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A B S T R A C T   

This paper aims to enhance the performance of conventional solar still (CSS) using a low cost heat localization 
bilayered structure (HLBS). The HLBS consists of a bottom supporting layer (SL) made of low thermal conduc-
tivity as well as low density material and a top absorbing layer (AL) made of a photo thermal material with a high 
sunlight absorptivity as well as an enhanced conversion efficiency. The developed HLBS helps in increasing the 
evaporation rate and minimize the heat losses in a modified solar still (MSS). Two similar SSs were designed and 
tested to evaluate SSs’ performance without and with HLBS (CSS and MSS). Moreover, three machine learning 
(ML) methods were utilized as predictive tools to obtain the water yield of the SSs, namely artificial neural 
network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). The pre-
diction accuracy of the models was evaluated using different statistical measured. The obtained results showed 
that the daily freshwater yield, energy efficiency, and exergy efficiency of the MSS was enhanced by 34%, 34%, 
and 46% compared with that of CSS. The production cost per liter of the MSS is 0.015 $/L. Moreover, SVM 
outperformed other ML methods for both SSs based on different statistical measures.   

Introduction 

Freshwater is a fundamental human need. Water covers about 70% 
of the surface of the Earth (1386 × 1033 m3) [77]. Unfortunately, only 
0.5% of total global water is freshwater which stored in rivers and lakes, 
while about 97.5% of it exists in the oceans and seas with high salinity 
and the remaining amount (about 2%) exists in the form of glaciers and 
groundwater [6]. The rapid population growth, as well as astonishing 
economic growth, increases the request of the freshwater [13,87,100] 

with minimum environmental impacts [98,103]. There are many 
methods used for water desalination such as multi-stage flash distillation 
[88], vapor-compression distillation[75], reverse osmosis[106], mem-
brane distillation[12], halophytic algae[82], multi effect distillation 
[74], vacuum membrane[111], electrodialysis membrane[11], wave- 
powered desalination[60], solar chimneys[2], and solar desalination 
[95]. 

Solar desalination has shown promising applications in obtaining 
freshwater from seawater. Solar stills (SSs) is one of the most common 
used solar desalination systems that characterized by low cost, simple in 
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operation, and easy to maintain[86]). In SSs, solar radiation is utilized as 
a heat source to heat up brackish water which consequently begins to 
evaporate leaving contaminants and salts in the basin, and then the 

evaporated water cools down on the inner surface of glazier cover and 
condenses into liquid water droplets which collected as a pure water. 
The main drawback of SSs is its low freshwater productivity. Therefore, 
there are continued hard efforts done by many scientists and researchers 
to improve productivity and thermal performance of SSs via applying 
different designs such as passive SS, active SS[40], double slope SS[83], 
inclined SS[76,85], weir type SS[4], pyramid SS [53], and tubular SS 
[89]. Moreover, different modifications and integrations with SS such as 
solar water heater[9], photovoltaic panel[22], glass cover cooling 
[31,94], heat storage system[113], nanofluids[32,92], organic colloids 
[35], solar dishes[52], parabolic concentrating solar collector[3], 
external flat-plate reflectors[57], hybrid wick/chip materials[90], 
external condenser[80], permanent magnets[18], nano-composite ma-
terials[37], heat localization devices[93], solar pond[16], enhanced 
absorber plate[50], enhanced condensation surface[107], and under-
ground heat exchanger[43]have been investigated. 

Recently, heat localization devices that used to enhance the solar 
energy harvesting via heating up a thin layer of water instead of bulk 
water have attracted the attention of many researchers[30]. Heat 
localization devices are composed of an AL which has high sunlight 
absorptivity and high conversion efficiency to enhance the solar energy 
harvesting and a SL which used as a carrier to the AL and as an insulation 
layer to confine heat in the AL. The SL should be made of low density 
material. The heat localization device should also be made of low cost 
easy to fabricate material which characterized by a reasonable scal-
ability and durability. A summary of different AL and SL materials 
investigated in literature are tabulated in Table 1. However, most of 
studies listed in this table have been conducted in laboratories under 
artificial sunlight produced by solar simulator. Therefore, more experi-
mental investigations on the application of these heat localization 
bilayered structures in SSs under real world conditions should be done. 

Modeling of SSs using conventional mathematical approaches is a 
cumbersome problem which requires many assumptions to simplify the 
real-world system [1]. Therefore, ML approaches have been proposed as 
accurate and reliable modeling techniques of different solar systems 
including SS [29,59,72]. The distillate production of a CSS was pre-
dicted using an ML model under the metrological data of Las Vegas, USA 
using different parameters such a, air temperature, air velocity and di-
rection and cloud cover [84]. The performance of the SS was 

Nomenclature 

Ab basin area (m2) 
ANFIS Adaptive neuro-fuzzy inference system 
AL Absorbing layer 
AMC Annual maintenance operational cost 
ANN Artificial neural network 
ASV Annual salvage value 
c Bias 
COV Coefficient of variation 
CPL Cost of distilled water per liter 
CRF Capital recovery factor 
CSS Conventional solar still 
Eev Exergy of evaporation (J) 
Eir Exergy of solar irradiance (J) 
EC Efficiency coefficient 
fi(x) Nonlinear transformation function 
HLBS Heat localization bilayered structure 
i Interest per year (%) 
i(t) Solar radiation(W/m2) 
L Latent heat of evaporation(J/kg) 
M Annual yield (l) 
MAE Mean absolute error 

ML Machine learning 
MRE Mean relative error 
MSS Modified solar still 
n Number of variables 
OI Overall index 
P Petela 
R Response 
RMSE Root mean square error 
R2 Coefficient of determination 
SFF Sinking fund factor 
S Salvage value 
SL supporting layer 
SS Solar still 
SVM Support vector machine 
Tw water temperature (K) 
Ta ambient temperature (K) 
Ts Sun temperature 
UR Response uncertainty 
x Training set 
X Input variable 
εi Weights 
ηeh Hourly energy efficiency 
Γ Kernel function  

Table 1 
A summary of different heat localization structures investigated in literature.  

References Absorbing layer Supporting layer 

[41] Exfoliated graphite Carbon foam 
[68] Carbon black Cotton gauze 
[112] Graphene Nanoporous Ni substrates 
[110] Gold Air-laid paper 
[114] Gold Aluminum oxide 
[8] Gold Microporous membrane 
[64] Polypyrrole Stainless steel mesh 
[62] Graphene oxide Cellulose over polystyrene foam 
[79] Graphene oxide Bacterial nanocellulose 
[118] Aluminum Anodic aluminum oxide 
[119] Titanium dioxide Nanocage structure 
[73] Cermet Copper sheet 
[55] Graphite flakes and carbon 

fibers 
Polymer skeleton 

[63] Graphene oxide/carbon black Polystyrene matrix 
[105] Gold Treated paper 
[47] Gold/titanium dioxide Polymeric membrane 
[38] Silver/diatomite Paper attached to polystyrene foam 
[65] Graphene oxide Wood 
[109] Carbon Wood 
[108] Polydopamine Wood 
[56] Titanium nitride Ceramic fiber wools 
[44] Titanium dioxide Cotton fabric 
[45] Titanium dioxide Carbon fabric 
[67] Black titania/graphene oxide Air-laid paper 
[61] Graphite Wood 
[117] Copper sulfide Cellulose ester membrane 
[69] Carbon particles Cellulose sponge 
[49] Carbon particles Attapulgite/poly acrylamide 

composite 
[70] Carbon particles Paper attached to polyethylene 
[96] Copper sulfide Macroporous polyacrylamide 

hydrogel 
[66] Carbon particles Sawdust film 
[17] Jute Plastic balls 
[116] Chinese ink Wood  
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successfully predicted using the proposed model at various operating 
conditions. In another study, three ML models were established to pre-
dict the water yield of a SS under the metrological data of Jordan [42]. 
Feed-forward neural network outperformed the other models. [71] used 
an ANN predictive model to predict the water yield and thermal per-
formance of an inclined SS. A ANFIS model was utilized to predict the 
water yield of a double-slope SS with a hemispherical basin under 
Egyptian conditions [36]. A hybrid ANN model was developed to predict 
the water yield of an active SS [34]. The performance of a stepped SS 
with a corrugated absorber plate was predicted using a long-short 
memory ANN model [27]. 

In all above mentioned studies ML approaches have been reported as 
accurate and reliable tools to predict the water yield of SSs’ types. ML 
models can be trained using a few experimental data. After the training 
process, ML models can be used to predict the water yield for conditions 
that it has not seen before. Using ML approaches helps in avoiding 
carrying out more costly experiments or solving complicated mathe-
matical models. 

Therefore, there are two main contributions of this study. The first 
contribution is developing a low-cost efficient bilayered structure that 
used in a SS to efficiently convert the absorbed solar energy into heat 
which localized on thin water film rather than bulk water. This bilayered 
structure is composed of an AL (black cotton fabric) wrapping onto a SL 
(polystyrene foam). The developed bilayered structure is floated on 
water surface inside a SS tested under real world conditions. The per-
formance of the MSS (with HLBS) is compared with a CSS (without 
HLBS) considering three process responses, namely freshwater produc-
tivity, energy efficiency, and exergy efficiency. Cost analysis is per-
formed of the proposed bilayered structure compared with other 
improving techniques used to augment SS performance. The second 
contribution is applying three different ML approaches to predict the 
water yield of both SSs. The ML approaches are ANN, ANFIS, and SVM. 
The quality of the ML approaches is evaluated using seven different 
statistical measures. The rest of this paper introduces the following:  

– The experimental setup and measuring instruments is presented.  
– The proposed material structure is introduced.  
– The theoretical background is explained including: thermal analysis, 

uncertainty analysis, cost analysis, and the machine learning 
approaches.  

– The obtained results are discussed.  
– The main conclusions are presented. 

Experimentation 

In this study, two similar SSs were manufactured; the first one is a 
MSS in which an HLBS is embedded while the second is a CSS as shown 
in Fig. 1. The CSS was used as a reference to assess the productivity and 
the thermal performance of the first SS. Both SSs have the same 
geometrical dimensions (0.4 m length, 0.4 m width, 0.08 m front height, 
and 0.32 m back height) and the angle between the glazier cover and the 
basin (the horizontal) was set at 31◦ which equals to the longitude of the 
place of experiments[91]. So, the area of the basin for each SS is 0.16 m2. 
The basin of the SS is made of a galvanized steel sheet with a thickness of 
1 mm and covered by a glazier cover with 3 mm thickness. The inner 
basin’s surfaces were coated by a black paint with high absorptivity to 
enhance the harvesting of solar energy while all external surfaces were 
insulated by fiber glazier with 15 mm thickness which acts as a thermal 
barrier to lessen heat losses to the surroundings. The interface between 
the galas cover and the basin was sealed by silicon to inhibit any vapor 
leakage. The experiments were performed within daytime from 6 AM to 
6 PM. The measured parameters were solar radiation intensity, ambient 
temperature, the water and glazier temperatures, HLBS surface tem-
perature, and the amount of water yield. All these parameters were 
measured at hourly intervals. The brackish water is supplied to the SSs 
by a pipe system connected to a water tank and the flow is controlled 
using feed valves. Six K-type thermocouples (K 7/32-2C-TEF) were uti-
lized to measure the temperature of ambient, glazier cover, water, and 
HLBS surface. Temperature indicator (DTC324A-2) was used to record 
the measured temperatures. The solar irradiance was measured using 
TM-207 solar meter. A graduated cylinder was used to measure the 
distillate output. The accuracy and the operating range of the used in-
struments are tabulated in the Table 2. 

Fig. 1. Experimental set up.  

Table 2 
Specifications of measuring instruments  

Measured 
parameter 

Instrument Accuracy Operating 
range 

Error 
(%) 

Temperature K-type 
thermocouples 

±0.1 ◦C − 100–500 ◦C 0.75 

Solar irradiance Solar power meter ±5 W/m2 0–2000 W/m2 2 
Productivity Graduated cylinder ±2 ml 0–1000 ml 1  
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Material structure 

The proposed heat localization structure consists of a black cotton 
fabric wrapped over a polystyrene foam sheet (2 cm thick) as shown in 
Fig. 2. This hybrid material structure is inspired by bifunctional cotton 
fabric developed by Hao et al. [44]. The black cotton fabric has a high 
sunlight absorptance and acts as an AL, while the polystyrene foam acts 
as a thermal insulator and acts as SL for the absorber that floats on water 
surface due to its low density (0.05 g/cm3). The foam sheet has many 
holes in which hydrophilic cotton wicks are inserted to transfer water 
from water bulk to the black cotton fabric via capillary action. When the 
solar radiation strikes the HLBS it is trapped and absorbed by the cotton 
fabric layer and converted into thermal energy which confined in the 
cotton fabric layer. This confined heat is utilized to heat a thin layer of 
water instead of bulk basin water. Heated up water begins to evaporate 
and it condenses when it strikes the inner surface of the glazier cover. 
Then, the condensed water is collected using a collecting trough for 
further tests. 

Theoretical background 

In this section the basis of four main topics will be discussed, namely, 
thermal analysis, uncertainty analysis, cost analysis and machine 
learning approaches. 

Thermal analysis 

Heat transfer process in this arrangement has three main modes: 
evaporation, convection and radiation. These modes of heat transfer 
take place inside the SS enclosure. The external heat transfer occurs 
mainly between the outer glazier cover surface and the ambient air via 
two main modes: convection and radiation. While the heat transferred 
from basin to the ambient is neglected due to thermal insulation. 

The hourly energy efficiency, ηeh, is is given by: 

ηeh =
ṁw × L

I(t) × Ab × 3600
(1)  

where ṁw, L, I(t), and Ab denote distillate output (kg/m2.h), the latent 
heat of evaporation (J/kg), solar radiation(W/m2), and basin area (m2), 
respectively. 

Where; the latent heat of evaporation L could be calculated as a 
function in water temperature Tw using the following formula [14]: 

L = 2501.9 × 103 − 2.40406 × 103Tw + 1.19221Tw
2 − 1.5863 × 10− 2Tw

3

(2) 

The hourly exergy efficiency, ηxh, is given by[99]: 

ηxh =
Ėev

Ėir
(3)  

where Ėev and Ėir denote exergy of evaporation (J) and exergy of solar 
irradiance (J), respectively; and they are given by: 

Ėev = I(t) × Ab × P (4)  

Ėir =
ṁw × L
3600

×

(

1 −
Ta

Tw

)

(5)  

where Ta and Tw are ambient and water temperatures (K), respectively; 
and P is Petela expression given by [78]: 

P = 1+
1
3

(
Ta

Ts

)4

−
4
3

(
Ta

Ts

)

(6)  

where Ts is sun temperature (6000 K). 

Uncertainty analysis 

The uncertainty analysis is performed based on the mathematical 
approach proposed by[46]. Assuming that a set of measurement is car-
ried out to measure n process input variables which used to calculate 
some responses (R). Thus: 

R = (X1,X2,X3⋯.,Xn) (7) 

The uncertainty in response UR can be calculated in terms of the 
uncertainties in the independent variables U1, U2, U3,….…..Un as 
follows: 

UR =

[(
∂R
∂X1

U1

)2

+

(
∂R
∂X2

U2

)2

+ ⋯ +

(
∂R
∂Xn

Un

)2
]1

2

(8) 

The measurement uncertainties (error) of different experimental 
instruments including K-type thermocouples, solar power meter, and 
graduated cylinder are listed in Table 2. 

The minimum error is calculated as the ratio between the least count 
of errors and the minimum measured value of the output, while the least 
count error is defined as the error related to the instrument resolution 
[5]. 

The measured distillate output ṁw value is a function of the water 
height (hw) in the graduated cylinder. Following Eq. (7), the uncertainty 
of the hourly measured distillate output can be calculated by: 

Umw =

[(
∂mw

∂hw
Uhw

)2
]1

2

(9) 

The hourly energy efficiency, ηeh, is function of the hourly measured 
distillate output ṁw, the latent heat of vaporization L, and solar irradi-
ance I(t). And L is a function of the water temperature Tw. 

Then the total uncertainty of the energy efficiency can be calculated 
by: 

Uηeh =

[(
∂ηeh

∂mw
Umw

)2

+

(
∂ηeh

∂I
UI

)2

+

(
∂ηeh

∂Tw
UTw

)2
]1

2

(10) 

On the other hand, the hourly exergy efficiency, ηxh, is function of the 
hourly measured distillate output ṁw, the latent heat of vaporization L, 
ambient temperature Ta, and solar irradiance I(t). And L is a function in 
the water temperature Tw. 

Uηxh =

[(
∂ηxh

∂mw
Umw

)2

+

(
∂ηxh

∂I
UI

)2

+

(
∂ηxh

∂Tw
UTw

)2

+

(
∂ηxh

∂Ta
UTa

)2
]1

2

(11) 

The calculations are performed based on the aforementioned 

Fig. 2. Modified solar still with HLBS.  
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formulas showed that the uncertainty in the measured productivity, 
energy efficiency and exergy efficiency are ±0.5%, ±1%, and ±1.5%, 
respectively. 

Cost analysis 

The main advantages of SS based desalination technology over other 
desalination technologies is its low cost and simplicity. The developed 
low cost HLBS is made from low cost materials: polystyrene foam and 
black cotton fabric; which gives it a more advantages over other inte-
grated techniques with SSs such as solar collectors, vacuum fans, and 
nanofluids. In this subsection the economic analysis of the MSS is 
introduced. The cost analysis could be conducted via applying the 
following procedures considering different parameters affecting the SS 
productivity[19,101]: 

SFF =
i

(i + 1)n
− 1

(12)  

where SFF, n, i, denote the sinking fund factor, the number of operating 
years (assumed to be 10 years), the interest per year (assumed to be 
12%/year), respectively. 

CRF = SFF × (i + 1)n (13) 

CRF denotes the capital recovery factor. 

FAC = P × CRF (14) 

FAC and P denote the fixed annual cost ($) and the present capital 
cost ($), respectively. Then, the salvage value S ($) and the annual 
salvage value ASV ($) are calculated as follows: 

S = 0.2 × P (15)  

ASV = SFF × S (16) 

The annual maintenance operational cost AMC ($) is calculated as 
follows [102]: 

AMC = 0.15 × FAC (17) 

Then, the annual cost AC ($) is given by: 

AC = AMC+FAC − ASV (18) 

Finally, the cost of distilled water per liter CPL ($/l) is given by: 

CPL =
AC
M

(19)  

where M denotes annual yield (l). 

Machine learning approaches 

ML is a smart type of artificial intelligence that has advanced 
learning capabilities which enables it to model different engineering 
systems. In this study, three ML methods are applied to predict the water 
yield of the examined solar still. The theoretical background of ANN and 
ANFIS could be found in our previous published articles [7,21,26,28]. 
Herein, the basis of SVM is introduced. 

SVM is a ML method that used to model the relationship between a 
process response and process descriptors. The response of SVM can have 
different form such as normal, Poisson, binomial. These forms give SVM 
advantages over simple linear regression or exponential regression 
which have responses with a normal distribution form. In a typical SVM 
model, a link function L is used to describe the linear relationship. SVM 
applies a regularization technique to reduce the model complexity by 
applying a penalty term. This regularization technique also helps in 
identifying the dominant descriptors and reducing the number of co-
efficients. The training data has been chosen randomly despite of the 
negligible effect of randomization on the model’s prediction accuracy 

[48]. 
In the SVM regression, a training set x is introduced to the model and 

it is mapped to a feature space with n dimensions. The link function that 
used to construct the model in the feature space is given by: 

L(x, ε) =
∑n

i=1
εfi(x)+ c (20) 

Here, μi(y) fi(x) denotes multiple nonlinear transformations,ωi ε 
denotes the weights of the model, and s c is the applied bias. 

The predicting ability of the SVM model can be evaluated via 
computing a loss function. The kernel function Γ of the SVM regression 
model is given by: 

Γ
(
x, xj

)
=

∑n

i=1
fi(x)fi

(
xj
)

(21) 

The accuracy and the generalization capability of SVM are highly 
dependent on the used kernel parameters. There are many types of 
kernel functions that can be embedded in SVM such as Laplace, 
Gaussian, and spline. Among all these kernel functions Gaussian kernel k 
has been reported as an efficient kernel function that outperforms the 
other. Gaussian kernel function is given by: 

ΓG(x, y) = exp
(

−
‖x − y‖2

2σ2

)

(22) 

There many error metrics that adopted to adjust the parameters of 
SVM models. One of the common used error functions is given by: 

yi =
∑

i∕=1
yiΓ

(
xj, xi

)
(23) 

This error function is used as an objective function which should be 
minimized to obtain the optimal model parameters that maximize the 
model accuracy. 

Evaluation criteria 

Statistical measures are used to evaluate the performance of ML 
models. The most common used statistical metrics are root mean square 
error (RMSE), coefficient of determination (R2), mean absolute error 
(MAE), mean relative error (MRE), overall index (OI), efficiency coef-
ficient (EC), and coefficient of variation (COV) [23,25]. 

RMSE can be calculated as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
g
∑g

i=1
(di − yi)

2

√

(24) 

R2 is calculated by: 

R2 =

(∑g
i=1

(
di − d

)
(yi − y)

)2

∑g
i=1

(
di − d

)2
×
∑g

i=1(yi − y)2
(25) 

MAE and MRE are used to assess the model accuracy. The low values 
of MAE and MRE indicate the high accuracy of the model. They are 
calculated by[24]: 

MRE =
1
ns

∑g

i=1

di − yi

di
(26)  

MAE =
1
ns

∑g

i=1
|di − yi| (27) 

EC predicts the model accuracy and has numerical values range be-
tween − ∞ and 1. It can be calculated by [58]: 

EC = 1 −
∑g

i=1(di − yi)
2

∑g
i=1

(
di − d

)2 (28) 
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OI and COV are computed as functions of the RMSE and EC. Optimal 
model accuracy can be obtained if the COV value approaches zero and 
the OI value approaches the unity. They are given as[33]: 

OI =
1
2

(

1 −
(

RMSE
dmax − dmin

)

+EC
)

(29)  

COV =

((
RMSE

y

)

× 100
)

(30)  

where m, x, and d denote the number of datasets, experimental and the 
predicted values respectively. dmax is the maximum value of experi-
mental data, dmindmindmax is the minimum value of experimental data and 
dd is the mean value of experimental data, while y y denotes the mean 
value of the predicted data. 

Results and discussion 

The main topics discussed in this section are: 

• The effect of the use of HLBS on the water yield and thermal per-
formance of SS.  

• The cost analysis of the proposed MSS.  
• The prediction of water yield using ML approaches. 

Before analyzing the thermal performance of the developed SSs, the 
measured operating parameters will be introduced. The measured 
values of solar irradiance, ambient temperature, glazier temperature, 
water temperature and HLBS surface temperature were recorded during 
the daytime (6 AM-6 PM). All measured temperatures as well as solar 
irradiance considering a constant water depth of 1 cm are plotted in 
Fig. 3. The solar irradiance and ambient temperature are the main in-
dependent variables that affect the performance of SSs. While other 
measured parameters: water temperature, glazier temperature, and 
HLBS surface temperature are dependent on the aforementioned inde-
pendent variables as well as the SS design and geometry. Monitoring 
both of independent and dependent parameters during the operation of 
SS plays a key role in assessing the thermal performance of the SS and in 
understanding the effect of different parameters and design modifica-
tions on the SS performance. 

At the beginning of the experiment (6 AM), the solar irradiance has a 
low value of 204 W/m2, which increases till reaching a peak value of 

1093 W/m2 at 12 PM, and then smoothly decreases to 207 W/m2 at 6 
PM. For the ambient temperature, it has a low value of 25.94 ◦C at the 
start of the experiment, which increases till reaching a peak value of 
38.07 ◦C at 2 PM, and then smoothly decreases to 33.14 ◦C at 6 PM. For 
the CSS, both of glazier and water temperatures reach their peak values 
of 48.96 ◦C and 78.05 ◦C, respectively, at 1 PM. For the MSS, both of 
glazier and water temperatures reach their peak values of 50.92 ◦C and 
52.39 ◦C, respectively, at 1 PM; while the temperature of HLBS surface 
has a peak value of 83.51 ◦C at 1 PM. There is a notable decrease in CSS 
water temperature (about 26 ◦C) compared with that of MSS. That is due 
to that the received solar energy is exploited in heating up a thin layer of 
water in case of MSS instead of water bulk in case of CSS. Moreover, 
there is a reasonable increase in HLBS surface temperature (about 5 ◦C) 
compared with water temperature of CSS which gives an advantage to 
MSS over CSS as it results in increasing the evaporation rate and the 
productivity of MSS compared with CSS. The higher temperature dif-
ference between the water surface and the glazier cover of MSS (about 
35.59 ◦C) compared with that of CSS (about 29.09 ◦C) may enhance the 
circulation process of humid air inside the SS and the condensation of 
vapor on the inner surface of the glazier cover. 

The hourly productivity of both SSs (with and without HLBS) is 
plotted in Fig. 4. At the start of the experiment, the yield of both SSs is 
equal to zero. Then, the MSS yield exceeds the CSS yield by 4.2 ml at 7 
AM. The difference between the yields of both SSs increases with time 
till it reaches a peak value of 203.2 ml at 1 PM and then it declines 
during the daytime until sunset and reaches a value of 56.6 ml at 6 PM. 

Fig. 3. Variation of solar irradiance, air temperature, glazier temperature, 
water temperature, and HLBS surface temperature with respect to time. 

Fig. 4. a) Hourly water yield of SS with and without HLBS; b) Accumulated 
water yield of SS with and without HLBS. 
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At the end of the experiment, the hourly productivity of CSS and MSS 
was 80.2 ml and 136.8 ml, respectively. The accumulated productivity 
of both stills is plotted in Fig. 4, it was 3.70 L/day and 4.99 L/day for the 
CSS and MSS, respectively, with an increase of 34.32% in the water yield 
during the day. 

The hourly energy and exergy efficiencies of both SSs (with and 
without HLBS) are plotted in Fig. 5. For CSS, the hourly exergy efficiency 
increases from the beginning of the experiments with time till reaching 
its peak value (4.29%) at 1 PM and it approximately maintains this peak 
value for another more hour (2 PM), then it declines with time and has a 
low value of 1.03% at 6 PM. For MSS, the hourly exergy efficiency also 
increases from the beginning of the experiments with time till reaching 
its peak value (6.10%) at 2 PM, then it declines with time and has a low 
value of 2.09% at 6 PM. The difference between the exergy efficiency of 
MSS and CSS increased at the end of the day as shown in Fig. 5 (a). The 
improvement in exergy efficiency for MSS over CSS has its peak value 
(about 102%) at 6 PM; however, it has a low value of (approximately 
40%) at the noon. That indicates the effectiveness of the developed HLBS 
to exploit the solar energy to evaporate water even at the sunset time at 
which the solar radiation has low values. The same trend is observed for 
the energy efficiency as shown in Fig. 5 (b). The hourly energy efficiency 
of MSS is higher than that of CSS for all investigated hours. For CSS, the 
energy efficiency reaches its peak value (36.35%) at 2 PM and declines 
with time till reaching its minimal value (22.12%) at 6 PM. For MSS, the 

energy efficiency reaches its peak value (50.34%) at 3 PM and declines 
with time till sunset and has a reasonable value (37.64%) at 6 PM. The 
improvement in the energy efficiency for the MSS over CSS has a peak 
value (70.11 %) at 6 PM; however, it has a low value of (approximately 
25%) at the noon. Moreover, the daily overall energy efficiency of CSS 
and MSS is 23.24% and 31.09%, respectively. The daily overall exergy 
efficiency of CSS and MSS is 2.47% and 3.63%, respectively. These re-
sults revealed the superior thermal performance of MSS compared with 
CSS and the effectiveness of using HLBS in SS to augment the water 
evaporation and fresh water productivity. 

To figure out the effect of water depth in the basin on the freshwater 
productivity of SSs, another set of experiments was conducted. For the 
CSS, the water depth affects the fresh water productivity as reported by 
[54] and plotted in Fig. 6. As shown in that figure the freshwater pro-
ductivity deceases with increasing the water depth. The accumulated 
productivity of CSS is decreased by about 1100 ml (40%) when the 
water thickness increased from 0.5 cm to 2.5 cm. For MSS, increasing the 
water depth has a positive effect on productivity unlike CSS. The accu-
mulated productivity of MSS is increased by about 250 ml (5%) when 
the water thickness increased from 0.5 cm to 2.5 cm. Therefore, change 
of water depth has a considerable effect on the freshwater productivity 
of CSS compared with that of MSS. That is due to the heat localization 
process which occurs in MSS which lessens the energy consumed in 
heating the bulk water in the basin and concentrates the heating process 
on the water surface where the evaporation occurs. 

The cost data according to the Egyptian local market of the different 
MSS components are listed in Table 3. Assuming the maintenance pro-
cess requires one day per week (52 day per year), and then the operating 
period for the cost analysis is 310 days per year. The maintenance 
process includes several steps such as brackish water filling, glazier 
cover cleaning, corners and edges sealing, removing brine water, and 

Fig. 5. a) Hourly exergy efficiency of SS with and without HLBS; b) Hourly 
energy efficiency of SS with and without HLBS. 

Fig. 6. The effect of the water thickness on accumulated water yield of CSS 
and MSS. 

Table 3 
Cost data of different components of MSS.  

Component Cost ($) 

Basin 40 
Glazier cover 10 
Water tank 5 
Pipes and valves 10 
Silicon and paints 10 
Insulation 10 
Polystyrene foam sheet (for MSS only) 2 
Black cotton fabric (for MSS only) 8 
Manufacturing 25  
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distilled water collecting. The different values of SFF, CRF, S, ASV, FAC, 
AC, AMC, and CPL are listed in Table 4. The developed MSS has a 
reasonable cost of freshwater per liter (0.015 $/l) and annual yield 
compared with other studies found in literature as tabulated in Table 5. 
The developed HLBS is characterized as an efficient low cost steam 
generation device as it enhances the fresh water productivity by about 
34% using low cost materials (10 $/m2) compared with other 
improvement techniques found in literature as tabulated in Table 6. 

The water yield of the established SSs was predicted using three 
different ML approaches, namely, ANN, ANFIS, and SVM. All ML models 
were trained using experimental data collected during seven days. The 
total number of the datasets are 84, 80% of them were used to train the 

models and the 20% of them were used to test the models. The model 
inputs are solar irradiance and ambient temperature, while the model 
output was the water yield. The experimental data used in training the 
ML models are plotted in Fig. 7. Fig. 8 shows the correlation matrix 
between the inputs and outputs of the models. The statistical analysis 
based on minimum, maximum, average and standard deviation of the 
experimental data is tabulated in Table 7. These data is normalized 
based on its mean and variance before it be used as training data sets of 
the proposed models. 

The predicted water yield using SVM showed better consistency with 
the experimental one, in contrary to that of ANN and ANFIS which 
deviated from the experimental data as observed in Fig. 8. 

Fig. 9 (a-c) displays that the QQ-plots of the experimental and the 
predicted values of water yield using ANN, ANFIS and SVM, respec-
tively. The plotted points is scattered randomly around the straight line 
in case of ANN and ANFIS models. In case of SVM, the plotted points lie 
on or in vicinity of the straight line. Therefore, it can be declared that: 
the best regression fit between the predicted and target water yield is 
obtained using SVM, followed by ANFIS, and lastly, the worst regression 
fit between the predicted and target is obtained by ANN. Furthermore, 
the normalized error histograms for the three models are demonstrated 
in Fig. 9 (d-f) for ANN, ANFIS, and SVM, respectively. The highest 
normalized error was attained by ANN algorithm followed by ANFIS, 
and lastly, SVM has the smallest value of the normalized errors. 
Furthermore, it can be observed from the normalized error histograms 
that the error attained by ANN and ANFIS follows a normal distribution 
with high normalized errors, while the error obtained by SVM does not 
follow a normal distribution with small normalized error. The same 
trend is observed in case of MSS for QQ-plots as shown in Fig. 10 (a-c) 
and normalized error histograms as shown in Fig. 10 (d-f). Therefore, the 
SVM model can be declared as an accurate model compared with the 
other two models to predict the water yield for both of CSS and MSS. 

The performance of the proposed SVM was compared with the other 
two models (ANN and ANFIS) using seven statistical measures, namely, 
RMSE, R2, MAE, MRE, EC, OI, and COV. The evaluation of the three ML 
models using different statistical measures is presented in Fig. 11 and 

Table 4 
Cost analysis for the developed MSS.  

P($) SFF CRF FAC ($) S ($) ASV ($) AMC ($) AC ($) M (l) CPL ($/l) 

120  0.057  0.177  21.15  24.1  1.35  3.15  23.25 1550  0.015  

Table 5 
A comparison between different SS investigations found in literature.  

Ref. AC ($) M (l) CPL ($/l) 

This study  23.25 1550  0.015 
[81]  18.06 681  0.0265 
[15]  21.13 559  0.0378 
[104]  30.74 429  0.0717 
[97]  50.34 1196  0.0421 
Fath et al. [39]  19.12 1170  0.0163  

Table 6 
Cost of SS improving techniques found in literature [10,20,51,115].  

Improving technique Cost ($/m2) Productivity improvement 
(%) 

Solar concentrator 50–100 18 
Nanofluids 10–20 12–30 
Sun-tracking system 50–100 22–30 
Nano-coating of condensing 

surface 
10–20 20–50 

Shallow solar pond 70–150 43–55 
Solar collector 140–800 36–250 
HLBS (this study) 10–15 34 %  

Fig. 7. The measured experimental data: a) solar radiation; b) ambient temperature, c) the hourly water yield of CSS; d) the hourly water yield of the CSS.  
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Table 8. SVM outperforms the other two models in predicting the water 
yield for both SSs in terms of all statistical measures as depicted in spider 
plots presented in Fig. 12. For both SSs, SVM has the highest values of 
R2, OI, and EC followed by ANFIS and ANN models. Besides, SVM has 
the lowest values of RMSE, MAE, MRE, and COV followed by ANFIS and 
ANN models. The high values of R2, OI, and EC as well as the low values 
of RMSE, MAE, MRE, and COV indicate the high accuracy of the SVM 
over the other two models. From Table 8, the values of R2, OI, and EC of 
SVM approaches the unity as all of them has a very close value to the 
unity (0.999) for both SSs; the approaching of these values to the unity 

indicate the ultimate accuracy of SVM. Moreover, the values of RMSE, 
MAE, MRE, and COV tends to vanish as all of them has a very close value 
to zero which are 0.099, − 0.001, 0.098, and 0.031 for CSS and 0.098, 
− 0.001, 0.098, and 0.023 for MSS, respectively; the approaching of 
these values to zero indicate the ultimate accuracy of SVM. These results 
reveal the outperformance of SVM model over ANN and ANFIS for 
predicting the water for both SSs. 

Conclusions 

In this study, a new heat localization bilayered structure is proposed 
to improve the performance of solar stills (SSs). The thermal perfor-
mance and the cost of the developed SS was analyzed. Moreover, the 
water yield of the developed SSs was predicted using three machine 
learning approaches, namely, ANN, ANFIS, and SVM. The bilayered 
structure consists of an AL made of black cotton fabric wrapped on a SL 
made of polystyrene foam. The AL absorbs solar energy with high effi-
ciency, while the low density foam enables the bilayered structure to 
float on the surface of saline water and its low thermal conductivity 
confine heat in the AL via insulating the AL from the water bulk. Using 
the developed structure, the rate of evaporation is increased and the heat 
losses are decreased, which enhance the productivity and the thermal 

Fig. 8. The correlation matrix between the input and output variables.  

Table 7 
Statistical analysis of the experimental data.   

Solar 
radiation 

Ambient 
temperature 

Water yield of 
conventional SS 

Water yield 
of modified 
SS 

Maximum  1133.722  40.889  713.253  890.998 
Minimum  191.205  25.686  12.099  17.207 
Average  738.467  34.853  316.606  424.187 
Standard 

Deviation  
301.891  4.022  247.531  310.072  
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performance of the SS. The effects of the developed bilayered structure 
and the water depth in the basin on the SS performance have been 
investigated. The water yield of the MSS is always greater than that of 
the reference still for all water depths. The obtained results revealed the 
superior thermal performance of MSS compared with CSS and the 
effectiveness of using HLBS in SS to augment the water evaporation and 
fresh water yield. The following conclusions could be drawn from the 
current study:  

• The maximum water yield achieved in case of MSS is 4.99 L/m2/day 
which is higher than that of CSS by about 34%.  

• The daily overall energy efficiency of CSS and MSS is 23.24% and 
31.09%, respectively.  

• The daily overall exergy efficiency of CSS and MSS is 2.47% and 
3.63%, respectively.  

• The water depth in the basin does not significantly affect the water 
yield of MSS.  

• The water yield of CSS decreased by about 1100 ml (40%) when the 
water thickness increased from 0.5 cm to 2.5 cm.  

• The water yield of MSS increased by about 250 ml (5%) when the 
water thickness increased from 0.5 cm to 2.5 cm.  

• The cost of freshwater per liter obtained by the modified solar still is 
0.015 $/l which is reasonable compared with other improving 
techniques used in literature.  

• SVM outperformed ANN and ANFIS in predicting the water yield of 
both SSs.  

• A high coefficient of correlation of 0.999 was obtained using SVM. 

For future work, it is recommended to apply advanced artificial in-
telligence models such random vector functional link to model the water 
yield and thermal performance of solar stills. Moreover, advanced 
metaheuristic optimizers could be used to optimize the performance of 
the model as well as desalination system. The quality of the produced 

Fig. 9. The predicted water yield using different ML approaches: a) CSS; 
b) MSS. 

Fig. 10. The qq-plot of target (experimental) and the predicted water yield of CSS (a) ANN, (b) ANFIS, (c) SVM and the normalized error histogram for (d) ANN, (e) 
ANFIS (f) SVM. 
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Fig. 11. The qq-plot of target (experimental) and the predicted water yield of MSS (a) ANN, (b) ANFIS, (c) SVM and the normalized error histogram for (d) ANN, (e) 
ANFIS (f) SVM. 

Table 8 
Statistical measures used to evalute the performance of the three ML models.    

R2 RMSE MRE MAE COV EC OI 

CSS ANN  0.986  31.445  0.301  27.351  9.994  0.983  0.969 
ANFIS  0.987  27.773  0.013  12.798  8.751  0.987  0.973 
SVM  0.999  0.099  − 0.001  0.098  0.031  0.999  0.999 

MSS ANN  0.981  44.699  0.137  37.999  10.872  0.978  0.963 
ANFIS  0.987  34.514  0.005  14.654  8.101  0.987  0.973 
SVM  0.999  0.098  − 0.001  0.098  0.023  0.999  0.999  

Fig. 12. Spider plot of different statistical measures used to evaluate the performance of the ML models for: a) CSS; b) MSS.  
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water and the sustainability of the desalination system are also good 
research directions that should be extensively investigated. 
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