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1. Introduction 

The Software-Defined Networking (SDN) paradigm offer organizations unprecedented and innovative network 
management capabilities [1], [2]. Yet, cyber criminals are leveraging the extended attack surface and vulnerabilities 
that the SDN architecture presents to launch highly sophisticated attacks, and deploy anti-forensics tools and 
techniques to cover their tracks [3], [4], [5]. The inherent characteristics of the SDN architecture present fundamental 
challenges when employing Digital Forensic (DF) science to investigate cybercrimes [6]. For example, Potential 
Digital Evidence (PDE) can be modified or erased beyond recovery by an attacker to destroy digital evidence [7].  

Characteristically, the SDN architecture is volatile, consists of multiple and highly interconnected layers, various 
applications, a communication channel that generates high volumes of heterogeneous data which is considerably 
complex for a typical forensic investigator, and traditional forensic tools and techniques [7], [8], [9], [10]. As a result, 
a forensic investigator is continuously challenged with the appropriate identification and acquisition of viable PDE 
during a Digital Forensic Readiness (DFR) process. 

Desirably, appropriate and novel DFR tools and techniques for conducting effective DFI in SDN platforms are 
needed to address forensic limitations presented by SDN architecture [11]. However, the development and 
effectiveness of such tools and techniques hinge on an in-depth understanding of the underlying forensic limitations. 
Therefore, the primary objective of this study is to expound on the current state-of-the-art with respect to conducting 
DFR in an SDN platform. This has been a major limitation for forensic investigators, and researchers and providing 
explicit knowledge of this problem is considered a research gap. Thus, this paper addresses the knowledge gap in 
understanding these forensic limitations. 

This study leverages a case study research methodology to empirically underline the forensic limitations and 
provide a level of specificity with which these limitations affect the DFR process. The case study results combined 
with existing literature are used to expose forensic limitations in a typical SDN testbed and address the knowledge 
gap. Leveraging a typical real-world SDN testbed, the case study consists of a threat model, attack scenario, and 
implementation process. Several studies, mostly theoretical, have been conducted on SDN DFR issues and challenges. 
However, to the best of the authors’ knowledge, none of these studies has comprehensively focused on demonstrating 
the practical aspect of addressing the knowledge gap [6], [8], [9], [12], [13]. These contributions are further 
summarized in the following points: 
 

• Expose SDN DFR limitations through an empirical case study. 
• Conduct a comprehensive analysis of the limitations and present level of explicitness of action-related 

information to address the knowledge gap. 
• Provide future open research directions on how the knowledge can be used to develop novel and effective 

forensic tools and techniques. 
 
The remainder of this paper is organized as follows. The background is presented in Sec. II. In Sec. III, a case study 

towards exposing SDN DFR limitations is presented. Sec. V discusses DFR challenges with SDN. Lastly in Sec. VI, 
the conclusion of this paper is provided followed by a discussion on future works. 

2. Background 

Digital Forensics (DF) is a subdiscipline of traditional Forensic Science (FS) aimed at identifying, collecting, 
analyzing, and presenting digital evidence found on digital devices [14]. The application of DF consists of five 
conventional investigation processes namely; the (i) identification, (ii), collection (iii), preservation (iv), analysis and 
(v) presentation processes [14]. DF provides answers to key questions, i.e., what, why, how, who, when, where about 
the cyberattack under investigation [15]. Today, DF is applied on emerging and novel technologies such as SDN to 
obtain admissible digital evidence for combatting cybercrime. However, the complexity of a typical SDN platform 
presents forensic limitations which are discussed in this study [7]. 

The SDN paradigm decouples the control mechanism (control plane) from the forwarding devices (data plane) 
[16]. Fig. 1, exhibits a typical SDN architecture comprised of the data plane, control plane, application plane, east-
west, southbound, and northbound interfaces. The main objective of this paradigm is to address challenges presented 
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by the Traditional Network (TN) architecture. In actual fact, SDN paves the way for next-generation networks by 
providing agile, dynamic, centralized control, and highly programable networks [17]. While many organizations are 
motivated by this novel paradigm, the lack of secure by design has resulted in the emergence of new threats and attack 
vectors. Inescapably, the security threat landscape that SDN presents has led to the discovery novel technical, legal, 
and organizational challenges towards securing SDN platforms [18]. As a result, many organizations are taking a 
cautious approach towards migrating to an SDN platform [19]. In particular, SDN poses a number of novel and 
sophisticated challenges to the field of DF. 

SDN forensics is a subdiscipline of DF concerned with the application of FS methodologies on SDN platforms 
[20]. Yet, the application of traditional DF tools and techniques on SDN platforms yields considerable forensic 
limitations due to the complexity of a typical SDN platform [7]. Using this basis, the volatile architecture, generation 
of huge amount of data, and short survival period of PDE are some of the novel issues and challenges posed by the 
SDN architecture [12]. Untowardly, these factors affect the seemly identification and acquisition of viable PDE during 
a SDN DFR process [12]. 

The notion of forensic readiness was introduced as a pre-investigation process aimed at maximizing the ability of 
collecting viable digital evidence [21]. In general, there are six main factors that are considered when implementing a 
forensic readiness process [22]. These include; Capability, Resources, Operability, Strategic Planning, Knowledge 
and Awareness [22]. This study focuses on Operability that is concerned with the correctness and effectiveness of the 
investigation process. In particular, the technical elements involved with the implementation of a typical DFR process 
in an SDN platform are empirically examined. With the paradigm shift in networking introduced by SDN, these 
technical elements are more complicated for organizations as well as experienced investigators to understand. This 
challenge is exacerbated and attributed to the architecture and inherent characteristics embedded in SDN [8], [23]. 
With this background, next section presents a case study aimed at exposing DFR limitations in SDN platforms. 

3. Case Study 

The security challenges that the SDN architecture faces are identical to TN architecture. However, the basis of this 
case study is derived on how the profile of these threats is altered with the advent of SDN. With such immense 
alteration, disadvantageously the complexity of a DFR process increases. The case study hypothesizes that the SDN 
controller is deployed in the commonly used reactive mode in order to enforce the network logic onto the OpenFlow 
switches. Consequently, the switch sends all packets without a matching flow entry to the controller. Using this 
basis, this paper derived the following threat model and attack scenario that represents the most destructive threat to 
an SDN platform. 

3.1. Attack Scenario 

At the start of March 2022, a disgruntled employee of banking institution decided to disrupt the company’s services 
and its reputation. The employee subjected the company’s network to multiple, antagonistic, and targeted DDoS 
(Distributed Denial-of-Service) attack for several hours. The attacker used stolen credentials to gain access to a host 
on the network that was used to launch an amplification volumetric DDoS attack. The attack generated bogus network 
packets targeted at the company’s webserver and flooded the entire network with spurious packets. The attacker 
exploited weaknesses in the packet and flow handling mechanism of the SDN architecture to overwhelm all available 
data plane resources. 

3.2. Threat Experiment 

The experiment is conducted on an SDN testbed simulated by EVE-NG [24] as shown in Fig. 2. OpenDaylight 
(ODL) [25] is deployed as the controller to manage OpenFlow1.3 [26] switches. host04 is used to launch an attack 
against the web server. A packet generator and manipulation tool known as hping3 [27] is used to generate fake traffic 
and implement Denial of Service DoS attack. In both iterations, the flow limit on the switches was set to a maximum 
of 100 flows as shown in Fig. 3 and reject flows when the flow limit is reached. In the second iteration, the switches 
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are configured to evict old flows when the flow limit is reached. The experimental results are shown in the following 
subsection. 

3.3. Results of the Experimentation 

This subsection presents a graphical view of the results of the experimentation. As expected, the flow count, rate 
of change of state tables, as well as flow characteristics constitutes some of the observable output of the attack. This 
is logical given that the SDN platform operates at the traffic flow management process. The reference SDN 
architecture and simulated SDN environment are illustrated in Fig. 1 and Fig. 2 respectively. Fig. 3 and Fig. 5 provide 
an extract of the data plane flow table configuration. The experimental outcome of the threat model and attack scenario 
are illustrated in Fig. 4, Fig. 6, Fig. 7, and Fig. 8. 

 

  
 

 

Fig. 3. Switch-01 Flow Table Configuration. 

 

Fig. 4. Flow Count on Switch-01 and Switch-02. 

Fig. 5. Switch-02 Flow Table Configuration. 

 

Fig. 6. Number of Flow Table State Changes. 

 

Fig. 7. Flow Table Limit Exhaustion. 

Fig. 1. SDN Reference Architecture. Fig. 2. SDN Testbed Setup. 



 Howard Munkhondya  et al. / Procedia Computer Science 219 (2023) 286–293 289 Howard Munkhondya et al. / Procedia Computer Science 00 (2019) 000–000  3 

by the Traditional Network (TN) architecture. In actual fact, SDN paves the way for next-generation networks by 
providing agile, dynamic, centralized control, and highly programable networks [17]. While many organizations are 
motivated by this novel paradigm, the lack of secure by design has resulted in the emergence of new threats and attack 
vectors. Inescapably, the security threat landscape that SDN presents has led to the discovery novel technical, legal, 
and organizational challenges towards securing SDN platforms [18]. As a result, many organizations are taking a 
cautious approach towards migrating to an SDN platform [19]. In particular, SDN poses a number of novel and 
sophisticated challenges to the field of DF. 

SDN forensics is a subdiscipline of DF concerned with the application of FS methodologies on SDN platforms 
[20]. Yet, the application of traditional DF tools and techniques on SDN platforms yields considerable forensic 
limitations due to the complexity of a typical SDN platform [7]. Using this basis, the volatile architecture, generation 
of huge amount of data, and short survival period of PDE are some of the novel issues and challenges posed by the 
SDN architecture [12]. Untowardly, these factors affect the seemly identification and acquisition of viable PDE during 
a SDN DFR process [12]. 

The notion of forensic readiness was introduced as a pre-investigation process aimed at maximizing the ability of 
collecting viable digital evidence [21]. In general, there are six main factors that are considered when implementing a 
forensic readiness process [22]. These include; Capability, Resources, Operability, Strategic Planning, Knowledge 
and Awareness [22]. This study focuses on Operability that is concerned with the correctness and effectiveness of the 
investigation process. In particular, the technical elements involved with the implementation of a typical DFR process 
in an SDN platform are empirically examined. With the paradigm shift in networking introduced by SDN, these 
technical elements are more complicated for organizations as well as experienced investigators to understand. This 
challenge is exacerbated and attributed to the architecture and inherent characteristics embedded in SDN [8], [23]. 
With this background, next section presents a case study aimed at exposing DFR limitations in SDN platforms. 

3. Case Study 

The security challenges that the SDN architecture faces are identical to TN architecture. However, the basis of this 
case study is derived on how the profile of these threats is altered with the advent of SDN. With such immense 
alteration, disadvantageously the complexity of a DFR process increases. The case study hypothesizes that the SDN 
controller is deployed in the commonly used reactive mode in order to enforce the network logic onto the OpenFlow 
switches. Consequently, the switch sends all packets without a matching flow entry to the controller. Using this 
basis, this paper derived the following threat model and attack scenario that represents the most destructive threat to 
an SDN platform. 

3.1. Attack Scenario 

At the start of March 2022, a disgruntled employee of banking institution decided to disrupt the company’s services 
and its reputation. The employee subjected the company’s network to multiple, antagonistic, and targeted DDoS 
(Distributed Denial-of-Service) attack for several hours. The attacker used stolen credentials to gain access to a host 
on the network that was used to launch an amplification volumetric DDoS attack. The attack generated bogus network 
packets targeted at the company’s webserver and flooded the entire network with spurious packets. The attacker 
exploited weaknesses in the packet and flow handling mechanism of the SDN architecture to overwhelm all available 
data plane resources. 

3.2. Threat Experiment 

The experiment is conducted on an SDN testbed simulated by EVE-NG [24] as shown in Fig. 2. OpenDaylight 
(ODL) [25] is deployed as the controller to manage OpenFlow1.3 [26] switches. host04 is used to launch an attack 
against the web server. A packet generator and manipulation tool known as hping3 [27] is used to generate fake traffic 
and implement Denial of Service DoS attack. In both iterations, the flow limit on the switches was set to a maximum 
of 100 flows as shown in Fig. 3 and reject flows when the flow limit is reached. In the second iteration, the switches 

4 Howard Munkhondya et al. / Procedia Computer Science 00 (2019) 000–000 

are configured to evict old flows when the flow limit is reached. The experimental results are shown in the following 
subsection. 

3.3. Results of the Experimentation 

This subsection presents a graphical view of the results of the experimentation. As expected, the flow count, rate 
of change of state tables, as well as flow characteristics constitutes some of the observable output of the attack. This 
is logical given that the SDN platform operates at the traffic flow management process. The reference SDN 
architecture and simulated SDN environment are illustrated in Fig. 1 and Fig. 2 respectively. Fig. 3 and Fig. 5 provide 
an extract of the data plane flow table configuration. The experimental outcome of the threat model and attack scenario 
are illustrated in Fig. 4, Fig. 6, Fig. 7, and Fig. 8. 

 

  
 

 

Fig. 3. Switch-01 Flow Table Configuration. 

 

Fig. 4. Flow Count on Switch-01 and Switch-02. 

Fig. 5. Switch-02 Flow Table Configuration. 

 

Fig. 6. Number of Flow Table State Changes. 

 

Fig. 7. Flow Table Limit Exhaustion. 

Fig. 1. SDN Reference Architecture. Fig. 2. SDN Testbed Setup. 



290 Howard Munkhondya  et al. / Procedia Computer Science 219 (2023) 286–293
 Howard Munkhondya et al. / Procedia Computer Science 00 (2019) 000–000  5 

 

Fig. 8. Eviction of Flow Table Entries. 
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and preserve PDE from numerous SDN planes and devices [8]. Typically, each SDN plane and device consist of its 
own operating system and applications which generate logs. Based on the case study observation, this rationale affects 
the ability to appropriately identify and acquire PDE from an SDN platform. Specifically, the complexity and 
enormous volumes of data generated by a typical SDN platform is a great concern to the forensic investigator [35]. 
Inevitably, the identification and acquisition of PDE is immensely complex and susceptible to errors [7]. The value of 
system and application logs as a vital source of PDE cannot be overstated [23]. Yet, ploughing through extremely 
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large sets of PDE is practically difficult, and acutely erroneous. In the end, the investigation timeframe is prolonged 
and potentially yields fortuitous outcome. 

4.4. Limited Storage on SDN Devices 

In-depth experimental observations show that the attack scenario exhausted the flow table limit as illustrated in 
Fig. 7. This conjuncture triggered the flow table Ternary Content Addressable Memory (TCAM) management 
mechanism which resulted in the rejection of new flows as well as the removal of old flows from the switch [36], [37] 
as shown in Fig. 8. The memory management mechanism provides hard boundaries to protects the state of flow tables. 
Yet, such a mechanism imposes serious limitations on the DFR process. 

From this perspective, a single flow entry that is removed could contain a critical piece of evidence for the entire 
investigation. In addition, one or more rejected flows could be related to the ensuing investigation process denying 
the investigator access to the network. Broadly, the case study underscores that with the SDN architecture coupled 
with the vast amount of data generated by network devices and applications, a typical SDN platform does not have 
sufficient memory and storage capabilities hold plethora of PDE [28], [29]. Due to these implications, PDE is 
fragmented and dispersed across various locations [38]. From a forensic investigation standpoint, highly fragmented 
and largely dispersed PDE unveils serious challenges to the forensic investigator and DFR process. In the end, this 
behavior resulted in the loss of valuable PDE and the common store-then-process DFR approach is inadequate due to 
the extremely high cost of identifying, acquiring, and storing large volumes of fragmented PDE. 

4.5. Complexity of SDN Architecture 

The case study proves that the SDN architecture is designed for dynamicity, extensibility, and that the underlying 
complex mechanisms are isolated and highly abstracted from a forensic investigator’s standpoint. Such mechanisms 
are difficult to understand and impose considerable overhead to the forensic investigation process. Conclusions drawn 
from the experimental observations demonstrates that the identification and acquisition of PDE in SDN platforms is 
extremely complicated and costly. With SDN devices and applications located in different planes and equipped with 
a myriad of communication protocols, PDE sources in SDN platforms are extremely diverse [1], [39], [40], [7]. 
Evidently, PDE identification and acquisition in SDN platforms largely depends on the understanding of the SDN 
context. Inevitably such diversification introduces complexities with implementing a DFR process. Oftentimes, 
investigators do not know how to approach an investigation or encounter a series of issues and challenges during the 
DFR process. On the other hand, these challenges are far from trivial; making them explicit and well understood is an 
important part of identifying and acquiring viable PDE from SDN platforms. Therefore, a thorough understanding of 
the planes and protocols in use and how they affect the DFR process is very important. 

The results of the empirical observations provide explicit and practical information towards addressing the 
knowledge gap of understanding the issues and challenges with implementing DFR process in SDN platforms. The 
following section summaries the contributions of this study and outlines future open research directions. 

5. Conclusion and Future Work 

Throughout the preceding sections of this paper, an attempt to contribute to a niche research area in the field of 
SDN forensics is presented. Specifically, this paper explored a case study methodology towards addressing the 
knowledge gap of understanding the issues and challenges with implementing DFR in SDN platforms. Considering 
the rapid adoption of SDN, the extend attack surface, and myriad attack vectors targeting such networks, it was vital 
to address the knowledge gap of the forensic limitations that the SDN paradigm bears. This knowledge gap has been 
a major challenge for forensic investigators. The case study consisted of a threat model that was implemented in a 
typical SDN testbed. This approach enabled the practical exploration of the fundamental limitations of implementing 
DFR in SDN platforms. The outcome of the case study was combined with existing literature to provide explicit and 
practical information about the DFR limitations. By presenting this information, this paper provided the indispensable 
knowledge required by a forensic investigator to review, adapt, and reengineer existing traditional tools and techniques 
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to the field of SDN forensics whilst considering and preserving the core principles for identifying and acquiring viable 
and legally admissible PDE. 

There are two categories of future open research directions that seem particularly important and promising at this 
stage of DFR in SDN platforms: PDE categorization and prioritization. The first aims to address the question of how 
broadly a set of classes of PDE in SDN platforms can be used to identify and collect viable PDE. The case of PDE 
classification is easily made since the types and sources of PDE in SDN platforms are substantially specific. The 
second aims to explore the problem of deciding how to model the weight of a class of PDE. With this reasoning, the 
multiple different classes of PDE are then to be organized from lowest to the highest weight so that the collection 
phase starts by collecting the highest weighted PDE. The fundamental idea behind this future open research direction 
is that, if the DFR process consists of categorization technique and prioritization mechanism, then all PDE that is 
collected can be traced back to its classification and weight relative the underlying investigation. 
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to the field of SDN forensics whilst considering and preserving the core principles for identifying and acquiring viable 
and legally admissible PDE. 

There are two categories of future open research directions that seem particularly important and promising at this 
stage of DFR in SDN platforms: PDE categorization and prioritization. The first aims to address the question of how 
broadly a set of classes of PDE in SDN platforms can be used to identify and collect viable PDE. The case of PDE 
classification is easily made since the types and sources of PDE in SDN platforms are substantially specific. The 
second aims to explore the problem of deciding how to model the weight of a class of PDE. With this reasoning, the 
multiple different classes of PDE are then to be organized from lowest to the highest weight so that the collection 
phase starts by collecting the highest weighted PDE. The fundamental idea behind this future open research direction 
is that, if the DFR process consists of categorization technique and prioritization mechanism, then all PDE that is 
collected can be traced back to its classification and weight relative the underlying investigation. 
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