VP1

Figure S1: Maximum likelihood phylogenetic tree based on the ORF of the genome segment 1 encoding VP1. The HKY + G evolutionary model was used for phylogenetic inference. South African pre-vaccine R2 sequences are indicated with black circles while post-vaccine R2 sequences are highlighted in red circles. The reference sequences that were used to construct the tree are indicated with blue circle. The pie-chart summarizes the number of pre- and post-vaccine sequences. Lineages are indicated in roman numerals. Only bootstrap values \geq 70% are shown adjacent to each branch node. Scale bar indicates the number of nucleotide substitutions per site.

Figure S2: Maximum likelihood phylogenetic tree based on the ORF of the genome segment 2 encoding VP2. The GTR + G + I evolutionary model was used for phylogenetic inference. South African pre-vaccine C2 sequences are indicated with black circles while post-vaccine sequences are highlighted with blue circle. The pie-chart summarizes the number of pre- and post-vaccine sequences. Lineages are indicated in roman numerals. Only bootstrap values \geq 70% are shown adjacent to each branch node. Scale bar indicates the number of nucleotide substitutions per site.

Figure S3: Maximum likelihood phylogenetic tree based on the ORF of the genome segment 3 encoding VP3. The GTR+G+I evolutionary model was used for phylogenetic inference. South African pre-vaccine M2 sequences are indicated with black circles while post-vaccine sequences are highlighted in red circles. The reference sequences that were used to construct the tree are indicated with blue circle. The pie-chart summarizes the number of pre- and post-vaccine sequences. Lineages are indicated in roman numerals. Only bootstrap values \geq 70% are shown adjacent to each branch node. Scale bar indicates the number of nucleotide substitutions per site.

Figure S4: Maximum likelihood phylogenetic tree based on the ORF of the genome segment 6 encoding VP6. The T92 + G + I evolutionary model was used for phylogenetic inference. South African pre-vaccine I2 sequences are indicated with black circles while post-vaccine sequences are highlighted in red circles. The reference sequences that were used to construct the tree are indicated with blue circle. The pie-chart summarizes the number of pre- and post-vaccine sequences. Lineages are indicated in roman numerals. Only bootstrap values \geq 70% are shown adjacent to each branch node. Scale bar indicates the number of nucleotide substitutions per site.

VP6

Figure S5: Maximum likelihood phylogenetic tree based on the ORF of the genome segment 5 encoding NSP1. The T92 + G evolutionary model was used for phylogenetic inference. South African pre-vaccine A2 sequences are highlighted in indicated with black circles while post-vaccine sequences are highlighted in red circles. The pie-chart summarizes the number of pre- and post-vaccine sequences. Lineages are indicated in roman numerals. Only bootstrap values \geq 70% are shown adjacent to each branch node. Scale bar indicates the number of nucleotide substitutions per site.

Figure S6: Maximum likelihood phylogenetic tree based on the ORF of the genome segment 8 encoding NSP2. The T92 + G evolutionary model was used for phylogenetic inference. South African pre-vaccine N2 sequences are indicated with black circles while post-vaccine sequences are highlighted in red circles. The reference sequences that were used to construct the tree are indicated with blue circle. The pie-chart summarizes the number of pre- and post-vaccine sequences. Lineages are indicated in roman numerals. Only bootstrap values \geq 70% are shown adjacent to each branch node. Scale bar indicates the number of nucleotide substitutions per site.

NSP2

Figure S7: Maximum likelihood phylogenetic tree based on the ORF of the genome segment 7 encoding NSP3. The T92 + G evolutionary model was used for phylogenetic inference. South African pre-vaccine T2 sequences are indicated with black circles while post-vaccine sequences are highlighted in red circles. The reference sequences that were used to construct the tree are indicated with blue circles. The pie-chart summarizes the number of pre- and post-vaccine sequences. Lineages are indicated in roman numerals. Only bootstrap values \geq 70% are shown adjacent to each branch node. Scale bar indicates the number of nucleotide substitutions per site.

NSP4

Figure S8: Maximum likelihood phylogenetic tree based on the ORF of the genome segment 10 encoding NSP4. The T92+G+I evolutionary model was used for phylogenetic inference. South African pre-vaccine E2 sequences are highlighted in black circles while post-vaccine sequences are highlighted in red circles. The reference sequences that were used to construct the tree are indicated with blue circles. The pie-chart summarizes the number of pre- and post-vaccine sequences. Lineages are indicated in roman numerals. Only bootstrap values \geq 70% are shown adjacent to each branch node. Scale bar indicates the number of nucleotide substitutions per site.

Figure S9: Maximum likelihood phylogenetic tree based on the ORF of the genome segment 11 encoding NSP5. The T92 + G evolutionary model was used for phylogenetic inference. South African pre-vaccine H2 sequences are highlighted in black circles while post-vaccine sequences are highlighted in red circles. The reference sequences that were used to construct the tree are indicated with blue circles. Lineages are indicated in roman numerals. Only bootstrap values \geq 70% are shown adjacent to each branch node. Scale bar indicates the number of nucleotide substitutions per site.

Table S1: Distribution of South African G2P[4] stool specimens by year	ear
--	-----

	Pre-va	ccine pe	riod				Post-va	accine p	eriod			
Year	2003	2006	2007	2008	2009	2010	2012	2013	2014	2015	2016	2017
Numbers	6	1	9	13	13	10	11	15	12	4	3	1

The rotavirus positive stool specimens were previously characterized as part of the WHO-coordinated RVA surveillance network. The G2P[4] specimens were unavailable in archival storage for the years 2002, 2004, 2005 and 2011. Pre-vaccine strains are from 2003-2010 while post-vaccine strains are from 2012-2017.

|--|

	Gene segment	VP7	VP[4]	VP6	VP1	VP2	VP3	NSP1	NSP2	NSP3	NSP4	NSP5
	Rase pair size for full length sequences	1062	2359	1356	3302	2684	2591	1563	1059	1064	751	821
	buse pair size for run length sequences	1002	2337	1550	5502	2004	2371	1505	1057	1004	751	021
	Base pair size for open reading frame (ORF) sequences	978	2325	1191	3264	2637	2505	1458	951	930	525	600
	Average reads per gene segment	22,982	54,187	27,226	75,439	55,035	59,540	26,912	15,693	18,338	15,561	11,994
	Average coverage per gene segment	5,077	7,528	5,359	6,889	6,065	5,321	4,137	4,392	4,443	5,020	3,509
						Gen	otype cons	stellations				
	Sequenced in this study											
	Pre-vaccine strains											
1	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU2123/2003/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
2	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU531/2003/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
3	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU580/2003/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
4	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU594/2003/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
5	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU603/2003/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
6	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU667/2003/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
7	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU764/2006/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
8	RVA/Human-wt/ZAF/UFS-NGS-NICD150/2007G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
9	RVA/Human-wt/ZAF/UFS-NGS-NICD419/2007/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
10	RVA/Human-wt/ZAF/UFS-NGS-NICD516/2007/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
11	RVA/Human-wt/ZAF/UFS-NGS-NICD582/2007/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
12	RVA/Human-wt/ZAF/UFS-NGS-NICD626/2007/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
13	RVA/Human-wt/ZAF/UFS-NGS-NICD673/2007/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
14	RVA/Human-wt/ZAF/UFS-NGS-NICD759/2007/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
15	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1271/2007/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
16	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1285/2007/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
17	RVA/Human-wt/ZAF/UFS-NGS-NICD1079/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
18	RVA/Human-wt/ZAF/UFS-NGS-NICD1112/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2

19	RVA/Human-wt/ZAF/UFS-NGS-NICD1122/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
20	RVA/Human-wt/ZAF/UFS-NGS-NICD1138/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
21	RVA/Human-wt/ZAF/UFS-NGS-NICD1165/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
22	RVA/Human-wt/ZAF/UFS-NGS-NICD1180/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
23	RVA/Human-wt/ZAF/UFS-NGS-NICD1355/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
24	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU985/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
25	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1036/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
26	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1040/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
27	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1041/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
28	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1058/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
29	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1901/2008/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
30	RVA/Human-wt/ZAF/UFS-NGS-NICD3532/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
31	RVA/Human-wt/ZAF/UFS-NGS-NICD3354/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
32	RVA/Human-wt/ZAF/UFS-NGS-NICD4207/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
33	RVA/Human-wt/ZAF/UFS-NGS-NICD4012/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
34	RVA/Human-wt/ZAF/UFS-NGS-NICD3681/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
35	RVA/Human-wt/ZAF/UFS-NGS-NICD3518/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
36	RVA/Human-wt/ZAF/UFS-NGS-NICD3446/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
37	RVA/Human-wt/ZAF/UFS-NGS-NICD3442/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
38	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1071/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
39	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1077/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
40	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1097/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
41	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU2288/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
42	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU2326/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
43	RVA/Human-wt/ZAF/UFS-NGS-NICD6388/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
44	RVA/Human-wt/ZAF/UFS-NGS-NICD6171/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
45	RVA/Human-wt/ZAF/UFS-NGS-NICD6150/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
46	RVA/Human-wt/ZAF/UFS-NGS-NICD6099/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
47	RVA/Human-wt/ZAF/UFS-NGS-NICD5884/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
48	RVA/Human-wt/ZAF/UFS-NGS-NICD5625/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
49	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1473/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2

50	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1507/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
51	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1510/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
52	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1520/2010/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
	Post-vaccine strains											
53	RVA/Human-wt/ZAF/UFS-NGS-NICD8873/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
54	RVA/Human-wt/ZAF/UFS-NGS-NICD9659/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
55	RVA/Human-wt/ZAF/UFS-NGS-NICD9554/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
56	RVA/Human-wt/ZAF/UFS-NGS-NICD9335/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
57	RVA/Human-wt/ZAF/UFS-NGS-NICD9330/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
58	RVA/Human-wt/ZAF/UFS-NGS-NICD9329/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
59	RVA/Human-wt/ZAF/UFS-NGS-NICD9171/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
60	RVA/Human-wt/ZAF/UFS-NGS-NICD9045/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
61	RVA/Human-wt/ZAF/UFS-NGS-NICD9040/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
62	RVA/Human-wt/ZAF/UFS-NGS-NICD9031/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
63	RVA/Human-wt/ZAF/UFS-NGS-NICD8940/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
64	RVA/Human-wt/ZAF/UFS-NGS-NICD12041/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
65	RVA/Human-wt/ZAF/UFS-NGS-NICD10248/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
66	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU60/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
67	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU68/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
68	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU75/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
69	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU81/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
70	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU84/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
71	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU182/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
72	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU185/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
73	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU198/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
74	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU200/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
75	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU203/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
76	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU975/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
77	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU978/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
78	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU986/2013/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
79	RVA/Human-wt/ZAF/UFS-NGS-NICD13907/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2

80	RVA/Human-wt/ZAF/UFS-NGS-NICD13878/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
81	RVA/Human-wt/ZAF/UFS-NGS-NICD13791/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
82	RVA/Human-wt/ZAF/UFS-NGS-NICD13522/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
83	RVA/Human-wt/ZAF/UFS-NGS-NICD13335/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
84	RVA/Human-wt/ZAF/UFS-NGS-NICD13333/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
85	RVA/Human-wt/ZAF/UFS-NGS-NICD13083/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
86	RVA/Human-wt/ZAF/UFS-NGS-NICD13081/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
87	RVA/Human-wt/ZAF/UFS-NGS-NICD12838/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
88	RVA/Human-wt/ZAF/UFS-NGS-NICD12832/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
89	RVA/Human-wt/ZAF/UFS-NGS-NICD12795/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
90	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU952/2014/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
91	RVA/Human-wt/ZAF/UFS-NGS-NICD15385/2015/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
92	RVA/Human-wt/ZAF/UFS-NGS-NICD15070/2015/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
93	RVA/Human-wt/ZAF/UFS-NGS-NICD15034/2015/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
94	RVA/Human-wt/ZAF/UFS-NGS-NICD14647/2015/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
95	RVA/Human-wt/ZAF/UFS-NGS-NICD17155/2016/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
96	RVA/Human-wt/ZAF/UFS-NGS-NICD16983/2016/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
97	RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU12323/2016/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
98	RVA/Human-wt/ZAF/UFS-NGS-NICD18920/2017/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
	Acquired from GenBank											
	Pre-vaccine strains											
99	RVA/Human-wt/ZAF/MRC-DPRU618/2003/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
100	RVA/Human-wt/ZAF/MRC-DPRU81/2007/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
101	RVA/Human-wt/ZAF/MRC-DPRU1061/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
102	RVA/Human-wt/ZAF/3203WC/2009/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2
	Post-vaccine strain											
103	RVA/Human-wt/ZAF/MRC-DPRU82/2012/G2P[4]	G2	P[4]	I2	R2	C2	M2	A2	N2	T2	E2	H2

Table S3: Nucleotide identity analysis between South African pre- and post-vaccine G2P[4] strains

Gene segment	VP7	VP4	VP6	VP1	VP2	VP3	NSP1	NSP2	NSP3	NSP4	NSP5
	(S9)	(S4)	(S6)	(S1)	(S2)	(S3)	(S5)	(S8)	(S7)	(S10)	(S11)
Comparison	95.1-	92.0-	96.3-	91.0-	96.6-	87.1-	95.7-	95.6-	95.7-	85.3-	94.3-
between pre- and post-vaccine G2P[4] strains	100	100	100	100	100	100	100	100	100	100	100

A comparison between South African pre-vaccine G2P[4] strains with post-vaccine G2P[4] strains. The NT identity values are in percentage. The segment number is indicated in brackets adjacent to each viral protein.

Tables S4-S9

Table S4: Amino acid differences and frequency between pre- and post-vaccination VP1 sequences

Gene segment				VP1		
Amino acid site		56	159	293	294	432
Region			N-terminal	domain	•	Central polymerase domain
Pre-vaccine period (2003-2010)	Amino acid residue	K (55/56)	K (51/56)	N (51/56)	S(50/56)	R (54/56)
Post-vaccine period (2012-2017)	and frequency of occurrence	R (33/47)	R (45/47)	D (45/47)	N(45/47)	K(35/47)

The N-terminal domain of RVA VP1 facilitates entry of ssRNA templates into the catalytic center and also in sequence-specific recognition of viral RNAs (Lu et al. 2008; Ogden et al. 2011). The central polymerase domain is involved in replication and transcription (Lu et al. 2008).

Lu X, McDonald SM, Tortorici MA, Tao YJ, Vasquez-Del Carpio R, Nibert ML, Patton JT, Harrison SC. Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. *Structure* 2008; 16:1678-88. doi: 10.1016/j.str.2008.09.006.

Ogden KM, Ramanathan HN, Patton JT. Residues of the rotavirus RNA-dependent RNA polymerase template entry tunnel that mediate RNA recognition and genome replication. *J Virol* 2011; 85:1958-69. doi: 10.1128/JVI.01689-10.

Gene segment	t		VP3																
Amino acid si	te	28	49	50	69	88	107	109	132	143	161	167	204	209	222				
Region			L	I	L	N-1	terminal dom	nain	I	L	L	L	Guanine-N7-Methyltransferase (N7-MTase) domain						
Pre-vaccine period (2003-2010)	Amino acid residue and	E (54/56)	N (54/56)	V (54/56)	I (54/56)	V (54/56)	H (54/56)	I (54/56)	S (54/56)	R (54/56)	D (5	4/56)	D (53/56)	I (54/56)	Y (54/56)				
Post- vaccine period (2012-2017)	frequency of occurrence	D (35/47)	S (34/47)	I (34/47)	M (45/47)	I (35/47)	Y (35/47)	V (35/47)	N (35/47)	K (35/47)	N (45/47)	N (35/47)	S (35/47)	V (34/47)	H (35/47)				

Table S5: Amino acid differences and frequency between pre- and post-vaccination VP3 sequences

Gene segment								V	/P3						
Amino acid sit	te	226	274	275	277	281	282	316	326	327	347	348	355	356	359
Region		N7- MTase domain		L	I		2'-	<i>O</i> -Methyltra	nsfrase (2'-O	-MTase) dor	nain	L			
Pre-vaccine period (2003-2010)	Amino acid	E (54/56)	N (54/56)	V (54/56)	I (54/56)	V (54/56)	V (54/56)	N (54/56)	N (55/56)	D (54/56)	T (54/56)	V (52/56)	K (54/56)	I (50/56)	R (54/46)
Post-vaccine period (2012-2017)	residue and frequency of occurrence	D (35/47)	S (34/47)	I (34/47)	M (45/47)	I (35/47)	I (35/47)	D (35/47)	D (35/47)	N (35/47)	N (35/47) P (10/47)	M (35/47)	R (35/47)	V (32/47)	E (35/47)

Gene	segment
------	---------

	VP3														
	Amino	363	379	412	425	437	458	459	468	518	605	687	688	703	730
	acid site														
	Region	2'- <i>O</i> -N	Methyltransfe	erase (2'-O-N	MTase)	Guanir	ne-N7-methy	ltransferase ((N7-MTase)	domain	Guanylyltra	insferase (GT	Tase)/ RNA	2'-5'-Phosp	hodiesterase
			don	nain						5'-triphosphatase (RTPase) domain			(PDE) domain		
Pre-vaccine period (2003- 2010)	Amino acid residue	D (54/56)	V (54/56)	V (53/56)	I (54/56)	T (54/56)	I (54/46)	I (54/56)	I (50/56)	N (53/56)	V (55/56)	K (54/56)	V (55/56)	V (53/56)	M (47/56)
Post-vaccine period (2012- 2017)	frequenc y of occurren ce	S (35/47)	I (35/47)	I (35/47)	V (34/47)	I (35/47)	V (35/47)	T (35/47)	F (45/47)	S (35/47)	I (35/47)	R (35/47)	A (35/47)	(36/47)	I (35/47)

Gene segment					VP3			
Amino acid site		734	736	740	749	767	798	816
Region				2'5'-Phospho	odiesterase (PDE) d	lomain		
Pre-vaccine period (2003- 2010)	Amino acid residue and frequency of	V (54/56)	T(54/56)	R (53/56)	E (54/56)	I (54/56)	V (53/56)	Y (53/56)
Post-vaccine period (2012- 2017)	occurrence	A(35/47)	A(31/47)	K(32/47)	D(35/47)	V(35/47)	I (35/47)	H (34/47)

The guanine-N7-methyltransferase (N7-Mtase) domain is involved in methylation of the guanine cap, 2'-O-methyltransferase (2'-O-MTase) methylates the ribose of the initiating nucleotide, guanylyltransferase (GTase) conjugates GMP to the mRNA through 5'-5' linkage, RNA 5'-triphosphatase (RTPase) reomves the y-phosphate from the 5' end of the mRNA while 2'-5'-phosphodiesterase (PDE) domain is involved in antagonization of antiviral innate immunity through inhibition of the oligoadenylate synthase/ RNase pathyway (Zhang et al. 2013; Ogden et al. 2014).

Ogden KM, Snyder MJ, Dennis AF, Patton JT. Predicted structure and domain organization of rotavirus capping enzyme and innate immune antagonist VP3. *J Virol* 2014: 15; 88:9072-9085. doi: 10.1128/JVI.00923-14.

Zhang R, Jha BK, Ogden KM, Dong B, Zhao L, Elliott R, Patton JT, Silverman RH, Weiss SR. Homologous 2', 5'-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. *PNAS* 2013; 110:13114-13119.

Table S6: Amino acid differences and frequency between pre- and post-vaccination VP6 sequences

Gene segment	VP6		
Amino acid site		281	
Region		Trimerization domain; hsc70 binding region	
Pre-vaccine period (2003-2010)	Amino acid residue and frequency of occurrence	V (55/56)	
Post-vaccine period (2012-2017)	1	I (35/47)	
Post-vaccine period (2012-2017)		I (35/47)	

The trimerization domain is required for VP6 assembly. Site 281 also falls within the region suggested to interact with hsc70(heat shock cognate protein). The hsc70 is a co-receptor for rotavirus entry into susceptible cells (Gualtero et al. 2007).

Gualtero DF, Guzman F, Acosta O, Guerrero CA. Amino acid domains 280–297 of VP6 and 531–554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. *Arch Virol* 2007; 152:2183-2196. doi: 10.1007/s00705-007-1055-5.

 Table S7: Amino acid differences and frequency between pre- and post-vaccination NSP1 sequences

Gene segment	t	NSP1								
Amino acid si	te	103	234	246	273	319	333	334	429	464
Region		Cyt	oskeleton-local	ization domain	l		IR	F-binding dom	ain	
		e e						8		
Pre-vaccine period (2003-2010)	Amino acid residue and frequency of	G (44/56)	N (54/56)	I (55/56)	L (54/56)	H (53/56)	W (54/56)	T (55/56)	K (55/56)	N (55/56)
Post- vaccine period (2012-2017)	occurrence	D (44/57)	I (44/47)	L (25/47)	P (45/47)	R (44/47)	L (45/47)	N(25/47)	R (21/47)	T (25/47)

The NSP1 cytoskeleton binding domain enables the NSP1 to localize to the cytoplasm during infection and associate with the cytoskeleton (Hua et al. 1994). The interferon regulatory factor (IRF) binding domain is involved in inhibiting expression of type I interferon (Barro and Patton 2007).

Hua J, Chen X, Patton JT. Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine-rich region is essential for virus-specific RNA binding. *J Virol* 1994;68:3990-4000. doi: 10.1128/JVI.68.6.3990-4000.1994.

Barro M, Patton JT. Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. *J Virol* 2007; 81:4473-4481.

Gene segment		NSP2						
Amino acid site		42	74	75	82			
Region			N-terminal doma	C-terminal domain				
Pre-vaccine period (2003-2010)	Amino acid residue and frequency of occurrence	K(55/56)	T (54/56)	V (47/56)	V (54/56)			
Post-vaccine period (2012-2017)		R (21/47)	N (45/47)	A (45/47)	M (45/47)			

Table S8: Amino acid differences and frequency between pre- and post-vaccination NSP2 sequences

The N and C-terminal domains are suggested to be involved in the sequence-independent RNA binding of NSP2 (Hu et al. 2012).

Hu L, Chow DC, Patton JT, Palzkill T, Estes MK, Prasad BV. Crystallographic analysis of rotavirus NSP2-RNA complex reveals specific recognition of 5' GG sequence for RTPase activity. *J Virol* 2012; 86:10547-10557.

Table S9: Amino a	acid differences an	d frequency	between j	pre- and p	post-vaccination	NSP4 sequences

Gene segment		NSP4								
Amino acid site		74	135	137	139	140	163			
Region		Extracellular matrix protein- binding domain	Ca ²⁺ binding and enterotoxin domain	I	Tubulin binding domain					
Pre-vaccine period (2003-2010)	Amino acid residue and	T (55/56)	V (47/56)	R (52/56)	T (55/56)	N (52/56)	K (55/56)			
Post-vaccine period (2012-2017)	frequency of occurrence	A(34/47)	M (45/47)	Q (45/47)	I (35/47)	C (34/47)	R (45/47)			

The extracelluar domain is involved interaction with extracelluar matrix during different infection stages (Boshuizen et al. 2014). The enterotoxin domain is implicated in diarrhea-induction through integrin binding and signaling (Seo et al. 2008). The integrin binding domain is involved in diarrhoea induction through interaction with cellular plasma membrane integrin I domains (Seo et al. 2008). The tubulin binding domain is involved in binding of microtubules (Xu et al.2000) and acts as an intracellular receptor for double layered particles to facilitate infectious particle assembly (Au et al. 1989).

Boshuizen JA, Rossen JWA, Sitaram CK, Kimenai FFP, Simons-Oosterhuis Y, Laffeber C, Büller HA, Einerhand AWC. 2004. Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin- β 3 and fibronectin. J Virol. 78(18): 10045-10053.

Seo NS, Zeng CQY, Hyser JM, Utama B, Crawford SE, Kim KJ, Höök M, Estes MK. 2008. Integrins $\alpha 1\beta 1$ and $\alpha 2\beta 1$ are receptors for the rotavirus enterotoxin. PNAS.105(26): 8811-8818.

Xu A, Bellamy AR, Taylor JA. 2000. Immobilization of the early secretory pathway by a virus glycoprotein that binds to microtubules. EMBO J. 19(23): 6465-6474.

Au KS, Chan WK, Burns JW, Estes MK.1989. Receptor activity of rotavirus nonstructural glycoprotein NS28. J. Virol. 63(11): 4553-4562