
Verifying the Uniform Candy Distribution Puzzle with CSP-Prover

Yoshinao Isobe
National Institute of AIST, Japan

y-isobe@aist.go.jp

Markus Roggenbach
Swansea University, United Kingdom

M.Roggenbach@Swan.ac.uk

Abstract

In this paper we formally verify that the Uniform Candy
Distribution Puzzle is self-stabilizing: Given a valid start
configuration, eventually the Puzzle will evolve to a ‘sta-
ble’ situation in which it will remain. In terms of verifica-
tion, the Uniform Candy Distribution Puzzle forms a scal-
able parametrized distributed system: The Puzzle comes in
various sizes, for each size of the Puzzle there are infinitely
many valid start configurations, the Puzzle evolves follow-
ing local rule applications. We describe how to model the
Uniform Candy Distribution Puzzle in the process algebra
CSP, give a mathematical argument for its self-stabilizing
property, and formalize the proof with the interactive theo-
rem proverCSP-Prover.

1 Introduction

The “Uniform Candy Distribution Puzzle”1 is a classical
example of a self-organizing distributed system:

Uniform Candy Distribution Puzzle :

k children are sitting in a circle (see Fig.1).
Each child starts out with an even number of
candies. The following step is repeated in-
definitely: every child passes half of her/his
candies to the child on her/his left; any child
who ends up with an odd number of candies is
given another candy by the teacher.

One might think that the teacher may keep handing out
more and more candies indefinitely. However, this is not
true. Eventually the teacher will stop handing out candies
and, in fact, the following holds:

Claim: Eventually every child will hold the
same number of candies.

1It appears to be impossible to identify the inventor of the puzzle, one
reference, however, is [2].

children

teacher

candies

Figure 1. Uniform Candy Distribution Puzzle

Assuming this claim to be correct, the Uniform Candy
Distribution Puzzle exhibits typical properties of a self-
organizing system, see e.g. [4]:

• The puzzle evolves over time without influence from
the outside.

• The state space of the puzzle reduces over time, it has
an equal distribution of candies as an attractor.

• The children and the teacher act locally only.

As intuitive as the above description of our puzzle ap-
pears at first sight, it leaves many questions open when it
comes to the notion of a “step”: How does the exchange of
candies happen? What happens if there is an selfish child
who wants to get her/his new candies before this very child
is willing to pass over her/his candies to the left? Is the or-
der important, in which the teacher gives out candies to the
children?

The process algebra CSP, see e.g. [1, 5, 16, 17], cap-
tures distributed systems in a precise way. In CSP, pro-
cesses make progress on their own, the exchange of mes-
sages serves as a synchronization mechanism. For verifi-
cation, the CSP approach is to model both, the distributed
system as well as a desired property as CSP processes. A
systemSyshas a propertyProp, if the system is a refine-
ment of the property, i.e., if the relationProp ⊑ Sysholds
(where⊑ denotes the CSPrefinement relation). In the proof
of such a statement the process algebraic laws of CSP play
a vital role: Thanks to completeness results, see e.g. [9, 16],

normally refinement statements can be proven by applying
process algebraic laws solely.

When verifying a system, the refinement proofs often in-
volve tasks where one would hope for tool support. This in-
cludes especially the tedious and therefore error-prone task
of book-keeping on all the still open proof obligations and
the repeated application of standard proof patterns. Here,
the tool CSP-Prover [7, 8, 9, 10, 11] can be of assistance. On
the technical side, CSP-Prover provides a deep encoding of
CSP in the generic theorem prover Isabelle/HOL [14]. On
the practical side, CSP-Prover offers its user a vast amount
of proof infrastructure in the form of process algebraic laws
and specialized tactics.

In the following, we show how to model the Uniform
Candy Distribution Puzzle as a concurrent process in CSP,
and how to encode this process within the input language
of CSP-Prover. We then discuss why the analysis of this
Puzzle presents a challenge and explain how CSP-Prover
can assist in the proofs involved.

2 Modelling and Encoding

In this section, we explain how one can model the Uni-
form Candy Distribution Puzzle in CSPand how this model
is then encoded in CSP-Prover.

2.1 Modelling the puzzle in CSP

First we reflect on the behaviour of the individual chil-
dren. The activity of a single child can be seen as the tran-
sition graph shown in Fig. 2. This graph consists of three
statesChild(n), ChildL(n, x), andChildR(n), wheren
represents the number of candies a child holds, andx stands
for the number of candies a child has received in the last
move. The functionfill is defined as

fill(n) = if (even(n)) then n else (n + 1).

The eventleft!(n/2) means to send the value(n/2) to the
left, the eventright?x means to receive a number from the
right and to bind the variablex to the received number.
Starting in stateChild(n), a child has the option to send
half of her/his candies to the left child and to go over to state
ChildR(n/2). Then, it waits to receives an unknown num-
ber ofx candies from the right child and goes over into state
Child(fill(n/2 + x)). If the new number(n/2 + x) of
candies is odd, the functionfill adds1 to this number. This
corresponds to the teacher’s supply. Alternatively, from the
initial stateChild(n) the child also has the option to first re-
ceivex candies, which leads to stateChildL(n, x). Then,
the child passes overn/2 candies, and goes over to the state
Child(fill(n/2 + x)).

The above discussed transition graph can be modelled in
CSPas follows:

left!(n/2),

n := fill(n/2+x)

Child(n)

right?x,

n := nChildL(n,x)

right?x,

n := fill(n+x)

left!(n/2),

n := n/2 ChildR(n)

Figure 2. Transition graph of each child

Child(n) = (left!(n/2) → ChildR(n/2))2
(right?x → ChildL(n, x))

ChildL(n, x) = left!(n/2) → Child(fill(n/2 + x))
ChildR(n) = right?x → Child(fill(n + x))

Here, → and 2 are the prefix operator and the external
choice operator of CSP, respectively. Intuitively,a → P
is a process which can perform the eventa and thereafter
behaves likeP . The processP2Q behaves either likeP or
like Q depending on the initial actions. Here, the choice,
which branch to take, is determined by events from the en-
vironment. The process definition ofChild, ChildL, and
ChildR consists essentially of infinitely many equations,
one for each instance of the parametersn andx. In CSP,
elements such asleft and right for passing data are called
channels, and elements such asChild for defining recur-
sive behaviour are calledprocess names.

In order to connectk Child processes into a circle
(k > 1), we carry out two steps: (1) we define a concurrent
processLineCh(⟨n2, n3, . . . , nk⟩), which is the connection
of (k − 1) children in one line. Here, the right hand of the
i th child is connected to the left hand of the(i+1) th child
for i = 2, . . . , k − 1. (2) we define a concurrent process
CircCh(⟨n1, n2, . . . , nk⟩), which is a circular connection
of k children. Here, the right hand of the first child is con-
nected to the left hand of the second child, and the left hand
of the first child is connected to the right hand of the last
(k th) child. In both steps we use the following notions:ni

denotes number of candies thei th child holds;⟨n1, . . . , nk⟩
is a list of even numbersn1, . . . , nk.

These processes are inductively defined in CSP as fol-
lows:

LineCh(⟨n⟩) = Child(n)
LineCh(⟨n⟩⌢s) = (Child(n) ←→ LineCh(s))
CircCh(⟨n⟩⌢s) = (Child(n) ⇐⇒ LineCh(s))

Here,⌢ is the concatenation operator of lists and the op-
erators←→ and⇐⇒ are defined from basic operators as
follows:2

P←→Q = (P [[right↔mid]] |[mid]| Q[[left↔mid]])\mid
P⇐⇒Q = (P |[left, right]| Q[[left ↔ right]])\right

2For simplicity, we follow in this paper the established CSP conven-
tions. For example, the operator|[mid]| expands to|[{mid(n) | n ∈
Nat}]|.

right left

Child(2) Child(4)
mid

Child(8)
mid

Child(6)
left

CircCh(6,2,4,8)

LineCh(2,4,8)

Figure 3. Structure of CircCh(⟨6, 2, 4, 8⟩)

Here, [[a↔b]] is the renaming operator for exchanging
channel-namesa andb (note: if b is new then it works as
renaminga to b), |[X]| is the parallel composition for per-
forming processes in parallel but synchronising events in
the setX, and\X is the hiding operator for hiding events in
the setX from other processes. Thus,P←→Q is a process
obtained by renaming both ofleft in P andright in Q to a
new common namemid, composing the renamed processes
via mid, and finally hiding the shared channelmid. By hid-
ing mid, we can repeatedly usemid for connecting children
without conflicts.P⇐⇒Q is similar toP←→Q except that
both hands are connected and only the right hand is hid-
den. This means that we can observe the number of candies
the first child has via the channelleft. For example, Fig. 3
shows the structure of the processCircCh(⟨6, 2, 4, 8⟩).

2.2 Encoding the puzzle in CSP-Prover

It is easy to encode CSP-processes into CSP-Prover.
Fig. 4 shows the encoded processCircCh, where some def-
initions such as<---> have been omitted. The complete
code is available at CSP-Prover’s web-site [7].

In Fig. 4, lines 1 and 2 define the typeEvent of
events and the typePN of process names, respectively.
These types are used for defining processes whose type
is (PN,Event) proc . The parametrized typeproc is
provided by CSP-Prover. Next, lines 4–11 define the func-
tion PNdef which maps process names of typePN to pro-
cesses of type(PN,Event) proc . There is a definition
for each process name. CSP-Prover syntax is nearly the
same as CSP syntax – except that conventional symbols
such as2 are replaced by ASCII symbols such as[+] ,
and$ is attached to each process name as a type conver-
sion from a process name to a process. Isabelle’srecdef
mechanism for defining recursive functions makes pattern-
matching of arguments available as shown in lines 6–11.
When defining a recursive function byrecdef , Isabelle
requires a measure to guarantee termination of the defined
function. For example, line 19 takes the length of lists as the
measure; sincePNdef is non-recursive, the empty set{}
(see line 5) can serve as measure. Note that line 13 declares
the functionPNdef to be the functionPNfun . PNfun has

the status of a reserved word of CSP-Prover and is automat-
ically applied for unfolding process names. Finally, The
processesLineCh andCircCh are defined as explained
above in lines 19–24.

3 Verification

In this section we verify our claim that the Uniform
Candy Distribution Puzzle has an attractor. To this end, we
first present a proof for a synchronous version of the puzzle
– which we then generalize in CSP-Prover to a proof on the
asynchronous puzzle.

3.1 A known solution

Solutions of the Uniform Candy Distribution Puzzle
have already been given, e.g. in the web-page [2]. One so-
lution is as follows: Lets be the list of even numbers of the
number of candies which the children hold. Then, after ev-
ery child passed half of her/his candies to her/his left child
and the teacher supplied candies if needed, the new list is
given by the functioncircNext(s), which is defined using
the functionlineNext(s, x):

lineNext(⟨⟩, x) = ⟨⟩
lineNext(⟨n⟩, x) = ⟨fill(n/2 + x)⟩

lineNext(⟨n, m⟩⌢s, x) = ⟨fill(n/2 + m/2)⟩
⌢lineNext(⟨m⟩⌢s, x)

circNext(⟨⟩) = ⟨⟩
circNext(⟨n⟩⌢s) = lineNext(⟨n⟩⌢s, n/2)

In lineNext(s, x), the variablex represents the number of
candies to be passed to the last child. Since the children
are sitting in a circle, in the functioncircNext(⟨n⟩⌢s) this
numberx is half of candies of the first child, namelyn/2.
Take for example

circNext(⟨4, 2, 10⟩) = ⟨fill(2 + 1), fill(1 + 5), fill(5 + 2)⟩
= ⟨4, 6, 8⟩.

With these notations, the following properties hold: apply-
ing the functioncircNext to a lists of even numbers (1) the
maximum ins does not increase, (2) the minimum ins does
not decrease, and (3) the number of children who hold the
minimum number of candies strictly decreases. These prop-
erties ensure that repeated application ofcircNext leads to
a situation where the maximum and the minimum ins are
the same. More formally, for any lists of even numbers, the
following theorem holds:

∃n. max(circNext(n)(s)) = min(circNext(n)(s))

wheref (0)(x) = x and f (n+1)(x) = f(f (n)(x)). Con-
sequently, eventually all the children will hold the same
amount of candy. Following this proof strategy, we estab-
lished this theorem in Isabelle.

1 datatypeEvent = left "nat" | right "nat" | mid "nat"
2 datatypePN = Child "nat" | ChildL "nat * nat" | ChildR "nat"
3
4 constsPNdef :: "PN ⇒ (PN, Event) proc"
5 recdef PNdef " {}"
6 "PNdef (Child(n))
7 = (left ! (n div 2) -> $ChildR(n div 2)) [+]
8 (right ? x -> $ChildL(n,x))"
9 "PNdef (ChildL(n,x))

10 = left ! (n div 2) -> $Child(fill(n div 2 + x))"
11 "PNdef (ChildR(n))
12 = right ? x -> $Child(fill(n + x))"
13 defs (overloaded) Set PNfun def [simp]: "PNfun == PNdef"
14
15 consts
16 CircCh :: "nat list ⇒ (PN, Event) proc"
17 LineCh :: "nat list ⇒ (PN, Event) proc"
18
19 recdefLineCh "measure(λs. length(s))"
20 "LineCh([n]) = $Child(n)"
21 "LineCh(n#s) = $Child(n) <---> LineCh(s)"
22
23 recdefCircCh " {}"
24 "CircCh(n#s) = $Child(n) <===> LineCh(s)"

Figure 4. The encoded process CircCh into CSP-Prover

1 CircCh(⟨6, 2, 4, 8⟩)
2 = Child(6)⇐⇒(Child(2)←→Child(4)←→Child(8))
3 → ChildL(6, 1)⇐⇒(ChildR(1)←→Child(4)←→Child(8)) by 2nd Child’s pass
4 → ChildL(6, 1)⇐⇒(ChildR(1)←→ChildL(4, 4)←→ChildR(4)) by 4th Child’s pass
5 → ChildL(6, 1)⇐⇒(Child(4)←→Child(6)←→ChildR(4)) by 3rd Child’s pass
6 → ChildL(6, 1)⇐⇒(ChildL(4, 3)←→ChildR(3)←→ChildR(4)) by 3rd Child’s pass

Figure 5. An example of consecutive internal transitions from CircCh(⟨6, 2, 4, 8⟩)

3.2 An asynchronous version

The proof of Section 3.1 presumes that the children can
always pass on candies, e.g. there is no deadlock possible.
Further on, all children are globally synchronized, i.e. all of
them pass half of candies to the left in one step, probably
the teacher controls the passing.

In the processCircCh(s), however, each child can pass
half her/his candies whenever her/his left child can re-
ceive them. In this case, the time at which a child passed
her/his candies can be different from the time at which
another child does so. Take for example the process
CircCh(⟨6, 2, 4, 8⟩). This process can perform the consecu-
tive transitions shown in Fig. 5. From the first state in line 1
to the last state in line 6, the third child passes half of her/his
candies twice, while the first child does not pass her/his can-
dies. In the processCircCh(s), since only the pass by the

first child is observable, all transitions in Fig. 5 are not ob-
served (i.e. they are internal). Therefore, the solution given
in Section 3.1 is not sufficient for the asynchronous passing
in CircCh(s). To deal withCircCh(s), we need a frame-
work for analyzing such behaviour in concurrent processes.

3.3 Proofs in CSP

CSP provides a number ofmodelsto be selected ac-
cording to the verification purpose. For example,failures-
equivalence=F based on the stable-failures model, which
is one of main CSPmodels, can distinguish between deter-
ministic choice and non-deterministic choice. For example,

(a → b → P1)2(a → c → P2)
̸=F a → ((b → P1)2(c → P2))

where the environment can selectb or c aftera in the right
hand side, while it cannot select in the left hand side. Note
that they are equal in the traces model.

In addition, failures-refinement⊑F is suitable for de-
tecting deadlock and analyzing safety properties. It is also
available for analyzing liveness properties if processes are
livelock-free. Intuitively, ifQ refinesP , writtenP ⊑F Q,
then Q is obtained fromP by pruning non-deterministic
choices. For example,

(a → b → P1)2(a → c → P2) ⊑F a → b → P1

a → ((b → P1)2(c → P2)) ⋢F a → b → P1

In CSP, nondeterminism can be expressed by the internal
choice operator⊓ more clearly. Intuitively,P ⊓ Q behaves
P or Q, but the choice cannot be controlled from other pro-
cess. Therefore, for example,

(a → b → P1)2(a → c → P2)
=F a → ((b → P1) ⊓ (c → P2))

where note that the environment cannot selectb or c after
a in the right hand side either because the selection is in-
ternally decided. By the internal choice, loose processes
can be expressed. For example, the following processA(n)
requires thatinc or dec can be iteratively performed.

A(n) = (inc!n → A(n + 1)) ⊓ (dec!n → A(n − 1))

Therefore, for example, all the following three processes
refineA(n):

C1(n) = inc!n → C1(n + 1)
C2(n) = inc!n → dec!(n + 1) → C2(n)
C3(n) = (inc!n → C3(n + 1))2(dec!n → C3(n − 1))

CSP provides a set of rewriting rules (CSP-laws) for
proving refinement relation between processes. Over the
modelF , the refinement relation can be proven by syntac-
tically rewriting process expressions [9]. For example, the
following equalities can be proven by the step-laws and the
commutative law for the parallel operator.

(a → P1) |[a]| (b → a → P2)
=F b → ((a → P1) |[a]| (a → P2)) by (step)
=F b → a → (P1 |[a]| P2) by (step)
=F b → a → (P2 |[a]| P1) by (commute)

Especially, the step laws are important for sequentializing
concurrent processes.

The other important proof technique is fixed point induc-
tion which is useful for analyzing infinite-state processes.
Intuitively, it is induction on behaviour. For the infinite-
processesA(n) andC1(n) used above, fixed point induc-
tion allows us to proveA(n) ⊑F C1(n) for any n by as-
suming that this refinement holds after one cycle. Thus, the
refinement relation can be proven as follows:

Process Q

Isabelle/HOL

(generic theorem prover)

CSP-Prover

(encoded CSP theory)

(1) goal

(2) proof command

(4) subgoals

(3) semi-automatic proof

Process P

?

Figure 6. Interactive proof of refinement rela-
tion

A(n) =F (inc!n → A(n + 1)) ⊓ (dec!n → A(n − 1))
⊑F (inc!n → A(n + 1)) by refinement
⊑F (inc!n → C1(n + 1)) by induction
=F C1(n)

3.4 Proving with CSP-Prover

Our tool CSP-Prover [7, 8, 9, 10, 11] is based on is an in-
teractive theorem prover Isabelle [14], which allows one to
prove new theorems by semi-automatically applyingrules
which are pre-proven theorems. Successfully proved theo-
rems can be stored and used later as new rules. Therefore,
the proof-ability of Isabelle can be extended by adding new
definitions and proving new theorems.

CSP-Prover contains fundamental theorems such as fixed
point theorems, the definitions of CSP syntax and seman-
tics, many CSP-laws, and also semi-automatic proof tactics
for the verification of refinement relations. Fig. 6 shows the
interactive proof procedure for a refinement relation: first,
(1), the refinement statement is entered into CSP-Prover as
a so-called (proof)goal; then, (2), the user enters aproof
command; a command controls the way, (3), in which Is-
abelle tries to prove the goal by applying CSP theory as au-
tomatically as possible; finally, (4), the results of this proof
process are displayed as subgoals. Should there be open
subgoals left, then the proof is not completed yet, and Is-
abelle awaits further commands. A proof is successfully
finished when there is no open subgoal left. One advan-
tage of this approach is that it can quite elegantly deal with
infinite structures, for instance, by using induction. This
enables CSP-Prover to verify also infinite state systems [8].
Thanks to the deep encoding, CSP-Prover also can be used
to establish new theorems on CSP [9].

3.5 Proof of the puzzle in CSP

Now we return to the Uniform Candy Distribution Puz-
zle. As explained in Section 3.1, the next numbers of can-
dies can be estimated by the functioncircNext(s). Thus,

we expect the concurrent processCircCh(s) to be the re-
finement of a sequential processCircSq for any lists such
thatlength(s) ≥ 2, therefore

CircSq(s) ⊑F CircCh(s)

where we defineCircSq(s) as follows:

CircSq(s) = left!(hd(s)/2) → CircSq(circNext(s))

Here,hd(⟨n⟩⌢s) = n. Provided the above stated refine-
ment relation holds, this means that the number of can-
dies the first child holds eventually converges to some even
number3. This implies that for eachi ∈ {1, . . . , k}, for
some even numberci, the number of candies thei th child
holds eventually converges toci because we can select any
child to be the first one. Here, for anyi < k, ci = ci+1

can be proven becauseci = fill(ci/2 + ci+1/2) and
ck = fill(ck/2 + c1/2). This means that eventually all
the children will hold the same amount of candy.

In fact, we proved the refinement relation
CircSq(s) ⊑F CircCh(s) for any list s such that
the length ofs is greater than 1. In the rest of this
subsection, we give an outline of our proof.

At first, in order to deal with internal behaviours in
CircCh(s) as shown in Fig. 5, the lists of the number of
candies is extended with attributesC, L andR, which repre-
sents statesChild, ChildL, andChildR, respectively. For
example, the two states of lines 3 and 5 in Fig. 5 are ex-
pressed by the extended lists⟨L(6, 1), R(1), C(4), C(8)⟩ and
⟨L(6, 1), C(4), C(6), R(4)⟩, respectively. For the rest of this
paper, lets range over lists of even numbers and lett range
over extended lists with attributes to distinguish them.

Note that the state of the last line in Fig. 5 cannot perform
any internal transition. We call such a stateinternally stable.
In our puzzle, an internally stable state can only be of one
of the following two forms:

⟨L(·, ·), . . . , L(·, ·), R(·), . . . , R(·)⟩,
⟨L(·, ·), . . . , L(·, ·), C(·), R(·), . . . , R(·)⟩

On t, we define three recursive functions:

• The functiontoStb(t) returns the internally stable state
of t.

• The functionnextL(t) returns the internally stable
state after that the first child has sent half of her/his
candies to the left at the internally stablet.

• The functionnextR(t, x) returns the internally stable
state after that the last child has receivedx candies at
the internal stablet.

3Note that the numbers of candies in transit states such asChildL and
ChildR are not considered.

We omit here the definitions, however, we illustrate these
function by examples (also see Fig. 5):

nextR(nextL(nextL(toStb(⟨C(6), C(2), C(4), C(8)⟩)), 5)
= nextR(nextL(nextL(⟨L(6, 1), L(4, 3), R(3), R(4)⟩), 5)
= nextR(nextL(⟨L(4, 2), C(6), R(3), R(4)⟩, 5)
= nextR(⟨L(4, 3), R(3), R(3), R(4)⟩, 5)
= ⟨L(4, 3), C(8), R(4), R(5)⟩

With the help ofnextL(t) andnextR(t), we define the
sequential processLineSq(t) for any internally stable state
t as follows:

LineSq(t)
= (if guardL(t) then left!(fst(t)/2) → LineSq(nextL(t))

else STOP)2
(if guardR(t) then right?x → LineSq(nextR(t, x))
else STOP)

whereguardL(t) is true if and only if the attribute of the
first child is L or C, guardR(t) is true if and only if the
attribute of the last child isR or C, andfst(t) is the number
of candies the first child has.

As expected, the following refinement relation can be
proven using fixed point induction and CSP-laws:

LineSq(toStb(⟨C(n)⌢t⟩)) ⊑F (Child(n) ←→ LineSq(t))

for any internally stablet. By induction on the length oft,
this implies that

LineSq(toStb(C(s)) ⊑F LineCh(s)

whereC(⟨n1, . . . , nk⟩) = ⟨C(n1), . . . , C(nk)⟩ (k ≥ 1).
Furthermore, the following refinement relation can be

proven using fixed point induction and CSP-laws for any
s such thatlength(s) ≥ 1:

CircSq(⟨n⟩⌢s) ⊑F (Child(n) ⇐⇒ LineSq(toStb(C(s))))

Finally, by transitivity of ⊑F , we have the refinement
relation CircSq(s) ⊑F CircCh(s) for any s such that
length(s) ≥ 2.

3.6 Proof Support by CSP-Prover

The refinement relationCircSq(s) ⊑F CircCh(s) can
be proven by the proof strategy explained in Section 3.5.
However, the proof is complex, and especially the rewriting
by CSP-laws is often tedious and thus error prone. There-
fore, we applied CSP-Prover for proving the refinement
CircSq(s) ⊑F CircCh(s). In fact, CSP-Prover turned out
to be extremely helpful to establish this refinement.

Fig. 7 is a typical example of a proof scripts for estab-
lishing an equality in CSP-Prover: Line 2 to line 5 state the

1 lemma test two children step:
2 "$Child(n)<--->$Child(m) =F
3 (left ! (n div 2) -> ($ChildR(n div 2)<--->$Child(m))[+]
4 right ? x -> ($Child(n)<--->$ChildL(m,x)))
5 [> ($ChildL(n,m div 2)<--->$ChildR(m div 2))"
6 by (auto | tactic {* cspF hsf unwind tac 1 * })+

Figure 7. A proof script for proving an equality by CSP-Prover

equality to be proven. In our example, we want to show
that two children linearly connected send(n/2) to the left
(line 3) or receive a number from the right (line 4) or in-
ternally communicate with each other (line 5), where[> is
the timeout operator◃ of CSP. Line 6 is the proof com-
mand that actually proves this equality. Here,auto is
the Isabelle’s automatic proof command, which is used for
simplifying the data part, andcspF hsf unwind tac is
a CSP-Prover tactic, which sequentializes concurrent pro-
cesses by applying various CSP-laws. This theorem can be
completely proven by the one line command (line 6). It
takes about 10 minutes to prove this equality on a laptop
computer (Pentium-M, 1.5GHz). If the user tells in more
detail, which CSP-laws shall be applied, the computation
time can be shortened.

The overall refinement of Uniform Candy Distribution
Puzzle is more complex, but can be proven in a similar
way to Fig. 74. Currently, it takes about one hour to prove
CircSq(s) ⊑F CircCh(s) on a Pentium-M, 1.5GHz.

3.7 Alternative proof tools

[18] present a theorem prover for CSPwhich is based on
the theorem prover PVS [15].

It is possible to analyze the puzzle for single instances of
fixed size and with a fixed initial distribution of candies with
the well-established model checker FDR [12]. FDR checks
fully automatically, if a CSPrefinement holds. Also the tool
HORAE [3], which is based on constraint satisfaction tech-
niques, can deal with such single instances. Furthermore, it
should be possible to fully automatically analyze such sin-
gle instances using other model checkers like SPIN [6] or
SMV [13]. These tools check if a systemsatisfiesa prop-
erty like deadlock-freedom, where systems are described as
finite state machines and properties are formulated in tem-
poral logic. Fig. 8 summarizes these difference between
CSP-Prover and model checkers. Note that thanks to the
CSP modelling approach of expressing properties and sys-
tems in the same language,stepwiserefinement is available
in a natural way.

4The tacticcspF hsf unwind tac is available for both of the re-
finement⊑F and the equality=F .

S(c)

P1 P2

Q(c)

safety

concurrent system
(finite state machine)

property
(temporal logic formula)

(a) Verification by SPIN or SMV (for a fixed c)

P1 P2

concurrent systems
(CSP-process)

P

concurrent system
(CSP-process)

specification
(CSP-process)

(b) Verification by FDR (for a fixed c)

Q(c) Q(c)

S(x)

P1 P2

concurrent system
(CSP-process)

P

concurrent system
(CSP-process)

sequential system
(CSP-process)

(c) Verification by CSP-Prover (for any x and n)

Q(x) Q(x)

Pn...

n processes

Figure 8. Comparison of verification style

4 Conclusion

By solving the Uniform Candy Distribution Puzzle we
have demonstrated that CSP-Prover can deal with scalable
distributed systems. Depending on the requirements, such
system descriptions can easily be adapted to a different
number of processes involved, also their initial configura-
tion can be adapted. In our example, the stabilization the-
orem is available for any number of children and for any
initial candy distribution among the children.

As yet another example of a scalable distributed sys-
tem, we have analyzed a systolic array in [11]. More de-
tails about CSP-Prover can be found in the User Guild for
CSP-Prover download-able from CSP-Prover’s web-site [7].
CSP-Prover is under continuous development, where we

concentrate on techniques that allow for a higher degree in
proof automation.

Acknowledgement

We would like to thank Faron G Moller for bringing
the Uniform Candy Distribution Puzzle to our attention,
and Erwin R Catesbeiana (Jr) to be such an entertainment
for the children. This work was supported by EPSRC as
Project EP/D037212/1 and by KAKENHI under reference
20500023.

References

[1] A. Abdallah, C. Jones, and J. Sanders, editors.Com-
municating Sequential Processes, the first 25 years,
LNCS 3525. Springer, 2005.

[2] T. Bohman, O. Pikhurko, A. Frieze, and
D. Sleator. Puzzle 6: Uniform candy distribution.
http://www.cs.cmu.edu/puzzle/puzzle6.html .

[3] J. S. Dong, P. Hao, J. Sun, and X. Zhang. A reasoning
method for timed CSP based on constraint solving. In
ICFEM 2006, pages 342–359, 2006.

[4] F. Dressler. Self-Organization in Sensor and Actor
Networks. Wiley, 2007.

[5] C. A. R. Hoare.Communicating Sequential Processes.
Prentice Hall, 1985.

[6] G. J. Holzmann.The SPIN Model Checker. Addison-
Wesley, 2004.

[7] Y. Isobe and M. Roggenbach. Webpage on CSP-
Prover. http://staff.aist.go.jp/y-isobe/

CSP-Prover/CSP-Prover.html .

[8] Y. Isobe and M. Roggenbach. A generic theorem
prover of CSP refinement. InTACAS 2005, LNCS
3440. Springer, 2005.

[9] Y. Isobe and M. Roggenbach. A complete axiomatic
semantics for the CSP stable failures model. InCON-
CUR 2006, LNCS. Springer, 2006.

[10] Y. Isobe and M. Roggenbach. Proof principles for pro-
cess algebra - CSP-Prover in practice. InLDIC 2007,
LNCS. Springer, 2008 (to be published).

[11] Y. Isobe, M. Roggenbach, and S. Gruner. Extending
CSP-Prover by deadlock-analysis: Towards the veri-
fication of systolic arrays. InFOSE 2005, Japanese
Lecture Notes Series 31. Kindai-kagaku-sha, 2005.

[12] F. S. E. Limited. Failures-divergence refinement:
FDR2. http://www.fsel.com/ .

[13] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[14] T. Nipkow, L. C. Paulon, and M. Wenzel. Is-
abelle/HOL. LNCS 2283. Springer, 2002.

[15] S. Owre, J. M. Rushby, and N. Shankar. PVS: A proto-
type verification system. InCADE 92, Lecture Notes
in Artificial Intelligence. Springer, 1992.

[16] A. Roscoe. The theory and practice of concurrency.
Prentice Hall, 1998.

[17] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and
B. Roscoe. The Modelling and Analysis of Security
Protocols: the CSP Approach. Addison-Wesley, 2001.

[18] K. Wei and J. Heather. Embedding the stable fail-
ures model of CSP in PVS. InIFM’05, LCNS 3771.
Springer, 2005.

