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Abstract

The classical Gaussian concentration inequality for Lipschitz functions is adapted
to a setting where the classical assumptions (i.e. Lipschitz and Gaussian) are not
met. The theory is more direct than much of the existing theory designed to handle
related generalizations. An application is presented to linear combinations of heavy
tailed random variables.

1 Introduction

Recall the Gaussian concentration inequality in one of its most classical forms: if ψ :
R
n → R is a Lipschitz function, and Z is a random vector in R

n with the standard
normal distribution, then for all t > 0,

P {|ψ (Z)−Mψ (Z)| > t} ≤ C exp

( −ct2
Lip (ψ)2

)
(1)

where C, c > 0 are universal constants and Lip (ψ) is the Lipschitz constant of ψ. Mψ (Z)
denotes the median of ψ (Z), and can be replaced with the mean Eψ (Z). It follows from
the Gaussian isoperimetric inequality of [22] and [5] that this can be improved to

P {ψ (Z)−Mψ (Z) > t} ≤ 1− Φ

(
t

Lip (ψ)

)

where Φ is the standard normal cumulative distribution. Equality clearly holds when ψ
is linear.

Assuming for simplicity that ψ is C1, it follows from a result of Pisier [21, Theorem
2.2 p176] that if Y is another random vector in R

n with the standard normal distribution,
independent of Z, then for any convex function ϕ : R → R,

Eϕ (ψ (Z)− ψ (Y )) ≤ Eϕ
(π
2
|∇ψ (Z)|Z ′

)
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where Z ′ has the standard normal distribution in R and is independent of Z. This often
implies that one can compare the tails of ψ (Z)−ψ (Y ) to that of π

2
|∇ψ (Z)|Z ′, which in

turn leads to a bound on the tails of ψ (Z)−Mψ (Z).
Pisier’s version of Gaussian concentration has three advantages over the classical ver-

sion. The first is that the proof (with input from Maurey) is quite simple. The sec-
ond is that the Lipschitz condition has been removed. The third is that the result-
ing concentration inequality is determined by the distribution of |∇ψ (Z)| rather than
Lip(ψ) = sup |∇ψ (·)|. This is really the way things should be, considering that the
Lipschitz constant of a function might be determined by behaviour on sets of small mea-
sure that have little effect on concentration properties of ψ(Z). This can be seen in the
examples

u(x) = |x|+max

{
0, ε− |x|

ε

}
v(x) = |x| + ε

√
|x|

1 +
√
|x|

for x ∈ R
n and ε > 0.

In two papers, ’Variations and extensions of the Gaussian concentration inequality’
Part I (here) and Part II (to appear elsewhere), we study ways in which to apply the
above inequalities in settings where they have not previously been applied because they
appear to be inapplicable. The result is that the Gaussian concentration inequality gives
rise to various inequalities that seem to have nothing to do with the normal distribution.
This paper, Part I, focuses more on the classical version, while Part II focuses on Pisier’s
version. The theory is from scratch, in that no background is needed, other than a basic
knowledge of mathematics (the one thing that we don’t prove is the Gaussian concen-
tration inequality itself). Our opinion is that it is more direct than much of the modern
theory of concentration of measure, including for example the theory of Poincaré and log-
Sobolev inequalities. We refer the reader to [6, 16] for information on the concentration
of measure phenomenon.

In Section 2 we present the main ideas of the paper. In Section 3, as an illustration
of these ideas, we prove a concentration inequality for linear combinations of heavy tailed
random variables: if 0 < q ≤ 1 and (Xi)

n
1 is a sequence of independent symmetric random

variables with P {|Xi| > t} = exp (−tq) for all t > 0, then

P

{∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣ > t

}
≤ 2 exp

(
−min

{
C−1/qq2/q

(
t

|a|

)2

, C−1

(
t

|a|∞

)q})
(2)

(to say that Xi is symmetric means that Xi and −Xi have the same distribution). This
ties in naturally with known results in the case 1 ≤ q <∞ since the dual of ℓnq is isometric
to ℓn∞ when 0 < q ≤ 1. Considering that

C
1/q
1 q−2/q |a|2 ≤ Var

(
n∑

i=1

aiXi

)
≤ C

1/q
2 q−2/q |a|2

we see that the coefficient C−1/qq2/q is sharp up to the value of C. By applying sym-
metrization and contraction techniques it can be applied in the non-symmetric case as
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long as EXi = 0 and P {|Xi| > t} ≤ C exp (−tq), with C−1/qq2/q replaced by a different
quantity. This follows work of Hitczenko, Montgomery-Smith and Oleszkiewicz [12] who
estimated the pth moment of |∑ aiXi|. The authors of [12] presented a significantly weaker
result:

lim
t→∞

logt ln

[
P

{∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣ > t

}]−1

= q.

See Cor. 6.5 in their paper. The case of equal coefficients, which avoids the main obstacle,
is considered in [3], see their Eq. (3.6). A similar inequality appears in [14] (see their Sec.
4) but does not include the sub-Gaussian part. The classical case q ≥ 1 is covered in [6]
(their Ex. 2.27 p.50) but we did not see any mention of the case q ∈ (0, 1). Of course
in the vast array of techniques available there are undoubtedly several ways to prove (2),
we present two, and the result may be folklore. More applications, mostly non-linear, are
given in [8, 9] and will appear in future papers.

Comments and notation

M denotes median, and C, c, C ′ etc. usually denote positive universal constants that may
represent different values at each appearance. Dependence on variables will usually be
indicated by subscripts, Cq, cq etc. The Euclidean norm of a vector a ∈ R

n is denoted |a|
while |a|p = (

∑n
1 |ai|

p)
1/p

is its ℓnp -norm (1 ≤ p < ∞), and |a|∞ = max{|ai|}. Set-builder
notation such as {x ∈ R

n : ψ(x) ≤ R} will at times be simplified to {ψ ≤ R}. The term
’random variable’ will be used exclusively for real valued random variables. Let γn denote
the standard Gaussian measure on R

n with density

dγn
dx

= (2π)−n/2 exp
(
− |x|2 /2

)
.

Let Φ denote the standard normal cumulative distribution and φ = Φ′ the standard
normal density. The expression Z ∼ N(0, In) means that the random vector Z follows
the standard normal distribution on R

n (with mean 0 and identity covariance matrix In).
The ’Gaussian’ in ’Gaussian concentration’ refers to Z, not ψ (Z), and includes the case
where ψ (Z) has thicker-than-Gaussian tails, which may occur when ψ grows more rapidly
than linear. The C1 condition that appears from time to time is stronger than necessary;
as long as f is locally Lipschitz it will be differentiable almost everywhere, and we will
often disregard certain points of non-differentiability without explicitly commenting on
the matter. The sigma algebra on R

n is always assumed to be the Borel sigma algebra,
so measurable means Borel measurable. The following lemma will be used implicitly.

Lemma 1 If f, g : [0,∞) → [0,∞) are continuous strictly increasing functions with
f (0) = g (0) = 0, t ∈ [0,∞) and s = max {f (t) , g (t)} then t = min {f−1 (s) , g−1 (s)}.
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2 The methodology

2.1 Gaussian concentration for non-Lipschitz functions

In this Section we discuss an alternative technique for handling the case when ψ is non-
Lipschitz, or when the Lipschitz constant of ψ is much larger than the average local
Lipschitz constant, so (1) either does not apply or becomes crude. The technique is
outlined as follows: modify ψ on a set of small probability on which it behaves badly so
that the modified function ψ∗ is Lipschitz, apply classical Gaussian concentration to ψ∗,
and then transfer the result for ψ∗ back to ψ. We now describe this in more detail.

Consider the setting where Z has the standard normal distribution in R
n and ψ :

R
n → R is, say, C1, but is not assumed to be Lipschitz. Restrict ψ to some set E

such that Z ∈ E with high probability and |∇ψ| is bounded nicely on E. The set E =
{x ∈ R

n : |∇ψ (x)| ≤ R} is often a natural choice (with appropriate R > 0). Assuming
that E is convex (we discuss the non-convex case next), we have Lip (ψ|E) ≤ supE |∇ψ|.
One can then extend the restriction ψ|E to the entire space R

n so that the extension
ψ∗ obeys Lip (ψ∗) = Lip (ψ|E) ≤ R. By applying classical Gaussian concentration of
Lipschitz functions as in (1) to ψ∗ and observing that P {ψ (Z) = ψ∗ (Z)} ≥ P {Z ∈ E},
we may transfer the concentration inequality for ψ∗ (Z) about Mψ∗ (Z) to an inequality
for ψ (Z) about Mψ (Z).

The idea of proving concentration inequalities by modifying a function on a set where it
behaves badly is not new. The technique based on restriction involving |∇ψ| and Lipschitz
extension is found in [1, Lemma 2.2], [2, Section 3], [4, Section 6] and [19, Section 5], and
is related to an observation contained in unpublished lecture notes that we prepared and
distributed at Yale in 2012 and 2014. In these papers one assumes that E is convex, or at
least that Lip (ψ|E) ≤ supE |∇ψ| (which is not necessarily the case when E is not convex).
In [11, Corollary] and [28, Section 3] a related procedure is also used, but in a slightly
different setting where the measure is supported on [0, 1]n and the Lipschitz constant is
taken with respect to the Hamming distance, see the bottom of p. 264 there.

2.2 When E = {|∇ψ| ≤ R} is not convex

Without convexity one cannot apply the bound Lip(ψ|E) ≤ supE |∇ψ|. This is seen, for
example, by considering a set in the shape of the letter C, where the two ends of the C
are close together so that the C looks like an O, and a function which increases gradually
as we move from one end of the C to the other. We consider a parameter L(E), which
measures the distance one has to travel inside E to get from a point x to a point y as
compared to the Euclidean distance, this ratio maximized over all pairs of distinct points
in E. In Proposition 5 we show that Lip(ψ|E) ≤ L(E) supE |∇ψ| and that L(E) is the
correct coefficient. But this is not enough: we must provide useful bounds on L(E), which
we do in Proposition 6. We show that whenever E is a certain non-affine deformation of
an unconditional convex body (as the inverse image under a continuous coordinate-wise
transformation), then L(E) ≤

√
2.

Another approach is to find a convex subset K ⊆ E and then apply the bound
Lip(ψ|K) ≤ supK |∇ψ| ≤ supE |∇ψ|. Ideally one would want the Gaussian measure
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of K to be comparable to the Gaussian measure of E, in the sense that

γn (R
n \K) ≤ Cγn

(
R
n \ C−1E

)

for a universal constant C > 0. In Section 4 we present some very basic observations
in this direction, motivated by the methodology in Sections 2.1 and 2.3 and of inde-
pendent interest. We refer the reader to [24, 25] for a deeper discussion of the topic of
approximating star bodies by convex sets, including various open problems.

2.3 Non-Gaussian concentration

If X is a random vector in R
n with any distribution µ, then X has the same distribution

as T (Z) for some measurable function T : Rn → R
n, where Z is a random vector with the

standard normal distribution on R
n, denoted γn. One such map is the Knöthe-Rosenblatt

rearrangement, see for example [27], and in some cases one can write down an explicit
formula for T . For our purposes we may assume that X = T (Z), so f(X) = (f ◦ T )(Z).
Under fairly general conditions we may then apply Gaussian concentration to ψ = f ◦T to
obtain a concentration inequality for f(X). Let us reiterate this in words: any function of
any random vector has the same distribution as a function of a Gaussian random vector.

Transportation methods, and a variety of them, are quite standard in the theory of
concentration of measure, see for example [6, 7, 10, 16, 23, 26]. The above procedure
in particular is alluded to in [20, p. 1046] in the context where µ is a Lipschitz image
of the standard Gaussian measure, in anticipation of applying the classical Gaussian
concentration inequality for Lipschitz functions. Note that if one can apply Gaussian
concentration to a wider class of functions ψ as in Section 2.1 above, then one may apply
Gaussian concentration to a wider class of non-Gaussian measures. The observations in
Section 2.1 and those of this section therefore work particularly well together and each
increases the usefulness of the other. This synergy is at the heart of the paper.

One is thus left with the problem of finding a good choice of T . If µ is an n-fold
product measure, then the most natural T acts coordinate-wise in the obvious manner
(and is the Knöthe-Rosenblatt rearrangement). If µ is spherically symmetric, then the
most natural T acts radially. For most other measures, we expect that the Knöthe-
Rosenblatt rearrangement is not a good choice. In the case of log-concave measures, the
Brenier map (see for example [13]) may be better, although the Brenier map is best for
minimizing a transportation cost, which is not exactly what we want.

3 Application: Concentration of linear combinations

of heavy tailed random variables

Concentration of linear combinations of independent random variables is most classically
studied under the assumption of exponential integrability, i.e. E exp (εXi) <∞ for some
ε > 0. In this context, the exponential moment method plays an essential role: Using
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Markov’s inequality and independence,

P

{
n∑

i=1

aiXi > t

}
= P

{
exp

(
λ

n∑

i=1

aiXi

)
> exp (λt)

}
≤ exp (−λt)E exp

(
λ

n∑

i=1

aiXi

)

= exp (−λt)
n∏

i=1

E exp (λaiXi) .

The resulting estimate is then optimized over λ > 0 such that E exp (λaiXi) <∞ for all i.
Outside the realm of exponential integrability (still assuming independence and linearity),
one would estimate power moments and use Markov’s inequality,

P

{∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣ > t

}
= P

{∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣

p

> tp

}
≤ t−pE

∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣

p

. (3)

Power moments of sums are more difficult to compute than exponential moments because
power functions lack the critical property of the exponential function as used in the
exponential moment method. If we assume that each Xi has a symmetric distribution
and that P {|Xi| ≥ t} = exp (−Ni(t)) for some concave function N : [0,∞) → [0,∞),
then it was shown in [12, Theorem 1.1] that for all p ≥ 2,

(
E

∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣

p)1/p

≤ C




(

n∑

i=1

|ai|p E |Xi|p
)1/p

+
√
p

(
n∑

i=1

|ai|2 E |Xi|2
)1/2



 (4)

where C > 0 is a universal constant, with a corresponding lower bound with C replaced
by a different constant c > 0. General upper and lower bounds for the pth moment of a
sum of independent random variables were later presented in [15], reducing the problem
of computing these moments to that of evaluating a certain Orlicz norm type expression.

In the special case where (Xi)
n
1 are i.i.d. symmetric Weibull variables with P {|Xi| ≥ t} =

exp (−tq), for 0 < q ≤ 1, we show below that in (4), |a|p can be replaced with |a|∞ at the

cost of C1/q, i.e.

(
E

∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣

p)1/p

≤
(
C

q

)1/q (
p1/q |a|∞ +

√
p |a|

)
(5)

which by Markov’s inequality leads to the tail estimate

P

{∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣ > t

}
≤ 2 exp

(
−cqmin

{(
t

|a|

)2

,

(
t

|a|∞

)q})
(6)

where cq > 0 is made explicit in Theorem 3. This is more subtle than observing that the
ℓnp norm is equivalent to the ℓn∞ norm for p > c lnn and comes down to the geometry of
Minkowski sums of the form uBℓ1 + vBℓ2 and the question of when they contain Bℓr for
any given 1 < r < 2 (n does not play a role here).
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If X1 is any random variable and X ′
1 is an independent copy of X1, and if a > 0 is

such that P {|X1| > a} ≤ 1/2, then

{X1 > t+ a} ∩ {X ′
1 ≤ a} ⊆ {X1 −X ′

1 > t} ⊆ {X1 > t/2} ∪ {X ′
1 < −t/2}

so by independence and identical distributions,

1

2
P {X1 > t + a} ≤ P {X1 −X ′

1 > t} ≤ P {|X1| > t/2} . (7)

The significance is that X1 −X ′
1 is symmetric. This can be combined with the following

contraction principle, see [17, Lemma 4.6] for a more general version:

Lemma 2 Let ϕ : [0,∞) → [0,∞) be a convex function, K1 ≥ 1, K2 > 0, and let (Xi)
n
1

and (Yi)
n
1 each be i.i.d. sequences of symmetric random variables with P {|Xi| > t} ≤

K1P {K2 |Yi| > t} for all i and all t > 0. Then for all a ∈ R
n,

Eϕ

(∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣

)
≤ Eϕ

(
K1K2

∣∣∣∣∣

n∑

i=1

aiYi

∣∣∣∣∣

)
.

If we are given an i.i.d. sequence of random variables (Xi)
n
1 that satisfy a tail bound

such as P {|Xi| > t} ≤ h(t), then we consider the symmetrized sequence (Xi −X ′
i)
n
1 which

obeys a similar tail bound, apply known results for a specific sequence of random vari-
ables (Yi)

n
1 with similar tails (e.g. Weibull variables), compare Eϕ (|∑n

i=1 ai (Xi −X ′
i)|) to

Eϕ (K1K2 |
∑n

i=1 aiYi|) using Lemma 2, convert this to a bound on P {|∑n
i=1 ai (Xi −X ′

i)| > t}
(using say Markov’s inequality), and then transfer the result for

∑n
i=1 aiXi −

∑n
i=1 aiX

′
i

back to a bound on P {|∑n
i=1 aiXi| > t} using (7). In this way, estimates such as (6) may

be extended to the case of tail bounds such as P {|Xi| > t} ≤ C exp (−tq).
Proof of (5) and (6). By Hölder’s inequality and optimization, for all p > 2 and
s ∈ (0,∞),

|a|p ≤ |a|1−2/p
∞ |a|2/p ≤ ω(s) |a|∞ + s |a|

where

ω(s) =






(2/p)2/(p−2)(1− 2/p)s−2/(p−2) : 0 < s ≤ 2/p
1− s : 2/p < s ≤ 1
0 : s > 1

.

To see this, assume momentarily and without loss of generaility that |a| = 1 and optimize
(r1−2/p − s)/r over r ∈ [0, 1]. Setting s = 2p1/2−1/q,

|a|p ≤
{

(1− 2/p)p−(3q−2)/[(p−2)q] |a|∞ + 2p1/2−1/q |a| : 0 < q < 2/3
|a|∞ + 2p1/2−1/q |a| : 2/3 ≤ q ≤ 1

.

We use this unless 0 < q < 2/3 and 2 ≤ p ≤ 3 (3 is arbitrary), in which case we use
|a|p ≤ |a|. The result is that |a|p ≤ C1/q

(
|a|∞ + p1/2−1/q |a|

)
, and this clearly holds for

p = 2 as well. (5) now follows from (4) using E |X1|r = (r/q)Γ(r/q) and cs ≤ Γ(s)1/s ≤ Cs

7



for all s ≥ 2. The probability bound follows by optimizing over p. In Case 1 we assume
that p1/q |a|∞ ≤ √

p, and then

P

{∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣ > t

}
≤ t−pE

∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣

p

≤
(
Cq

√
p

t

)p
= exp

(
−cqt2

)

for p = cqt
2. This value of p satisfies the defining inequality of Case 1 if t ≤ cq |a|−q/(2−q)∞ .

In Case 2 we assume that p1/q |a|∞ ≥ √
p, and then

P

{∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣ > t

}
≤ t−pE

∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣

p

≤
(
Cqp

1/q |a|∞
t

)p
≤ exp

(
−Cq

tq

|a|q∞

)

for p =
(
C−1
q |a|−1

∞ t
)q
e−1. This value of p is allowed in Case 2 provided t ≥ Cq |a|−q/(2−q)∞ .

For cq |a|−q/(2−q)∞ ≤ t ≤ Cq |a|−q/(2−q)∞ , the result follows by adjusting the values of cq and
Cq and using the fact that the cumulative distribution is non-decreasing.

We now present a direct proof of (6) without using (5) or the results of [12]. The
methodology used is that outlined in Section 2 and does not make use of linearity. The
result is dimension independent and applies in the infinite dimensional setting with a ∈ ℓ2
(the partial sums are Cauchy in L2).

Theorem 3 There exists C > 0 such that the following is true. Let n ∈ N, 0 < q ≤ 1,
a ∈ R

n, a 6= 0, and (Xi)
n
1 an i.i.d. sequence of symmetric Weibull random variables with

parameter q, i.e. P {|Xi| > t} = exp (−tq), t ≥ 0. Then for all t > 0,

P

{∣∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣∣ > t

}
≤ C exp

(
−min

{
C−1/qq2/q

(
t

|a|

)2

, C−1

(
t

|a|∞

)q})
. (8)

Proof. Write X = (F−1Φ (Zi))
n
i=1, where F (t) = P {X1 ≤ t} and Z is a random vector

in R
n with the standard normal distribution, and define ψ (x) =

∑n
1 aiF

−1Φ (xi), so that∑n
1 aiXi = ψ (Z), and

|∇ψ (x)| =
(

n∑

i=1

(
aiφ (Φ

−1 (Φxi))

f (F−1 (Φxi))

)2
)1/2

where f = F ′. Now, by comparing derivatives and behaviour at infinity,

φ(t)

1 + t
≤ 1− Φ (t) ≤ φ(t)

t
: t > 0

which implies that for 1/2 ≤ t < 1, φ (Φ−1 (t)) ≤ (1 + Φ−1 (t)) (1− t). Now 1 − Φ (t) ≤
φ(t) for t ≥ 1, so for 1/2 ≤ t < 1 we have (taking max = 1 when second argument
undefined),

1 + Φ−1 (t) ≤ 1 + max

{
1,

√
2 ln

1√
2π (1− t)

}
.
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By direct computation, for the same range of t,

f
(
F−1 (t)

)
= q (1− t)

(
ln

1

2 (1− t)

)−(−1+1/q)

so (
φ (Φ−1 (t))

f (F−1 (t))

)2

≤ q−2
(
AΦ−1 (t) +B

)−2+4/q

for universal constants A,B > 0, and

|∇ψ (x)| =

(
n∑

i=1

(
aiφ (Φ

−1 (Φ |xi|))
f (F−1 (Φ |xi|))

)2
)1/2

≤ q−1

(
n∑

i=1

a2i (A |xi|+B)−2+4/q

)1/2

. (9)

The function

]x[ =

(
n∑

i=1

a2i |xi|−2+4/q

)q/(4−2q)

is a norm, so

Lip (]·[) = sup
{
]θ[ : θ ∈ Sn−1

}

= sup






(
n∑

i=1

a2i |xi|−1+2/q

)q/(4−2q)

: xi ≥ 0,

n∑

i=1

xi = 1






= |a|q/(2−q)∞ .

The Lipschitz constant of x 7→ ](A |xi|+B)n1 [ is therefore at most A |a|q/(2−q)∞ , and by
classical Gaussian concentration applied to this function, with probability at least 1 −
C exp (−cλ2),

(
n∑

i=1

a2i (A |Zi|+B)−2+4/q

)q/(4−2q)

≤ E

(
n∑

i=1

a2i (A |Zi|+B)−2+4/q

)q/(4−2q)

+ A |a|q/(2−q)∞ λ

≤
(

n∑

i=1

a2iE (A |Z1|+ B)−2+4/q

)q/(4−2q)

+ A |a|q/(2−q)∞ λ

=
(
E (A |Z1|+B)−2+4/q

)q/(4−2q)

|a|q/(2−q) + A |a|q/(2−q)∞ λ
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i.e.
(

n∑

i=1

a2i (A |Zi|+B)−2+4/q

)1/2

≤
[(

E (A |Z1|+B)−2+4/q
)q/(4−2q)

|a|q/(2−q) + A |a|q/(2−q)∞ λ

]−1+2/q

. (10)

Define

K =



x ∈ R

n : q−1

(
n∑

i=1

a2i (A |xi|+B)−2+4/q

)1/2

≤ R





where

R = q−1

[(
E (A |Z1|+B)−2+4/q

)q/(4−2q)

|a|q/(2−q) + A |a|q/(2−q)∞ λ

]−1+2/q

≤ q−12−1+2/q
(
E (A |Z1|+B)−2+4/q

)1/2
|a|+ q−1(2A)−1+2/q |a|∞ λ−1+2/q

≤ C
1/q
2 (1/q)1/q |a|+ q−1(2A)−1+2/q |a|∞ λ−1+2/q. (11)

By (10) and its probability bound, γn (K) ≥ 1 − C exp (−cλ2). Since −2 + 4/q ≥ 2 the

function x 7→ ∑n
i=1 a

2
i (A |xi|+B)−2+4/q is the sum of convex functions and is therefore

itself convex, which implies that K is convex. Since K is convex and, by (9), |∇ψ (x)| ≤ R
on K, the restricted function ψ|K is Lipschitz, with corresponding Lipschitz constant at
most R. Let ψ♯ denote a Lipschitz extension of the restriction ψ|K such that Lip

(
ψ♯
)
≤ R.

The existence of extensions of real valued Lipschitz functions preserving the Lipschitz
constant is a basic result in the theory of metric spaces, see e.g. [18]. Applying Gaussian
concentration to ψ♯,

P
{∣∣ψ♯ (Z)−Mψ♯ (Z)

∣∣ > λR
}
≤ C exp

(
−cλ2

)

yet P
{
ψ♯ (Z) 6= ψ (Z)

}
≤ C exp (−cλ2) so P

{∣∣ψ (Z)−Mψ♯ (Z)
∣∣ > λR

}
≤ 2C exp (−cλ2).

Assuming that this probability bound is less than 1/2,

P
{
ψ (Z) <Mψ♯ (Z)− λR

}
< 1/2

P
{
ψ (Z) >Mψ♯ (Z) + λR

}
< 1/2

which implies that
∣∣Mψ (Z)−Mψ♯ (Z)

∣∣ ≤ λR. The bound for concentration of ψ (Z)
around Mψ♯ (Z) can now be written as a concentration inequality around Mψ (Z), i.e.

P {|ψ (Z)−Mψ (Z)| > 2λR} ≤ 2C exp
(
−cλ2

)
.

By symmetry, Mψ (Z) = 0. Now, remembering that R is bounded in terms of λ, see (11),
set t = λR and estimate λ in terms of t using Lemma 1. By increasing the value of C
in the probability bound as stated in the theorem, this probability bound becomes trivial
unless the probability bound above is less than 1/2 as required.
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4 Beyond convexity

Here we elaborate on the discussion in Section 2.2.

4.1 The parameter L(·)
For any set A ⊆ R

n containing at least two points, let

L(A) = sup

{
inf {Var(f) : f ∈ C([0, 1], A), f(0) = x, f(1) = y}

|x− y| : x, y ∈ A, x 6= y

}

where C([0, 1], A) is the collection of all continuous functions f : [0, 1] → A and Var(f) is
the total variation of f ,

Var(f) = sup

{
N∑

i=1

|f(ti)− f(ti−1)| : N ∈ N, 0 = t0 < t1 < ... < tN = 1

}
.

Note that the numerator in the definition of L(A) is a sort of geodesic distance. We
assume the usual convention that inf ∅ = ∞, so unless A is path connected, L(A) = ∞.
If A contains fewer than two points, set L(A) = 1.

Whenever A is convex, L(A) = 1. Conversely,

Proposition 4 If A ⊆ R
n is closed and L(A) = 1 then A is convex.

Proof. Consider any x, y ∈ A with x 6= y, any λ ∈ (0, 1) and any f ∈ C([0, 1], A) such
that f(0) = x, f(1) = y. By continuity there exists t ∈ (0, 1) and θ ⊥ (y − x) such that
f(t) = λx+ (1− λ)y + θ. Now f(t) ∈ A ∩B(λx+ (1− λ)y, |θ|) and

Var(f) ≥
√
(1− λ)2 |x− y|2 + |θ|2 +

√
λ2 |x− y|2 + |θ|2

and the result follows by taking Var(f) → |x− y| and using the fact that A is closed.
Let Lip (ψ, x) denote the local Lipschitz constant of a function ψ : A → R around a

point x ∈ A,
Lip (ψ, x) = lim

ε→0+
Lip

(
ψ|B(x,ε)∩A

)
(12)

where B (x, ε) denotes the Euclidean ball centred at x of radius ε. When A contains a
neighbourhood of x ∈ R

n and ∇ψ is continuous at x, then Lip (ψ, x) = |∇ψ(x)|. Our
main reason for defining L(·) is the following observation.

Proposition 5 For any non-empty set A ⊆ R
n with L(A) < ∞ and any function ψ :

A→ R,
Lip (ψ) ≤ L(A) sup {Lip (ψ, x) : x ∈ A} . (13)

If, furthermore, A contains at least two points and is locally convex in the sense that for
all x ∈ A there exists ε > 0 such that B (x, ε) ∩ A is convex, then

L(A) = sup
ψ:A→R

{
Lip (ψ)

sup {Lip (ψ, x) : x ∈ A} : 0 < Lip (ψ) <∞
}
.

11



Proof. We start with (13). Let L = sup {Lip (ψ, x) : x ∈ A}. Consider any x, y ∈ A,
any ε > 0, and any continuous path f : [0, 1] → A between x and y. It follows from the
definition of L and of the local Lipschitz constant that for each z ∈ f([0, 1]) there exists a
nonempty open ball Bz centered at z with Lip (ψ|Bz

) < L+ε. Let I be the collection of all
connected components of inverse images of these balls (each will be an interval that is open
in the subspace topology of [0, 1]). The elements of I cover [0, 1] so by compactness there is
a finite subcover I∗ ⊆ I. After removing unnecessary elements of I∗ one by one, we arrive
at a minimal subcover I∗∗. The elements of I∗∗ can then be ordered as follows: I1 < I2 if
there exists t1 ∈ I1 such that for all t2 ∈ I2, t1 < t2, and I1 ≤ I2 if either I1 < I2 or I1 = I2.
By minimality this is a linear ordering. The elements of I∗∗ can then be labelled I1, I2...IN ,
and we write I1 = [a1, b1), Ii = (ai, bi) for 2 ≤ i ≤ N − 1, and IN = (aN , bN ], with a1 = 0
and bN = 1. We assume that N ≥ 3 and leave the simpler case N ∈ {1, 2} to the reader.
Now ai+1 < bi for all 1 ≤ i ≤ N − 1, otherwise bi /∈ ∪Ij , so there exists ci ∈ (ai+1, bi). By
minimality, bi−1 < ai+1 for 2 ≤ i ≤ N − 1 (otherwise Ii ⊆ Ii−1 ∪ Ii+1). So, setting c0 = 0
and cN = 1, the sequence (ci)

N
0 is strictly increasing. It also follows that for all 1 ≤ i ≤ N ,

[ci−1, ci] ⊆ Ii, and from the construction of I and I∗∗, that ψ is (L+ ε)-Lipschitz on each
f(Ii). This implies that |ψ(f(ci))− ψ(f(ci−1))| ≤ (L + ε) |f(ci)− f(ci−1)|, and by the
triangle inequality |ψ(f(0))− ψ(f(1))| ≤ (L+ ε)

∑N
i=1 |f(ci−1)− f(ci)| ≤ (L+ ε)Var(f).

We now choose f such that Var(f) ≤ (L(A) + ε) |x− y| and we let ε → 0. This implies
that |ψ(x)− ψ(y)| ≤ L(A)L |x− y|, which implies (13). This also implies a lower bound
for L(A).

We now prove the second part under the assumption that A is locally convex, as
defined in the statement of the theorem. For any x, y ∈ A let

ρ(x, y) = inf {Var(f) : f ∈ C([0, 1], A), f(0) = x, f(1) = y}

It is easily seen that ρ is a metric on A. Now consider any ε > 0. It follows from the
definition of L(A), that there exist x, y ∈ A such that ρ(x, y) > (L(A)− ε) |x− y|. Now
consider the function g : A → [0,∞) defined as g(z) = ρ(x, z), for which g(x) = 0,
g(y) = ρ(x, y), so Lip(g) > L(A) − ε. It follows from the definition of ρ, the triangle
inequality, and the assumption of local convexity that g is locally 1-Lipschitz. This shows
that

L(A) <
Lip(g)

sup {Lip (g, x) : x ∈ A} + ε

and the result follows by sending ε→ 0.
Consider the case where A is a non-affine deformation of a convex body K, as the

inverse image under the action of some continuous map T : Rn → R
n. When K is 1-

unconditional (i.e. invariant under coordinate reflections) and T acts coordinatewise and
monotonically, then L(A) ≤

√
2. So, for example, L(Bn

p ) ≤
√
2 for all p ∈ (0, 1), where

Bn
p =

{
x ∈ R

n :

n∑

i=1

|xi|p ≤ 1

}
.

The general case is covered by the following proposition.
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Proposition 6 Let n ∈ N and let Υn denote the collection of all K ⊆ R
n with the

following property: there exists a ∈ [−∞,∞]n (depending on K) such that if x ∈ K and
y ∈ R

n, and each coordinate of y is between the corresponding coordinates of x and a in
the non-strict sense (i.e. either ai ≤ yi ≤ xi or xi ≤ yi ≤ ai), then y ∈ K. For each
1 ≤ i ≤ n, let hi : R → R be a continuous non-decreasing function, and let T : Rn → R

n

be defined as Tx = (hi(xi))
n
1 . Then for any K ∈ Υn, L (K) ≤

√
2 and T−1K ∈ Υn, and

so L (T−1(K)) ≤
√
2.

Proof. Consider any K ∈ Υn. We first show that T−1K ∈ Υn. Since K ∈ Υn ∃a ∈
[−∞,∞]n as in the statement of the theorem. For each 1 ≤ i ≤ n, since hi is non-
decreasing, there exists bi ∈ [−∞,∞] such that for all t ∈ R, if t ≤ bi, then hi(t) ≤ ai,
and if t ≥ bi then hi(t) ≥ ai (consider three cases: ai is an upper bound for range (hi),
ai is a lower bound, or neither). Now consider any x ∈ T−1 (K) and y ∈ R

n, such
that the coordinates of y are between the corresponding coordinates of x and those of b
(always meant in the non-strict sense). By the fact that the hi are non-decreasing, and
by construction of b, it follows that the coordinates of Ty are all between the coordinates
of Tx ∈ K and those of a. Since K ∈ Υn, what we have just shown implies that Ty ∈ K,
and therefore y ∈ T−1K. This shows that T−1K satisfies the defining property of Υn.
We now show that L(K) ≤

√
2. If K is empty, or a singleton, then L (K) = 1, and we

may assume without loss of generality that |K| ≥ 2. Consider any x, y ∈ K with x 6= y.
Now define z ∈ R

n as follows. If ai is between xi and yi (which is only possible if ai ∈ R),
then set zi = ai (and let the collection of all such i be denoted E), otherwise let zi be
the element of the set {xi, yi} that is closest to ai, with the obvious interpretation when
ai ∈ {±∞}. For all λ ∈ [0, 1] and all 1 ≤ i ≤ n, λzi+ (1− λ)xi is between ai and xi, and
therefore λz + (1− λ) x ∈ K. Similarly, λy + (1− λ) z ∈ K, and this defines a polygonal
path of length |x− z|+ |y − z| in K from x to y. Furthermore,

〈x− z, y − z〉 =
∑

i∈E

(xi − ai) (yi − ai) ≤ 0.

Using this inequality and comparing the ℓ22 and ℓ21 norms,

|x− y|2 = |x− z|2 + |y − z|2 − 2 〈x− z, y − z〉 ≥ 1

2
(|x− z|+ |y − z|)2

and it follows that L(K) ≤
√
2.

For a function ψ : Rn → R define

L(ψ) = sup
t∈R

L ({ψ ≤ t}) . (14)

The following result summarizes the methodology outlined in Section 2.

Theorem 7 Let n ∈ N, A > 0, let µ be a probability measure on R
n, and let T : Rn → R

n

and f,Q : Rn → R be measurable functions such that µ = Tγn, and such that f ◦ T is
locally Lipschitz with

Q (x) ≥ Lip (f ◦ T, x)
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for all x ∈ R
n. Let X and Z be random vectors in R

n, where the distribution of X is µ,
and Z follows the standard normal distribution. Let R > 0 and t > Φ−1

(
1− (2A+ 4)−1)

be such that P {Q(Z) > R} ≤ A (1− Φ(t)). Then

P {|f(X)−Mf(X)| > 2L(Q)Rt} ≤ (A+ 2) (1− Φ(t))

where L(Q) is defined by (14).

Proof of Theorem 7. Since the distribution of the random vector T (Z) is µ, we
may assume without loss of generality that X = T (Z). Set ψ = f ◦ T , in which case
ψ(Z) = f(X). Let K = {x : Q(x) ≤ R}. By assumption, P {Z ∈ K} ≥ 1− A (1− Φ(t)),
and for all x ∈ K, Lip (ψ|K , x) ≤ Lip (ψ, x) ≤ R. By Proposition 5, Lip (ψ|K) ≤ L (Q)R.

As in the proof of Theorem 3, the function ψ|K may be extended to a function ψ̃ : Rn → R

such that Lip
(
ψ̃
)
= Lip (ψ|K). By Gaussian concentration of Lipschitz functions and

the union bound, it follows that with probability at least 1− (A+ 2) (1− Φ(t)), ψ(Z) =

ψ̃(Z), and
∣∣∣ψ̃(Z)−Mψ̃(Z)

∣∣∣ ≤ L (Q)Rt. Since (A+ 2) (1− Φ(t)) < 1/2, this implies that

greater than 50% of the mass of the distribution of ψ(Z) lies in the closed interval from

Mψ̃(Z) − L (Q)Rt to Mψ̃(Z) + L (Q)Rt, so
∣∣∣Mψ(Z)−Mψ̃(Z)

∣∣∣ ≤ L (Q)Rt. The result

now follows by the triangle inequality.

4.2 Convex subsets with large Gaussian measure

The relevance of the following result is that, in the notation there, λ
√
nBn

2 is an approxi-
mating ellipsoid for the possibly non-convex Orlicz ball λBF , in the sense of the Gaussian
measure of the complement. The result applies more generally with essentially the same
proof; we state it as is for simplicity.

Proposition 8 Let F : [0,∞) → [0,∞) be strictly increasing and concave, such that
F (0) = 0, F (1) = 1 and limx→∞ F (x) = ∞. Let n ∈ N and define

BF =

{
x ∈ R

n :
n∑

i=1

F (|xi|) ≤ n

}
.

Then for all λ > 1 we have λ
√
nBn

2 ⊆ λBF and

γn
(
R
n \ Cλ√nBn

2

)
≤ γn (R

n \ λBF )

where C > 1 is a universal constant.

Proof. By convexity there exists m ∈ (0, 1) such that F (s) ≤ m(s − 1) + 1 for all
s ∈ [0,∞). Therefore, for any x ∈ √

nBn
2 ,

n∑

i=1

F (|xi|) ≤
n∑

i=1

(m(|xi| − 1) + 1) ≤ m
√
n |x| + n(1−m) ≤ n

14



so λ
√
nBn

2 ⊆ λBF as claimed. By polar integration and using the tangent line approxi-
mation to a concave function,

γn
(
R
n \ Cλ√nBn

2

)
= (2π)−n/2n · vol (Bn

2 )

∫ ∞

Cλ
√
n

e−r
2/2+(n−1) ln rdr

≤
( n
2π

)n/2
vol (Bn

2 )C
n−2λn−2 exp

(−C2λ2n

2

)
.

On the other hand, since F is strictly increasing, λBF ⊆ {x ∈ R
n : ∃i, |xi| ≤ λ} so using

the fact that the tails of the standard normal density are convex and therefore lie above
their tangent lines,

γn (R
n \ λBF ) ≥

(
2

∫ ∞

λ

1√
2π
e−t

2/2dt

)n
≥
(

1√
2πλ

e−λ
2/2

)n

and the result follows by taking C large enough.
For general star bodies it may not be as easy to find approximating convex subsets

as in Proposition 8, although as λ → ∞ this is straightforward. Let σn−1 denote Haar
measure on Sn−1, normalized so that σn−1 (S

n−1) = 1.

Proposition 9 Let n ∈ N with n ≥ 2, let ‖·‖ : Sn−1 → (0,∞) be any bounded Borel
measurable function, let b = sup(‖·‖), and let K be the unit ball of the homogeneous
extension of ‖·‖, i.e.

K = {0} ∪
{
x ∈ R

n \ {0} : |x|
∥∥∥∥
x

|x|

∥∥∥∥ ≤ 1

}
.

For simplicity, assume that the L∞ norm of ‖·‖ (i.e. its essential supremum) is also b.
Then for all λ ≥

√
2(n− 1)b and all δ ∈ (0, 1),

γn (R
n \RBn

2 ) ≤ γn (R
n \ λK)

where

R =
λ

(1− δ)b
+

2(1− δ)b

λ
ln

[
4

σn−1 ({‖θ‖ ≥ (1− δ)b})

]
.

Proof. By polar integration, and using tn−1 ≥ rn−1 for t ≥ r ≥ 0 and the standard
normal tail bound from the proof of Proposition 8, and since λ > b, γn (R

n \ λK) is
bounded below by

n · vol (Bn
2 )

2(2π)n/2

∫

Sn−1

(
λ

‖θ‖

)n−2

exp

(
−1

2

(
λ

‖θ‖

)2
)
dσn−1(θ)

≥ σn−1 ({‖θ‖ ≥ (1− δ)b}) n · vol (Bn
2 )

2(2π)n/2
rn−2e−r

2/2 (15)

where r = (1− δ)−1b−1λ. The inequality on the second line holds since λ > b
√
n− 2 and

tn−2e−t
2/2 is decreasing for t ≥

√
n− 2. Since R > r, by log-concavity,

Rn−2e−R
2/2 ≤ rn−2e−r

2/2 exp

[
−(R − r)

(
r − n− 2

r

)]
(16)
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and it follows from the definition of R that

exp

[
−(R− r)

(
r − n− 2

r

)]
≤ 1

4
σn−1 ({‖θ‖ ≥ (1− δ)b}) . (17)

It follows from (16) and (17) that the quantity in (15) is bounded below by

2n · vol (Bn
2 )

(2π)n/2
Rn−2e−R

2/2.

Since R ≥
√
2(n− 1), it follows by polar integration and the upper bound for a standard

normal tail based on log-concavity that this is bounded below by γn (R
n \RBn

2 ).
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