2/β2

1

)
− Λ2 exp

(
−r2/β2

2

)
, (47)

where Λ1 = 450.4 MeV, β1 = 1.25 fm, Λ2 = 404.9 MeV, β2 = 1.41 fm. Since the spin
of the α-particle is zero, there is only one spin state in the Λα-system and therefore the
spin-averaging prescribed by Eqs. (34, 35) is trivial, i.e.

〈V13(r13)〉 = VΛα(r13) , 〈V23(r23)〉 = VΛα(r23) .

The ΛΛ-subsystem in 6
ΛΛHe is assumed to be in the S-wave state and therefore in the singlet

spin state. This means that we can only obtain the information on the 1S0 potential VΛΛ.
The ΛΛ-potential recovered from the wave function (44) is shown in Fig. 5 by the solid

curve. For the sake of comparison, the dashed curves in the same figure show three different
Nijmegen ΛΛ-potentials (which were taken from Ref. [14]) and the corresponding potential
(the uppermost dashed curve) from Ref. [15] where it was adjusted in order to reproduce the
NAGARA binding energy of 6

ΛΛHe and the ΛΛ bonding energy for this hypernucleus ∆BΛΛ(A =
6) = 1.01 MeV.

As is seen, our simple estimate supports weaker ΛΛ attraction of the potential NSC97e
as well as of the one used by Hiyama et al. in Ref. [15]. The other two Nijmegen potentials,
namely, ND and ESC00, seem incompartible with the parameters of the 6

ΛΛHe hypernucleus.

6 Conclusion

In the present paper, we suggest a simple and efficient method for relating a given wave function
of a three-body bound state to the corresponding two-body potential acting in a chosen pair
of particles, while the potentials in the other two pairs are assumed to be given. The most
interesting feature of the presented method is that (thanks to the formal construction) any
given wave function becomes an exact solution of the three-body Schrödinger equation for a
given binding energy and with the corresponding (numerically obtained) two-body potential
in a chosen pair of particles. The method works for a two-body bound state as well. The
accuracy of the method is demonstrated using the examples of the bound systems ep, np,
nnp, and ΛΛα.
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Figure 5: The singlet ΛΛ-potential (solid curve) numerically recovered using Eq. (28) with
the approximate (guessed) wave function (44) of the hypernucleus 6

ΛΛHe and with its exper-
imentally known ground-state energy E = −7.25 MeV. For the sake of comparison, three
versions of the Nijmegen soft-core one-boson-exchange ΛΛ-potential, namely, NSC97e, ND,
and ESC00 as well as the potential used by Hiyama et al. in Ref. [15] are shown by the dashed
curves.

Two possible applications of the presented method are envisaged. Firstly, we can deduce
an unknown two-body potential from an approximate (guessed) wave function. This may be
helpful when very little is known about such a potential and there is no possibility of doing
the scattering experiments. Secondly, if the two-body potential is known, we can construct
the corresponding three-body wave function. In doing this we can postulate a wave function
in a reasonable functional form with some free parameters and then can fix these parameters
by minimizing the deviations of the deduced potential from the known (exact) one. The wave
function obtained in this way is always a solution of the Schrödinger equation with a given
binding energy.
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