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Abstract: Here, hydrodynamic features of laminar forced nanofluid flow between two parallel
plates are numerically investigated, and the results are mathematically discussed. The conventional
understanding of developing flow in the entrance region of internal flows is based on the idea that
boundary layers start forming at the inlet and merge at some point just before the fully developed
section. However, because of the consideration of mass and flow conservation, the entire conception
is required to be detailed with appropriate criteria according to the numerical simulations. Hence,
nanofluid flow between two parallel plates is solved by ANSYS Fluent 19.3 for laminar forced in
an isothermal condition. Two major criteria are studied to find the location of the boundary layer
merging points: vorticity and velocity gradient in a direction perpendicular to the flow. The former
presents the influential area of wall shear stress, and the latter is the direct infusion of the boundary
layer induced by the solid walls. Vorticity for an irrotational flow is obtained by calculating the
curl of the velocity. It is found that the merging points for the hydrodynamic boundary layers are
considered before the fully developed region. For the first time, in this study, the results of various
Reynolds numbers are collected, and correlations are proposed to predict the length of the boundary
layer merging location by using a regression analysis of the data.

Keywords: laminar nanofluid flow; entrance region; ANSYS Fluent; curl of velocity; regression analysis
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1. Introduction

There is no doubt that the boundary layer development caused by the contact between
the solid wall and fluid has major impacts on the hydrodynamic and thermal features of
the flow field [1–6]. In classical fluid mechanics, the uniform flow enters a channel and
is affected by the shear stress of the wall, and then the boundary layers coming from all
around will merge downstream. This means that two dominant regions can be identified
in the internal flows—the entrance region where the boundary layers merge at the end of
it, and the fixed velocity profile or fully developed region. Identifying such regions can
improve the modelling and analysis of flows in pneumatic and hydraulic systems in many
industries, such as gripping devices, as shown by Savkiv et al. [7].

In the conventional sense, it is believed that the entrance region is a direct consequence
of the velocity boundary layer formation until the velocity reaches its fixed profile. This
sectional division has been repeatedly mentioned in some major academic textbooks,
considering the fact that fully developed flow appears immediately or slightly after the
boundary layers meet [8–14]. In addition, because of the short length of the entrance region
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and the small impact on the average variables in the large section of the fully developed
flow, the pre-proven facts from those textbooks were used in many other research areas
regarding internal flows and developing sections [15–19].

In any internal flows, such as pipes and ducts, hydrodynamic boundary layers start
growing from the walls that touch the fluid, until they meet somewhere downstream. From
this point, the boundary layers cannot grow more, and the entire flow needs to adjust
accordingly so as to conserve continuity, also known as the Hagen–Poiseuille flow. The
flow is normally assumed to be uniform at the inlet of the channel and slows down near
the wall due to shear stress. Before all of the surrounding boundary layers meet at the
centreline, the core flow is still inviscid and unaware of the shear on the wall. However, it
is noted that the velocity in the parallel core flow (inviscid region) and the centreline has to
increase because of the conservation of mass.

Because of the importance of the entrance region, especially in heat transfer, researchers
have mostly focused on considering the entrance region as one section and analysing its
hydrodynamic and thermal characteristics [20–24]. However, there are only a few studies on
the analysis of the entrance region by dividing it into different stages [25–28]. An analytical
model was presented by Fargie and Martin [26] in the early 1970′s to explain the behaviour
of fluid in the region before the fully developed section. They assumed two velocity
functions in the entrance region: an inviscid core region with a parallel velocity changing
only in the axial direction, and the region being affected by the viscus boundary layer, yet
still a function of the boundary layer thickness and core velocity. Then, a core parallel
velocity was proposed in terms of the boundary layer thickness. The total velocity profile
was developed in a way that when the boundary layer reached its maximum, the velocity
changed into parabolic or second order conventional profile in the fully developed region.

Mohanty and Asthana presented one of the major works regarding the entrance
region [27]. They reported that the entrance region was divided into two parts. The first
part that the boundary layers induced by the surrounding walls started growing, and they
only met at the end of this part. The second section was the fully viscous region where the
velocity was still adjusting so as to find its fully developed form eventually. They called
these parts the inlet and filled regions, and the combination of these two forms was called
the entrance region. To find the starting location of a fully developed region, they used
the criterion that the centreline velocity must reach 99% of the fully developed maximum
value, which has also been used by others [29]. They showed that the inlet region was less
than a quarter of the full entrance length (contrary to the conventional approach), and the
entrance length had been under-predicted previously. Nassri and Unny [25] conducted
an experimental study to investigate the nature of flow and pressure drop in the entrance
region. They also proposed that a fully developed region only reached downstream after
the boundary layers met. Their test measurements were found to be in close agreement
with the experimental study by Mohanty and Asthana [27] in terms of the total length
of the entrance region. The entrance length was expressed in terms of the pipe diameter
and Reynold number in the form of LE/D = C × Re. However, Durst et al. [30] proposed
a different form for the non-dimensional entrance length by considering power for the
Reynolds number.

Adding nanoparticles into different base fluids has been an important study case for re-
searchers in recent years because of the modification in the thermo-physical properties [31–41].
The main applications have been in internal flows with heat transfer. However, atten-
tion was paid to the average effects in the fully developed region and not the entrance
part [42,43]. Therefore, because of the significance of the entrance region in the boundary
layer formation, it is essential to investigate the hydrodynamic features of the nanofluid
flow in further detail. The literature review shows that despite some accepted fundamental
conceptions about the velocity boundary layers in textbooks, it is critical to question and
analyse the entrance region in the internal flows. Because of the improvement in com-
putational fluid dynamics tools in recent years, this task can be carried out with a high
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accuracy of ANSYS Fluent 19.3 [44]. The results include flow variables and gradients in
every computational cell at the vicinity of the wall to the core of the flow.

2. Geometry Description and Computational Method
Geometry Details

The purpose of this study is to firstly identify the different sections in the entrance
region and secondly to propose a correlation between the location of the boundary layer
merging point. Hence, 2D geometry of the nanofluid flow going through two plates was
prepared here for the numerical simulations. The total section length was 6 mm, with 4 mm
distance between the plates. Nanofluid entered the domain with a uniform velocity profile,
and the flow was maintained at isothermal conditions. The general arrangement of the
CFD simulation model is presented in Figure 1. To ensure laminar flow was achieved in all
of these cases, the Reynolds number was kept under 1900, with a constant inlet temperature
of 20 ◦C.

Figure 1. Schematic of poiseuille flow domain under fixed heat flux.

3. Mathematical Formulation and Nanofluid Properties

Continuity and momentum equations for the nanofluid are expressed here according to
the following assumptions: steady laminar flow, two-dimensional, no body force, modified
properties, non-Newtonian fluid, and incompressible flow.
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With the Reynolds definition:

Re =
ρuDh

µ
(4)

where Dh is hydraulic diameter, defined as:

Dh =
4A
P

=
4(H × w)

2× (H + w)
(5)

where w is the width of the channel perpendicular to the page. As the channel width is
assumed to be long compared with its height, the hydraulic diameter will be Dh = 2H.

Alumina nanofluid was used in this study with an average nanoparticle size of 150 nm
and various volume fractions of up to 6% vol. The water and nanoparticles properties are
shown in Table 1.
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Table 1. Thermo-physical properties of water and nanoparticles at 20 ◦C.

Component Density (kg/m3) Thermal Conductivity (W/m.K) Specific Heat (J/kg.K) Particle Diameter (nm)

Water 998.2 0.6 4181 -
Al2O3 3880 36 773 150

The thermo-physical properties of the nanofluid are borrowed from the literature,
with the density from the Sharifpur model [45] and the viscosity from Corcione [46]:

ρ =
ρl

(1− ϕ) + 8ϕ
(

dp
2 + tv

)3
/d3

p

(6)

tv = −0.0002833
(

dp

2

)2

+ 0.0475
dp

2
− 0.1417 (7)

µ =
µl[

1− 34.87
(

dp
0.3×10−10

)−0.3
ϕ1.03

] (8)

4. Numerical Scheme and Boundary Condition

Continuity and momentum equations were discretized by using a second-order up-
wind scheme due to the stronger convergence in the solution and the PRESTO! scheme
for pressure because of its stability when calculating the pressure on the element faces.
The solution algorithm used was the SIMPLE method, or the Semi-Implicit Method for
Pressure Linked Equations. This method is used in most CFD simulations and provides
fast convergence in the residuals of continuity and momentum. Uniform velocity is used
at the inlet with the outflow condition at the outlet, which represents a fully developed
flow condition. A no-slip boundary condition was applied to both parallel plates. As the
flow was laminar, no boundary layer mesh was needed. A uniform structured mesh was
generated at the inlet with 33 × 1363 nodes in the vertical direction and flow direction,
respectively, with a total of 45,000 computational cells. The resolution for the laminar flow
is normally smaller than this number of cells; however, for the purpose of this simulation
and for extraction variables such as velocity gradient and vorticity, it was crucial to opt for
a finer grid structure.

5. Results and Discussion

In the first step, it was essential to validate the modelling against a benchmark available
in the literature. Therefore, a highly structured mesh was generated, and the results for
the velocity profile in the fully developed region were compared to the available analytical
profile in the mechanical engineering textbook [8] for the flow between two parallel plates.
The results were found to be in excellent agreement, as shown in Figure 2.

The results of the velocity gradient in the flow direction are illustrated in Figure 3. As
the flow at the core region was not affected until the boundary layers merged, the changes
in this velocity gradient were caused by the growing boundary layers toward the centre of
the channel, similar to the converging diffuser. There was an initial sharp increase due to
the beginning of the boundary layer, and the gradient was adjusted according to the shear
layer increase by dropping gradually. The location where the rate of the velocity gradient
started changing direction is the merging point of the boundary layer. In addition, it was
observed that adding nanoparticles could shift the magnitude of the velocity gradient.
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Figure 2. Validation of the numerical modelling against the analytical velocity profile.

The velocity gradient perpendicular to the flow direction is shown in Figure 4 for
various nanofluid concentrations. Theoretically, the velocity gradient in the Y direction only
appeared inside the boundary layer, and it was expected to reach zero in the inviscid core
region with a parallel flow. This could be used as one of the criteria to find the boundary
layer merging point. In other words, the merging point will be the first location where the
gradient value is non-zero everywhere in the Y direction, except at the centre (due to the
symmetry condition).

Despite the strong logic behind the velocity gradient in Figure 4 for finding the merging
point, it still seems challenging to point out the exact location considering the shape of the
graph. Although the trends are similar in all of the cases no matter the nanofluid volume
fraction, and the location of the merging point only shifted due to the Reynolds number
and no other factors. The other critical parameter that can involve the velocity gradient in
all directions, is vorticity, which is defined as follows.∣∣∣∇×⇀

u
∣∣∣ = ∣∣∣∣ ∂v

∂x
− ∂u

∂y

∣∣∣∣ (9)

The main reason for using vorticity is that the boundary layer affects velocity in both
directions simultaneously, and the vorticity magnitude can capture the entire impact of the
shear stress on the flow field. The results of the vorticity magnitude for water and nanofluid
at various Reynolds numbers are presented in Figure 5. A simple comparison between
the velocity gradient in Figure 4 and vorticity in Figure 5 reveals that the exact location
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of the boundary layer merging point must be where the vorticity magnitude reaches its
minimum value (close to zero) in the core region. The centreline was chosen because the
boundary layers eventually met at the centreline and stayed at this elevation. The first flat
part of the vorticity in Figure 5 occurs in the inviscid region, and is not affected by shear
stress. The sudden drop to zero was caused by the interference of the boundary layer and
merging point.

Figure 3. Evolution of the axial velocity gradient in the nanofluid flow direction for various
Reynolds numbers.

The findings of the boundary layer merging points obtained from simulations accord-
ing to Figure 5 showed that the location depends only on the Reynolds number and not on
the nanofluid volume fraction. Therefore, non-dimensional channel length was employed
to formalize the merging point location in Figure 6. The most appropriate correlation is
proposed as follows.

(X/H)BLmp
= 0.0117Re0.8765 (10)

where BLmp indicates the boundary layer merging point location.
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Figure 4. Velocity gradient development in the Y direction at various cross sections for different
nanofluid volume fractions.
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Figure 5. Evolution of vorticity from the inlet on the central line for various Reynolds numbers and
nanofluid volume fractions.
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Figure 6. Proposed correlation for the location of the hydrodynamic boundary layer merging point
according to the simulation results.

6. Conclusions

The hydrodynamic boundary layer development of the nanofluid flow between two
parallel plates was numerically investigated in this research. The focus was the entrance
region with boundary layer growth in the isothermal condition. With the CFD methods, the
laminar flow was solved for various Reynolds numbers and nanoparticle volume fractions.
The results consisted of the velocity gradient in two directions, as well as the vorticity
magnitude. On the contrary to the literature and many fluid mechanics textbooks, it was
found that boundary layers immediately started forming at the beginning of the entrance
region and merged long before the fully developed section of the internal channel flow. For
Reynolds numbers below 1000, the merging point of the boundary layer was only three
to four times the channel’s height, which is rather short compared with the full length
of the entrance region mentioned in the fluid mechanics textbooks. It was shown that
the boundary layer merging location corresponded exactly to the minimum value of the
vorticity magnitude on the centreline of the flow. The location of the merging points from
both the water and nanofluid flows were collected via vorticity conception, proposed here
for various Reynolds numbers. It was revealed that the boundary layer merging location
had no dependency on the nanofluid concentration, and subsequently, a correlation was
developed in terms of the Reynolds number accordingly.
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Nomenclature

A Channel cross section (m2)
Dh Hydraulic diameter (m)
dp Nanoparticle diameter (nm)
H Parallel plates distance (m)
P Pressure (Pa)
Re Reynolds number (-)
tv Nanolayer thickness (nm)
u, v Fluid velocity in x and y direction (m/s)
w Channel width (m)
Greek letter
ϕ Nanofluid volume fraction (-)
µ Viscosity (Pa.s)
ρ Density (kg/m3)
Subscript
l fluid
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