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Abstract

Stochastic volatility models have become immensely popular since their introduction in 1993 by
Heston. This is because their dynamics are more consistent with market behaviour compared to
the standard Black-Scholes model. More specifically, stochastic volatility models can somewhat
capture the asymmetric distribution often observed in daily equity returns. Numerous extensions
to the stochastic volatility model of Heston have since been proposed, including jumps and
stochastic interest rates. Due to their complex dynamics, numerical methods such as Monte
Carlo simulation, the fast Fourier transform (FFT), and the efficient method of moments (EMM)
are often required to calibrate and implement stochastic volatility models. In this thesis, we
explore the application of stochastic volatility models to a variety of problems for which research
is still in its infancy phase. We consider the pricing of embedded derivatives in the South African
life insurance industry given the illiquid derivatives market; the pricing of rainbow and spread
options that depend on two underlying assets; the calibration of stochastic volatility models
with jumps to historical equity returns; and the use of stochastic volatility models in static
hedging. Our findings suggest that stochastic interest rates are the dominant risk driver when
pricing long-dated contingent claims; the FFT significantly outperforms Monte Carlo simulation
in terms of efficiency; jumps are an important factor required to explain daily equity returns;
and static hedging is a simple and effective way to replicate vanilla and exotic options.
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Introduction 1
„The true investor welcomes volatility.

— Warren Buffet

1.1 Background

Modern financial markets have become increasingly sophisticated over the past couple of
decades. Technological advancements and globalisation have made it possible to trade complex
financial instruments at the touch of a button. However, one must not forget to appreciate the
mathematical theory that underpins the prices of these instruments, first introduced by Black
and Scholes (1973) and Merton (1973), and later extended by the likes of Heston (1993) and
Bates (1996).

Nowadays, the flaws in the Black and Scholes (1973) model are well understood. For one,
returns do not typically follow a normal distribution with constant volatility. Using the Black
and Scholes (1973) model to price instruments with exotic-style payoffs is, therefore, simply
incorrect.

The Heston (1993) stochastic volatility model has become a model of choice for the pricing
of exotic equity options. The beauty of this model lies in its ability to produce skewed and
fat-tailed distributions, which aligns with the behaviour of financial markets. Furthermore, the
Heston (1993) model has a semi-closed form solution for European call and put options, which
enables efficient calibration of model parameters.

The Bates (1996) stochastic volatility jump (SVJ) model is an extension of the Heston (1993)
model that adds random jumps to the underlying equity dynamics. The advantage of the
Bates (1996) SVJ model is its ability to produce even more pronounced skew and fat-tailed
distributions than the Heston (1993) model.

Option pricing, based on the Heston (1993) and Bates (1996) SVJ models, has been a topic of
extensive research since the models were first introduced. Many variants of these models now
exist, for example, the Heston-Hull-White model introduced by Grzelak and Oosterlee (2011),
where the equity component is described by the Heston (1993) model and the interest rate
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component by the Hull and White (1990) model. More recently, the so-called “rough” Heston
model was introduced by El Euch et al. (2019), which builds upon the concept of fractional
Brownian motion (fBm) (see, Mandelbrot and van Ness, 1968).

The works of Heston (1993) and Bates (1996) should be celebrated due to the countless
opportunities they have created in modern financial markets. Other notable contributions
worth mentioning are the works of Carr and Madan (1999) and their application of the fast
Fourier transform (FFT) to option pricing, and Duffie et al. (2000) on the application of Fourier
transform methods and affine models.

The reason that the contributions made by Carr and Madan (1999) and Duffie et al. (2000)
are so significant is due to the fact that many exotic options do not have closed-form solutions
under stochastic volatility dynamics. Duffie et al. (2000) introduced a general framework that
allows one to write the characteristic function of a stochastic volatility model in explicit form,
which can then be used in the FFT algorithm of Carr and Madan (1999) to obtain the option
value.

The vast majority of literature on stochastic volatility models, including the works by Heston
(1993) and Bates (1996), tends to focus almost exclusively on the pricing of options in developed
economies under the so-called risk-neutral probability measure. The application of stochastic
volatility models under the real-world probability measure, and in developing economies, is
often neglected.

Andersen et al. (2002) used a statistical inference technique called the efficient method of
moments (EMM) to calibrate stochastic volatility models to historical equity returns rather than
option prices, which opens doors to new opportunities.

South Africa can be seen as a developing market compared to major economies such as the
United States and United Kingdom. This often means that simplified models are used to value
complex financial instruments, simply due to a lack of market data. Consequently, there is a
limited body of research on stochastic volatility models applied to the South African market.

Although stochastic volatility models have been around for a long time, there is significant
potential to increase their scope from their initial intended use being single-asset option pricing.
For example, stochastic volatility models can be used by insurance companies, through so-
called economic scenario generators, to value options embedded in life insurance contracts.
Furthermore, stochastic volatility models can been used to value multi-asset options and forecast
future equity performance.

As financial markets move towards artificial intelligence (AI) and machine learning, one must
not forget the foundation on which they are built. As the philosopher Matshona Dhliwayo said:
“A tree’s beauty lies in its branches, but its strength lies in its roots.”
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1.2 Research Objectives

The central theme of this thesis is on the application of stochastic volatility models and numerical
methods under different probability measures.

Contingent claims are typically priced under the risk-neutral Q-probability measure due to the
principle of no arbitrage. The real-world P-probability measure is generally used to forecast a
random variable such as an equity price, but receives considerably less attention in the literature.
Therefore, in this thesis, our ultimate goal is to link stochastic volatility models under the P-
and Q-measures, which will open doors to new opportunities.

To achieve this, we consider five practical problems, where each problem is presented as a
chapter. The first three chapters focus solely on the application of stochastic volatility models
and numerical methods in the risk-neutral Q-measure. The fourth chapter deals with stochastic
volatility models and numerical methods in the real-world P-measure. The fifth and final
chapter links the ideas from the P- and Q-measures by applying a stochastic volatility model to
a portfolio risk management problem.

The research questions addressed in this thesis are the following:

1. What are the important risk factors to consider when pricing long-dated options?

This question is addressed in Chapters 2 and 4. In Chapter 2, Section 2.7.1, the prices of
long-dated insurance liabilities such as Guaranteed Minimum Maturity Benefits (GMMBs)
and Guaranteed Minimum Death Benefits (GMDBs) are compared under different model
assumptions, i.e., constant versus stochastic volatility and interest rates. In Chapter 4,
Section 4.6.3, the prices of long-dated spread options are compared assuming constant versus
stochastic interest rates.

2. Does the FFT lead to significant time saving, but similar accuracy, compared to
Monte Carlo simulation for numerical evaluation of option values?

This question is addressed in Chapters 3 and 4. In Chapter 3, Section 3.5.3, the convergence
of the FFT under the three-factor stochastic volatility model for “worst-of-2” call options is
discussed. In Chapter 4, Section 4.6.2, the convergence and execution time of the FFT under
the two-asset Heston-Hull-White model is compared with the results obtained from a Monte
Carlo simulation for spread options.

3. Are jumps an important risk factor to consider when modelling equity returns?

This question is addressed in Chapters 5 and 6. In Chapter 5, Sections 5.3.1 and 5.3.2, the
Heston (1993) and Bates (1996) stochastic volatility jump (SVJ) models are calibrated to
historical S&P500 and FTSE/JSE Top40 returns. The distribution generated by the models
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is then compared with the historical returns distribution. In Chapter 6, Section 6.4.1, the
stochastic volatility double jump (SVJJ) model of Duffie et al. (2000) is calibrated to historical
FTSE/JSE Top40 returns. The model distribution and historical returns distribution are then
compared.

4. Is volatility targeting an effective trading strategy?

Volatility targeting is discussed in Chapter 5, Section 5.4. We discuss the general concept of
volatility targeting and perform simulations to test the outcome of various volatility targeting
strategies over different investment horizons. Returns and volatility are assessed for 10%,
15%, and 20% volatility targets over 1, 3, and 5 years. The results are compared with an
equity-only holding strategy.

5. Can we hedge long-dated options with a combination of other derivatives and cash?

This question is addressed in Chapter 6 and links the ideas from the previous chapters.
Hedging is a portfolio risk management problem, and, therefore, falls within the realm of the
real-world P-probability measure. On the other hand, derivative pricing is linked to the risk-
neutral Q-probability measure. Therefore, in Sections 6.4.1 and 6.4.2, we calibrate the SVJJ
model of Duffie et al. (2000) to historical FTSE/JSE Top40 returns and the FTSE/JSE Top40
implied volatility surface, which enables us to forecast FTSE/JSE Top40 prices (P-measure),
and price options (Q-measure). Two static hedging programs are then applied to hedge a
long-dated vanilla European call option and European spread call option in Sections 6.4.3
and 6.4.4.

These questions stem from problems in the financial services industry where stochastic volatility
is often observed. These are: 1) pricing derivatives embedded in life insurance contracts, i.e.,
long-dated options; 2) pricing multi-asset options, i.e., rainbow and spread options; and 3)
portfolio risk management, i.e., volatility targeting and hedging.

This thesis brings together many disciplines including probability theory, quantitative finance,
numerical analysis, and mathematical statistics.

1.3 Thesis Structure

This thesis consists of five core chapters that attempt to address the research questions posed in
Section 1.2. Chapters 2, 3, 4, and 5 have been published in peer-reviewed journals. Chapter
6 has been accepted for presentation at an international conference. The flow diagram below
outlines the structure and key topics of this thesis.
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Q-Probability Measure P-Probability Measure

Chapter 2:
GMMB and GMDB Pricing

Chapter 3:
Rainbow Option Pricing

Chapter 4:
Spread Option Pricing

Chapter 5:
Calibration and Volatility Targeting

Chapter 6: Static Hedging

• Chapter 2: GMMB and GMDB Pricing

Chapter 2 considers the application of stochastic volatility models in insurance and is titled
“An Economic Scenario Generator for Embedded Derivatives in South Africa” (Levendis &
Maré, 2022a). In this chapter, we consider the pricing GMMBs and GMDBs in the South
African life insurance industry. The Heston-Hull-White model of Grzelak and Oosterlee
(2011) is proposed to price these products, and a stochastic mortality component based on
the CIR++ model of Brigo and Mercurio (2001) is added to the model dynamics. We show
how to calibrate the Heston-Hull-White model to the FTSE/JSE Top40 implied volatility
surface using the Fourier transform technique of Carr and Madan (1999). Furthermore,
we calibrate the CIR++ model to survival probability curves for South African males and
females. We then test the impact of the various model parameters, including stochastic
volatility and stochastic interest rates, on the GMMB and GMDB prices. Finally, we show
the performance of a delta-hedging strategy for the GMMB using the Heston-Hull-White
model with stochastic mortality.

• Chapter 3: Rainbow Option Pricing

Chapter 3 is titled “Pricing Two-Asset Rainbow Options with the Fast Fourier Transform”
(Levendis & Maré, 2023b) and deals with the pricing of rainbow options, specifically
“worst-of-2” call options. We consider the two-factor geometric Brownian motion (gBm)

1.3 Thesis Structure 5



model of Margrabe (1978) and the three-factor stochastic volatility model of Dempster
and Hong (2002) for the underlying equity dynamics. The “worst-of-2” call options are
priced with the two-dimensional FFT of Hurd and Zhou (2010). The prices and efficiency
of the method are compared with the results obtained from a Monte Carlo simulation.

• Chapter 4: Spread Option Pricing

Chapter 4 titled “Efficient Pricing of Spread Options with Stochastic Rates and Stochastic
Volatility” (Levendis & Maré, 2022b) focuses on the derivation of the two-asset Heston-
Hull-White model - an extension of the single-asset model derived by Grzelak and Oosterlee
(2011). The derivation is presented from first principles, and the model is used to price
European spread options with the two-dimensional FFT of Hurd and Zhou (2010). The
accuracy and efficiency of the FFT are assessed, and the impact of stochastic interest rates
on long-dated spread options is tested.

• Chapter 5: Calibration and Volatility Targeting

Chapter 5 titled “Application of Stochastic Volatility Models in the Real-World Measure”
(Levendis & Maré, 2023a) considers the calibration of the Heston (1993) and Bates (1996)
SVJ models to historical equity returns. Firstly, we aim to replicate the results in Andersen
et al. (2002) for the S&P500 using the EMM technique of Gallant and Tauchan (1996).
Thereafter, we implement the Heston (1993) and Bates (1996) SVJ models to historical
FTSE/JSE Top40 returns to test which model is better at capturing the characteristics of
the South African equity market. Finally, we show how a real-world stochastic volatility
model can be used to test the performance of a volatility targeting trading strategy.

• Chapter 6: Static Hedging

Chapter 6 focuses on the interplay between the P- and Q-probability measures and is titled
“Static Hedging of Vanilla and Exotic Options in a South African Context” (Levendis &
Maré, 2023c). We calibrate the SVJJ model of Duffie et al. (2000) to historical FTSE/JSE
Top40 returns (P-measure) as well as the FTSE/JSE Top40 implied volatility surface
(Q-measure). We then propose a simulation-based framework based on the P- and Q-SVJJ
models that can be used to test the performance of a static hedging program, where
the written option is either a long-dated vanilla call option or exotic spread call option.
We use the optimisation routines of Choie and Novomestky (1989) and Armstrong et al.
(2018) to solve for the exchange traded option quantities and cash balance in the hedging
portfolio and test the hedging performance at a future date.

Chapter 7 concludes the thesis.
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An Economic Scenario Generator
for Embedded Derivatives in
South Africa

2

„Volatility is not synonymous of risk but – for those who
truly understand it – of wealth.

— Francois Rochon

Keywords: Heston-Hull-White model · stochastic volatility · stochastic interest rates · stochastic
mortality · GMMB · GMDB · pricing · hedging

2.1 Introduction

Life insurers often sell policies with embedded guarantees. Pricing these guarantees is challeng-
ing due to the financial and insurance risks involved. Two popular products sold by life insurers
include the Guaranteed Minimum Maturity Benefit (GMMB) and the Guaranteed Minimum
Death Benefit (GMDB). The former provides the policyholder with the greater of the guaranteed
amount at maturity or the fund value in which the initial premium was invested, whereas the
latter provides the policyholder with the greater of the guaranteed amount or the fund value
at the time of death, should death occur before the maturity of the contract. To price these
products, a model is required that can capture financial risks, including equity and interest rate
volatility, and insurance risks such as mortality. In this chapter1, we propose such a model.

The Black and Scholes (1973) model is unsuitable for modelling long-dated contingent claims
as it does not account for stochastic interest rates or stochastic volatility. Furthermore, it has
been shown that the model is inconsistent with the stylised facts of financial returns (see Cont,
2001). Fortunately, the Black and Scholes (1973) model has been extended to incorporate
stochastic volatility (see, for example, Heston, 1993 and Bates, 1996).

The Heston (1993) model incorporates stochastic volatility, and, hence, can capture the equity
skew observed in financial markets. However, as shown by Kammeyer and Kienitz (2012),

1This chapter is based on a paper (Levendis and Maré, 2022a) published in the South African Actuarial Journal.
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stochastic interest rates are a bigger risk driver for long-dated contingent claims than stochastic
volatility. Consequently, a model is required that can incorporate stochastic volatility as well as
stochastic interest rates.

The Hull and White (1990) model is a stochastic process that describes the short-term instan-
taneous interest rate and is popular among practitioners. The model has the benefit in that it
can fit the initial term-structure of interest rates and has an analytical solution for zero-coupon
bonds. Given the model’s analytical tractability, researchers in the field of quantitative finance
started to investigate its use with the Heston (1993) stochastic volatility model, leading to what
is now known as the Heston-Hull-White model.

A particular challenge faced when pricing GMMB and GMDB products is their long-dated
nature. As discussed by Maze (2014), the further a call or put option is from maturity, the
more time a stochastic interest rate has to reach its long-run mean and affect the option price.
Therefore, it is important for practitioners to include stochastic interest rates when reserving for
embedded derivatives. The Heston-Hull-White model will allow for this. Apart from financial
risks, insurance risks such as mortality must also be incorporated.

Traditional actuarial modelling assumes deterministic mortality rates based on actuarial life
tables. In reality, mortality rates are stochastic and it may be necessary to price contingent
claims based on this assumption. In this chapter, we extend the Heston-Hull-White model to
include stochastic mortality rates based on either a continuous-time Cox et al. (1985) process
or discrete-time AR(1)-ARCH(1)2 model when pricing products contingent on either survival or
death. We call this extension the Heston-Hull-White-Mortality model.

The remainder of this chapter is structured as follows: Section 2.2 reviews relevant literature on
guaranteed maturity benefits, the Heston-Hull-White model, and stochastic mortality. Section
2.3 introduces the mathematical theory of the Heston-Hull-White model. Section 2.4 reviews
the continuous-time Cox et al. (1985) short rate process and its extension proposed by Brigo and
Mercurio (2001), and the discrete time AR(1)-ARCH(1) model that will be used for mortality
rates. Section 2.5 shows the formulas that will be used to price the GMMB and GMDB products.
Section 2.6 introduces the data that will be used to calibrate the Heston-Hull-White-Mortality
model and price the GMMB and GMDB products. Section 2.7 shows our pricing and hedging
results, and Section 2.8 concludes the findings.

2First-order Autoregressive and Autoregressive Conditional Heteroskedastic model
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2.2 Literature Review

In 2007, ING, a large Dutch banking group, presented a problem from the financial industry
where the goal was to derive a closed-form or semi-closed form solution for a call option under
the hybrid Heston-Hull-White model. To understand the complexity of this challenge, Oosterlee
(2007) writes: “Quite a few mathematicians took up this ING challenge, and during the week
three subgroups were formed, each approaching the problem from a different side. A particular
challenge here was that some Dutch professors in financial mathematics in earlier attempts were
not able to come up with a closed form option pricing solution for this particular model.” From this
challenge, a couple of interesting approaches were suggested to solve the model, see in ’t Hout
et al. (2007) and Fang and Janssens (2007).

The Heston-Hull-White model has become popular since the so-called ING challenge. Kammeyer
and Kienitz (2009) considered an interest rate process that is independent of the equity and
volatility processes, and showed the resulting characteristic function and calibration of the
model based on the Carr and Madan (1999) fast Fourier transform (FFT) method. Still, the
challenge remained to incorporate a non-zero correlation structure between the equity, volatility
and interest rate processes.

Grzelak and Oosterlee (2011) made a breakthrough by deriving approximations for specific
terms in the Heston-Hull-White model that allow for a non-zero correlation structure between
the equity, volatility, and interest rate processes. Their technique, known as linearisation,
involves approximating the nonlinear terms in the model’s covariance matrix with a linear
function. The resulting model is then in affine form, which means that the Fourier methods of
Duffie et al. (2000) and Carr and Madan (1999) can be applied. Grzelak and Oosterlee (2011)
concluded that the approximations yield accurate prices for European options. This was a big
contribution to the field of quantitative finance and the model has since been applied to price
long-dated contingent claims.

Maze (2014) applied the Heston-Hull-White model to price long-dated European call options
and compared the results to the standard Black and Scholes (1973) model. The author showed
that call option prices under the Heston-Hull-White model increase compared to the Black
and Scholes (1973) model as the time to maturity increases. This is an important finding,
especially considering the long-dated nature of embedded derivatives such as GMMB and GMDB
products.

Patel (2019) implemented the Heston-Hull-White model to price long-dated European call
options and compared the deterministic and stochastic approximations for the Heston-Hull-
White model proposed by Grzelak and Oosterlee (2011). The author concludes that the
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deterministic approximation is a feasible way to calibrate the Heston-Hull-White model, whereas
the stochastic approximation is inefficient.

As mentioned earlier, traditional actuarial modelling assumes deterministic mortality rates. In
reality, mortality rates tend to behave randomly. Cairns et al. (2008) discuss various stochastic
mortality models including the discrete-time Lee and Carter (1992) model and continuous-time
short rate models. Mortality modelling is similar to interest rate modelling, hence, it is relatively
simple to extend the theory of interest rates to mortality.

A weakness of many short rate models is that they cannot fit the initial term-structure of interest
rates. Examples include the Vasicek (1977) and Cox et al. (1985) models. The Hull and
White (1990) model overcomes this issue, but, due to its Gaussian distribution, can produce
negative values. Brigo and Mercurio (2001) extended the Cox et al. (1985) model to include a
deterministic shift that allows the model to fit the initial term-structure of interest rates whilst
maintaining its analytical tractability for zero-coupon bonds. The model is termed the CIR++
model.

Truter (2012) applied the CIR++ model to price defaultable zero-coupon bonds. The author
showed that the hazard rate, or instantaneous probability of default, can be modelled as a
CIR++ process. From there, an analytical solution exists to calculate survival probabilities (the
probability that a counterpart does not default). Simply replacing the hazard rate with the
force of mortality (instantaneous rate of mortality), the CIR++ model can be used to calculate
survival probabilities in a life insurance context.

Literature on the use of hybrid models to price embedded derivatives or variable annuities is
limited. Wang (2011) applied the Heston-Hull-White model to price the Guaranteed Minimum
Withdrawal Benefit (GMWB) product and discussed two semi-analytical techniques that can be
used to calibrate the model to market data. The author considered the FFT technique of Carr
and Madan (1999) and the Fourier-Cosine (COS) technique introduced by Fang and Oosterlee
(2008). The author concludes that the Heston-Hull-White model is an appropriate model to use
when pricing long-dated claims.

Ignatieva et al. (2016) presented a framework for pricing guaranteed maturity benefits with a
regime-switching and stochastic mortality model. The authors considered a continuous-time
two-factor affine mortality model and assumed that the unsystematic mortality risk can be
diversified away, hence, the instantaneous mortality intensity is the same under the physical
and risk-neutral measures.

Balotta et al. (2020) proposed a Lévy-based hybrid model that allows for dependence between
interest rates and equity prices. Furthermore, the authors divide insurance risk into two
components: mortality risk and surrender risk. The authors conclude that surrender risk
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is particularly important in the valuation of variable annuities due to the large number of
policyholders who terminate their contracts prematurely.

Veilleux (2016) tested the impact of stochastic volatility, stochastic interest rates, and stochastic
mortality on the hedge efficiency of the Guaranteed Lifetime Withdrawal Benefit (GLWB). The
author considered various models including a regime-switching log-normal model to capture
stochastic volatility, the Hull and White (1990) model for stochastic interest rates, and the
Lee and Carter (1992) model for stochastic mortality. The author concludes that stochastic
interest rates and stochastic mortality have a significant impact on the hedge efficiency of GLWB
benefits.

In South Africa, the Actuarial Society of South Africa’s advisory practice note, APN 110:
Allowance for Embedded Investment Derivatives3, gives guidance to actuaries on how to reserve
for embedded derivatives including GMMB and GMDB products. The advisory practice note is
rather open-ended and leaves the actuary with many modelling choices. An extract from APN
110 reads: “No specific investment return projection model is prescribed. The actuary may use any
market-consistent stochastic investment return projection model that he/she deems appropriate
for purposes of quantifying reserves required to meet the potential cost of embedded investment
derivatives.”

The only minimum prescription set by APN 110 is that the model must be market-consistent,
meaning that it must match the prices of tradable assets as closely as possible.

Limited research has been conducted in South Africa comparing different modelling approaches
for embedded derivatives. Ngugi et al. (2015) applied a Variance-Gamma model to price GMMB
and GMDB products wtitten on the FTSE/JSE All Share Index (ALSI) and compared this to a
regime-switching model (see Hardy, 2003). The authors conclude that the Variance-Gamma
model is more aligned with the stylised facts of financial returns (Cont, 2001). Furthermore,
the authors suggest further research on the topic by including stochastic interest rates and
stochastic mortality. This suggestion is what motivated this research.

We are not aware of literature pertaining to the Heston-Hull-White model used to price em-
bedded derivatives in the presence of stochastic mortality. Therefore, our contribution to the
literature is by pricing GMMB and GMDB products with an extension of the Heston-Hull-White
model that we term the Heston-Hull-White-Mortality model. We will apply the model to price
and hedge GMMB and GMDB products written on the FTSE/JSE Top40 index in South Africa.

In the next section, we introduce the mathematical theory for the Heston-Hull-White model.

3https://www.actuarialsociety.org.za/download/apn-110-allowance-for-embedded-investment-derivatives/
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2.3 The Heston-Hull-White Model

Let Q denote the risk-neutral measure. Under the Q-measure, the Heston-Hull-White model is
given by the following system of stochastic differential equations (SDEs):


dS(t) = r(t)S(t)dt+

√
v(t)S(t)dWs(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ σv

√
v(t)dWv(t), v(0) > 0,

dr(t) = λr(θ(t)− r(t))dt+ ηdWr(t), r(0) ∈ R,

where S(t) is the underlying asset price a time t, v(t) is the instantaneous variance of the
underlying asset at time t driven by a Cox et al. (1985) process, and r(t) is the instantaneous
short-term interest rate at time t driven by a Hull and White (1990) process.

The parameters of the variance process are defined as follows: κ denotes the mean reversion
speed of the variance, v̄ is the long-run mean of the variance, and σv is the volatility of the
volatility.

The parameters of the short-term interest rate process are defined as follows: θ(t) denotes the
time-dependent mean reversion level of the interest rate, λr denotes the mean reversion speed
of the interest rate, and η is the volatility of the interest rate.

In the system of SDEs, the Brownian motions, dWs(t), dWv(t), and dWr(t) are correlated by
ρs,v, ρs,r, and ρv,r respectively.

Taking x(t) = logS(t), Grzelak and Oosterlee (2011) consider the log-dynamics for the Heston-
Hull-White model as it is often easier to work with this form. Applying Itô’s lemma, the
log-dynamics for the Heston-Hull-White model are given by the following system of SDEs under
the Q-measure:

dx(t) = (r(t)− 1
2v(t))dt+

√
v(t)dWs(t), x(0) = logS(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ σv

√
v(t)dWv(t), v(0) > 0,

dr(t) = λr(θ(t)− r(t))dt+ ηdWr(t), r(0) ∈ R.

Patel (2019) summarised the work of Grzelak and Oosterlee (2011) and showed that the
Heston-Hull-White log-dynamics can be expressed in terms of independent Brownian motions.
If B(t) is a standard 3-dimensional Brownian motion, then

dX(t) = µ(X(t))dt+ σ(X(t))dB(t), (2.3.1)
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where

X(t) =


x(t)
v(t)
r(t)

 ,

µ(X(t)) =


r(t)− 1

2v(t)
κ(v̄ − v(t))

λr(θ(t)− r(t))

 ,
and

σ(X(t)) =


√
v(t) 0 0

ρs,vσv

√
v(t)

√
1− ρ2

s,vσv

√
v(t) 0

ρs,rη
ρv,r−ρs,rρs,v√

1−ρ2
s,v

η

√
1− ρ2

s,r −
(

ρv,r−ρs,rρs,v√
1−ρ2

s,v

)
η

 .

See Patel (2019) for the proof.

The covariance matrix, Σ(X(t)) = σ(X(t))σ(X(t))⊤, for the Heston-Hull-White model is given
by:

Σ(X(t)) =


v(t) ρs,vσvv(t) ρs,rη

√
v(t)

∗ σ2
vv(t) ρv,rη

√
v(t)

∗ ∗ η2

 . (2.3.2)

When the underlying asset and variance processes are correlated to the interest rate process,
the Heston-Hull-White model cannot be written in an affine form. The reader is referred to
Duffie et al. (2000), Grzelak and Oosterlee (2011), and Patel (2019) for more information on
affine models. In short, a model is said to be affine if each element of its drift and covariance
can be written as a linear function of the state variables.

From Eq. (2.3.2), it is clear that the covariance matrix contains elements that are nonlinear
functions of the state variables, specifically

√
v(t). In this chapter, we are only interested in the

case where the interest rate process is correlated to the spot process, hence, we set ρv,r = 0. To
make the model affine, Grzelak and Oosterlee (2011) propose a deterministic approximation by
replacing

√
v(t) with E[

√
v(t)]. The covariance matrix then becomes:

Σ(X(t)) =


v(t) ρs,vσvv(t) ρs,rηE[

√
v(t)]

∗ σ2
vv(t) 0

∗ ∗ η2

 . (2.3.3)

2.3 The Heston-Hull-White Model 13



Grzelak and Oosterlee (2011) approximate E[
√
v(t)] with the following function:

Λ(t) =
√
c(t)(λ(t)− 1) + c(t)d+ c(t)d

2(d+ λ(t)) , (2.3.4)

where

c(t) = 1
4κσ

2
v(1− e−κt), d = 4κv̄

σ2
v

, λ(t) = 4κv(0)e−κt

σ2
v(1− e−κt) .

See Grzelak and Oosterlee (2011), and Patel (2019) for the proof.

Grzelak and Oosterlee (2011) mention that the approximation in Eq. (2.3.4) is still non-trivial
and propose a further approximation for E[

√
v(t)] with the following function:

E
[√

v(t)
]
≈ a+ be−ct := Λ̃(t), (2.3.5)

where

a =

√
v̄ − σ2

v

8κ, b =
√
v(0)− a, c = − log(b−1(Λ(1)− a)).

As we will show in the next section, the approximation in Eq. (2.3.5) plays an important role in
the Heston-Hull-White characteristic function.

2.3.1 The Heston-Hull-White Characteristic Function

Grzelak and Oosterlee (2011) assume a constant term-structure of interest rates, θ(t) = θ, in
their derivation of Heston-Hull-White characteristic function. This assumption simplifies the
mathematics and we will maintain this assumption throughout the rest of this chapter. From
Grzelak and Oosterlee (2011), the characteristic function is given by:

ϕHHW (u,X(t), τ) = exp
(
Ã(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)

)
, (2.3.6)

where

τ = T − t,

B(u, τ) = iu,

C(u, τ) = 1
λr

(iu− 1)
(
1− e−λrτ

)
,

D(u, τ) = 1− e−D1τ

σ2
v(1− ge−D1τ ) (κ− σvρs,viu−D1) ,
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A(u, τ) = λrθI1(u, τ) + κv̄I2(u, τ) + 1
2η

2I3(u, τ),

Ã(u, τ) = A(u, τ) + ρs,rηI4(u, τ),

with

D1 =
√

(σvρs,viu− κ)2 − σ2
viu(iu− 1),

g = κ− σvρs,viu−D1
κ− σvρs,viu+D1

,

I1(u, τ) = 1
λr

(iu− 1)
(
τ + 1

λr
(e−λrτ − 1)

)
,

I2(u, τ) = τ

σ2
v

(κ− σvρs,viu−D1)− 2
σ2

v

log
(

1− ge−D1τ

1− g

)
,

I3(u, τ) = 1
2λ3

r

(i+ u)2
(
3 + e−2λrτ − 4e−λrτ − 2λrτ

)
,

I4(u, τ) ≈ − 1
λr

(
iu+ u2

) [b
c
(e−ct − e−cT + aτ + a

λr
(e−λrτ − 1)

+ b

c− λr
e−cT (1− eτ(λr−c))

]
.

The deterministic approximation proposed by Grzelak and Oosterlee (2011) in Eq. (2.3.5) feeds
into the valuation of I4 above, hence the approximation sign. Since the characteristic function
for the Heston-Hull-White model is known, Fourier methods can be used to solve the price of a
European call option as we show in the next section.

2.3.2 Heston-Hull-White Calibration

Carr and Madan (1999) showed that European call options can be priced via Fourier transform
methods if the characteristic function of the model is known analytically. The authors initially
considered constant interest rates in their paper. In the case of stochastic interest rates, the
Fourier method must be adapted slightly.
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Patel (2019) derived the price of a European call option with strike K and maturity T using the
Fourier method under stochastic interest rates as:

VHHW (k) = e−αk

π

∫ ∞

0
ℜ
{
e−ivkψ(v)

}
dv, (2.3.7)

where k = log(K), α > 0, i =
√
−1, ℜ{·} denotes the real part of the complex number, and

ψ(v) = ϕHHW (v − (α+ 1)i)
(α+ 1 + iv)(α+ iv) .

The symbol α refers to the dampening coefficient and a suitable value must be chosen in order
to compute the option price in Eq. (2.3.7). As mentioned by Patel (2019), choosing α is
subjective. The author set α = 0.75 and tested the sensitivity of European call option prices to
various values of α around 0.75. From the author’s testing, it was concluded that α = 0.75 is
sufficient. We therefore set α = 0.75 going forward.

As mentioned, we are not aware of any literature that combines the Heston-Hull-White model
with a stochastic mortality model. GMMB and GMDB products are contingent on survival
or death; this implies that mortality is an important risk driver when pricing these products.
Therefore, we propose an extension of the Heston-Hull-White model by including stochastic
mortality rates based on either a continuous-time Cox et al. (1985) process or discrete-time
AR(1)-ARCH(1) model.

2.4 Stochastic Mortality

This section is divided into two parts. In the first subsection, we introduce the continuous-time
Cox et al. (1985) model for mortality rates. In the second subsection, we present the discrete-
time AR(1)-ARCH(1) model of Syuhada and Hakim (2021). The reason for considering both
a continuous-time model and a discrete-time model is to allow for calibration depending on
the type of mortality data that is available. A continuous-time model is generally calibrated
to a survival probability curve derived from historical data or longevity swaps, whereas a
discrete-time model is calibrated to a historical time series of mortality rates.
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2.4.1 Cox-Ingersoll-Ross Model

Let µ(x + t, t) denote the force of mortality at time t and age x + t. The force of mortality
represents the instantaneous probability of death at time t for a life aged x + t. Cairns et al.
(2008) show that the probability of survival up to time t under Q is given by:

tpx = Sx(0, t) = EQ

[
e−
∫ t

0 µ(x+s,s)ds
]
. (2.4.1)

In order to calculate the expectation in Eq. (2.4.1), a suitable stochastic process must be chosen
to describe the dynamics of µ(x + t, t). Cairns et al. (2008) list certain criteria for mortality
rates, including the following:

• Mortality rates should be positive;

• Long-term dynamics of the model should be reasonable;

• The model should be simple to implement using analytical methods or numerical methods.

Based on the criteria listed above, we propose the Cox et al. (1985) process as a plausible model
to describe mortality rates. The reason for choosing this process is the following: the model
produces positive values (although care must be taken to ensure the Feller condition4 is met),
the model is mean reverting which means that long-term rates will not explode, and the model
has an analytical solution for survival probabilities.

For a fixed age x at inception, the original Cox et al. (1985) model is given by the SDE:

dµ(x+ t, t) = γ(ω − µ(x+ t, t))dt+ ξ
√
µ(x+ t, t)dWµ(t), µ(x, 0) > 0, (2.4.2)

where γ denotes the mean reversion speed of mortality, ω is the long-run mean of mortality
rates, and ξ is the volatility of mortality rates.

A shortcoming of this model is that it cannot fit the term-structure of mortality. When the force
of mortality is plotted against age, it shows an increasing trend. The original Cox et al. (1985)
model does not capture this effect. Fortunately, the model has been extended to incorporate a
term-structure.

Brigo and Mercurio (2001) extended the Cox et al. (1985) model to incorporate a term-structure
and created the so-called CIR++ model. The model takes the following form where φCIR

x (t) is
a deterministic function of time:

µ(x+ t, t) = φCIR
x (t) +X(x+ t, t), (2.4.3)

4The Feller condition is met if 2γω > ξ2, where γ is the mean reversion speed of mortality, ω is the long-run mean
of mortality, and ξ is the volatility of mortality.
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where

dX(x+ t, t) = γ(ω −X(x+ t, t))dt+ ξ
√
X(x+ t, t)dWµ(t), X(x, 0) > 0,

φCIR
x (t) = fM

x (0, t)− fCIR
x (0, t).

Furthermore, fM
x (0, t) denotes the market forward mortality curve observed from the initial

term-structure of mortality (survival curve), and

fCIR
x (0, t) = 2γω eth − 1

2h+ (γ + h)(eth − 1)

+X(x, 0) 4h2eth

[2h+ (γ + h)(eth − 1)]2
,

with h =
√
γ2 + 2ξ2.

The survival probability from time t up to time T is then given by:

Sx(t, T ) = SM
x (0, T )Lx(0, t)e−Mx(0,t)X(x,0)

SM
x (0, t)Lx(0, T )e−Mx(0,T )X(x,0)Lx(t, T )e−Mx(t,T )[µ(x+t,t)−φCIR

x (t)], (2.4.4)

where

Lx(t, T ) =
[

2he(γ+h)(T −t)/2

2h+ (γ + h)(e(T −t)h − 1)

]2γω/ξ2

,

Mx(t, T ) = 2(e(T −t)h − 1)
2h+ (γ + h)(e(T −t)h− 1)

,

and SM
x (0, ·) denotes the market observed survival probability curve at t = 0 for a life aged x at

inception.

A major advantage of term-structure models, and specifically the CIR++ model, is that they fit
the input survival probability curve at t = 0, i.e, Sx(0, ·).

Throughout the rest of this chapter, we make the same assumption as Ignatieva et al. (2016)
in that the life insurer has an adequately large number of policyholders so that unsystematic
mortality risk can be diversified away. This implies that the force of mortality under the physical
probability measure P and risk-neutral probability measure Q are equal:

µP(x+ t, t) = µQ(x+ t, t).
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Life insurers in South Africa typically use life tables published by the Actuarial Society of South
Africa to calculate survival probabilities, since South Africa has no traded market for mortality
derivatives. Our assumption that the instantaneous force of mortality is the same under the P
and Q measures allows us to calibrate the CIR++ model directly to a survival probability curve
derived from the life tables.

In the next subsection, we present the discrete-time mortality model of Syuhada and Hakim
(2021).

2.4.2 AR(1)-ARCH(1) Model

Syuhada and Hakim (2021) adopted the AR(1)-ARCH(1) model of Giacometti et al. (2012) and
Lin et al. (2015) and applied the model to yearly changes in the log mortality rate. Syuhada
and Hakim (2021) explain that the conditional mean of the change in log mortality rate is
modelled by a first-order Autoregressive AR(1) model, and the conditional variance is modelled
by a first-order Autoregressive Conditional Heteroscedastic ARCH(1) stochastic volatility model
to capture volatility clustering and the time-varying nature of volatility.

Let µ(x, t) denote the force of mortality at age x in year t calculated as:

µ(x, t) = D(x, t)
E(x, t) , (2.4.5)

where D(x, t) denotes the number of individuals aged x in year t who die before year t+ 1 or
age x+ 1, and E(x, t) denotes the number of individuals exposed to death risk at age x in year
t.

Let Yx(t) denote the change in the log mortality rate for each fixed age x ∈ {x0, x0 + 1, x0 +
2, ..., Xmax}, that is:

Yx(t) = logµ(x, t)− logµ(x, t− 1) = log µ(x, t)
µ(x, t− 1) . (2.4.6)

where t ∈ {t0 + 1, t0 + 2, ..., Tmax}, with Xmax and Tmax denoting the maximum age and year
in the historical data respectively.

Syuhada and Hakim (2021) model Yx(t) according to an AR(1)-ARCH(1) model:

Yx(t) = ax + bxYx(t− 1) + ϵx(t), (2.4.7)

where

ϵx(t) =
√
hx(t)zx(t),
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hx(t) = ωx + γxϵ
2
x(t− 1),

with hx(t) denoting the conditional variance, ax ∈ R, bx ∈ (−1, 1), ωx ∈ (0,∞), γx ∈ [0, 1), and
ϵx(t) is an innovation parameter with zx(t) ∼ N(0, 1).

For each fixed age x, the model can be calibrated to a time series of historical mortality rates
via maximum likelihood estimation.

Stochastic mortality has become a highly relevant topic due to the COVID-19 pandemic, with
South African life insurers reporting absurd mortality rates. See, for example, the report by the
Association for Savings and Investment South Africa5 (ASISA).

This concludes the section on stochastic mortality models. In the next section, we introduce the
mathematics of the GMMB and GMDB products.

2.5 Guaranteed Minimum Maturity and Death Benefits

From now on, we will refer to the Heston-Hull-White-Mortality model when combining the
Heston-Hull-White model with either the Cox et al. (1985) or AR(1)-ARCH(1) models for
mortality. We assume that the force of mortality in the Heston-Hull-White-Mortality model
evolves independently from the processes driving S(t), v(t), and r(t). This implies that the
Heston-Hull-White model and CIR++/AR(1)-ARCH(1) stochastic mortality model can be
calibrated independently. Furthermore, an independent mortality process will simplify the
calculations for the GMMB and GMDB products going forward.

We make extensive use of the following relationship when deriving pricing formulae for the
GMMB and GMDB products: Given two independent random variables Y and Z, the expected
value of their product is equal to the product of their expected values:

E[Y Z] = E[Y ]E[Z]. (2.5.1)

We use the same notation as in the textbook by Feng (2018) when presenting the pricing
formulae for the GMMB and GMDB products, adjusting the formulae slightly to account for
stochastic interest rates and stochastic mortality.

The price of a GMMB at t = 0 from a life insurer’s perspective is given by the formula:

VGMMB(0) = EQ

[
e−
∫ T

0 r(s)ds(G− F (T ))+e−
∫ T

0 µ(x+s,s)ds
]

5https://www.asisa.org.za/media-releases/life-insurers-report-a-surge-in-death-claims-during-covid-19-third-
wave/
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−
∫ T

0
EQ

[
e−
∫ s

0 r(u)dumeF (s)e−
∫ s

0 µ(x+u,u)du
]
ds

= EQ

[
e−
∫ T

0 r(s)ds(G− F (T ))+
]
EQ

[
e−
∫ T

0 µ(x+s,s)ds
]

−me

∫ T

0
EQ

[
e−
∫ s

0 r(u)duFs

]
EQ

[
e−
∫ s

0 µ(x+u,u)du
]
ds

= EQ

[
e−
∫ T

0 r(s)ds(G− F (T ))+
]

T px −me

∫ T

0
EQ

[
e−
∫ s

0 r(u)duFs

]
spxds, (2.5.2)

where

• G is the minimum guaranteed amount defined at inception of the contract;

• F (t) is the value of the fund account at time t in which the initial premium was invested;

• me is the annualised fee for the GMMB deducted by the insurer from the fund account
expressed as a percentage.

Furthermore, F (t) = F (0) S(t)
S(0)e

−mt, where St denotes the value of the underlying equity index
at time t, andm denotes the annualised charge payable by the insurer, expressed as a percentage.
We assume that me < m.

Note from Eq. (2.5.2) that the terms EQ

[
e−
∫ T

0 r(s)ds(G− F (T ))+
]

and EQ

[
e−
∫ T

0 µ(x+s,s)ds
]

were split using the relation in Eq. (2.5.1) since the force of mortality is independent from
all other risk drivers. Furthermore, if the bank account is used as numeraire, the discount
factor cannot be removed from the expectation since the interest rate process is stochas-
tic and correlated to the stochastic process driving the fund value. Therefore, the terms

EQ

[
e−
∫ T

0 r(s)ds(G− F (T ))+
]

and me
∫ T

0 EQ

[
e−
∫ s

0 r(u)duF (s)
]

spx can be solved using the brute

force Monte Carlo method. Ignatieva et al. (2016) proposed a Fourier space time-stepping (FST)
algorithm to reduce the computational cost of pricing embedded derivatives. See Ignatieva et al.
(2016) for details.

The price of a GMDB at t = 0 from a life insurer’s perspective is given by the formula:

VGMDB(0) =
∫ T

0
EQ

[
e−
∫ s

0 r(u)duµ(x+ s, s)e−
∫ s

0 µ(x+u,u)du(G(s)− F (s))+
]
ds

−
∫ T

0
EQ

[
e−
∫ s

0 r(u)dumde
−
∫ s

0 µ(x+u,u)duF (s)
]
ds

=
∫ T

0
EQ

[
e−
∫ s

0 r(u)du(G(s)− F (s))+
]
EQ

[
µ(x+ s, s)e−

∫ s

0 µ(x+u,u)du
]
ds
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−md

∫ T

0
EQ

[
e−
∫ s

0 r(s)dsFs

]
EQ

[
e−
∫ s

0 µ(x+u,u)du
]
ds

=
∫ T

0
EQ

[
e−
∫ s

0 r(u)du(G(s)− F (s))+
]
EQ

[
µ(x+ s, s)e−

∫ s

0 µ(x+u,u)du
]
ds

−md

∫ T

0
EQ

[
e−
∫ s

0 r(s)dsF (s)
]

spxds, (2.5.3)

where md denotes the annualised fee for the GMDB deducted by the insurer from the fund
account. We assume that md < m.

Recall the probability of survival formula for a life aged x at inception:

tpx = Sx(0, t) = EQ

[
e−
∫ t

0 µ(x+s,s)ds
]
.

The instantaneous probability of dying at time t and age x+ t, given survival up to time t, is

given by the term EQ

[
µ(x+ t, t)e−

∫ t

0 µ(x+s,s)ds
]
. This term is used extensively in the GMDB

pricing formula and can be solved numerically by the brute force Monte Carlo method.

The pricing formula for the GMDB is more complex than the pricing formula for the GMMB. This
is because the payoff of the GMDB product can occur at any time in the interval [0, T ] depending
on when the policyholder dies, whereas the GMMB only pays an amount of max(G,F (T )) if
the policyholder survives to time T .

In the next section, we introduce the data used in this study.

2.6 Data

Daily FTSE/JSE Top40 closing prices from September 2005 to November 2020 were downloaded
from za.investing.com6. The historical closing prices are shown in Figure 2.1 below.

6https://za.investing.com/indices/ftse-jse-top-40-historical-data
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Fig. 2.1: Historical FTSE/JSE Top40 closing prices

For the Hull and White (1990) component of the Heston-Hull-White model, we require a
starting value for r(0). We use the South African 3-month T-Bill rate as a proxy for the short-
term interest rate. Historical 3-month T-Bill rates were downloaded from the South African
Reserve Bank website7 for the period September 2005 to November 2020 and are shown in
Figure 2.2 below:
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Fig. 2.2: Historical 3-month T-Bill rates in South Africa

7https://www.resbank.co.za/en/home/what-we-do/statistics/key-statistics/selected-historical-rates
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South African mortality rates were sourced from the Actuarial Society of South Africa’s investiga-
tion: Report on pensioner mortality 2005-20108, published in February 2017. The investigation
was conducted by the Continuous Statistical Investigations (CSI) Committee of the Actuarial
Society of South Africa. In the study, the CSI used pensioner data from the start of 2005 to the
end of 2010 to construct the force of mortality for each age from 50 to 110, split by male and
female.

Figure 2.3 below shows the survival probability, tp50, t ∈ {1, 2, ..., 60}, for a 50-year old South
African male and female pensioner:
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Fig. 2.3: Survival probability for 50-year old male and female pensioner

From Figure 2.3, the survival probability for a South African 50-year old male and female
pensioner decreases the further we look into the future. Furthermore, the survival probability
for a 50-year old male is considerably lower than a 50-year old female. The CIR++ model is
calibrated to the survival probability curves in Figure 2.3.

For the purpose of the AR(1)-ARCH(1) model, we were unable to source historical mortality
rates, µ(x, t), for South African males and females. However, our goal is not to focus on the
quality or availability of historical mortality data, but rather to show how to calibrate and apply
the AR(1)-ARCH(1) model. Therefore, we use historical mortality rates for the United Kingdom
(UK) from 1922 to 2020 sourced from the Human Mortality Database9 (HMD), the world’s
leading source of mortality data for developed countries. The historical mortality rates for the
UK are split by age and sex.

8http://legacy.actuarialsociety.org.za/Societyactivities/CommitteeActivities/
ContinuousStatisticalInvestigation(CSI).aspx

9https://www.mortality.org/
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It is important to note that mortality in the UK is not representative of mortality in South
Africa due to various social and economic factors such as income, education, employment, and
community safety. However, using UK mortality data does not diminish the point we are trying
to make. The only reason for using UK mortality data is that it is comprehensive and freely
available from HMD. Any life insurer in South Africa with access to South African mortality data
can easily adjust the input data to calibrate the AR(1)-ARCH(1) model.

Figures 2.4 and 2.5 below show the log mortality rates for UK males and females from 1922 to
2020 for ages 0 to 100:

Fig. 2.4: Log mortality rates for UK males

Fig. 2.5: Log mortality rates for UK females

2.6 Data 25



Figures 2.6 and 2.7 below show the yearly changes in log mortality rates for UK males and
females:

Fig. 2.6: Change in log mortality rates for UK males

Fig. 2.7: Change in log mortality rates for UK females

The AR(1)-ARCH(1) model of Syuhada and Hakim (2021) can now be applied to the stationary
time series of the changes in log mortality rates for each age.
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Weekly FTSE/JSE Top40 volatility surfaces from September 2005 to November 2020 were
provided by Peresec10. Each volatility surface covers a forward moneyness range of 75% to
125% and maturities from 1 to 15 months. For more details on the methodology used to
construct the volatility surfaces, see Flint and Maré (2017).

The South African equity options market is illiquid compared to developed markets like Europe
and the United States. As mentioned by Flint and Maré (2017), it is uncommon for options
to trade beyond an expiry of 15 months in South Africa. This poses a further challenge when
pricing GMMB and GMDB products with maturities typically extending far beyond 15 months.

Due to the illiquid equity options market in South Africa, there is no benchmark volatility
that can be used for calibration beyond the 15-month mark. This implies that the volatility
term-structure produced by the model can yield nonsensical values for long-dated maturities.
Flint et al. (2014) tested several models that can produce long-term volatility estimates and
showed that different models yield substantial differences for the volatility term-structure.

In this chapter, we allow the Heston-Hull-White-Mortality model to generate the volatility
term-structure beyond the 15-month mark. We will test the model by plotting the term-structure
of volatility to ensure that the model leads to plausible estimates for long-term volatility. For
more detail on long-term volatility estimation, see Flint et al. (2014).

Figure 2.8 below shows the implied volatility surface constructed from FTSE/JSE Top40 index
options on 16 November 2020:
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Fig. 2.8: FTSE/JSE Top40 volatility surface on 16 November 2022

10https://www.peresec.com/
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Note from Figure 2.8 the volatility skew observed across forward moneyness levels and the
non-constant volatility across term to maturity. APN 110 requires that the investment return
projection model reproduce this surface as closely as possible.

In the next section, we implement the Heston-Hull-White-Mortality model to price GMMB and
GMDB products written on the FTSE/JSE Top40 index, and backtest a delta-hedging strategy
for the GMMB.

2.7 Numerical Results

This section has two subsections. The first subsection shows the pricing results obtained from
the Heston-Hull-White-Mortality model for the GMMB and GMDB products and the sensitivity
of the prices to various model parameters. In the second subsection, we perform a backtesting
experiment over weekly periods from September 2005 to November 2020 to test the hedging
performance of the Heston-Hull-White-Mortality model for the GMMB liability.

2.7.1 Pricing

The first step in pricing the GMMB and GMDB liabilities is to calibrate the Heston-Hull-White
parameters to market data. We optimise the set of parameters on the following search space:

ΩSearch = Dκ ×Dv0 ×Dv̄ ×Dσv ×Dρs,v ×Dλr ×Dη ×Dρs,r

= [1, 1]× [0, 1]× [0, 1]× [0, 3]× [−1, 1]× [0, 10]× [0, 1]× [−1, 1],

where D· denotes the search domain for each parameter.

Grzelak and Oosterlee (2011) suggest that the Heston-Hull-White model be calibrated in two
stages. First, the parameters for the Hull and White (1990) short rate process should be esti-
mated independently from the equity (Heston, 1993) component. Then, keeping the parameters
fixed for the short-term interest rate process, the remaining parameters are estimated.

The Hull and White (1990) mean reversion parameter, λr, is generally estimated from historical
data in practice. Once λr has been estimated, the volatility parameter, η, is calibrated to a set of
at-the-money swaptions.

The purpose of this chapter is not to focus on the calibration of the Hull and White (1990)
model, since this in itself can become rather complex, see, for example, Gurrieri et al. (2009).
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Rather, we aim to show the sensitivity of the GMMB and GMDB prices to various short-term
interest rate parameters.

Once the parameters for the Hull and White (1990) component of the Heston-Hull-White model
have been estimated, the next step is to calibrate the volatility parameters for the Heston (1993)
component of the Heston-Hull-White model. We implemented the Fourier method of Carr and
Madan (1999) discussed in Section 2.3.2.

The Heston-Hull-White characteristic function in Section 2.3.1 was implemented in Matlab.
The next step involved solving the infinite integral in the Fourier transform pricing formula,∫∞

0 Re
{
e−ivkψ(v)

}
dv, via numerical integration.

Choosing a suitable upper bound, vmax, for the integral, and discretising the integration grid
uniformly, the integral was evaluated using the trapezoidal rule of integration. We set vmax = 50
and dv = 0.01 and used the trapz11 function in Matlab.

For the characteristic function, we fixed the parameters {κ, λr, η, ρs,r}, and left the parameters
{v(0), v̄, σv, ρs,v} free to estimate, bounded by the constraints in ΩSearch. We used the least
squares optimisation algorithm lsqnonlin12 in Matlab to minimise the sum of squares between
the model and European call option prices. We fixed κ = 1 since the calibration became unstable
when this parameter was left free to estimate. Similar findings were reported by van Dijk et al.
(2018).

The details of the calibration for the Heston-Hull-White model to the FTSE/JSE Top40 volatility
surface on 16 November 2020 are shown in Table 2.1 below:

Tab. 2.1: Calibration details on 16 November 2020

Number of strikes included 21
Number of maturities included 3

Number of options included 63
θ 0.07
λr 0.05
η 0.02
ρs,r 0.3
κ 1
v0 Free to estimate
v̄ Free to estimate
σv Free to estimate
ρs,v Free to estimate

11https://www.mathworks.com/help/matlab/ref/trapz.html
12https://www.mathworks.com/help/optim/ug/lsqnonlin.html
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The calibration results for the Heston-Hull-White model with v(0) = 0.0433, v̄ = 0.05, σv =
0.3817, and ρs,v = −0.9208 are shown in Figure 2.9 below:
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Fig. 2.9: Heston-Hull-White model fit to market data on 16 November 2020

Figure 2.9 shows that the Heston-Hull-White model reproduces the European call option prices
well. The model is therefore aligned with the guidelines set by APN 110 in terms of being
market-consistent.

As mentioned earlier, the South African equity options market is short-dated. From Figure 2.8,
the longest maturity observable is 15 months. Since the GMMB and GMDB liabilities have
maturities that extend far beyond this point, we must test whether the calibrated Heston-Hull-
White model produces a plausible volatility term-structure for maturities beyond 15 months.
Figure 2.10 below shows the volatility term-structure for at-the-money options on 16 November
2020.
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Fig. 2.10: Heston-Hull-White volatility term-structure on 16 November 2020

From Figure 2.10, the 30-year annualised volatility produced by the Heston-Hull-White model
on 16 November 2020 is approximately 30%. This is a reasonable estimate and falls within the
range of values reported by Flint et al. (2014) in their testing of various models. However, more
advanced methods for long-term volatility estimation are available and the reader is referred to
Flint et al. (2014) for further detail.

In order to price the GMMB and GMDB liabilities, we use a brute force Monte Carlo simulation
to generate sample paths for each state variable. We use an Euler discretisation scheme to
discretise the time grid. The discretised Heston-Hull-White model is given by:


S(t+ 1) = S(t) + r(t)S(t)δt+

√
v(t)S(t)(Ws(t+ 1)−Ws(t)), S(0) > 0,

v(t+ 1) = v(t) + κ(v̄ − v(t))δt+ σv

√
v(t)(Wv(t+ 1)−Wv(t)), v(0) > 0,

r(t+ 1) = r(t) + λr(θ − r(t))δt+ η(Wr(t+ 1)−Wr(t)), r(0) ∈ R,

where δt denotes the spacing of the time grid, and W (t+ 1)−W (t) ∼ N (0, δt). To generate cor-
related Brownian motion increments for the state variables, we use Cholesky factorisation13.

Using a time spacing of δt = 1/252, Figure 2.11 below shows a single simulation from the
Heston-Hull-White model for each state variable.

13https://www.mathworks.com/help/matlab/ref/chol.html
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Fig. 2.11: Single sample path for each state variable

In Figure 2.11, the left y-axis refers to the share price, and the right y-axis refers to the volatility
and interest rate. Note the inverse relationship between the volatility and share price. From our
calibration, we estimated ρs,v = −0.9208, hence, the inverse relationship between the two state
variables. This relationship is generally observed in equity markets and Black (1976) refers to
this as the leverage effect. Recall that ρv,r = 0 so that the volatility and interest rate processes
move independently. In our pricing experiment, we test the sensitivity of the GMMB and GMDB
prices to various Heston-Hull-White model parameters.

As mentioned, the CIR++ model is a term-structure model that can fit the input survival
probability curve. We consider a 50-year old South African male and female pensioner with
parameters shown in Table 2.2 below:

Tab. 2.2: CIR++ parameters for 50-year old male and female pensioners

Parameter Male Female
γ 0.90 1.00
ω 0.05 0.03
ξ 0.03 0.01

Figure 2.12 shows the simulation for the force of mortality, µ(50 + t, t), for a 50-year old South
African male and female pensioner from the CIR++ model.
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Fig. 2.12: CIR++ simulation for force of mortality

Note that the force of mortality increases with age. Furthermore, the distribution for µ(50 + t, t)
is wider for males than females. This is driven by the volatility of mortality, set to ξ = 0.03 for
males and ξ = 0.01 for females.

Figure 2.13 below shows the stochastic survival probability curves calculated from the formula
e−
∫ t

0 µ(50+s,s)ds:

Fig. 2.13: Stochastic survival probability curves
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Figure 2.14 below shows the mean survival probability curve, EQ[e−
∫ t

0 µ(50+s,s)ds], compared to
the input survival probability curve for a 50-year old South African male and female pensioner:
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Fig. 2.14: Mean survival probability curve versus input survival probability curve

Figure 2.14 shows that the CIR++ model reproduces the input survival probability curves.
Although the CIR++ model has the attractive feature of matching the supplied survival proba-
bility curve and incorporating volatility for mortality, we recommend that further research be
done to test the impact of non-mean reverting models on mortality.

To illustrate the performance of the AR(1)-ARCH(1) model, we calibrated the model to yearly
changes in the log mortality rate for the UK female population in Figure 2.7. For each fixed age,
we estimated the parameters over the period 1922 to 2020 using the ar14 and garch15 packages
in Matlab. The calibrated parameters are shown in Figure 2.15 below.

14https://www.mathworks.com/help/ident/ref/ar.html
15https://www.mathworks.com/help/econ/garch.html
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Fig. 2.15: Calibrated AR(1)-ARCH(1) parameters for UK females

Figure 2.16 below shows the predicted force of mortality for each year from 1922 to 2020 for
an 85-year old UK female:
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Fig. 2.16: AR(1)-ARCH(1) forecast for 85-year old UK female

The AR(1)-ARCH(1) model predicts the force of mortality well. Furthermore, the actual
mortality rates generally lie within the 95% confidence interval.
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To test the goodness-of-fit, the standardised residuals (assuming normal innovations for the
AR(1)-ARCH(1) model) are compared to the standard normal density function in Figure 2.17
below:
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Fig. 2.17: Standardised residuals versus standard normal density

The Jarque-Bera test can be used to test the normality of the data - the null hypothesis is that the
standardised residuals are normally distributed. We calculated the p-value for the Jarque-Bera
test as 0.08, hence, we do not reject the null hypothesis at a 5% level of significance. We
conclude that the AR(1)-ARCH(1) model with normally distributed innovations captures the
mean and variance for 85-year old UK females well.

To construct a survival probability curve, the AR(1)-ARCH(1) model is fit to a time series of
mortality rates for each fixed age using the age specific parameters in Figure 2.15.

As mentioned, we are not aware of historical mortality data that is publicly available in South
Africa. Therefore, we showed how to calibrate the AR(1)-ARCH(1) model to mortality data
sourced from the UK. The purpose was to show the mechanics of the AR(1)-ARCH(1) model,
and the reader should note that the model can easily be applied to historical South African
mortality rates by just changing the input data.

The focus of this chapter is specifically on the South African market, hence, we apply the CIR++
model going forward since survival probability curves for South African male and female
pensioners are readily available from the CSI Committee’s “Report on pensioner mortality
2005-2010”.

Before we present the sensitivity of the GMMB and GMDB prices to various Heston-Hull-White-
Mortality model parameters, we first create a base set of parameters. We use the parameters
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from Tables 2.1 and 2.2 as our base. Table 2.3 below shows the base parameters for a 50-year
old male and female pensioner in South Africa:

Tab. 2.3: Base parameters on 16/11/2020

Hull-White
component

θ 0.07
r(0) 0.04
λr 0.05
η 0.02
ρs,r 0.3

Heston
component

κ 1.00
v(0) 0.04
v̄ 0.05
σv 0.38
ρs,v -0.92

CIR++
component

µMale(50, 0) 0.02
µF emale(50, 0) 0.01

γMale 0.90
γF emale 1.00
ωMale 0.05
ωF emale 0.03
ξMale 0.03
ξF emale 0.01

In the results below, we ran 10,000 simulations and considered a single premium of R100,000
invested in the GMMB and GMDB respectively. It is simple to extend the analysis to take into
account recurring premiums, see Feng (2018). We report our results as a ratio of the GMMB
and GMDB price to the initial premium invested at t = 0:

RGMMB = VGMMB(0)
Initial Premium

,

RGMDB = VGMDB(0)
Initial Premium

.

First, we consider three scenarios for the GMMB price from a life insurer’s perspective: 1)
deterministic interest rates by setting η = 0, 2) an independent interest rate process by setting
ρs,r = 0, and 3) constant equity volatility by setting σv = 0. We keep all other parameters in
Table 2.3 fixed. Figure 2.18 below shows RGMMB for all three scenarios with a guaranteed rate
of g = 6% per annum, where G = G(0)× (1 + g)T , with G(0) = 100, 000.
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Fig. 2.18: GMMB price for a 50-year old South African pensioner

From Figure 2.18, we observe the following:

• From a life insurer’s perspective, a 6% guarantee per annum relates to a life contingent
put option that is written in-the-money, hence, there may be a significant liability;

• The GMMB price for a 50-year old female is higher than the price for a 50-year old male.
This is driven solely by the fact that the survival probability for South African females is
higher than males;

• Deterministic interest rates, η = 0, yield GMMB prices that are significantly lower than
the base model. The difference is amplified as the term to maturity increases;

• Independent equity and interest rates, ρs,r = 0, yield GMMB prices that are lower than
base model, but higher than the deterministic interest rate model;

• Constant equity volatility, σv = 0, yields GMMB prices that are very close to the base
model.

Our findings suggest that interest rate risk is the dominating factor when pricing GMMB products.
Assuming deterministic rates may lead to GMMB prices that are significantly understated, and,
hence, pose a large risk to the life insurer. Assuming independent interest rate and equity
processes may also not be sufficient. An interesting observation is that stochastic volatility
makes nearly no impact on the price of the GMMB.

Next, we present three scenarios for the GMDB price from a life insurer’s perspective: 1)
deterministic interest rates by setting η = 0, 2) an independent interest rate process by setting
ρs,r = 0, and 3) constant equity volatility by setting σv = 0. As with the GMMB product, we
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keep all other parameters in Table 2.3 fixed. Figure 2.19 below shows RGMDB for all three
scenarios with a guaranteed roll-up rate of g = 6% per annum, where G(t) = G(0)egt, with
G(0) = 100, 000.
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Fig. 2.19: GMDB price for a 50-year old South African pensioner

From Figure 2.19, we observe the following:

• The GMDB price increases as the term to maturity increases, whereas the GMMB price
starts to decrease as the contract maturity becomes larger;

• The GMDB price for a 50-year old male is higher than the price for a 50-year old female.
This is because the force of mortality for South African males is higher than females;

• Deterministic interest rates, η = 0, yield GMDB prices that are considerably lower than
the base model. The difference is amplified as the term to maturity increases;

• Independent equity and interest rates, ρs,r = 0, yield lower prices than the base model,
but higher prices than the deterministic interest rate model;

• Constant volatility, σv = 0, yields GMDB prices that are very close to the base model;

Once again, our findings suggest that interest rates are the dominating factor when pricing
GMDB products.

Stochastic mortality has application in risk management problems and can be applied to Value-
at-Risk (VaR) (Syuhada & Hakim, 2021) and longevity stress testing (Browne et al., 2009), for
example.

In the next section, we apply the Heston-Hull-White-Mortality model to hedge the GMMB.
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2.7.2 Hedging

Standard Black and Scholes (1973) theory suggests that a contingent claim can be replicated
with a combination of shares and cash. This is referred to as delta-hedging. Since the GMMB
and GMDB payoffs resemble the payoff of a put option (although life contingent), Black and
Scholes (1973) theory can be applied to hedge these products.

Let ∆(t) denote the number of shares that an insurer must hold in a hedging portfolio to hedge
against movements in the underlying equity index. Furthermore, let B(t) denote the money
market account from which money can be borrowed or invested. No upfront premium is payable
for the GMMB. Therefore, the value of the money market account at t = 0 is given by:

B(0) = −∆(0)S(0), (2.7.1)

where ∆(0) ∈ [−1, 0] in the case of a put option.

For t > 0, the money market account grows at the risk-free rate, r. We assume that the risk-free
rate is the 3-month T-Bill rate in South Africa. The change in the money market account over a
discrete time interval is given by:

B(t) = B(t− 1)erdt − (∆(t)−∆(t− 1))S(t), B(0) = −∆(0)S(0). (2.7.2)

Note that we consider a discrete hedging portfolio since it is impractical to hedge continuously.
At every time step, the hedging portfolio must be rebalanced to reflect the sensitivity of the
derivative to the underlying asset price as new information becomes available.

The hedging portfolio at time t consists of a combination of shares and cash and is given by:

Π(t) = ∆(t)S(t) +B(t). (2.7.3)

In order to calculate ∆(t) in the Heston-Hull-White-Mortality model, we approximate ∆(t) with
a forward finite difference scheme as follows:

∆(t) ≈ VGMMB(t, S(t) + 0.01, v(t), r(t), µ(t))− VGMMB(t, S(t), v(t), r(t), µ(t))
0.01 . (2.7.4)

Before we proceed with our backtesting experiment, we calibrate the Heston-Hull-White-
Mortality model to weekly FTSE/JSE Top40 implied volatility surfaces from September 2005 to
November 2020. The calibrated parameters are shown in Figure 2.20 below.
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Fig. 2.20: Calibrated parameters over time

Note the clear spikes in volatility during the global financial crisis of 2007/2008 and the
COVID-19 pandemic. In the calibration, we set κ = 1 since an unrestricted κ produced unstable
results.

For this experiment, we rebalance the hedging portfolio once every week. We consider a 6% per
annum GMMB product sold to a 50-year old male pensioner in September 2005, expiring in
November 2020. We further assume that the investor is alive at each valuation date for this
backtesting experiment.

Figure 2.21 below shows the value of the GMMB liability over time calculated from the Heston-
Hull-White-Mortality model.
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Fig. 2.21: GMMB liability over time

Note the extreme volatility in the GMMB price over time. The volatility is driven by movements
in the underlying FTSE/JSE Top40 index, interest rates, and mortality. Furthermore, the
GMMB liability displays significant jumps in the 2007/2008 global financial crisis and COVID-19
periods. Hedging is a key tool that can be used by life insurers to manage the risk of selling
embedded derivatives.

Figure 2.22 below shows the value for ∆ over time calculated from Eq. (2.7.4):
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Fig. 2.22: GMMB ∆ over time
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In periods of stress and poor equity performance, ∆ approaches -1. This means that equity
exposure in the hedging portfolio increases. Note that ∆ is close to -1 in the time of the
global financial crisis and the COVID-19 pandemic. Alternatively, when equity performs well, ∆
approaches 0 (equity exposure decreases). Hedging the GMMB requires active management by
consistently updating the allocation in a short equity position and cash.

From Feng (2018), we define V ∗
GMMB,t as:

V ∗
GMMB(t) := VGMMB(t)− VGMMB(0)ert. (2.7.5)

V ∗
GMMB(t) represents the deviation from the risk-neutral expectation of the GMMB calculated

at inception of the contract. Figure 2.23 below shows the performance of the delta-hedging
strategy in Eq. (2.7.3) compared to Eq. (2.7.5):
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Fig. 2.23: Hedge performance over time

Delta-hedging captures the general trend of the movements in the GMMB liability, but fails to
capture significant volatility and jumps. This makes sense since the market is incomplete under
the Heston-Hull-White-Mortality model. Volatility, interest rates, and mortality are all factors
that are not directly tradable in the South African market. To capture the effect of volatility,
interest rates, and mortality on the GMMB liability, more products that derive their value from
these risk factors need to be added to the hedging portfolio.

Although not perfect, delta-hedging does seem to provide some benefit for the GMMB liability.
The hedging strategy captures the downward trend through time.
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Hedging is a complex problem and highly relevant in the life insurance industry. Therefore,
further research in the field of embedded derivative hedging is of significant importance.

2.8 Conclusion

In this chapter, we showed the importance of incorporating stochastic interest rates when
reserving for GMMB and GMDB products since interest rate risk is the dominating factor
when pricing these claims. Ignoring interest rate risk can lead to prices that are significantly
understated from a life insurer’s perspective. Stochastic volatility had no significant impact on
the GMMB and GMDB liabilities.

Furthermore, we proposed the continuous-time CIR++ and discrete-time AR(1)-ARCH(1)
models for mortality. The stochastic mortality models performed very well. The CIR++ model
is able to reproduce the input survival probability curve, whereas the AR(1)-ARCH(1) model
provides a good fit to historical data. Both models can be applied to risk management problems
such as VaR and longevity stress testing, and we suggest further research on this topic.

Insurance liabilities change through time as the underlying risk factors change. To hedge
these risks, we implemented a simple delta-hedging strategy based on the Heston-Hull-White-
Mortality model and showed that a delta-hedging strategy captures the general trend of the
movements in the liability value. However, under the Heston-Hull-White-Mortality model,
the market is incomplete. Further research should be conducted to test whether a volatility
(delta-vega) or interest rate (delta-rho) hedging strategy can produce better hedging results
than a simple delta-hedging strategy. This is a significant challenge faced in the life insurance
industry and finding a good hedge may lead to less volatility in the profit and loss (P&L) in the
insurer’s income statement.

The proposed Heston-Hull-White-Mortality model aligns with the requirements as set by APN
110 and is a good starting point for life insurers when deciding on a model for embedded
derivatives.
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Pricing Two-Asset Rainbow
Options with the Fast Fourier
Transform

3

„I certainly view volatility as my friend. Volatility is on
sale because 99% of the institutions out there are doing
their best to avoid it.

— Michael Burry

Keywords: Characteristic function · fast Fourier transform · rainbow option · three-factor
stochastic volatility model · two-factor geometric Brownian motion

3.1 Introduction

A rainbow option refers to an option that depends on more than one underlying risky asset,
where each asset is seen as a colour of the rainbow (Ouwehand & West, 2006). These options
come in various forms including the “best-of-d” and “worst-of-d” call options on d underlying
assets. Pricing rainbow options is often challenging due to the absence of a closed-form solution;
hence, numerical methods must be employed. This is the focus of this chapter1.

The market for rainbow options is illiquid and these options are typically structured on demand.
However, this could change in the future. Roberts (2018) lists various applications for rainbow
options in the industry. Firstly, rainbow options can be used to gain exposure to the market at
a lower cost whilst reducing risk (Klyueva, 2014). Furthermore, “best-of-d” call options can
be used to hedge currency risk if a company has the option to settle their liabilities in various
foreign currencies (Guillaume, 2008). Due to their potential, numerous methods have been
proposed in the literature to price rainbow options.

The first contribution made in the literature on the pricing of two-asset rainbow options can be
traced back to Stulz (1982). The author derived formulas for European call and put options
on the minimum or maximum of two risky assets that involve the calculation of the bivariate

1This chapter is based on a paper (Levendis and Maré, 2023b) published in the South African Statistical Journal.
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normal density function. Ouwehand and West (2006) derived formulas for “best-of-3” and
“worst-of-3” call options using a change of numeraire technique. Eberlein et al. (2010) presented
a general framework for the Fourier transform method of Carr and Madan (1999), which is
used when certain conditions hold like the existence of the dampened characteristic function.
The framework allows for the pricing of “best-of-d” and “worst-of-d” call and put options.

Fourier transformation is a mathematical method that decomposes a function into the sum of
simpler trigonometric functions. When uniformly spaced samples of a continuous function are
input to a Fourier transform, the transformation is called the discrete-time Fourier transform
(DTFT). The input data are discrete and the output DTFT is a continuous function. If samples
of equal length are taken from the DTFT output, then the transformation is called the discrete
Fourier transform (DFT). Computing the DFT directly requires a total of N2 operations to be
performed, where N is the number of input data points. Therefore, the total computation time
is O(N2).

The fast Fourier transform (FFT), pioneered by Cooley and Tukey (1965), is an efficient
algorithm for computing the DFT. The Cooley-Tukey FFT algorithm requires N to be a power of
2, i.e., N = 2m, where m ≥ 0. This requirement leads to significant time saving compared to
the direct computation approach, with the total running time for Cooley-Tukey FFT algorithm
being O(N log(N)).

Carr and Madan (1999) developed a Fourier transform for the price of a European call option
in terms of the characteristic function of the log of the stock price at the option maturity. The
authors applied the FFT algorithm to compute European call option prices given the Fourier
transform and concluded that the FFT yields significant improvement in terms of computation
speed.

Hurd and Zhou (2010) extended the Fourier transform of Carr and Madan (1999) to the
two-dimensional case of spread options and concluded that the FFT produces accurate and
efficient spread option prices.

Building on the work of Eberlein et al. (2010), Roberts (2018) applied the two-dimensional
FFT method of Hurd and Zhou (2010) to price “worst-of-2” call options based on the two-factor
geometric Brownian motion (gBm) model. Roberts (2018) claims to be the first author to have
applied the two-dimensional FFT to price two-asset rainbow options.

In order to compute option prices using the two-dimensional FFT, the double integral that
appears in the Fourier transform must be approximated by truncating the domain R2 to a
suitable lower and upper bound. The lower and upper bounds are user defined and termed the
“truncation width”.
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Roberts (2018) shows that the FFT price for a “worst-of-2” call option can converge to the price
obtained from the Stulz (1982) formula using as few as 512 terms. However, Roberts (2018)
mentions that there is no single truncation width that works consistently well for all terms in
the FFT and one first needs a price estimate before an appropriate value for the truncation
width can be chosen. Moreover, further investigation is needed to test the accuracy of the FFT
method for further in-the-money rainbow options. Roberts (2018) showed that an in-the-money
“worst-of-2” call option did not converge to three decimals whereas all other strike prices did.
Lastly, Roberts (2018) suggests that more complex underlying models be considered to price
rainbow options other than the two-factor gBm.

In this chapter, we first attempt to replicate the FFT results in Roberts (2018) to test whether
we arrive at the same conclusions for “worst-of-2” call options. We then extend the work of
Roberts (2018) per the author’s suggestion by applying the three-factor stochastic volatility
model in addition to the two-factor gBm model for the underlying assets. We then apply the
two-dimensional FFT method of Hurd and Zhou (2010) to price “worst-of-2” call options based
on these dynamics. Our contribution to the literature is, therefore, the pricing of two-asset
rainbow options with stochastic volatility using the FFT. To our knowledge, we are the first
authors to apply the FFT method of Hurd and Zhou (2010) to “worst-of-2” call options based
on dynamics other than the two-factor gBm.

The field of quantitative finance draws on many concepts from mathematical statistics including
moment generating functions, characteristic functions, stochastic processes, and the multivariate
normal distribution, to name a few. This chapter highlights the interplay between the fields of
statistics and quantitative finance and that statistics plays a vital role in further development of
quantitative finance.

The remainder of this chapter is structured as follows: Section 3.2 introduces the underlying
dynamics that will be considered to price two-asset rainbow options. Section 3.3 shows the
characteristic functions for the two-asset gBm and three-factor stochastic volatility models.
Section 3.4 introduces the Hurd and Zhou (2010) two-dimensional FFT algorithm. Section 3.5
shows the numerical results, and Section 3.6 concludes the chapter.

3.2 Stock Price Dynamics for Two-Asset Options

This section introduces two stochastic processes for options that depend on two underlying
assets. The choice of model generally depends on the behaviour of the market. One generally
aims to choose a model that describes the market dynamics of interest rates, stock prices, and
volatility as closely as possible. The first, and most basic, model we consider is two-factor
gBm.
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3.2.1 Two-Factor Geometric Brownian Motion

The two-factor gBm model was first introduced by Margrabe (1978) to price exchange options
- the option to exchange one risky asset for another. The two-factor gBm model takes the
following form: 

dS1(t) = (r − δ1)S1(t)dt+ σ1S1(t)dWS1(t),

dS2(t) = (r − δ2)S2(t)dt+ σ2S2(t)dWS2(t),

where S1(t), S2(t) denote the stock prices at time t; dS1(t), dS2(2) are the increments of the
respective stock prices from time t to time t+ dt, with dt an infinitesimal quantity; σ1, σ2 are
the annualised volatility estimates for the two stocks; δ1, δ2 are the respective dividend yields;
r is the constant risk-free rate, and dWS1(t)dWS2(t) = ρS1,S2dt, with ρS1,S2 the correlation
coefficient between the two stock prices.

The two-factor gBm model assumes that the two stock prices each follow a log-normal distribu-
tion with constant volatility. Clearly this assumption is very limiting since the model assumes
symmetric returns for the log of the stock price based on a normal distribution. Empirical
evidence has shown that returns for the log of the stock price tend to be negatively skewed
(see Cont, 2001); hence, a model that can account for asymmetry is preferred to describe the
behaviour of the equity market. Furthermore, the two-factor gBm model is unable to produce
the fat-tailed returns often observed in equity markets (see Cont, 2001).

Next, we introduce the three-factor stochastic volatility model that addresses some of the
shortcomings in the two-factor gBm model.

3.2.2 Three-Factor Stochastic Volatility

The three-factor stochastic volatility model was first introduced by Dempster and Hong (2002)
to price spread options. The model assumes that both assets are driven by the same Cox et al.
(1985) variance process and takes the following form:


dS1(t) = (r − δ1)S1(t)dt+ σ1

√
v(t)S1(t)dWS1(t),

dS2(t) = (r − δ2)S2(t)dt+ σ2
√
v(t)S2(t)dWS2(t),

dv(t) = κ
(
v̄ − v(t)

)
dt+ σv

√
v(t)dWv(t),

where v(t) denotes the variance of the stock prices at time t; dv(t) is the increment of the
variance from time t to time t + dt; κ is the mean reversion speed of the variance; v̄ is the
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long-run mean of the variance, and σv is the volatility of volatility. The Brownian motions are
correlated as follows:

dWS1(t)dWS2(t) = ρS1,S2dt,

dWS1(t)dWv(t) = ρS1,vdt,

dWS2(t)dWv(t) = ρS2,vdt.

The three-factor stochastic volatility model has the ability to produce asymmetric and fat-tailed
returns and is, therefore, more flexible than the two-factor gBm model.

In the next section, we introduce the work of Eberlein et al. (2010) along with the characteristic
functions for the two-factor gBm and three-factor stochastic volatility models. The next section
forms an integral part of the two-dimensional FFT method of Hurd and Zhou (2010), which
will be discussed in Section 4.

3.3 Rainbow Options, Fourier Transform and
Characteristic Functions

Fourier transform methods have led to significant computational gains since their introduction
to option pricing by Carr and Madan (1999). The Fourier transform framework was further
generalised to multi-asset options by Eberlein et al. (2010) where the authors listed conditions
under which Fourier transform formulas are valid. In this section, we first introduce the payoff
functions for “best-of-2” and “worst-of-2” call options. Next, we discuss the general Fourier
transform framework of Eberlein et al. (2010). Lastly, we show the characteristic functions for
the two-factor gBm and three-factor stochastic volatility models.

3.3.1 Best-of-2 and Worst-of-2 Call Options

Let Vmax
(
S1(t), S2(t)

)
and Vmin

(
S1(t), S2(t)

)
denote the values for a “best-of-2” and “worst-of-2”

call option depending on two assets
{
S1(t), S2(t)

}
at time t with strike price K and maturity T .

At maturity T , the payoff formula for the call options is given by:

Vmax
(
S1(T ), S2(T )

)
= max

(
max

(
S1(T ), S2(T )

)
−K, 0

)
, (3.3.1)

Vmin
(
S1(T ), S2(T )

)
= max

(
min

(
S1(T ), S2(T )

)
−K, 0

)
. (3.3.2)
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From Eberlein et al. (2010), the Fourier transform corresponding to the payoff functions in Eq.
(3.3.1) and (3.3.2) can be derived and will be discussed in the next subsection.

3.3.2 The Result of Eberlein, Glau, and Papapantoleon

Eberlein et al. (2010) presented a general framework for which Fourier transform formulas are
valid. For the two-dimensional case, the authors consider any payoff function f : R2 → R+, for
example Eq. (3.3.1) or (3.3.2), and the dampened payoff function:

g(x) := e−α⊤xf(x) for x ∈ R2,

where α ∈ R2 is the dampening coefficient.

Let ĝ denote the Fourier transform of the function g; L1
bc(R2) be the space of bounded, continu-

ous functions in L1(R2), where L1(R2) is the space of all integrable functions on R2. Moreover,
let X(0) =

(
x1(0), x2(0)

)⊤ =
(

logS1(0), logS2(0)
)⊤ and let MXT

denote the moment generat-
ing function for the random variable X(T ) =

(
x1(T ), x2(T )

)⊤ =
(

logS1(T ), logS2(T )
)⊤ at the

option maturity T .

Eberlein et al. (2010) make the following assumptions:

1. Assume that g ∈ L1
bc(R2) and ĝ ∈ L1(R2);

2. Assume that MXT
(α) exists;

Under these assumptions, the authors present the following Fourier transform formula for
two-asset options:

Theorem 1 If the asset price processes are modelled as two-factor gBm or three-factor stochastic
volatility processes and assumptions 1 and 2 hold, then the payoff function for a two-asset option
V at t = 0 can be written as:

V
(
X(0)

)
= eα

⊤X(0)

(2π)2

∫
R2
eiu⊤X(0)MXT

(α + iu)f̂(iα− u)du,

where i =
√
−1, u = [u1, u2] ∈ R2, and f̂(·) denotes the Fourier transform of the payoff function.

See Eberlein et al. (2010) for the proof.
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Using Theorem 1, Eberlein et al. (2010) show that the Fourier valuation formula for a “worst-
of-2” call option at t = 0 with strike K and maturity T is given by:

Vmin
(
x1(0), x2(0)

)
= e−rT

4π2

∫
R2
ex1(0)(α1+iu1)ex2(0)(α2+iu2)MXT

(α1 + iu1, α2 + iu2)

× K1−α1−α2−iu1−iu2

(α1 + iu1)(α2 + iu2)(α1 + α2 − 1 + iu1 + iu2)du. (3.3.3)

Assuming the moment generating function exists, the relationship between the moment gener-
ating function MXT

and the characteristic function ϕXT
is given by:

MXT
(u) = ϕXT

(−iu),

hence, the moment generating function in Eq. (3.3.3) can be replaced by ϕXT
.

In the next section, we introduce the characteristic functions for the two-factor gBm and
three-factor stochastic volatility models.

3.3.3 Two-Factor gBm Characteristic Function

The characteristic function represents the joint distribution of X(T ) at the option maturity T .
From Dempster and Hong (2002), the characteristic function for the two-asset gBm model is
given by:

ϕgBm(u1, u2) = exp
(
iu1x1(0) + iu2x2(0) + ζT +

∑
j=1,2

uj(r − δj)T
)
,

where

ζ : = −1
2
[
(σ2

1u
2
1 + σ2

2u
2
2 + 2ρx1,x2σ1σ2u1u2) + i(σ2

1u1 + σ2
2u2)

]
.

The characteristic function can be used as input to Eq. (3.3.3) to price “worst-of-2” call options
under the two-factor gBm model.

As mentioned, the two-factor gBm model is not consistent with the behaviour of the equity
market. Therefore, we consider the three-factor stochastic volatility model next.
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3.3.4 Three-Factor Stochastic Volatility Characteristic Function

Dempster and Hong (2002) derived an expression for the characteristic function of the three-
factor stochastic volatility model where both assets are driven by a single Cox et al. (1985)
variance process. The expression for the characteristic function is given by:

ϕSV (u1, u2) = exp
(
iu1x1(0) + iu2x2(0) +

(
2ζ(1− e−βT )

2β − (β − γ)(1− e−βT )

)
v(0)

+
∑

j=1,2
uj(r − δj)T − κv̄

σ2
v

Γ
)
,

where

Γ : =
[
2 log

(
2β − (β − γ)(1− e−βT )

2β

)
+ (β − γ)T

]
,

ζ : = −1
2
[
(σ2

1u
2
1 + σ2

2u
2
2 + 2ρx1,x2σ1σ2u1u2) + i(σ2

1u1 + σ2
2u2)

]
,

γ : = κ− i(ρx1,vσ1u1 + ρx2,vσ2u2)σv,

β : =
√
γ2 − 2σ2

vζ.

In the next section, we introduce the two-dimensional FFT method of Hurd and Zhou (2010).

3.4 The Two-Dimensional FFT Method

Hurd and Zhou (2010) initially developed the two-dimensional FFT method to price spread
options. Using Eq. (3.3.3) and applying the same logic to “worst-of-2” call options with K = 1
and maturity T , the Fourier representation for the “worst-of-2” call option with payoff function
Vmin(x1(T ), x2(T )) = max

(
min(ex1(T ), ex2(T ))− 1, 0) is given by:

Vmin
(
x1(0), x2(0)

)
= e−rT

4π2

∫
R2+iϵ

ex1(0)(α1+iu1)ex2(0)(α2+iu2)ϕ{gBm,SV }(u1 − iα1, u2 − iα2)

× 11−α1−α2−iu1−iu2

(α1 + iu1)(α2 + iu2)(α1 + α2 − 1 + iu1 + iu2)du, (3.4.1)

where α1, α2 > 0, ϕ{gBm,SV } is the characteristic function under either the two-factor gBm or
three-factor stochastic volatility model, and ϵ1, ϵ2 < 0 with ϵ1 + ϵ2 < −1. The parameters ϵ1, ϵ2
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can be chosen freely within their given constraints. Roberts (2018) showed that “worst-of-2”
call option prices are insensitive to the choice of ϵ1 and ϵ2. Furthermore, let

V̂min(u1, u2) := 11−α1−α2−iu1−iu2

(α1 + iu1)(α2 + iu2)(α1 + α2 − 1 + iu1 + iu2) .

The integral in Eq. (3.4.1) can be approximated as follows. Let

Γ = {u(k) =
(
u1(k1), u2(k2)

)
| k = (k1, k2) ∈ {0, 1, ..., N − 1}2}, ui(ki) = −ū+ kiξ,

where N = 2m with m ≥ 0, ξ is the lattice spacing, and ū = Nξ
2 .

Furthermore, let the reciprocal lattice be given by:

Γ∗ = {x(l) = (x1(l1), x2(l2)) | l = (l1, l2) ∈ {0, 1, ..., N − 1}2}, xi(li) = −x̄+ liξ
∗,

where ξ∗ = π
ū is the reciprocal lattice spacing and x̄ = Nξ∗

2 .

The integral in Eq. (3.4.1) is approximated by the following double sum for each pair(
x1(l1), x2(l2)

)
in Γ∗:

Vmin
(
x1(l1), x2(l2)

)
≈ e−rT

4π2

N−1∑
k1=0

N−1∑
k2=0

ex1(l1)(α1+i(u1(k1)+iϵ1))ex2(l2)(α2+i(u1(k1)+iϵ1))

× ϕ{gBm,SV }
(
u1(k1) + iϵ1 − iα1, u2(k2) + iϵ2 − iα2

)
V̂min

(
u1(k1) + iϵ1, u2(k2) + iϵ2

)
= (−1)l1+l2e−rT

(ξN
2π
)2
e(α1−ϵ1)x1(l1)+(α2−ϵ2)x1(l2)[ifft2(H)](l1, l2),

where

H(k1, k2) = (−1)k1+k2ϕ{gBm,SV }
(
u1(k1) + iϵ1 − iα1, u2(k2) + iϵ2 − iα2

)
× V̂min

(
u1(k1) + iϵ1, u2(k2) + iϵ2

)
,

and ifft2(H) represents the two-dimensional FFT applied to matrix H.

Recall that Eq. (3.4.1) is for the specific case where K = 1. Roberts (2018) explains that Eq.
(3.4.1) can be generalised for any K > 0 by scaling the initial share prices:

x(0) =
(

log
(S1(0)

K

)
, log

(S2(0)
K

))
.
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To determine the option price, a grid search is done to find x(0) in Γ∗. If x(0) does not perfectly
fall on the lattice Γ∗, an interpolation scheme must be used to find x(0).

The implementation of the two-dimensional FFT method is outlined in Alfeus and Schlögl
(2018). Algorithm 1 below follows directly from their paper.

Algorithm 1 Two-dimensional FFT for rainbow options
1. Input : N , a power of two; ū, truncation width; ϵ, damping factor.

2. Set x(0) =
(

log
(

S1(0)
K

)
, log

(
S2(0)

K

))
∈
(
x1(l1), x2(l2)

)
.

3. for all k, l ∈ {1, 2, ..., N − 1}2 do

H(k1, k2) = (−1)k1+k2ϕ{gBm,SV }(u1(k1) + iϵ1 − α1, u2(k2) + iϵ2 − α2)

× V̂min(u1(k1) + iϵ1, u2(k1) + iϵ1);

C(l1, l2) = (−1)l1+l2

(
ξN

2π

)2

e(α1−ϵ1)x1(l1)+(α2−ϵ2)x2(l2);

4. end
5. Vmin

(
x1(l1), x2(l2)

)
= ℜ(C × ifft2(H)) where ℜ(·) denotes the real part of the complex

number.
6. P ← K × Vmin

(
x(0)

)
using an interpolation scheme to find x(0) in Γ∗.

Output : P .

In the next section, we present our numerical results for “worst-of-2” call options based on the
FFT method of Hurd and Zhou (2010) and various dynamics for the underlying assets.

3.5 Numerical Results

In this section, we first compare our pricing results of the FFT and two-factor gBm model with
the results in Roberts (2018). We also test various values for the truncation width in the FFT
algorithm to see whether an optimal value exists. Thereafter, we test the accuracy of the FFT
under the three-factor stochastic volatility by comparing the FFT prices to the prices obtained
from a Monte Carlo simulation.

3.5.1 FFT and Two-Factor gBm

Table 3.1 below shows our results for “worst-of-2” call options using the FFT and two-factor
gBm model. The prices are compared to the prices obtained from the Stulz (1982) formula, as
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shown in Roberts (2018). Furthermore, we use the exact same values for N and ū as Roberts
(2018) to compare the accuracy of our implementation.

Tab. 3.1: FFT prices under two-factor gBm with S1(0) = 100, S2(0) = 96, δ1 = 0.05, δ2 = 0.05, r =
0.1, σ1 = 0.1, σ2 = 0.2, ρx1,x2 = 0.5, ϵ1 = −3, ϵ2 = −1, α1 = 0.75, α2 = 0.75, T = 1.

N = 64 N = 128 N = 256 N = 512 N = 1024
K Stulz ū = 30 ū = 50 ū = 90 ū = 120 ū = 130

90 8.274176 8.276002 8.273253 8.274178 8.274173 8.274158
92 7.118883 7.122826 7.177980 7.118794 7.118871 7.118862
94 6.055238 6.041106 6.055158 6.055197 6.055214 6.055220
96 5.087925 5.072448 5.087190 5.087892 5.087903 5.087914
98 4.220092 4.210246 4.219182 4.220043 4.220087 4.220090
100 3.452949 3.451947 3.452913 3.452951 3.452948 3.452948
102 2.785485 2.791147 2.785838 2.785476 2.785481 2.785482
104 2.214392 2.222128 2.214398 2.214413 2.214401 2.214396

Table 3.2 below shows the absolute difference between our FFT prices and the Stulz (1982)
prices across strike:

Tab. 3.2: Absolute difference between FFT and Stulz prices

N = 64 N = 128 N = 256 N = 512 N = 1024
K ū = 30 ū = 50 ū = 90 ū = 120 ū = 130

90 0.001826 0.000923 0.000002 0.000003 0.000018
92 0.006057 0.000903 0.000089 0.000012 0.000021
94 0.014132 0.000080 0.000041 0.000024 0.000018
96 0.015477 0.000735 0.000033 0.000022 0.000011
98 0.009846 0.000910 0.000049 0.000005 0.000002
100 0.001002 0.000036 0.000002 0.000001 0.000001
102 0.005662 0.000353 0.000009 0.000004 0.000003
104 0.007736 0.000006 0.000021 0.000009 0.000004

Our results do not support the findings in Roberts (2018). Firstly, our prices are noticeably more
accurate than the prices in Roberts (2018). Based on the author’s implementation, the FFT did
not converge to three decimal places for K = 90. However, we find that the FFT converges for
K = 90 up to five decimals using 256 or 512 terms. Roberts (2018) recommends that further
investigation be done to conclude the accuracy of the FFT applied to further in-the-money
options. Based on our implementation, there is nothing that suggests the FFT method is less
accurate for further in-the-money options.
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Another interesting observation is that our FFT results converge faster than the results in Roberts
(2018). The author mentioned that all FFT prices apart from K = 90 converged to three decimal
places from 512 terms. Based on our implementation, we find that the FFT converges to at least
three decimals using 256 terms for all strikes. From 512 terms, the FFT converges to at least
four decimals for all strikes.

Lastly, Roberts (2018) stated that it is preferable to use the Fourier-cosine series expansion
(COS) method of Ruijter and Oosterlee (2012) to price rainbow options since it is faster and
more robust than the FFT method. In terms of accuracy, our FFT implementation is very much
aligned with the COS pricing results in Roberts (2018) (and in many cases even more accurate).
This leads us to believe that there is an error in the FFT implementation in Roberts (2018).
Upon further investigation, Roberts (2018) mentioned that the dampening factors in the FFT
method should be restricted to α2 < 0 and α1 + α2 > 1, where, in fact, the dampening factors
should be restricted to α1, α2 > 0 and α1 + α2 > 1 as per Eberlein et al. (2010). The question
remains whether it is truly better to use the COS method rather than the FFT method for
“worst-of-2” call options.

3.5.2 Testing the Truncation Width

The FFT algorithm of Hurd and Zhou (2010) requires an appropriate choice for the truncation
width ū. Figure 3.1 below shows the FFT price for a “worst-of-2” call option with K = 98 and
T = 1 as a function of ū:
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Fig. 3.1: Two-factor gBm FFT Price as a function of truncation width ū with N = 512
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From Figure 3.1, it is clear that the choice of ū can have a significant impact on the FFT price.
If ū is chosen too small, the FFT price will be understated. Alternatively, choosing a value that
is too large will overestimate the price.

Based on our implementation, the FFT converges to at least four decimal places for ū ∈ [90, 200]
for K = 98 and N = 512 compared to the Stulz (1982) price. Roberts (2018) mentioned that
it is not possible to choose an optimal value for ū. However, we have shown that a value of
N = 512 and ū ∈ [90, 200] will be sufficient to achieve convergence up to four decimals under
the two-factor gBm model. In Table 3.1, for N = 512, we used a value of ū = 120, which falls
in the interval [90, 200]. All FFT prices converged to at least four decimal places, which further
supports our finding.

An area where the COS method does seem to outperform the FFT is the rate of convergence.
Based on the results in Roberts (2018), the COS method converged to three decimal places
using as few as 64 terms. Based on our implementation of the FFT, convergence to three
decimals was only achieved from 256 terms. Although the COS method does seem to be faster,
there is not much that differentiates the pricing results between the COS and FFT methods.
Therefore, if speed is an important factor, the COS method is preferable to the FFT method
which aligns with the results in Roberts (2018). However, it takes only 3 seconds to price a
single option when using the FFT method with 256 terms.

In summary, it is possible to choose an optimal value for ū to achieve a certain level of
convergence to the Stulz (1982) price. Next, we implement the three-factor stochastic volatility
model of Dempster and Hong (2002).

3.5.3 FFT and Three-Factor Stochastic Volatility

In this subsection, we compare the FFT prices for “worst-of-2” call options under the three-factor
stochastic volatility model of Dempster and Hong (2002) with a Monte Carlo simulation and
show the convergence speed of the FFT by varying the number of terms N .

To test the accuracy of the FFT, Table 3.3 below compares the FFT pricing results for “worst-
of-2” call options based on the three-factor stochastic volatility model with a Monte Carlo
simulation of 20,000,000 samples for various K, where the Monte Carlo simulation is seen as
the benchmark price. We show the results up to 6 decimal places.
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Tab. 3.3: MC and FFT prices under three-factor stochastic volatility with S1(0) = 100, S2(0) =
96, δ1 = 0.05, δ2 = 0.05, r = 0.1, σ1 = 1, σ2 = 0.5, v(0) = 0.04, κ = 1, v̄ = 0.04, σv =
0.05, ρx1,x2 = 0.5, ρx1,v = −0.5, ρx2,v = 0.25, ϵ1 = −3, ϵ2 = −1, α1 = 0.75, α2 =
0.75, T = 1, N = 512, ū = 100.

K MC Price FFT Price Absolute
Difference

90 7.642450 7.642304 0.000145
92 6.436579 6.436327 0.000252
94 5.340944 5.340803 0.000141
96 4.363270 4.363219 0.000052
98 3.507569 3.507650 0.000081
100 2.773671 2.773815 0.000141
102 2.157198 2.157236 0.000038
104 1.650093 1.650149 0.000056

The results in Table 3.3 indicate that the FFT and Monte Carlo prices are aligned to at least
three decimal places for all strikes considered which confirms the accuracy of the FFT.

To illustrate the FFT convergence, Figure 3.2 below plots the logarithm of the absolute difference
for a “worst-of-2” call option with K = 98 and T = 1 as a function of N , where N = 8196 is the
benchmark price. The results are based on the same parameters shown in Table 3.3:

Fig. 3.2: FFT convergence under the three-factor stochastic volatility model

Figure 3.2 shows that the FFT converges at an exponential rate. Monte Carlo simulation, on the
other hand, is known to converge at a rate of O

(√
N
)

- to achieve a tenfold increase in accuracy,
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a hundredfold increase in the number of simulations is required (see Glasserman, 2003). FFT is
far superior to Monte Carlo simulation in terms of efficiency.

In the next section, we conclude the chapter.

3.6 Conclusion

In this chapter, we implemented the two-factor gBm model and three-factor stochastic volatil-
ity model of Dempster and Hong (2002) to price “worst-of-2” call options. Using the two-
dimensional FFT method of Hurd and Zhou (2010), we showed that it is possible to achieve a
certain level of convergence to the Stulz (1982) and Monte Carlo prices under the two-factor
gBm and three-factor stochastic volatility models respectively. We also showed that an opti-
mal value for the truncation width can be chosen which contradicts a previous finding in the
literature.

The FFT gives practitioners a powerful way of calculating rainbow option prices without the
need to perform a costly Monte Carlo simulation. As rainbow option trading becomes more
popular, the FFT method is likely to shine.
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Efficient Pricing of Spread
Options with Stochastic Rates
and Stochastic Volatility

4

„Volatility is a symptom that people have no clue of the
underlying value.

— Jeremy Grantham

Keywords: Spread option · two-asset Heston-Hull-White model · discounted characteristic
function · fast Fourier transform · stochastic interest rates

4.1 Introduction

Let S1, S2 denote the prices of two different equities, T the maturity date, K the strike price,
and r the risk-free interest rate. Let Q be the risk-neutral measure associated with the bank
account as numeraire, B(t) = e

∫ t

0 r(s)ds. The value of a European equity spread call option at
t = 0 is then given by:

VSpread(0) = EQ
[
e−
∫ T

0 r(s)ds max
(
S1(T )− S2(T )−K, 0

)]
. (4.1.1)

Eq. (4.1.1) has no closed-form solution when the underlying assets are driven by stochastic
interest rates and stochastic volatility. Monte Carlo simulation is one possible way of solving
the problem, but it is too slow for practical use. This chapter1 proposes an efficient numerical
method to solve Eq. (4.1.1) when the state variables are driven by stochastic volatility and
stochastic interest rates.

A breakthrough was made by Dempster and Hong (2002) where the authors extended the Carr
and Madan (1999) Fourier transform method to two factors. The authors derived lower and
upper bound expressions for the price of a European spread call option and showed how to

1This chapter is based on a paper (Levendis and Maré, 2022b) published in the Journal of Risk and Financial
Management.
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compute these expressions by means of the two-dimensional FFT when the underlying asset
processes are driven by gBm or stochastic volatility.

Hurd and Zhou (2010) proposed a method for pricing spread options based on a square
integrable Fourier representation of the payoff function. The authors claim that the method can
be applied to any model for which the characteristic function of the joint asset process is known
in closed form. The authors considered gBm, three-factor stochastic volatility, and exponential
Lévy models for the underlying asset processes.

Little has been said about the impact of stochastic interest rates on spread options. We do,
however, know that stochastic interest rate risk dominates that of stochastic volatility for long-
dated European call and put options (see Kammeyer & Kienitz, 2012). Furthermore, there
is empirical evidence that suggests changes in interest rates and changes in stock prices are
negatively correlated in general (Alam & Uddin, 2009). None of the models considered by
Dempster and Hong (2002) or Hurd and Zhou (2010) account for stochastic interest rates or
the correlation between interest rates and stock prices.

Grzelak and Oosterlee (2011) made a remarkable contribution to the literature, which derived
approximations for the characteristic function of the Heston (1993) model with stochastic
interest rates driven by a Hull and White (1990) process. This model is called the Heston–Hull–
White model. Through these approximations, the model allows for a full matrix of correlations
between stock, volatility, and interest rate processes. The authors showed that the model can be
calibrated to European options efficiently via Fourier techniques.

In this chapter, we extend the Heston–Hull–White model of Grzelak and Oosterlee (2011)
to two assets and the FFT method of Hurd and Zhou (2010) to stochastic interest rates. We
then compare the efficiency of the extended Hurd and Zhou (2010) method to a Monte Carlo
simulation and assess the impact of stochastic interest rates on spread option prices.

The rest of this chapter is organised as follows: The two-asset Heston–Hull–White model is
introduced in Section 4.2. In Section 4.3, we discuss the result of Grzelak and Oosterlee (2011)
that will be used to derive the discounted characteristic function. The discounted characteristic
function for the two-asset Heston-Hull–White model is derived in Section 4.4. The extension of
the Hurd and Zhou (2010) FFT algorithm to stochastic interest rates is detailed in Section 4.5.
Our numerical results are shown in Section 4.6, and Section 4.7 concludes the chapter.
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4.2 The Two-Asset Heston–Hull–White Model

Combining the three-factor stochastic volatility model of Dempster and Hong (2002) and the
Heston–Hull–White model of Grzelak and Oosterlee (2011) yields:

dS1(t) = (r(t)− δ1)S1(t)dt+ σ1
√
v(t)S1(t)dWx1(t),

dS2(t) = (r(t)− δ2)S2(t)dt+ σ2
√
v(t)S2(t)dWx2(t),

dv(t) = κ
(
v̄ − v(t)

)
dt+ σv

√
v(t)dWv(t),

dr(t) = λ
(
θ(t)− r(t)

)
dt+ ηdWr(t),

(4.2.1)

where σ1, σ2 denote the volatility of S1, S2, respectively; δ1, δ2 are the dividend yields for S1, S2;
κ and λ denote the mean reversion speed of the variance and short rate processes; σv and
η denote the volatility of the volatility and short rate processes, respectively, and v̄ and θ(t)
denote the mean level of the variance and short rate, respectively.

The underlying process are correlated as follows:

dWx1(t)dWx2(t) = ρx1,x2dt, dWx1(t)dWv(t) = ρx1,vdt,

dWx1(t)dWr(t) = ρx1,rdt, dWx2(t)dWv(t) = ρx2,vdt,

dWx2(t)dWr(t) = ρx2,rdt, dWv(t)dWr(t) = ρv,rdt.

Taking the log-transform x1(t) = logS1(t), x2(t) = logS2(t) and applying Itô’s lemma, the
system of stochastic differential equations (SDEs) in Eq. (4.2.1) can be rewritten as:

dx1(t) =
(
r(t)− δ1 − 1

2σ
2
1v(t)

)
dt+ σ1

√
v(t)dWx1(t),

dx2(t) =
(
r(t)− δ2 − 1

2σ
2
2v(t)

)
dt+ σ2

√
v(t)dWx2(t),

dv(t) = κ
(
v̄ − v(t)

)
dt+ σv

√
v(t)dWv(t),

dr(t) = λ
(
θ(t)− r(t)

)
dt+ ηdWr(t).

(4.2.2)

The system of SDEs in Eq. (4.2.2) can be expressed as:

dX(t) = µ(X(t))dt+ σ(X(t))dB(t),
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where

X(t) =


x1(t)
x2(t)
v(t)
r(t)

 ,

µ(X(t)) =



r(t)− δ1 − 1
2σ

2
1v(t)

r(t)− δ2 − 1
2σ

2
2v(t)

κ
(
v̄ − v(t)

)
λ
(
θ(t)− r(t)

)


,

B(t) =



Bx1(t)

Bx2(t)

Bv(t)

Br(t)


,

Σ(X(t)) = σ(X(t))σ(X(t))T

=



σ2
1v(t) ρx1,x2σ1σ2v(t) ρx1,vσ1σvv(t) ρx1,rσ1η

√
v(t)

∗ σ2
2v(t) ρx2,vσ2σvv(t) ρx2,rσ2η

√
v(t)

∗ ∗ σ2
vv(t) ρv,rσvη

√
v(t)

∗ ∗ ∗ η2


,

with B(t) a vector of independent Brownian motions and σ(X(t)) the Cholesky decomposition
of the symmetric covariance matrix Σ(X(t)).

The influential paper by Duffie et al. (2000) states that each element in the drift and covariance
matrices must be a linear function of the state variables in X(t) in order for a model to be in
affine form. If this is the case, then the discounted characteristic function for the state vector
X(t) can be written as:

ϕ(u,X(t), t, T ) = EQ
[
e−
∫ T

t
r(s)ds+iuT X(T ) | F(t)

]
= eA(u,τ)+B(u,τ)x1(t)+C(u,τ)x2(t)+D(u,τ)v(t)+E(u,τ)r(t), (4.2.3)

where τ := T − t, and u = [u1, u2, 0, 0]T .
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From the covariance matrix Σ(X(t)), it is clear that there are elements that are nonlinear
functions of the state variables, in particular

√
v(t).

Grzelak and Oosterlee (2011) proposed replacing the term
√
v(t) with E

[√
v(t)

]
so that the

Heston–Hull–White model could be expressed in affine form as in Eq. (4.2.3). Their result
follows in the next section.

4.3 The Result of Grzelak and Oosterlee

In order to write the Heston–Hull–White model in affine form, Grzelak and Oosterlee (2011)
proposed the following approximation for

√
v(t):

Lemma 1 Approximation for E
[√
v(t)

]
. Given that v(t) follows a Cox et al. (1985) process,

E
[√
v(t)

]
can be approximated by:

E
[√

v(t)
]
≈
√
c(t)(λ(t)− 1) + c(t)d+ c(t)d

2(d+ λ(t)) =: Λ(t),

where c(t) = 1
4κσ

2
v(1− e−κt), d = 4κv̄

σ2
v

, and λ(t) = 4κv(0)e−κt

σ2
v(1−e−κt) .

See Grzelak and Oosterlee (2011) for details.

The authors mention that the approximation for E
[√
v(t)

]
is still nontrivial and may lead

to challenges when deriving the characteristic function for the Heston–Hull–White model.
Therefore, a further simplified approximation for E

[√
v(t)

]
was proposed as shown in Lemma 2

below:

Lemma 2 Further approximation for E
[√
v(t)

]
. E

[√
v(t)

]
can be further approximated by a

function of the form:
E
[√

v(t)
]
≈ a+ be−ct =: Λ̃(t),

where a =
√
v̄ − σ2

v
8κ , b =

√
v(0)− a, and c = − log(b−1(Λ(1)− a)).

See Grzelak and Oosterlee (2011) for details.

Note that Λ̃(t) in Lemma 2 is undefined for v̄ < σ2
v/8κ; hence, parameter constraints must be

imposed in order to use this result.

In the next section, we derive the discounted characteristic function for the two-asset Heston–
Hull–White model using the approximation of Grzelak and Oosterlee (2011).
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4.4 The Two-Asset Heston–Hull–White Characteristic
Function

Replacing
√
v(t) with E

[√
v(t)

]
in the covariance matrix Σ(X(t)) yields the approximated

covariance matrix for the two-asset Heston–Hull–White model:

Σ̃(X(t)) =



σ2
1v(t) ρx1,x2σ1σ2v(t) ρx1,vσ1σvv(t) ρx1,rσ1ηE

[√
v(t)

]
∗ σ2

2v(t) ρx2,vσ2σvv(t) ρx2,rσ2ηE
[√

v(t)
]

∗ ∗ σ2
vv(t) ρv,rσvηE

[√
v(t)

]
∗ ∗ ∗ η2


.

For the derivation of the discounted characteristic function, we drop the function arguments
for convenience. Hence, x1 := x1(t), x2 := x2(t) r := r(t), v := v(t), and ϕ := ϕ(u,X(t), t, T ).
Furthermore, to simplify the calculations, we consider a constant term-structure of interest
rates θ(t) = θ. The method can be generalised to include a term-structure of interest rates, see
Grzelak and Oosterlee (2011) for details.

Using the drift vector µ(X(t)) and the covariance matrix Σ̃(X(t)) and applying the multidimen-
sional Itô lemma to ϕ(u,X(t), t, T ) yields the partial differential equation (PDE):

0 =∂ϕ

∂t
+ (r − δ1 −

1
2σ

2
1v) ∂ϕ

∂x1
+ (r − δ2 −

1
2σ

2
2v) ∂ϕ

∂x2
+ κ(v̄ − v)∂ϕ

∂v
+ λ(θ − r)∂ϕ

∂r

+ 1
2σ

2
1v
∂2ϕ

∂x2
1

+ 1
2σ

2
2v
∂2ϕ

∂x2
2

+ 1
2σ

2
vv
∂2ϕ

∂v2 + 1
2η

2∂
2ϕ

∂r2 + ρx1,x2σ1σ2v
∂2ϕ

∂x1∂x2

+ ρx1,vσ1σvv
∂2ϕ

∂x1∂v
+ ρx1,rσ1ηE

[√
v
] ∂2ϕ

∂x1∂r
+ ρx2,vσ2σvv

∂2ϕ

∂x2∂v

+ ρx2,rσ2ηE
[√
v
] ∂2ϕ

∂x2∂r
+ ρv,rσvηE

[√
v
] ∂2ϕ

∂v∂r
− rϕ, (4.4.1)

subject to the terminal condition ϕ(u,X(T ), T, T ) = ei(u1x1(T )+u2x2(T )).

The PDE in Eq. (4.4.1) is in affine form as a consequence of the linearisation technique proposed
by Grzelak and Oosterlee (2011). Therefore, its solution is of the form:

ϕ(u,X(t), t, T ) =eA(u,t,T )+B(u,t,T )x1(t)+C(u,t,T )x2(t)+D(u,t,T )v(t)+E(u,t,T )r(t).
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Calculating the partial derivatives in Eq. (4.4.1) with A := A(u, t, T ), B := B(u, t, T ), C :=
C(u, t, T ), D := D(u, t, T ), and E := E(u, t, T ) yields:

∂ϕ

∂t
= ϕ

(
∂A

∂t
+ x1

∂B

∂x1
+ x2

∂C

∂t
+ v

∂D

∂v
+ r

∂E

∂r

)
,

∂ϕ

∂x1
= Bϕ,

∂ϕ

∂x2
1

= B2ϕ,
∂ϕ

∂x1∂x2
= BCϕ,

∂ϕ

∂x2
= Cϕ,

∂ϕ

∂x2
2

= C2ϕ,
∂ϕ

∂x1∂v
= BDϕ,

∂ϕ

∂x2∂r
= CEϕ,

∂ϕ

∂v
= Dϕ,

∂ϕ

∂v2 = D2ϕ,
∂ϕ

∂x1∂r
= BEϕ,

∂ϕ

∂v∂r
= DEϕ,

∂ϕ

∂r
= Eϕ,

∂ϕ

∂r2 = E2ϕ,
∂ϕ

∂x2∂v
= CDϕ.

Substituting the partial derivatives into Eq. (4.4.1) gives the following PDE:

0 =∂A

∂t
+ x1

∂B

∂t
+ x2

∂C

∂t
+ v

∂D

∂t
+ r

∂E

∂t
+ (r − δ1 −

1
2σ

2
1v)B + (r − δ2 −

1
2σ

2
2v)C

+ κ(v̄ − v)D + λ(θ − r)E + 1
2σ

2
1vB

2 + 1
2σ

2
2vC

2 + 1
2σ

2
vvD

2 + 1
2η

2E2

+ ρx1,x2σ1σ2vBC + ρx1,vσ1σvvBD + ρx1,rσ1ηE
[√
v
]
BE

+ ρx2,vσ2σvvCD + ρx2,rσ2ηE
[√
v
]
CE + ρv,rσvηE

[√
v
]
DE − r.

Collecting the terms for x1, x2, v, and r and performing a change of variable τ = T − t, the
following set of ordinary differential equations (ODEs) must be solved:

∂B
∂τ = 0,
∂C
∂τ = 0,
∂D
∂τ = −1

2σ
2
1B − 1

2σ
2
2C − κD + 1

2σ
2
1B

2 + 1
2σ

2
2C

2 + 1
2σ

2
vD

2 + ρx1,x2σ1σ2BC

+ρx1,vσ1σvBD + ρx2,vσ2σvCD,

∂E
∂τ = B + C − λE − 1,
∂A
∂τ = κv̄D + λθE + 1

2η
2E2 + ρx1,rσ1ηE[

√
v]BE + ρx2,rσ2ηE[

√
v]CE

+ρv,rσvηE[
√
v]DE − δ1B − δ2C,

with initial conditions B(u, τ) = iu1, C(u, τ) = iu2, D(u, τ) = 0, E(u, τ) = 0, and A(u, τ) =
0.
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The solutions to the ODEs are given by:

B(u, τ) = iu1,

C(u, τ) = iu2,

D(u, τ) = −Q−D1
2R(1−Ge−D1τ )(1− e−D1τ ),

E(u, τ) = (iu1 + iu2 − 1)λ−1(1− e−λτ ),

A(u, τ) = κv̄I1(u, τ) + λθI2(u, τ) + 1
2η

2I3(u, τ) + ρx1,rσ1ηI4(u, τ)

+ ρx2,rσ2ηI5(u, τ) + ρv,rσvηI6(u, τ)− δ1iu1τ − δ2iu2τ,

where

D1 =
√
Q2 − 4PR,

G = −Q−D1
−Q+D1

P = −1
2
[
σ2

1u
2
1 + σ2

2u
2
2 + 2ρx1,x2σ1σ2u1u2 + i(σ2

1u1 + σ2
2u2)

]
Q = ρx1,vσ1σviu1 + ρx2,vσ2σviu2 − κ

R = 1
2σ

2
v .

The solutions to the integrals I1(u, τ), I2(u, τ), I3(u, τ), I4(u, τ), I5(u, τ), and I6(u, τ) are given
by:

I1(u, τ) = 1
2R

[
(−Q−D1)τ − 2 log

(1−Ge−D1τ

1−G
)]
,

I2(u, τ) = 1
λ

(iu1 + iu2 − 1)(τ + 1
λ

(e−λτ − 1)),

I3(u, τ) = 1
2λ3 (i+ u1 + u2)2[3 + e−2λτ − 4e−λτ − 2λτ ],

I4(u, τ) = − 1
λ

(iu1 + u1u2 + u2
1)
[
b

c
(e−ct − e−cT ) + aτ + a

λ
(e−λτ − 1)

+ b

c− λ
e−cT

(
1− e−τ(λ−c)

)]
,

I5(u, τ) = − 1
λ

(iu2 + u1u2 + u2
2)
[
b

c
(e−ct − e−cT ) + aτ + a

λ
(e−λτ − 1)

+ b

c− λ
e−cT

(
1− e−τ(λ−c)

)]
,
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I6(u, τ) =
∫ τ

0
E
[√

v(T − s)
]
D(u, s)E(u, s),

where E
[√

v(T − s)
]
≈ a+ b−c(T −s), with a, b, and c defined in Lemma 2.

This concludes the derivation of the discounted characteristic function for the two-asset Heston–
Hull–White model. In the next section, we extend the FFT method of Hurd and Zhou (2010) to
cater for stochastic interest rates.

4.5 The Result of Hurd and Zhou (Extended)

Hurd and Zhou (2010) stated the following theorem for the square integrable Fourier represen-
tation of the basic spread option payoff function F (x1, x2) = max(ex1 − ex2 − 1, 0):

Theorem 1 For any real numbers ϵ = (ϵ1, ϵ2) with ϵ2 > 0, ϵ1 + ϵ2 < −1, and x = (x1, x2),

F (x) = 1
4π2

∫ ∫
R2+iϵ

eiux⊤
F̂ (u1, u2)du1du2,

F̂ (u1, u2) = Γ(i(u1 + u2)− 1)Γ(−iu2)
Γ(iu1 + 1) ,

where Γ(z) is the complex gamma function defined forℜ(z) > 0 by the integral Γ(z) =
∫∞

0 e−ttz−1dt

and ux⊤ = u1x1 + u2x2, where x⊤ is the unconjugated transpose of x.

See Hurd and Zhou (2010) for the proof.

Lemma 3 below is adapted from Hurd and Zhou (2010) to account for stochastic interest
rates:

Lemma 3 Let N(T ) = e−
∫ T

0 r(s)ds and x(t) =
[
logS1(t), logS2(t)

]
. For any t > 0, the increment

x(t)− x(0) is independent of x(0), which implies:

EQ
[
N(T )eiux(T )⊤] = eiux(0)⊤

ϕ(u;T ),

with ϕ(u;T ) := EQ
[
N(T )eiu(x(T )−x(0))⊤

]
.

See Hurd and Zhou (2010) for details.
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Using Theorem 1 and Lemma 3, the price of a European spread call option with stochastic
interest rates can be written as a two-dimensional Fourier transform in the variable x(0). The
derivation is shown below. Consider the spread option payoff function:

VSpread(0) = EQ
[
N(T ) max

(
ex1(T ) − ex2(T ) − 1, 0

)]
.

Changing from the risk-neutral measure Q to the T -Forward measure using the zero-coupon
bond P (0, T ) as numeraire, we obtain:

VSpread(0) = P (0, T )ET

[ 1
4π2

∫ ∫
R2+iϵ

eiux(T )⊤
F̂ (u1, u2)du1du2

]
= 1

4π2P (0, T )
∫ ∫

R2+iϵ
ET

[
eiux(T )⊤]

F̂ (u1, u2)du1du2.

Using the result P (0, T )ET

[
eiux(T )⊤

]
= EQ

[
N(T )eiux(T )⊤

]
, the price of the spread option

becomes:

VSpread(0) = 1
4π2P (0, T )

{∫ ∫
R2+iϵ

eiux(0)⊤ 1
P (0, T )EQ

[
N(T )eiu(x(T )−x(0))⊤]

× F̂ (u1, u2)du1du2
}

= 1
4π2

∫ ∫
R2+iϵ

eiux(0)⊤
ϕ(u;T )F̂ (u1, u2)du1du2. (4.5.1)

Eq. (4.5.1) is for the specific case where K = 1. Roberts (2018) shows that the result can be
extended to K > 0 by scaling the two initial stock prices as follows:

VSpread(S1(0), S2(0),K, T ) = K × VSpread

(
S1(0)
K

,
S2(0)
K

, 1, T
)
. (4.5.2)

The implementation of Eq. (4.5.2) using the FFT technique is outlined in Alfeus and Schlögl
(2018). Algorithm 2 below follows directly from their paper.
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Algorithm 2 Two-dimensional FFT for spread options
1. Input : N , a power of two; ū, truncation width; ϵ, damping factor.

2. Set x(0) =
(

log
(

S1(0)
K

)
, log

(
S2(0)

K

))
∈
(
x1(l1), x2(l2)

)
.

3. for all k, l ∈ {1, 2, ..., N − 1}2 do

H(k1, k2) = (−1)k1+k2ϕ(u(k) + iϵ)F̂ (u(k) + iϵ);

C(l1, l2) = (−1)l1+l2

(
ξN

2π

)2

e(α1−ϵ1)x1(l1)+(α2−ϵ2)x2(l2);

4. end
5. VSpread

(
x1(l1), x2(l2)

)
= ℜ(C × ifft2(H)) where ℜ(·) denotes the real part of the complex

number.
6. P ← K × VSpread

(
x(0)

)
using an interpolation scheme to find x(0) in Γ∗.

Output : P .

In Algorithm 2, the double integral in Eq. (4.5.1) is approximated by a double sum over the
lattice:

Γ = {u(k) =
(
u1(k1), u2(k2)

)
| k = (k1, k2) ∈ {0, 1, ..., N − 1}2}, ui(ki) = −ū+ kiξ,

where N = 2m with m ≥ 0, ξ is the lattice spacing, and ū = Nξ
2

Furthermore, x(0) =
[

log
(

S1(0)
K

)
, log

(
S2(0)

K

)]
is chosen to lie on the reciprocal lattice:

Γ∗ = {x(l) = (x1(l1), x2(l2)) | l = (l1, l2) ∈ {0, 1, ..., N − 1}2}, xi(li) = −x̄+ liξ
∗,

where ξ∗ = π
ū is the reciprocal lattice spacing and x̄ = Nξ∗

2 .

This concludes the extension of the Hurd and Zhou (2010) FFT algorithm to stochastic interest
rates. In the next section, we test the accuracy of the two-asset Heston–Hull–White model and
the impact of the stochastic interest rates on spread option prices.

4.6 Numerical Results

This section is divided into three parts. First, we compare our implementation of the Hurd and
Zhou (2010) FFT algorithm with the results shown in their paper. Secondly, we compare the
convergence of the FFT to the Monte Carlo simulation. Lastly, we assess the impact of stochastic
rates on the spread option prices.
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4.6.1 Implementation Testing

To test the accuracy of our model, we implemented the two-asset Heston-Hull-White model and
two-dimensional FFT of Hurd and Zhou (2010) in Python.

The two-asset Heston–Hull–White model reduces to the three-factor stochastic volatility model
of Dempster and Hong (2002) when η = 0. Table 4.1 below compares our implementation with
the results published in Hurd and Zhou (2010):

Tab. 4.1: S1(0) = 100, S2(0) = 96, δ1 = 0.05, δ2 = 0.05, v(0) = 0.04, r(0) = 0.1, σ1 = 1.0, σ2 = 0.5,
κ = 1, v̄ = 0.04, σv = 0.05, λ = 1, θ = 0.1, η = 0, ρx1,x2 = 0.5, ρx1,v = −0.5, ρx1,r = 0,
ρx2,v = 0.25, ρx2,r = 0, ρv,r = 0, N = 256, ū = 40, ϵ1 = −3, ϵ2 = 1, T = 1.

Strike Hurd and Zhou Price Model Price Absolute Difference

2.0 7.548502 7.549344 0.000842

2.2 7.453536 7.454381 0.000845

2.4 7.359381 7.360137 0.000756

2.6 7.266037 7.266787 0.000749

2.8 7.173501 7.174295 0.000794

3 7.081775 7.082660 0.000885

3.2 6.990857 6.991678 0.000821

3.4 6.900745 6.901351 0.000606

3.6 6.811440 6.812176 0.000736

3.8 6.722939 6.723817 0.000878

4.0 6.635242 6.635881 0.000639

The results confirm that our implementation of the FFT algorithm was accurate.

Next, we test the convergence of the FFT and Monte Carlo simulation for spread options.

4.6.2 Convergence

Table 4.2 below shows the FFT price and execution time for a European spread call option with
varying K and N .
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Tab. 4.2: Convergence of FFT using the parameters in Table 4.1

N FFT K = 2 FFT K = 3 FFT K = 4 Time (seconds)

4 4.354906 6.532359 8.709812 0.012491

8 1.488913 2.233370 2.977827 0.013598

16 0.697647 1.046470 1.395293 0.041658

32 0.450374 0.675562 0.900749 0.059231

64 0.936496 1.404743 1.872991 0.206991

128 7.553730 7.087006 6.640188 0.787242

256 7.549344 7.082660 6.635881 3.233390

512 7.549344 7.082660 6.635881 12.481379

1024 7.549344 7.082660 6.635881 50.788263

2048 7.549344 7.082660 6.635881 203.205588

4096 7.549344 7.082660 6.635881 817.879709

The FFT algorithm converges to the solution in approximately 3.23 seconds with N = 256
steps.

Figure 4.1 below shows the convergence and execution time for the Monte Carlo simulation:
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Fig. 4.1: Monte Carlo convergence using the parameters in Table 4.1
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The Monte Carlo simulation converged to the FFT price with 1,000,000 simulations in approxi-
mately 168 seconds. The FFT significantly outperformed the Monte Carlo in terms of efficiency
being up to 50 times faster.

We conclude this chapter by assessing the impact of stochastic interest rates on the spread
option prices.

4.6.3 Impact of Stochastic Interest Rates

We consider the following two cases to test the impact of stochastic interest rates: Case 1 where
interest rates and equity prices are positively correlated; and Case 2 where interest rates and
equity prices are negatively correlated.

Figure 4.2 below shows the results for Case 1 using the same parameters as in Table 4.1 except
for η, ρx1,r, and ρx2,r:
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Fig. 4.2: Impact of stochastic interest rates with η = 0.05, ρx1,r = 0.75, and ρx2,r = 0.6.

Similarly, Figure 4.3 below shows the results for Case 2.
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Fig. 4.3: Impact of stochastic interest rates with η = 0.05, ρx1,r = −0.75, and ρx2,r = −0.6.

For short-dated European spread call options, the impact of stochastic interest rates was
insignificant. However, for long-dated European spread call options, the price difference
between deterministic interest rates and stochastic interest rates widened for further out-the-
money options. Moreover, when interest rates and stock prices were positively correlated, the
spread option price under stochastic interest rates was higher than under deterministic interest
rates. The opposite held when interest rates and stock prices were negatively correlated.

4.7 Conclusions

In this chapter, we extended the Heston-Hull–White model of Grzelak and Oosterlee (2011) to
two underlying assets and the FFT algorithm of Hurd and Zhou (2010) to account for stochastic
interest rates.

Based on our implementation of the two-asset Heston–Hull–White model, we observed that
the FFT algorithm was approximately 50 times faster than the Monte Carlo simulation. We
also observed that the price of a long-dated European spread call option was sensitive to
stochastic interest rates and equity-rate correlation. This difference became more significant for
out-of-the-money options.

We hope that practitioners will find use in our extensions of the Heston–Hull–White model of
Grzelak and Oosterlee (2011) and the FFT algorithm of Hurd and Zhou (2010), which will lead
them to test the impact of stochastic interest rates on their spread option portfolios.
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Application of Stochastic Volatility
Models in the Real-World
Measure

5

„Tolerating short-term volatility is how we get to enjoy
long-term gains.

— David Poppe

Keywords: Heston model · Bates stochastic volatility jump model · calibration · real-world
measure · efficient method of moments · volatility targeting

5.1 Introduction

Equity prices tend to fall sharply in times of economic crisis. Think back to 19 October 1987,
Black Monday, when the Dow plummeted more than 20% in a single day, for example. Whether
it be war, a global pandemic, or a great recession, there is no way of knowing when a market
crash will occur. This chapter1 focuses on jump risk in financial markets.

The seminal Black and Scholes (1973) model used for the pricing of contingent claims, for
example, is based on the assumption of log-normal asset returns – the driving force of asset
returns in this model assumes a geometric Brownian motion (gBm). Such models are flawed
in this respect since they do not account for severe market shocks or the stochastic nature of
asset-return volatility.

Strides have been made in the asset-pricing literature to account for the non-normality of
equity returns (see, Cont, 2001 for a discussion on the statistical properties of asset returns).
The Heston (1993) stochastic volatility model, for example, is frequently used in the pricing
of contingent claims based on equities. It provides a reasonably good calibrated fit to the
long-term implied volatility skew observed in the equity derivatives market (see, Gatheral,
2006). However, for short maturities, the model fails to produce the steep slope of the skew

1This chapter is based on two papers: (Levendis and Maré, 2023a) published in ORiON and (Venter et al., 2022)
published in Cogent Economics & Finance.
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(see, for example, El Euch et al., 2019). This indicates that the model is unable to account for
short-term shocks (so-called jumps) that may be caused by adverse market events. Statistical
tests have been proposed in Aït-Sahalia and Jacod (2009) and Aït-Sahalia et al. (2012) to verify
whether jumps are present in financial time series.

A well-established model that can provide a good fit to the short-term skew is the Bates (1996)
stochastic volatility jump (SVJ) model. The Bates (1996) SVJ model is an extension of the
classical Heston (1993) model that adds random jumps based on a Poisson process. Poklewski-
Koziell (2012) performed a detailed analysis of the Heston (1993) and Bates (1996) SVJ models
and showed that the Bates (1996) SVJ model produces a good fit to the S&P500 implied
volatility surface compared to the Heston (1993) model. Note that Poklewski-Koziell (2012)
calibrated the Heston (1993) and Bates (1996) SVJ models to option prices (this calibration is
said to be in the risk-neutral pricing measure).

Models with jump dynamics are better at characterising markets with significant implied
volatility skews than models without jumps (see, Gatheral, 2006). However, past literature on
jump diffusion models tends to focus almost exclusively on calibration to option prices (i.e.,
the risk-neutral measure). In the absence of a liquidly traded options market, calibration using
standard least-squares techniques to minimise the sum of squared differences between market
and model prices is infeasible. This is a common problem that plagues illiquid option markets
like South Africa. Another challenge is that the estimated density resulting from the calibration
to option prices can differ substantially from the estimated density of the historical log returns
(see, Grobler and Visagie, 2019).

Calibration of continuous-time models to discrete historical observations has been explored
by Andersen et al. (2002); they applied the efficient method of moments (EMM) technique
of Gallant and Tauchan (1996) to calibrate a class of SVJ models with Poisson jumps of time-
varying intensity to daily S&P500 returns. The EMM is a simulation-based technique that
estimates the continuous-time model parameters from the expectation of the derivative of the
log-likelihood function, where the log-likelihood function takes the form of a simpler discrete-
time auxiliary semi-non-parametric model. Andersen et al. (2002) concluded that stochastic
volatility and jumps are both important factors required to characterise daily S&P500 returns.

To our knowledge, there has been no attempt made to calibrate stochastic volatility models,
including the Heston (1993) and Bates (1996) SVJ models, to historical equity returns in South
Africa (i.e., calibration to the so-called real-world measure). The literature tends to focus solely
on calibration to option prices (risk-neutral measure), which, in the context of South African
single stocks, for example, is typically impractical (as no generally liquid traded market exists).
We, therefore, view this as an excellent opportunity to contribute to the asset-pricing literature
with specific focus on calibration of stochastic volatility models in illiquid markets.
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The real-world measure is often neglected in favour of the risk-neutral measure due to the
pricing of contingent claims. However, the real-world measure is extremely useful and important
in risk management and asset/liability applications (see, for example, van Dijk et al., 2018);
simulation-based analysis of trading and investment strategies (see, Olivieri et al., 2022);
analysis of so-called xVA (counterparty credit, margin, and capital costs); investment based
pricing and evaluation of asset price behaviour; and product development, to name a few.

The goal of this chapter is to calibrate the Heston (1993) and Bates (1996) SVJ models to
historical FTSE/JSE Top40 returns by making use of the EMM and to test which model is better
at characterising the evolution of equity-based risk and return in the South African market.
Furthermore, we show how a real-world stochastic volatility model can be used in the context
of portfolio management by testing a simple volatility targeting strategy.

The remainder of this chapter is structured as follows: Section 5.2 presents the dynamics for
the Heston (1993) and Bates (1996) SVJ models as well as the EMM technique of Gallant
and Tauchan (1996). Section 5.3 shows the calibration results of the EMM applied to the
S&P500 and FTSE/JSE Top40. Section 5.4 focuses on a practical application of real-world
stochastic volatility models by testing a volatility targeting strategy, and Section 5.5 concludes
the chapter.

5.2 Stochastic Volatility Models

This section is divided into three parts. The first subsection is dedicated to the Heston (1993)
stochastic volatility model. The second subsection focuses on the Bates (1996) SVJ model, and
the third subsection discusses the EMM methodology of Gallant and Tauchan (1996).

5.2.1 The Heston Stochastic Volatility Model

Under the real-world probability measure, P, the Heston (1993) model is given by the system
of stochastic differential equations (SDEs):

dS(t) = µS(t)dt+
√
v(t)S(t)dWx(t),

dv(t) =
(
α− βv(t)

)
dt+ σv

√
v(t)dWv(t),

dWx(t)dWv(t) = ρx,vdt, (5.2.1)
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where µ denotes the expected rate of return, β is the mean reversion speed of the variance, α
β is

the long-run mean of the variance, σv is the volatility of volatility, and ρx,v is the correlation
between the stock and variance processes.

Note that Eq. (5.2.1) is an alternative representation of the Heston (1993) model. In previous
chapters, the mean reversion speed was denoted by κ, hence, β = κ. Furthermore, the long-run
mean of the variance was denoted by v̄, hence, α

β = v̄. The representation in Eq. (5.2.1) was
chosen to align with the representation in Andersen et al. (2002), which is used as a base for
comparison of calibration results.

Taking the log-transform x(t) = logS(t) and applying Itô’s lemma to Eq. (5.2.1), we obtain:

dx(t) =
(
µ− 1

2v(t)
)
dt+

√
v(t)dWx(t),

dv(t) =
(
α− βv(t)

)
dt+ σv

√
v(t)dWv(t),

dWx(t)dWv(t) = ρx,vdt. (5.2.2)

We simulated 100,000 paths over 100 daily time steps from Eq. (5.2.2) using an Euler dis-
cretisation scheme to illustrate the impact of certain Heston (1993) model parameters on the
returns distribution at the end of 100 days. Figure 5.1 below shows the impact of σv on returns:

Fig. 5.1: Effect of σv on returns

Note that the kurtosis of the returns distribution increases as σv increases.
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Next, we show the impact of the correlation between the stock and variance processes, denoted
by ρx,v. Figure 5.2 below illustrates the impact of ρx,v on the returns distribution:

Fig. 5.2: Effect of ρx,v on returns

The parameter ρx,v controls the skewness of the returns distribution - a negative value for ρx,v

results in a negatively skewed distribution and vice versa.

Even though the Heston (1993) model displays some desirable properties, it still underesti-
mates the kurtosis of returns observed in practice (see, for example, González-Urteaga, 2012).
Therefore, we consider the Bates (1996) SVJ model next.

5.2.2 The Bates Stochastic Volatility Jump Model

Under the P-measure, the Bates (1996) SVJ model is presented by the system of SDEs:

dS(t) =
(
µ− λµJ

)
S(t)dt+

√
v(t)S(t)dWx(t) + JS(t)dN(t),

dv(t) =
(
α− βv(t)

)
dt+ σv

√
v(t)dWv(t),

dWx(t)dWv(t) = ρx,vdt, (5.2.3)

where N(t) is a Poisson process with jump intensity λ. Furthermore, J denotes the percentage
jump size of the underlying where

log(1 + J) ∼ N
(

log(1 + µS)− 0.5σ2
S , σ

2
S

)
,
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µJ = exp
{
µS + σ2

S

2
}
− 1,

with µS and σS the mean and volatility of the jump size.

Taking the log-transform x(t) = logS(t) and applying Itô’s lemma to Eq. (5.2.3), we get:

dx(t) =
(
µ− λµJ −

1
2v(t)

)
dt+

√
v(t)dWx(t) + log(1 + J)dN(t),

dv(t) =
(
α− βv(t)

)
dt+ σv

√
v(t)dWv(t),

dWx(t)dWv(t) = ρx,vdt. (5.2.4)

Similar to what was done using the Heston (1993) model, we simulated 100,000 paths over
100 daily time steps from Eq. (5.2.4). Figure 5.3 below shows the impact of λ on returns:

Fig. 5.3: Effect of λ on returns

The kurtosis increases as λ increases. Figure 5.4 below illustrates the impact of µS on returns.
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Fig. 5.4: Effect of µS on returns

Similar to the parameter ρx,v, the mean jump size µS controls the skewness of the distribution –
a negative value for µS produces a negatively skewed distribution and vice versa. Lastly, Figure
5.5 below shows the impact of σS on returns:

Fig. 5.5: Effect of σS on returns

Note that the kurtosis of the distribution increases as σS increases.

It should be clear that the Bates (1996) SVJ model provides more flexibility than the Heston
(1993) model to capture additional features of returns.
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In the next subsection, we present the EMM technique of Gallant and Tauchan (1996) that
will be used to calibrate the Heston (1993) and Bates (1996) SVJ models to historical equity
returns.

5.2.3 Efficient Method of Moments

The EMM procedure is outlined in Andersen et al. (1999). Suppose there is a historical
time series Yt = {y1, ...yt} and the aim is to estimate the vector of stochastic volatility model
parameters θ from this series. There is no analytical expression for the likelihood function
of the Heston (1993) or Bates (1996) SVJ models. Therefore, the first step in the EMM
procedure is to choose an auxiliary model (score generator) with transition density function
f(yt|Yt−1,η), parameterised by the pseudo parameter vector η. To this end, we choose the
semi-nonparametric density of Gallant and Nychka (1987), where a leading parametric term is
chosen to capture the majority of the dependency in the conditional mean and variance. The
transition density function is then extended by adding Hermite polynomials that capture any
remaining non-Gaussian features in the time series. The semi-nonparametric density is given
by:

fK(yt|Yt−1;η) =
(
v + (1− v) [PK(zt)]2∫

R[PK(u)]2φ(u)du

)
φ(zt)√
ht
,

where v = 0.01 to avoid instability during the estimation procedure when PK(zt) = 0, φ(·) is
the standard normal density function, and

zt = yt − µt√
ht

,

with

µt = 0,

ht = ω + γ0y
2
t−1 + γ1ht−1 ∼ GARCH(1, 1),

where µt and ht denote the conditional mean and variance, respectively. Note that µt need not
be zero, and ht may be specified by alternative discrete-time models such as ARCH or EGARCH
(see, Andersen et al., 1999, for details).

The Hermite polynomials are given by:

PK(zt) =
Kz∑
i=0

aiz
i
t,
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where a0 = 1 and Kz denotes the order of the Hermite polynomial. Note that the EMM
procedure requires the dimension of the pseudo parameter vector η to be greater than or equal
to the dimension of the stochastic volatility parameter vector θ.

Once an auxiliary model has been chosen, the pseudo parameter vector η is estimated using
maximum likelihood. The maximum likelihood estimator η̂T satisfies the first-order conditions

1
T

T∑
t=1

∂

∂η
log f(yt|Yt−1, η̂T ) = 1

T

T∑
t=1

sf (Yt, η̂T ) = 0,

where sf (Yt, η̂T ) = ∂
∂η log f(yt|Yt−1, η̂T ) denotes the score function of the auxiliary model.

The second step in the EMM procedure is to simulate a series ŷn(θ), n = 1, ..., N , from the
stochastic volatility model for a given θ and evaluate the sample moments at the fixed maximum
likelihood estimate η̂T , i.e.,

mN (θ, η̂T ) = 1
N

N∑
n=1

∂

∂η
log f(ŷn(θ)|Ŷn−1(θ), η̂T ).

Andersen et al. (1999) mention that mN (θ, η̂T )→ m(θ, η̂T ) as N →∞; hence, the simulated
time series should be large enough so that the Monte Carlo error can be ignored.

Finally, the vector of stochastic volatility parameters θ is estimated by minimising the objective
function

θ̂ = argmin
θ

[mN (θ, η̂T )′Î−1
T mN (θ, η̂T )], (5.2.5)

where ÎT is a consistent estimator of the asymptotic covariance matrix I of the sample pseudo
score vector. The estimator ÎT is calculated as the outer product of scores, i.e.,

ÎT = 1
T

T∑
t=1

∂

∂η
log f(yt|Yt−1, η̂T ) ∂

∂η
log f(yt|Yt−1, η̂T )′.

A major advantage of the EMM is that T multiplied by the minimised value in Eq. (5.2.5) follows
a χ2 distribution with nη − nθ degrees of freedom, where nη and nθ denote the number of
parameters in the semi-nonparametric and stochastic volatility models. Therefore, a goodness-
of-fit test can be performed by comparing the final estimate of the objective function multiplied
by the number of observations used in the calibration with the relevant percentile from the
χ2 distribution. Andersen et al. (1999) explain that the null hypothesis in this case is that the
model has been correctly specified. Hence, if the minimised value in Eq. (5.2.5) multiplied by
the number of observations is less than the critical value from the χ2 distribution, the hypothesis
is not rejected.
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In the next section, we calibrate the Heston (1993) and Bates (1996) SVJ models to historical
S&P500 and FTSE/JSE Top40 returns using the EMM.

5.3 Empirical Results

This section is divided into two parts. The first subsection focuses on the S&P500 and compares
our EMM implementation of the Heston (1993) and Bates (1996) SVJ models to the results in
Andersen et al. (2002). The reason for this is to validate the accuracy of our implementation.
We further extend the analysis of Andersen et al. (2002) by calibrating the Heston (1993) model
over different periods to test the stability of the model parameters. The second subsection uses
the EMM to calibrate the Heston (1993) and Bates (1996) SVJ models to the FTSE/JSE Top40
to test which model is better at capturing risk and return in the South African equity market.

5.3.1 S&P500

The S&P500 is considered by many to be the best indicator of global equity market performance.
It consists of 500 leading companies that are publicly traded in the United States. Andersen
et al. (2002) calibrated the Heston (1993) and Bates (1996) SVJ models using the EMM over
the period 2 January 1953 to 31 December 1996 to S&P500 returns. Our goal was to replicate
their results over the same time period to confirm the accuracy of our EMM implementation.

Figure 5.6 shows the S&P500 closing prices from 2 January 1953 to 31 December 1996:
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Fig. 5.6: S&P500 daily historical closing prices
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Figure 5.7 below shows the daily log returns for the S&P500 over the same period:
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Fig. 5.7: S&P500 log returns

The most significant event over the period 2 January 1953 to 31 December 1996 was Black
Monday, 19 October 1987, when the S&P500 fell by more than 20%. Prior to Black Monday,
equity market behaviour was relatively stable. The concept of a volatility skew was unknown
and the assumption of log-normal returns seemed reasonable.

Figure 5.8 below shows the daily S&P500 log returns with the normal distribution superimposed
over the returns:

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10
Daily Log Returns

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

Distribution of Daily Log Returns
Normal Distribution
Daily Log Returns

Fig. 5.8: S&P500 and normal density
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It is clear from Figure 5.8 that the normal distribution cannot capture the high peak and
fat tails of the S&P500 returns. Assuming a log-normal distribution of returns is, therefore,
not consistent with historical equity behaviour and significantly underestimates the size and
frequency of equity price drops.

Our first goal was to reproduce the calibration results in Andersen et al. (2002) for the Heston
(1993) and Bates (1996) SVJ models over the same period from 2 January 1953 to 31 December
1996 to validate the accuracy of our EMM implementation. The results for the Heston (1993)
stochastic volatility model are shown below.

Heston Stochastic Volatility Model

Table 5.1 below shows a comparison of the Heston (1993) model parameters based on our
EMM implementation to the parameters in Andersen et al. (2002):

Tab. 5.1: Comparison of annualised Heston parameters for S&P500

Parameter Andersen et al. Our implementation
µ 0.0756 0.0768
α 0.0438 0.0485
β 3.2508 4.2142
σv 0.1850 0.1768
ρx,v -0.5877 -0.4323
T θ̂ 31.9400 15.6099

The calibrated parameters achieved using our method and those of Andersen et al. (2002) align
well. We do not expect to match their parameters exactly since we are likely using a different
optimisation routine and have access to better software compared to what was available 20
years ago. The goodness-of-fit statistic, T θ̂, is also shown in Table 5.1 for completeness.

Interestingly, the goodness-of-fit statistic is significantly smaller in our implementation than in
Andersen et al. (2002). This indicates that our implementation of the Heston (1993) model
yields a better fit to the S&P500 returns than the Heston (1993) model in Andersen et al. (2002).
Figures 5.9 and 5.10 below show a visual comparison of the densities generated by the model
parameters in Table 5.1.
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Fig. 5.9: Comparison of densities under the Heston stochastic volatility model for S&P500

Fig. 5.10: Comparison of Heston and S&P500 densities

Figure 5.9 indicates that the two sets of model parameters yield very similar results. Figure 5.10
shows that our implementation of the Heston (1993) model captures the peak of the S&P500
returns slightly better than Andersen et al. (2002).

Table 5.2 below shows the first four statistical moments as well as the minimum and maximum
values generated by the Heston (1993) model compared to the S&P500.
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Tab. 5.2: Heston model daily statistics for the S&P500

Statistic S&P500 index Andersen et al. Our implementation
Mean 0.0301% 0.0231% 0.0235%

Std dev 0.8346% 0.7498% 0.6880%
Skewness -2.0220 -0.0179 -0.0066
Kurtosis 60.0830 4.0254 3.9219

Minimum -0.2290 -0.0379 -0.0349
Maximum 0.0871 0.0319 0.0310

The first two moments of the S&P500 (mean and standard deviation) are captured relatively well
by the Heston (1993) model. However, the Heston (1993) model substantially underestimates
the skewness and kurtosis over the period 2 January 1953 to 31 December 1996. As explained
by Andersen et al. (2002), stochastic volatility on its own is not adequate to describe the
observed S&P500 returns.

Next, we extended the results of Andersen et al. (2002) by calibrating the Heston (1993) model
over different periods, spanning approximately 20 years, to test the stability of the model
parameters. Table 5.3 below shows the first four statistical moments and the minimum and
maximum values over each period:

Tab. 5.3: S&P500 daily statistics over different periods

Statistic 1960-1980 1970-1990 1980-2000 1990-2010 2000-2022
Mean 0.0117% 0.0264% 0.0520% 0.0224% 0.0174%

Std dev% 0.7508% 0.9861% 0.9996% 1.1724% 1.2474%
Skewness 0.04194 -2.5083 -2.6223 -0.1980 -0.4009
Kurtosis 7.5054 64.9265 62.9018 12.1684 13.5220

Minimum -0.0691 -0.2290 -0.2290 -0.0947 -0.1277
Maximum 0.0490 0.0871 0.0871 0.1096 0.1096

The periods 1970 to 1990 and 1980 to 2000 both contain Black Monday and show substantially
different values for the skewness and kurtosis compared to the other periods. Not even the
global financial crisis of 2008 or the COVID-19 pandemic came close to the crash of 19 October
1987.

Table 5.4 below shows the calibrated parameters and goodness-of-fit statistic for the Heston
(1993) model using the EMM for each period.
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Tab. 5.4: Calibrated Heston model parameters (annualised) for S&P500

Parameter 1960-1980 1970-1990 1980-2000 1990-2010 2000-2022
µ 0.0277 0.0670 0.1359 0.0891 0.0858
α 0.0534 0.0769 0.0774 0.0602 0.1137
β 4.8925 5.0140 5.0555 3.0968 4.9395
σv 0.2341 0.2015 0.2266 0.2292 0.3747
ρx,v -0.5703 0.0347 -0.4144 -0.8891 -0.8801
T θ̂ 2.9665 6.7840 22.8005 18.1143 7.2800
χ2

0.05 9.4877 9.4877 9.4877 9.4877 9.4877

The expected return, µ, can vary substantially between periods and follows a similar trend to the
mean of the S&P500 returns in Table 5.3. The Heston (1993) stochastic volatility parameters
(α, β, σv) are relatively stable over time. The correlation parameter, ρx,v, shows a strong
negative relationship between returns and asset volatility except for the period 1970 to 1990.
Interestingly, ρx,v changes from 0.0347 in the period 1970 to 1990 to -0.4144 in 1980 to 2000.
Both these periods include Black Monday. This instability suggests that the estimation of ρx,v is
sensitive to outliers.

The goodness-of-fit statistic shows interesting results. From Table 5.4, the goodness-of-fit
statistic suggests that the hypothesis that the observed data are realised from the calibrated
Heston (1993) model is not rejected for the periods 1960 to 1980, 1970 to 1990, and 2000
to 2022. However, this hypothesis is rejected for the periods 1980 to 2000 and 1990 to 2010,
which indicates that the calibration is not stable over time.

Next, we calibrate the Bates (1996) SVJ model to historical S&P500 returns.

Bates Stochastic Volatility Jump Model

The Bates (1996) SVJ model adds three additional jump parameters, λ, µS , and σS to the
standard Heston (1993) model. Andersen et al. (2002) explain that the mean jump parameter,
µS , is of less importance and poorly identified in general. Therefore, we follow Andersen et al.
(2002) by imposing the restriction µS = 0. The Bates (1996) SVJ model in Eq. (5.2.4) then
becomes:

dx(t) =
(
µ− λµJ −

1
2v(t)

)
dt+

√
v(t)dWx(t) + log(1 + J)dN(t),

dv(t) =
(
α− βv(t)

)
dt+ σv

√
v(t)dWv(t),

dWx(t)dWv(t) = ρx,vdt, (5.3.1)
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where
log(1 + J) ∼ N

(
− 0.5σ2

S , σ
2
S

)
.

Table 5.5 below compares the Bates (1996) SVJ parameters based on our implementation of
the EMM to that of the results in Andersen et al. (2002) over the period 2 January 1953 to 31
December 1996:

Tab. 5.5: Comparison of annualised Bates SVJ parameters for S&P500

Parameter Andersen et al. Our implementation
µ 0.0766 0.0815
α 0.0438 0.0481
β 3.0240 3.6782
σv 0.1792 0.2133
ρx,v -0.6220 -0.4926
λ 5.0904 4.0147
σS 0.0134 0.0151
T θ̂ 14.9000 2.3648

Based on our implementation, the goodness-of-fit statistic decreases from 15.6099 under the
Heston (1993) model to 2.3648 under the Bates (1996) SVJ model. This indicates that both
stochastic volatility and jumps are important factors to consider when modelling S&P500
returns.

An interesting observation is that the goodness-of-fit statistic based on our implementation is
significantly smaller than Andersen et al. (2002), which suggests a better fit to the S&P500.

Figures 5.11 and 5.12 compare the densities generated by the Bates (1996) SVJ model:

Fig. 5.11: Comparison of densities under the Bates SVJ model for S&P500
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Fig. 5.12: Comparison of Bates and S&P500 densities

Figure 5.11 shows that the distribution generated by the Bates (1996) SVJ model yields similar
results to Andersen et al. (2002). Figure 5.12 shows that our implementation captures the peak
of the S&P500 returns slightly better than Andersen et al. (2002).

Table 5.6 below compares the first four statistical moments as well as the minimum and maxi-
mum values generated by the Bates (1996) SVJ model with the S&P500:

Tab. 5.6: Bates model daily statistics for the S&P500

Statistic S&P500 index Andersen et al. Our implementation
Mean 0.0301% 0.0239% 0.0209%

Std dev 0.8346% 0.7717% 0.7433%
Skewness -2.0220 -0.0133 -0.0923
Kurtosis 60.0830 4.6294 4.5946

Minimum -0.2290 -0.0498 -0.0460
Maximum 0.0871 0.0566 0.0407

Adding jumps to the return process improves the results for the skewness and kurtosis, but not
nearly enough to capture the severe market shock of 19 October 1987.

In the next section, we calibrate the Heston (1993) and Bates (1996) SVJ models to FTSE/JSE
Top40 returns to test which model captures risk and return best in the South African market.
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5.3.2 FTSE/JSE Top40

The FTSE/JSE Top40 is an index consisting of the 40 largest publicly traded companies by
market capitalisation in South Africa. Figure 5.13 below shows daily historical closing prices for
the FTSE/JSE Top40 from 30 June 1995 to 30 June 2022:
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Fig. 5.13: FTSE/JSE Top40 historical closing prices

Figure 5.14 below shows the daily log returns for the FTSE/JSE Top40 from 30 June 1995 to
30 June 2022:
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Fig. 5.14: FTSE/JSE Top40 log returns
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Figure 5.15 below shows the normal distribution superimposed over the daily FTSE/JSE Top40
returns:
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Fig. 5.15: FTSE/JSE Top40 and normal density

Note that the normal distribution is not able to capture the high peak and fat tails observed
in the empirical distribution of daily FTSE/JSE Top40 returns. Next, we calibrate the Heston
(1993) model to daily FTSE/JSE Top40 returns.

Heston Stochastic Volatility Model

Table 5.7 below shows the calibrated Heston (1993) parameters to daily FTSE/JSE Top40
returns over the period 30 June 1995 to 30 June 2022 using the EMM:

Tab. 5.7: Annualised Heston parameters for FTSE/JSE Top40

Parameter Estimate
µ 0.0982
α 0.2342
β 6.9424
σv 0.4782
ρx,v -0.9364
T θ̂ 13.4381
χ2

0.05 9.4877
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Note that the correlation, ρx,v, for the FTSE/JSE Top40 is much more pronounced (negative)
than the correlation for the S&P500. The goodness-of-fit statistic suggests that the hypothesis
that the observed data are realised from the calibrated Heston (1993) model is rejected at a 5%
level of significance.

Figure 5.16 compares the Heston (1993) and FTSE/JSE Top40 densities:

Fig. 5.16: Comparison of densities under the Heston model for FTSE/JSE Top40

The Heston (1993) model fits the FTSE/JSE Top40 density well. Table 5.8 below compares
the first four moments as well as the minimum and maximum values generated by the Heston
(1993) model with the daily FTSE/JSE Top40:

Tab. 5.8: Heston model daily statistics for the FTSE/JSE Top40

Statistic FTSE/JSE Top40 index Our implementation
Mean 0.0385% 0.0270%

Std dev 1.3290% 1.1679%
Skewness -0.4369 -0.1313
Kurtosis 9.4344 4.1614

Minimum -0.1429 -0.0585
Maximum 0.0845 0.0588

The Heston (1993) model captures the mean and standard deviation of the FTSE/JSE Top40
well. However, the model underestimates the observed skewness and kurtosis. Next, we
calibrate the Bates (1996) SVJ model to historical FTSE/JSE Top40 returns.
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Bates Stochastic Volatility Jump Model

Table 5.9 below shows the calibrated Bates (1996) SVJ parameters to daily FTSE/JSE Top40
returns over the period 30 June 1995 to 30 June 2022:

Tab. 5.9: Annualised Bates parameters for FTSE/JSE Top40

Parameter Estimate
µ 0.0893
α 0.1815
β 5.4469
σv 0.4328
ρx,v -0.8705
λ 3.9973
σJ 0.0147
T θ̂ 4.7879
χ2

0.05 5.9915

Note that the jump parameter, λ, indicates that jumps occur approximately four times per year.
The goodness-of-fit statistic suggests that the hypothesis that the observed data are realised
from the calibrated Bates (1996) SVJ model is not rejected at a 5% level of significance. The
Bates (1996) SVJ model is, therefore, a plausible data-generating model for the FTSE/JSE
Top40.

Figure 5.17 compares the density generated by the Bates (1996) SVJ model to the FTSE/JSE
Top40 density:

Fig. 5.17: Comparison of densities under the Bates SVJ model for FTSE/JSE Top40
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The two densities align well. Table 5.10 below compares the first four statistical moments as
well as the minimum and maximum values generated by the Bates (1996) SVJ model with the
daily FTSE/JSE Top40 returns:

Tab. 5.10: Bates model daily statistics for the FTSE/JSE Top40

Statistic FTSE/JSE Top40 index Our implementation
Mean 0.0385% 0.0246%

Std dev 1.3290% 1.1532%
Skewness -0.4369 -0.2039
Kurtosis 9.4344 4.9364

Minimum -0.1429 -0.0714
Maximum 0.0845 0.0652

The Bates (1996) SVJ still underestimates the skewness and kurtosis observed in the FTSE/JSE
Top40, but improves the fit compared to that of the Heston (1993) model.

Given that the Bates (1996) SVJ model captures the higher order moments better than the
Heston (1993) model, we conclude that both stochastic volatility and jumps are required to
characterise equity returns in the South African market.

In the next section, we show how the real-world Bates (1996) SVJ model can be used in practice
by considering a simple volatility targeting strategy.

5.4 Volatility Targeting

In this section, we extend the work of Khuzwayo and Maré (2014) by implementing a simulation-
based approach to assess the risk and return of various volatility targeting strategies in the
South African equity market.

As explained by Khuzwayo and Maré (2014), volatility targeting is an asset allocation strategy
that aims to keep the volatility of a portfolio stable by updating the allocation between a risky
asset and cash on a regular basis.

Let Π(t) denote the time t value of a portfolio consisting of a single risky asset (an equity index)
and cash. Mathematically, the change in the value of the portfolio over the interval dt can be
written as:

dΠ(t) = wS(t)Π(t)dS(t)
S(t) + rwC(t)Π(t)dt+ qwS(t)Π(t)dt, Π(0) > 0,
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where r is the continuously compounded rate earned on cash, q is the continuously compounded
dividend yield per annum; wS and wC are the equity and cash weights given by:

wS(t) = σT arget

σModel(t+ 1) , wC(t) = 1− wS(t).

Following Khuzwayo and Maré (2014), we impose the restriction wS ≤ 1 so that gearing
(borrowing funds to increase equity exposure) is not allowed.

At each time t, we generate a volatility forecast for time t+ 1. To do this, we fit a GARCH(1,1)
model (see, for example, Brownlees et al., 2012 and Venter et al., 2022) to each return series
simulated from the Bates (1996) SVJ model.

To simplify matters and focus on equity, we assume r = 0% to ignore the effect of interest
compounding. For the dividend yield, we set q = 2.5%, roughly representing the long-term
dividend yield of the equity market.

Figures 5.18 to 5.22 below illustrate a 10% volatility targeting strategy by simulating two paths
for the equity index from the Bates (1996) SVJ model using an Euler Monte Carlo scheme over
a period of one year (252 trading days):

Fig. 5.18: Bates SVJ equity forecast

For each return series simulated from the Bates (1996) SVJ model, we fit a GARCH(1,1) model
to forecast volatility. The GARCH(1,1) model is calibrated once every month to a rolling
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1000-day history of returns and used to predict 1-week volatility as illustrated in Figure 5.19:

Fig. 5.19: Weekly volatility forecast

At the start of each week, we use the volatility forecast to calculate the equity/cash weights and
track the performance of an initial investment of R100. This is illustrated in Figures 5.20 to
5.22:

Fig. 5.20: Equity weight based on 10% volatility target

5.4 Volatility Targeting 98



Fig. 5.21: Cash weight based on 10% volatility target

Fig. 5.22: Portfolio value through time

Note that the equity and cash weights are updated at the start of each week and held constant
for a one-week period.

Next, we scaled the number of simulations to 1000 and tested the performance of different
volatility targeting strategies over different investment horizons. We considered volatility
targets of 10%, 15%, and 20% and investment horizons of one, three, and five years. We then
compared the performance of the portfolio to that of an equity-only holding strategy. Note that
the simulation-based approach allows us to analyse a distribution of returns. The distribution
and statistics for each investment horizon and volatility targeting strategy are shown below.
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One-year Performance

Fig. 5.23: 1-year returns

Fig. 5.24: 1-year volatility

Tab. 5.11: Statistics for volatility targeting strategies over one year

Statistic 10% target 15% target 20% target Equity only
Mean return 5.9035% 8.9714% 11.2965% 11.8627%

Mean of volatility 8.8023% 13.1699% 16.6214% 17.6328%
Volatility of volatility 1.0873% 1.6691% 2.6237% 3.3337%

Skewness -0.3488 -0.2320 -0.2628 -0.3214
Kurtosis 3.0587 2.8589 2.7879 2.9088

Minimum -33.5001% -46.0088% -55.4725% -60.3300%
Maximum 32.1040% 46.1876% 56.5016% 55.8077%
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Three-year Performance

Fig. 5.25: 3-year returns

Fig. 5.26: 3-year volatility

Tab. 5.12: Statistics for volatility targeting strategies over three years

Statistic 10% target 15% target 20% target Equity only
Mean return 5.9788% 8.7532% 10.5564% 10.9141%

Mean of volatility 9.2840% 13.7929% 17.0814% 18.0664%
Volatility of volatility 0.5179% 0.8613% 1.5903% 2.1366%

Skewness -0.0584 -0.0509 -0.1559 -0.2347
Kurtosis 2.9797 2.8436 2.8178 2.9164

Minimum -14.1057% -20.7017% -25.8108% -29.3130%
Maximum 25.7383% 36.8075% 41.1602% 41.1486%

5.4 Volatility Targeting 101



Five-year Performance

Fig. 5.27: 5-year returns

Fig. 5.28: 5-year volatility

Tab. 5.13: Statistics for volatility targeting strategies over five years

Statistic 10% target 15% target 20% target Equity only
Mean return 6.5284% 9.4335% 11.0569% 11.4293%

Mean of volatility 9.4985% 13.9930% 16.9624% 18.0113%
Volatility of volatility 0.2990% 0.5538% 1.1693% 1.6878%

Skewness 0.0483 0.0028 -0.1638 -0.3107
Kurtosis 3.3085 3.1773 3.1763 3.4514

Minimum -9.7357% -14.5351% -18.8936% -23.4266%
Maximum 21.8382% 30.0869% 34.7505% 35.3795%
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Results Discussion

There are a couple of interesting observations from the results. Firstly, the mean of the volatility
estimate is close to the volatility target for each of the investment horizons. Furthermore, the
volatility of volatility estimate decreases as the investment horizon increases. This indicates
that the volatility targeting strategy improves for longer investment horizons. Investors can,
therefore, expect a targeted volatility with a greater level of certainty for longer investment
horizons.

Our results indicate that the volatility targeting strategy reduces the likelihood of extreme
returns and reduces the volatility of volatility.

For all investment horizons, the risk and return of the portfolio increases as the volatility target
increases. The 10% volatility target has the lowest risk when viewing the mean of volatility and
volatility of volatility estimates, but also the lowest return. On the other hand, an equity only-
holding strategy has the highest risk but also the highest expected return. Volatility targeting,
therefore, gives investors an effective way of managing the downside risk of a portfolio, but
limits the upside potential as shown by the minimum and maximum statistics.

Our findings are consistent with the results in Khuzwayo and Maré (2014). The simulation-
based framework introduced in this chapter gives investors and fund managers a way of testing
portfolio strategies for a wide variety of market conditions.

5.5 Conclusion

In this chapter, we calibrated the Heston (1993) and Bates (1996) SVJ models to historical
S&P500 and FTSE/JSE Top40 returns using the EMM technique of Gallant and Tauchan
(1996). First, we confirmed the accuracy of our implementation with Andersen et al. (2002) by
calibrating the Heston (1993) and Bates (1996) SVJ models over the period 2 January 1953 to
31 December 1996. Our results confirmed that stochastic volatility and jumps are both required
to characterise equity returns in the US equity market.

Next, we used the EMM to calibrate the Heston (1993) model over different periods to test the
stability of the model parameters. Our results suggest that the calibration is sensitive to the
input data used and not necessarily stable over time.

The EMM method was then used to calibrate the Heston (1993) and Bates (1996) SVJ models
to FTSE/JSE Top40 returns over the period 30 June 1995 to 30 June 2022. Our calibration
results suggest that both stochastic volatility and jumps are required to capture the behaviour
of the South African equity market.
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The final step was to show a practical application of the Bates (1996) SVJ model in the real-
world measure. We performed a simulation-based study of various volatility targeting strategies
and showed that the risk of a portfolio can be managed effectively by targeting a specific
volatility and regularly allocating an investment between a risky asset and cash.
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Static Hedging of Vanilla and
Exotic Options in a South African
Context

6

„Never think that lack of variability is stability. Don’t
confuse lack of volatility with stability, ever.

— Nassim Nicholas Taleb

Keywords: Stochastic volatility double jump model · real-world measure · risk-neutral measure
· calibration · replicating portfolio · static hedging

6.1 Introduction

This chapter1 is dedicated to product development and considers the sale of vanilla and exotic
financial derivatives in South Africa. We focus specifically on the trading of long-dated European
call options and European spread call options for which no liquid market exists. Pricing these
options is just one part of the challenge. Hedging, on the other hand, is an even bigger
challenge.

Institutions wanting to sell long-dated European call options and European spread call options
are faced with the challenge of buying assets to cover liabilities. In an ideal world, the portfolio
manager will buy assets that match the risk sensitivities (Greeks) of the liabilities. Unfortunately,
this is seldom the case as many liabilities have characteristics (longer maturities, for example)
that cannot be matched perfectly by tradable assets. In South Africa, the equity derivatives
market is typically very short-dated, which makes hedging a challenge.

Bowie and Carr (1994) and Derman et al. (1994) introduced the concept of static hedging, which
replicates the value of the written option using standard exchange traded European options
with varying strikes, maturities, and fixed portfolio weights. The advantage of static hedging

1This chapter is based on a paper (Levendis and Maré, 2023c) presented at the AFRIC 2023: Actuarial, Finance,
Risk and Insurance Congress, Victoria Falls.
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over traditional delta-hedging is that the hedging portfolio does not need to be rebalanced until
one of the standard exchange traded options expires.

On whether market makers can sell long-dated European call options and European spread
call options in South Africa and manage the risks effectively, we propose a simulation-based
framework to test the performance of the static hedging program under numerous market
conditions. We consider the stochastic volatility double jump (SVJJ) model of Duffie et al.
(2000) to simulate the underlying equity prices under the real-world probability measure, P,
since the SVJJ model allows for jumps in both returns and volatility. Eraker et al. (2003) found
strong evidence to support jumps in returns as well as volatility.

For each simulated path under P, we price the vanilla European call options and European
spread call option under the risk-neutral measure, Q. To do this, we make use of the FFT of
Hurd and Zhou (2010). Finally, we test two static hedging programs based on the work of
Choie and Novomestky (1989) and Armstrong et al. (2018) to optimise the replicating portfolio
weights.

The remainder of this chapter is structured as follows: Section 6.2 introduces the SVJJ model
of Duffie et al. (2000). Section 6.3 focuses on the static hedging programs of Choie and
Novomestky (1989) and Armstrong et al. (2018). Section 6.4 presents the static hedging results
for the long-dated European call option and European spread call option, and Section 6.5
concludes the chapter.

6.2 Stochastic Volatility Double Jump Model

This section is split into two subsections. The first subsection introduces the SDE for the SVJJ
model that will be used to simulate real-world equity price paths. The second subsection
presents the characteristic function for the SVJJ model that will be used to price the vanilla
European call options.

6.2.1 SVJJ Dynamics

The SVJJ model is an extension of the Bates (1996) SVJ model that adds correlated random
jumps to the variance process. Under the P-measure, the SVJJ model is given by the SDE:

dS(t) = (µ− λµJ)S(t)dt+
√
v(t)S(t)dWx(t) + JS(t)dN(t),

dv(t) =
(
α− βv(t)

)
+ σv

√
v(t)dWv(t) + ZdN(t),
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dWx(t)dWv(t) = ρx,vdt,

where

µJ =
exp

{
µS + σ2

S
2

}
1− ρJµV

− 1,

and

Z ∼ Exponential(µV ),

1 + J | Z ∼ lognormal(µS + ρJZ, σ
2
S),

with µV affecting the jump size of the variance, and ρJ the correlation between the stock and
variance jumps.

6.2.2 SVJJ Characteristic Function

The characteristic function for the SVJJ model is an extension of the characteristic function for
the Heston (1993) and Bates (1996) models. From Poklewski-Koziell (2012), the characteristic
function for the SVJJ model, defined under the Q-measure, is given by the product of the Heston
(1993) characteristic function and an independent jump component:

ϕSV JJ(u) = ϕH(u)ϕJ(u),

where

ϕH(u) = e
iu(x(0)+rT )+C(u,T ) α

β
+D(u,T )v(0)

,

and

C(u, T ) = β

[(
Q−D1

2R

)
T − 2

σ2
v

log
(

1−Ge−D1T

1−G

)]
,

D(u, T ) = Q−D1
2R

[
1− e−D1T

1−Ge−D1T

]
,

with

D1 =
√
Q2 − 4PR,

G = Q−D1
Q+D1

,

P = −u
2 − iu
2 ,
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Q = β − ρx,vσviu,

R = 1
2σ

2
v .

Furthermore,

ϕJ(u) = e
−λT (1+iuµJ )+λ exp

{
iuµS+

σ2
S

(iu)2

2

}
ν
,

where

ν = Q+D1
(Q+D1)c− 2µV P

+ 4µV P

(D1c)2 − (2µV P −Qc)2

× log
[
1− (D1 −Q)c+ 2µV P

2D1c

(
1− e−D1T

)]
,

c = 1− iuρJµV .

The SVJJ characteristic function will be used to price vanilla European call options under the
Q-measure using the FFT of Hurd and Zhou (2010). Note that the two-dimensional FFT of
Hurd and Zhou (2010) for European spread call options reduces to the one-dimensional case
for vanilla European call options when the second asset price is set to zero.

In the next section, we introduce the static hedging programs of Choie and Novomestky (1989)
and Armstrong et al. (2018).

6.3 Static Hedging

This section is split into two subsections and introduces two static hedging programs that can
be used to optimise the instrument weights in the replicating portfolio. The first subsection
introduces the static hedging program of Choie and Novomestky (1989), and the second
subsection focuses on the static hedging program of Armstrong et al. (2018).

6.3.1 Choie and Novometsky Optimisation

The static hedging program of Choie and Novomestky (1989) seeks to minimise the cost of
setting up the replicating portfolio, subject to the value of the replicating portfolio being greater
than or equal to the value of the target option at some future date. Mathematically, this can be
expressed as:

min
B

n∑
i=1

C(i)B(i),

6.3 Static Hedging 108



subject to
n∑

i=1
F (ij)B(i) ≥ Y (j), j = 1, 2, ...,m,

where

i = 1, 2, ..., n := the number of instruments in the replicating portfolio;

j = 1, 2, ...,m := the price of the underlying asset at some future time;

C(i) := the current price of the ith instrument;

B(i) := the number of units of the ith instrument;

F (ij) := the future price of the ith instrument in state j; and

Y (j) := the future price of the target option in state j.

In the next subsection, we introduce the static hedging program of Armstrong et al. (2018).

6.3.2 Armstrong et al. Optimisation

The static hedging program of Armstrong et al. (2018) seeks to minimise the difference between
the value of the replicating portfolio and the target option at some future date, subject to the
cost of the replicating portfolio being less than or equal to the initial wealth, i.e., the premium
received from the written option. Mathematically, this can be written as:

min
B

m∑
j=1

(
Y (j)−

n∑
i=1

F (ij)B(i)
)2
,

subject to
n∑

i=1
C(i)B(i) ≤ w,

where

i = 1, 2, ..., n := the number of instruments in the replicating portfolio;

j = 1, 2, ...,m := the price of the underlying asset at some future time;

C(i) := the current price of the ith instrument;

B(i) := the number of units of the ith instrument;

F (ij) := the future price of the ith instrument in state j;

Y (j) := the future price of the target option in state j; and
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w := the initial wealth, i.e., the premium received.

In the next section, we present the static hedging results for a 5-year European call option
and 1-year European spread call option based on the static hedging programs of Choie and
Novomestky (1989) and Armstrong et al. (2018).

6.4 Results

This section is split into four subsections. The first subsection presents the calibration results
for the SVJJ model to the FTSE/JSE Top40 index under the P-measure. The second subsection
contains the calibration results for the SVJJ model to the FTSE/JSE (Top40) implied volatility
surface under the Q-measure. The third subsection presents the static hedging results for a
5-year vanilla European call option written on the FTSE/JSE Top40 index; and, lastly, the
fourth subsection shows the static hedging results for an arbitrary 1-year European spread call
option.

6.4.1 SVJJ P-Measure Calibration

The first step in setting up the simulation-based framework for static hedging is to calibrate the
SVJJ model under the P-measure to forecast future prices for the FTSE/JSE Top40.

Figure 6.1 below shows the historical closing prices for the FTSE/JSE Top40 index from 30 June
1995 to 30 October 2020:

Fig. 6.1: FTSE/JSE Top40 closing prices
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Using the EMM technique of Gallant and Tauchan (1996) that was discussed in Chapter 5, we
calibrated the SVJJ model to daily returns from the FTSE/JSE Top40 index over the period
30 June 1995 to 30 October 2020. The calibrated parameters and goodness-of-fit statistic are
shown in Table 6.1 below:

Tab. 6.1: SVJJ P-parameters for FTSE/JSE Top40

Parameter FTSE/JSE Top40
µ 0.1180
α 0.2888
β 6.0176
σv 0.4543
ρx,v -0.9374
λ 4.7284
σS 0.0137
µV 0.0077
ρJ -0.3052
Tθ̂ 5.1022
χ2

0.05 5.9915

In the calibration, we set µS = 0, since this parameter is generally insignificant and poorly
identified as explained by Andersen et al. (2002).

From Table 6.1, the SVJJ model expects between four and five jumps per year. Furthermore,
note the strong negative relationship between the stock and variance processes, and also the
negative correlation between the stock and variance jumps. As a result, the model will produce
a negative skew for the FTSE/JSE Top40.

Table 6.2 below compares the first four statistical moments as well as the minimum and maxi-
mum values from the SVJJ model with the daily returns from the FTSE/JSE Top40 index:

Tab. 6.2: SVJJ model daily statistics for the FTSE/JSE Top40

Statistic FTSE/JSE Top40 index SVJJ model
Mean 0.0385% 0.0406%

Std dev 1.3290% 1.1410%
Skewness -0.4369 -0.2418
Kurtosis 9.4344 5.0463

Minimum -0.1429 -0.0695
Maximum 0.0845 0.0592
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The results indicate that the SVJJ model captures the mean and standard deviation well for
the FTSE/JSE Top40 index, but underestimates the skewness and kurtosis. However, the
goodness-of-fit statistic in Table 6.1 suggests that the SVJJ model is not rejected at a 5% level of
significance. The SVJJ model is, therefore, a plausible data-generating model for the FTSE/JSE
Top40 index.

Figure 6.2 below compares the distribution generated by the SVJJ model with the distribution
of the FTSE/JSE Top40 index:

Fig. 6.2: SVJJ model versus FTSE/JSE Top40 distribution

The SVJJ model fits the historical distribution well. The P-SVJJ model will be used to generate
real-world sample paths for the FTSE/JSE Top40 index using Monte Carlo simulation. For
each real-world path, the value of the written vanilla European call option, and values of the
replicating options, must be calculated under the Q-measure. This is the focus of the next
subsection.

6.4.2 SVJJ Q-Measure Calibration

For the purpose of this chapter, we assume a constant risk-free interest rate, r = 7%. Using
the SVJJ characteristic function in Section 6.2.2 and the FFT of Hurd and Zhou (2010) for
European spread call options (reduced to one dimension by setting the second asset price to
zero), The SVJJ model was calibrated to the FTSE/JSE (Top40) implied volatility surface on 16
November 2020. Table 6.3 below shows the calibrated parameters. Note that a tilde has been
placed over each parameter to distinguish the Q-parameters from the P-parameters.
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Tab. 6.3: SVJJ Q-parameters for FTSE/JSE Top40

Parameter FTSE/JSE Top40
r 0.0700
α̃ 0.0333
β̃ 0.9995
σ̃v 0.3827
˜ρx,v -0.9205
λ̃ 0.0583
σ̃S 0.0058
µ̃V 0.0058
ρ̃J 0.0097

Note that the Q-parameters in Table 6.3 differ from the P-parameters in Table 6.1. Grobler and
Visagie (2019) explain that the returns distribution resulting from calibration to option prices
can differ substantially from the historical returns distribution. The authors mention that a
possible solution is to combine option prices and historical returns in the calibration procedure
in order to minimise the discrepancy between the real-world and risk-neutral distributions.
However, this generally leads to larger errors between the model prices and option prices.

Figure 6.3 below shows the fit of the SVJJ model to the FTSE/JSE (Top40) implied volatility
surface on 16 November 2020:

Fig. 6.3: SVJJ fit to FTSE/JSE Top40 implied volatility surface
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The red dots represent the market quotes for FTSE/JSE Top40 European call options on 16
November 2020, and the blue surface represents the SVJJ model prices. Note that the SVJJ
model reprices the exchange traded FTSE/JSE Top40 options well.

Before tackling the static hedging experiment, we first compared our implementation of the FFT
for arbitrary European call options with the results obtained from a Monte Carlo simulation
with 100,000 samples. Efficient pricing is important for the static hedging experiment, since
option values must be calculated for multiple real-world paths. Monte Carlo simulation is
computationally too expensive. Table 6.4 below compares the European call option prices for
each numerical method:

Tab. 6.4: MC and FFT European call option prices under SVJJ model with S(0) = 100, r = 0.1, v(0) =
0.04, β = 1, α = 0.04, σv = 0.05, ρx,v = −0.5, λ = 5, µS = 0, σS = 0.01, ρJ =
−0.3, µV = 0.02, N = 256, ū = 40, ϵ1 = −3, ϵ2 = 1, T = 1.

K MC Price FFT Price Absolute
Difference

20 81.906164 81.903234 0.002930

30 72.872779 72.855205 0.017574

40 63.773907 63.811614 0.037707

50 54.788865 54.795772 0.006907

60 45.908156 45.885217 0.022939

70 37.259369 37.253208 0.006161

80 29.160481 29.176272 0.015791

90 21.995527 21.975674 0.019853

Table 6.4 confirms that our implementation of the FFT was accurate. The FFT prices a single
option in approximately 2.61 seconds, compared to 215.50 seconds in the case of Monte Carlo
simulation.

For the static hedging experiment, we first consider the sale of a 5-year at-the-money vanilla
European call option on the FTSE/JSE Top40 index on 16 November 2020. To hedge the sold
option, we set up a static hedging portfolio consisting of 3-month, 6-month, 9-month, and 12-
month exchange traded FTSE/JSE Top40 index options and cash. Note that the FTSE/JSE Top40
index option prices on 16 November 2020 are readily available from the option price surface in
Figure 6.3. Their future prices can also be obtained by simulating real-world variations for the
state variables from the P-SVJJ model, and substituting these values in the Q-SVJJ model.

The next subsection presents the static hedging results for the vanilla European call option.
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6.4.3 Static Hedging Performance for Vanilla Call Option

The results in this subsection show the static hedging performance for a written 5-year at-
the-money vanilla European call option. Since the longest maturity for the exchange traded
FTSE/JSE Top40 options is generally 1 year, the replicating portfolio will need to be rolled as
the options expire. As explained by Choie and Novomestky (1989), once the shortest dated
option (3 months in our case) expires, the proceeds from the sale of the replicating portfolio
will be used to purchase a new portfolio consisting of cash and 3-month, 6-month, 9-month,
and 12-month FTSE/JSE Top40 options. This process repeats until the expiry of the written
option; in this case, the 5-year FTSE/JSE Top40 European call option. It is important to note
that each hedging interval is only for a period of 3 months.

Calculating the distribution of values for the 3-month option at the 3-month mark is simply
max

(
S(0.25)−K, 0

)
, where S(0.25) are the real-world forecasts for the FTSE/JSE Top40 index

from the P-SVJJ model 3 months ahead, and K is the strike price of the option. The valuation
of the 6-month, 9-month, and 12-month options at the 3-month mark is more complicated.

At the 3-month mark, the 6-month, 9-month, and 12-month options that were bought at
inception have maturities of 3 months, 6 months, and 9 months respectively. Their values
can be calculated by substituting the real-world forecasts, S(0.25) and v(0.25), into the SVJJ
characteristic function along with the Q-SVJJ parameters in Table 6.3. The FFT of Hurd and
Zhou (2010) can then be used to calculate the option values.

The valuation of the 5-year FTSE/JSE Top40 index option at the 3-month mark follows a similar
process, where the maturity of the option at this point is 4.75 years. This process gets repeated
every quarter.

Table 6.5 below details the information for the written European call option on 16 November
2020:

Tab. 6.5: Market information for European call option on 16 November 2020

Option sale date 16 November 2020

Underlying FTSE/JSE Top40 index

S(0) 52552

K 52552

T 5
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Figure 6.4 below shows the real-world distribution for the FTSE/JSE Top40 index at t = 0.25
generated from the P-SVJJ model in Table 6.1 with 10,000 Monte Carlo samples:

Fig. 6.4: Real-world FTSE/JSE Top40 distribution at t = 0.25

The option writer has the entire FTSE/JSE Top40 option price surface at his disposal when
faced with the challenge of hedging the 5-year at-the-money European call option. The seller’s
aim is to find the optimal quantity for each exchange traded option on the option price surface
to hedge his position at t = 0.25.

The static hedging results based on the optimisation routines of Choie and Novomestky (1989)
and Armstrong et al. (2018) are shown below.

Choie and Novometsky Optimisation

Using the optimisation program of Choie and Novomestky (1989) discussed in Section 6.3.1,
Figure 6.5 below shows the optimised quantities on 16 November 2020 for the exchange traded
options based on the real-world distribution for the FTSE/JSE Top40 index at t = 0.25 in Figure
6.4.
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Fig. 6.5: Replicating option quantities based on Choie and Novometsky optimisation

Table 6.6 below shows the replicating option quantities for the first hedging interval, t = 0 to
t = 0.25, expressed as a percentage:

Tab. 6.6: Replicating option quantity table based on Choie and Novometsky optimisation

Moneyness/Maturity 0.25 0.5 0.75 1
0.8 8.26% 9.70% 10.80% 11.70%
0.9 3.75% 5.75% 7.11% 8.18%
1 0.00% 2.02% 3.34% 4.41%

1.1 0.00% 0.69% 1.53% 2.39%
1.15 0.00% 0.27% 0.65% 1.10%

The replicating portfolio is skewed more towards in-the-money options, and the optimised cash
balance was R6, 500. The cost of setting up the replicating portfolio on 16 November 2020 was
R14, 170. On the other hand, the premium received from the sale of the 5-year at-the-money
option was R13, 656, which was calculated from the Q-SVJJ model, i.e., consistent with the
market prices on 16 November 2020. Therefore, the option writer recorded an upfront loss of
R13, 656−R14, 170 = −R514.

Figure 6.6 below compares the value of the replicating portfolio based on the option quantities
in Table 6.6 and a cash balance of R6, 500 with the value of the target option at t = 0.25.
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Fig. 6.6: Portfolio versus target option based on Choie and Novometsky optimisation

Next, we show the static hedging results based on the optimisation routine of Armstrong et al.
(2018). The results will be discussed thereafter.

Armstrong et al. Optimisation

Using the optimisation routine of Armstrong et al. (2018) discussed in Section 6.3.2, Figure
6.7 below shows the optimised quantities for the exchange traded options based on real-world
distribution for the FTSE/JSE Top40 index at t = 0.25 in Figure 6.4:

Fig. 6.7: Replicating option quantities based on Armstrong et al. optimisation
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Once again, the option quantities were calculated for the first hedging interval, t = 0 to t = 0.25,
and expressed as a percentage. Note that the optimisation returns a single option on the
FTSE/JSE Top40 option price surface (80% moneyness and 9 months to maturity), which is
significantly different from the results obtained by using the Choie and Novomestky (1989)
routine.

The cost of setting up the replicating portfolio on 16 November 2020 was R13, 656, which is
exactly equal to the premium received. The optimised cash balance was R6, 425.

Figure 6.8 below compares the value of the replicating portfolio based on the option quantities
in Figure 6.7 and a cash balance of R6, 425 with the value of the target option at t = 0.25:

Fig. 6.8: Portfolio versus target option based on Armstrong et al. optimisation

The results are discussed next.

Results Discussion

Recall that the static hedging program of Choie and Novomestky (1989) seeks to minimise the
cost of setting up the replicating portfolio, subject to the value of the replicating portfolio being
greater than or equal to the value of the target option at some future date; 3 months in our
case. Figure 6.6 illustrates that the constraint was met - the value of the replicating portfolio
was greater than or equal to the value of the target option in each of the real-world FTSE/JSE
Top40 states at t = 0.25.
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Figure 6.5 showed that the Choie and Novomestky (1989) optimisation produced replicating
option quantities across most of the FTSE/JSE Top40 option price surface, with the quantities
skewed more towards in-the-money options. A possible explanation for this is that the value
of the target option is quite sensitive to price movements in the FTSE/JSE Top40, i.e., delta.
Hence, the replicating portfolio is skewed more towards in-the-money options since they have
the highest delta.

The cost of setting up the replicating portfolio was slightly more expensive than the upfront
premium received; R14, 170 versus R13, 656. The option writer, therefore, recorded an upfront
loss.

The static hedging performance based on the Choie and Novomestky (1989) optimisation also
deteriorated at the tails of the FTSE/JSE Top40 distribution.

The second routine tested was the optimisation of Armstrong et al. (2018). Recall that this
optimisation seeks to minimise the difference between the value of the replicating portfolio
and the target option at some future date (3 months in our case), subject to the cost of the
replicating portfolio being less than or equal to the premium received from the written option.
The optimisation returned a cost that matched the premium from the written option exactly.

Figure 6.7 showed that the optimisation of Armstrong et al. (2018) returned a single in-
the-money option on the FTSE/JSE Top40 option price surface. Based on this option and a
cash balance of R6, 425, Figure 6.8 showed that there were instances where the value of the
replicating portfolio was less than the value of the target option at t = 0.25.

In summary, the choice of optimisation routine can produce substantially different quantities for
the instruments in the replicating portfolio. The replicating portfolio based on the Choie and
Novomestky (1989) optimisation might be slightly more expensive to set up than the premium
received, but ensures that the value of the replicating portfolio is greater than or equal to the
value of the target option for the state variables considered at some future date. Alternatively,
the cost of setting up the replicating portfolio based on the optimisation of Armstrong et al.
(2018) is equal to the upfront premium received. The risk is that the value of the replicating
portfolio might be less than the value of the target option at some future date.

Considering the complexity of hedging an option written on the FTSE/JSE Top40, which exhibits
factors such as stochastic volatility and jumps, the static hedging approach is simple and shows
promising results.

In the next subsection, we test the static hedging performance for an arbitrary 1-year European
spread call option.

6.4 Results 120



6.4.4 Static Hedging Performance for Spread Call Option

This subsection presents the static hedging results for an arbitrary 1-year European spread call
option, hedged with vanilla FTSE/JSE Top40 European call options. Note that the underlying
instrument used to hedge the spread option is not necessarily the same as the underlying
instruments in the spread option.

Figure 6.9 below shows the real-world distribution for the spread (S1-S2) at t = 0.25, generated
from the P-SVJJ model with parameters shown in Table 6.7 below:

Tab. 6.7: SVJJ P-parameters for S1 and S2

Parameter S1 S2

Si(0) (i = 1, 2) 100 96
µ 0.13 0.11
α 0.2888 0.2888
β 6.0176 6.0176
σv 0.4543 0.4543
ρx,v -0.9374 -0.9374
λ 4.7284 4.7284
σS 0.0137 0.0137
µV 0.0077 0.0077
ρJ -0.3052 -0.3052

Fig. 6.9: Real-world distributions for S1 - S2 at t = 0.25
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We further set the correlation between the Brownian motions driving S1 and the FTSE/JSE
Top40 equal to 1, and similar for S2 and the FTSE/JSE Top40.

Figure 6.10 below shows the relationship between the FTSE/JSE Top40 price and the spread
(S1-S2) based on 10,000 simulations at t = 0.25:

Fig. 6.10: Relationship between FTSE/JSE Top40 and S1 − S2 at t = 0.25

A linear relationship between the price of the underlying instrument used to hedge the spread
option and the spread (S1-S2) must exist in order for the static hedge to work. Correlation is a
key risk when hedging European spread call options with vanilla European call options.

Table 6.8 details the market information for the spread call option on 16 November 2020:

Tab. 6.8: Market information for European spread call option on 16 November 2020

Option sale date 16 November 2020

Underlying hedge instrument FTSE/JSE Top40 index

ST op40(0) 52552

S1(0) 100

S2(0) 96

K 3

T 1

The static hedging results for the European spread call option are discussed next.
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Choie and Novometsky Optimisation

Using the optimisation routine of Choie and Novomestky (1989), Figure 6.11 below shows the
optimised quantities for the FTSE/JSE Top40 options based on the distribution in Figure 6.9:

Fig. 6.11: Replicating option quantities based on Choie and Novometsky optimisation

Table 6.9 below shows the replicating option quantities for the first hedging interval, t = 0 to
t = 0.25, expressed as a percentage:

Tab. 6.9: Replicating option quantity table based on Choie and Novometsky optimisation

Moneyness/Maturity 0.25 0.5 0.75 1
0.8 0.0055% 0.0075% 0.0089% 0.0099%
0.9 0.0014% 0.0045% 0.0060% 0.0071%
1 0.0000% 0.0019% 0.0033% 0.0043%

1.1 0.0000% 0.0009% 0.0019% 0.0027%
1.15 0.0000% 0.0003% 0.0009% 0.0016%

The replicating portfolio is skewed more towards in-the-money options, and the optimised cash
balance was R4. The European spread call option value was calculated from the three-factor
stochastic volatility model of Dempster and Hong (2002), and returned an option premium
of R7.48. The cost of setting up the replicating portfolio based on the optimisation of Choie
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and Novomestky (1989) was R10.23. Hence, the option writer recorded an upfront loss of
R7.48−R10.23 = −R2.75.

Figure 6.12 below compares the value of the replicating portfolio with the value of the European
spread call option at t = 0.25:

Fig. 6.12: Portfolio versus target option based on Choie and Novometsky optimisation

Note that the value of the replicating portfolio is greater than or equal to the value of the
European spread call option for all states at t = 0.25.

The static hedging results for the European spread call option based on the optimisation of
Armstrong et al. (2018) are discussed next.

Armstrong et al. Optimisation

Using the optimisation program of Armstrong et al. (2018), Figure 6.13 below shows the
optimised quantities for FTSE/JSE Top40 options based on the real-world spread distribution in
Figure 6.9.
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Fig. 6.13: Replicating option quantities based on Armstrong et al. optimisation

Again, the option quantities were calculated for the first hedging interval, t = 0 to t = 0.25.
Note that the optimisation of Armstrong et al. (2018) returns only a small number of options
on the FTSE/JSE Top40 surface (115% moneyness with 9 months to maturity and 80%, 110%,
and 115% moneyness with 1 year to maturity). The optimised cash balance was R3, and the
cost of setting up the replicating portfolio was R7.48, i.e., equal to the premium received from
the written European spread call option.

Figure 6.14 compares the value of the replicating portfolio with the value of the European
spread call option at t = 0.25:

Fig. 6.14: Portfolio versus target option based on Armstrong et al. optimisation
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Note that there are instances where the value of the replicating portfolio is less than the value
of the European spread call option at t = 0.25.

The results are discussed next.

Results Discussion

For the European spread call option, the optimisation of Choie and Novomestky (1989) returned
a replicating portfolio with option quantities spanning almost the entire FTSE/JSE Top40 option
price surface. Conversely, the optimisation of Armstrong et al. (2018) returned only a small
number of options on the FTSE/JSE Top40 option price surface.

Based on the optimisation of Choie and Novomestky (1989), the cost of setting up the replicating
portfolio was R10.23. The premium received from the written option was R7.48, hence, the
option writer recorded an upfront loss.

The cost of the replicating portfolio based on the optimisation of Armstrong et al. (2018)
was exactly equal to the premium received. However, the optimisation did not guarantee a
replicating portfolio value that was greater than or equal to the value of the European spread
call option at a future date.

It is important to note that the static hedge will only work if the price of the hedging instrument is
strongly and positively correlated with the spread generated by the two underlying instruments
in the spread option. For European spread call options written on two stocks that form part of
the FTSE/JSE Top40 index, this may very well be the case. We suggest this as an area for future
research.

6.5 Conclusion

The purpose of this chapter was to link the P- and Q-probability measures for stochastic volatility
models. To achieve this, we considered a portfolio risk management problem, i.e., static hedging
of a long-dated European call option and European spread call option in South Africa.

In risk management applications, the P-measure is typically used to generate real-world events
that can affect the value of a portfolio. Therefore, we calibrated the P-SVJJ model to historical
FTSE/JSE Top40 returns in order to generate share price and volatility shocks.

Pricing derivatives is done under the Q-measure due to the principle of no arbitrage. Therefore,
we calibrated the Q-SVJJ model to the FTSE/JSE Top40 option price surface in order to price
the options.
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The link between P and Q was introduced when we simulated future option values. The process
followed was to consider the current FTSE/JSE Top40 option price surface on 16 November
2020 and apply shocks to the underlying state variables (stock price and volatility), where
the shocks were produced by the P-SVJJ model over a 3-month period. We then revalued the
options for each of the scenarios using the Q-SVJJ model to produce a distribution of option
values at t = 0.25. Note that this process is similar to VaR.

For the static hedge of the long-dated European call option, we applied the optimisation
programs of Choie and Novomestky (1989) and Armstrong et al. (2018) to calculate the
instrument weights in the replicating portfolio. The Choie and Novomestky (1989) optimisation
produced weights across most of the FTSE/JSE option price surface and guaranteed that the
value of the replicating portfolio was greater than or equal to the value of the long-dated
European call option at a future date. However, the cost of setting up the replicating portfolio
was more expensive than the premium received, leading to an upfront loss. The Armstrong
et al. (2018) optimisation returned a single option on the FTSE/JSE option price surface with
cost equal to the premium received, but did not guarantee a replicating portfolio value that was
greater than or equal to the value of the long-dated European call option at a future date. The
difference between the two optimisation routines is the timing of the loss.

The static hedging results for the European spread call option were similar to the results for
the long-dated European call option. It is important to note that the key risk when hedging a
European spread call option with vanilla European call options is correlation. An area for future
research might be to consider a European spread call option that is struck on two stocks that
form part of the FTSE/JSE Top40 index.

Static hedging shows promising results in the South African market and option writers may
find that static hedging provides a cheaper and more effective solution than traditional delta-
hedging.
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Conclusion 7
In this thesis, we applied stochastic volatility models to three core problems in the financial
services industry: pricing derivatives embedded in life insurance contracts; multi-asset option
pricing; and portfolio risk management.

The research questions posed in Section 1.2 are answered below:

1. What are the important risk factors to consider when pricing long-dated options?

In Chapter 2, we extended the Heston-Hull-White model of Grzelak and Oosterlee (2011)
to include stochastic mortality and used this model to price long-dated GMMB and GMDB
products. Our results showed that stochastic interest rates are the dominant risk driver when
pricing these products. Furthermore, we proposed both a discrete-time AR(1)-ARCH(1) model
and continuous-time CIR++ model to capture mortality risk - an important risk factor for
products that are contingent on survival or death. We showed that the AR(1)-ARCH(1)
model produced a good fit to historical mortality rates, where the CIR++ model was able to
reproduce the input survival probability curve.

In Chapter 4, we derived the two-asset Heston-Hull-White model and used this model to
price long-dated spread options with the two-dimensional FFT of Hurd and Zhou (2010).
Our results showed that stochastic interest rates have a significant impact on long-dated
out-of-the-money European spread call options. The correlation between the stock and interest
processes also plays an important role - positive correlation increases the option value, where
negative correlation decreases the option value.

2. Does the FFT lead to significant time saving, but similar accuracy, compared to
Monte Carlo simulation for numerival evaluation of option values?

In Chapter 3, we showed that the two-factor gBm model and two-dimensional FFT of Hurd and
Zhou (2010) produced accurate “worst-of-2” call option prices compared to the Stulz (1982)
analytic price; a result that contradicts a previous finding in the literature. Furthermore, we
implemented the three-factor stochastic volatility model of Dempster and Hong (2002) with
the two-dimensional FFT and obtained “worst-of-2” call option prices that aligned closely with
the results from a Monte Carlo simulation. Lastly, we showed that the two-dimensional FFT
converges at an exponential rate, which leads to significant computational savings compared
to Monte Carlo simulation.
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In Chapter 4, we derived the characteristic function for the two-asset Heston-Hull-White
model and implemented the two-dimensional FFT of Hurd and Zhou (2010) to price spread
options with this model. We showed that the two-dimensional FFT is significantly faster than
Monte Carlo simulation and yields similar accuracy. The two-dimensional FFT converged
to the solution in approximately 3.23 seconds, where the Monte Carlo simulation took
approximately 168 seconds to converge.

3. Are jumps an important risk factor to consider when modelling equity returns?

In Chapter 5, we calibrated the Heston (1993) and Bates (1996) SVJ models to historical
S&P500 and FTSE/JSE Top40 returns, i.e., the real-world probability measure. Our results
showed that the goodness-of-fit statistic improved when jumps were added to the underlying
model.

In Chapter 6, we calibrated the SVJJ model of Duffie et al. (2000) to historical FTSE/JSE
Top40 returns. The calibration was not rejected at a 5% level of significance, indicating that
jumps are an important risk factor to consider when modelling equity returns.

4. Is volatility targeting an effective trading strategy?

In Chapter 5, we proposed a simulation-based framework to test various volatility targeting
strategies. Our results showed that volatility targeting is an effective risk management tool
that can be used to manage downside risk. However, it was noted that lower volatility targets
sacrifice upside return.

5. Can we hedge long-dated options with a combination of other derivatives and cash?

In Chapter 6, we implemented a static hedging strategy for a long-dated European call
option and European spread call option in South Africa. First, we calibrated the SVJJ model
to historical FTSE/JSE Top40 returns, i.e., the real-world probability measure. We then
calibrated the SVJJ model to the FTSE/JSE Top40 implied volatility surface (the risk-neutral
probability measure) in order to price the options. Next, we simulated numerous paths for
the underlying equity price, valued the options, and applied the static hedging programs
of Choie and Novomestky (1989) and Armstrong et al. (2018). We showed that the static
hedging programs replicated the target option well, but the upfront premium received from
the written option did not necessarily ensure that the value of the replicating portfolio was at
least equal to the value of the target option at a future date.

In this thesis, we showed that stochastic volatility models have numerous applications in the
financial services industry. Combining stochastic volatility models in the P- and Q-measure,
and applying the FFT and EMM numerical methods, may give market participants an edge to
identify profitable opportunities and improve risk management practices.
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As financial markets evolve and buzzwords such as “machine learning”, “AI”, and “blockchain”
become more common, one must not forget to appreciate the forces (stochastic volatility) that
drive them. There is truth in the following saying by Drishti Bablani: “Of course things change
course, but in the end, they circle back to the source.”
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