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A B S T R A C T   

This study investigates the effect of using turbulators with innovative geometrie (TIG) and DWCNTs-TiO2/water 
hybrid nanofluid (HNF) on thermal–hydraulic performance, exergy and energy efficacies of flat plate solar 
collector (FPSC) using a mixed two-phase model (TPM). Finite volume technique (FVT), SIMLPLEC algorithm 
and FLUENT software are used. The numerical study is performed for nano-additives concentrations (ϕ) of 1 to 
3%, Reynolds numbers (Re) from 7000 to 28000, and PR of 1, 2, 3, and 4 of the proposed TIG in turbulent flow 
regime. The results show that the average Nusselt number (Nuave) increases by augmenting the Re and ϕ. In 
addition, at Re = 28,000 and ϕ = 3%, the installation of TIG with PR = 4 within the solar collector (SC) increases 
the Nuave by 63.46%. In the case of ϕ = 3% and by augmenting the Re from 7000 to 28000, energy and exergy 
efficacies increase by 22.19% and 23.26% for PR = 4 and PR = 1, respectively.   

Introduction 

Solar energy is one of the most popular types of energy for human use 
these days. Meanwhile, the equipment for exploiting this energy is of 
particular interest to researchers [1–6]. One of the most extensively used 
equipment is solar collectors, and researchers are thinking of improving 
their efficiency in various ways every day [7–12]. One way to increase 
the efficiency of solar collectors is to focus on improving heat transfer in 
them. In the meantime, augmenting the heat transfer rate (HTR) using 
passive methods has always been the focus of researchers [13–15]. One 
of these approaches is to use turbulators with dissimilar shapes to 
enhance HTR [16–19]. The use of nanomaterials has also been highly 
considered by researchers in recent decades [20–27]. Afshari et al. [28] 
considered the influence of turbulator on thermal performance (η) inside 
the SC, experimentally and numerically. Based on the results obtained 
from their study, the experimental and numerical findings were in good 
agreement with high accuracy. Also, the use of a turbulator increases the 
efficacy of the SC by 72.41%. 

Rostami et al. [3] considered the influence of elliptical tubes on the 
exergy efficacy of water-multi-walled carbon nanotubes in a FPSC using 
FVT and FLUENT software. According to their results, the maximum 
augmentation in the efficacy of the FPSC is 17.11% when elliptical tubes 
are used. 

Sakhaei and Valipour [29] experimentally inspected the effect of 
height and roughness on a parabolic solar collector (PSC). According to 
their results, the use of roughness and augmenting its length intensifies 
the η of the PSC. Also, the η increases by augmenting the roughness 
height. In addition, the maximum augmentation in η of the SC was 
97.6%. 

Hosseini et al. [30] experimentally examined the effect of rotary 
turbulators with twisted tape to increase HTR in the solar desalination 
system. According to their results, the use of a rotary tubulator with 
twisted tape can improve the output efficacy to its maximum value. 
Besides, in the solar desalination system, the maximum output efficacy 
was 87.11% lower than the solar desalination system with a rotary 
turbulator. 

Ibrahim et al. [31] numerically measured the effect of TIG on the 
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exergy efficacy of a HNF in a SC. In this study, they employed a hybrid 
water/aluminum oxide-multi-walled carbon nanotube nanofluid using 
the FVT. Their results revealed that exergy efficacy decreases with the 
height and twisted ratio of turbulators. 

Yan et al. [32] numerically considered the influence of using U- 
shaped PSC tubes filled with non-Newtonian two-phase hybrid nano-
fluids (TPHNFs) using the FVT and FLUENT software. They used a 
surface-to-surface model to model radiation energy and employed a 
mixed TPM to model a two-phase non-Newtonian HNF. Based on their 
findings, the use of U-shaped absorber tubes increases the η of the PSC by 
45.11%. 

Shahsavar Goldanlou et al. [33] considered the impact of using HNF 
on the flow field and HTR within a PSC FVT and the k-ω model to 
examine the flow field. Their results indicated that the HTR intensifies 
with augmenting the nano-additive concentration. Also, the maximum 
augmentation in η of the PSC was 46.89% using HNFs more than case of 
water-based fluid. 

Waghole et al. [34] investigated the influence of employing twisted 
tape on the thermal and hydraulic performance of water-silver nanofluid 
in a linear PSC. Their results showed that augmenting the ϕ of silver 
nanoparticles and Re results in a substantial increase in the η of the 
linear PSC. In addition, augmenting the pitch of the twisted tape in-
creases the HTR and ΔP. 

Nazir et al. [35] numerically inspected the influence of water/ 
aluminum oxide nanofluid on energy efficacy and exergy of a linear PSC 
for Re from 500 to 1500 and volume fractions of 1 to 4%. Their results 
demonstrated that amplifying the Re and ϕ increases energy and exergy 
efficacy. 

The impact of using porous obstacles on the fluid flow and HTR of 
nanofluid inside the PSC was experimentally examined by Reddy et al. 
[36]. They found that augmenting the porosity of the obstacles aug-
ments the η of the PSC. However, augmenting the porosity increases the 
ΔP. Also, the η of the PSC with porous obstacles increases by 57.34% 
compared to the SC without porous obstacles. 

Ma et al. [37] numerically investigated the influence of using hot 
tubs on the free convection of Cu/EG-water nanofluid in the space be-
tween adiabatic cylinders for Rayleigh numbers of 103 to 105 and ϕ from 
zero to 0.05. They reported that the Nuave enhances significantly with 
the Rayleigh number. Also, the use of nanofluids has shown much higher 
η than water-based fluid and ethylene glycol. 

Reddy et al. [38] numerically inspected the influence of porous ob-
stacles on the flow field and HTR of water-aluminum oxide nanofluid in 
a turbulent flow regime inside a PSC using k-ε turbulence model. They 
reported that porous obstacles and nanofluid increase the η of the SC. 
Also, the maximum augmentation in HTR when porous obstacles were 
employed was 18.45%. 

The impact of twisted tape on the fluid flow and HTR within a PSC 
using computational fluid dynamics was numerically inspected by Jar-
amillo et al. [39]. Their numerical results revealed that augmenting the 
Re and the pitch ratio in the twisted tape increases the η of the SC. Also, 
the maximum intensification in η was 19% when the twisted tape was 
employed. 

Zhu et al. [40] used FVT and the k-ω turbulence model for evaluating 
the effect of corrugated tapes in a PSC. Based on their findings, the 
maximum intensification in η of the SC at Re = 20,000 was 156.51%. 

Dezfulizadeh et al. [41]numerically studied the influence of a hybrid 
TIG on the exergy efficacy of a triple HNF in a heat exchanger exposed to 
a magnetic field. Their study was carried out for Re from 4000 to 16,000 
and volume fractions of zero to 3%. Their findings indicated that the 
installation of a hybrid turbulator rises the exergy efficacy in the heat 
exchanger. Also, the use of hybrid turbulators in the counterclockwise 
direction is more suitable in terms of exergy efficacy. 

In this study, a special type of turbulator with new geometries has 
been used. This turbulator has been studied in several of PR values. 
Simultaneous investigation of energy and exergy efficienciess and PEC 
value is of other features of this study. Also in this study, polymeric 
hybrid nanofluid has been used, which has been less discussed in pre-
vious studies. 

According to the researched performed so far, the thermal and hy-
draulic performance, exergy efficacy, and energy efficacy of DWCNTs- 
TiO2/water TPHNF turbulent flow in SCs equipped with innovative 
turbulators have not been studied. Consequently, in this numerical 
research, thermal and hydraulic performance of DWCNT- TiO2/water 
HNF with 1 ≤ ϕ ≤ 3%, 7000 ≤ Re ≤ 28000, and the PR = 1, 2, 3, and 4 
for turbulators is investigated for turbulent flow regime. 

Mathematical model and equations 

Fig. 1 displays the schematic view of the SC containing TIG. As seen, 
the absorber tube is a part of the SC. The lengths of absorber tube and 
TIG are 800 mm and 300 mm, respectively. The TIG is installed in the 
middle of the absorber tube. The distance of TIG from both sides of the 
tube is 250 mm. For simulating the radiation, the surface-to-surface 
model is employed. Furthermore, the k-ε turbulence model and the 
SIMPLEC algorithm are respectively applied to solve the turbulent flow 
and discretization of the equations. 

Table 1 presents the geometry specification of TIG. 
The DWCNTs-TiO2/water TPHNF is employed as the heat transfer 

fluid. The thermophysical characteristics of the used materials are re-
ported in Table 2. 

For simulating the DWCNT-TiO2/water HNF flow through the SC, 
the mixed TPM is implemented. The governing equations of the problem 
are expressed in Table 3. 

In Equation (18) Q̇HTF is calculated from Equation (19). In this 
equation Ti,HTF is the fluid temperature at the inlet of heat exchanger. Ts 

is the surface temperature of the collector absorber pipe. VI is also the 
hybrid nanofluid velocity. Also,ηP is the efficiency of the pump used in 
the parabolic solar collector cycle and its value is 80%. 

Nomenclature 

Symbols 
cP Specific heat, (J/kgK) 
Dh Hydraulic diameter, (m) 
f Friction factor 
k Thermal conductivity, (W/mK) 
P Pressure, (Pa) 
T Temperature (K) 
V Velocity 

Greek symbols 
μ Dynamic viscosity (mPa.s) 
ρ Density (m3/kg) 
η efficiency 

Subscriptions 
np Nanoparticle 
nf Nanofluid 

Abbreviations 
FVT finite volume technique 
PEC thermal–hydraulic performance 
ηen energy efficiency 
ηex exergy efficiency 
PR pitch ratios 
SC solar collector 
FPSC flat plate solar collector 
HNF hybrid nanofluid  

Y. Khetib et al.                                                                                                                                                                                                                                  



Sustainable Energy Technologies and Assessments 51 (2022) 101855

3

Numerical modeling 

Past research has shown that using numerical methods to solve 
complex fluid flow and heat transfer equations can be very useful. In 
fact, using numerical methods or computational fluid dynamics can 
reduce the time and cost of performing experiments [49–53]. In the 
present study, FLUENT software version 18.2 is used for numerical 
simulations. First, the geometry of the SC is prepared in three 

dimensions using the design modeler module. In order to discretize the 
computational area into a number of control volumes, the geometry of 
the SC is gridded. After performing the grid independence test and 
ensuring the number of elements in the computational area, the grid 
geometry is exported into FLUENT software. The problem is solved on 
the steady assumption and the solver is pressure-based. The DWCNTs- 
TiO2/water HNF flow is simulated using a mixed TPM. In order to model 
the turbulent flow, the standard k-ε turbulence model is used. The 
boundary conditions at the input of the PSC are 7000 ≤ Re ≤ 28000, the 
ϕ = 1 to 3% of TiO2 and DWCNT nanoparticles, and twisted ratios of 1, 
2, 3, and 4 of the TIG. The Least Squares Cell-Based model is applied for 
discretization. The standard model is applied to discretize the pressure, 
and the power-law model is employed for momentum, turbulent kinetic 
energy, and volume fraction equations. 

Grid independence assessment 

In Fig. 2, for grids with different number of points, the Nuave is 
calculated to select the best grid in order to make the results indepen-
dent of the grid. In order to obtain a proper grid that leads to the in-
dependence of the findings from the number of grid points, the Nuave for 
DWCNTs-TiO2/water HNF inside a SC with a TIG is calculated (Fig. 2). It 
can be concluded that the grid with 2132044 nodes is appropriate for a 
SC with a TIG. Further intensification of this grid resolution does not 
change the values of the Nuave. Therefore, the grid resolution of 
2132044 is selected for the present simulations. 

Fig. 1. Schematic of the SC equipped with TIG.  

Table 1 
Characteristics of the considered TIG.  

Dimension Size 

L 300 mm 
D 60 mm 
PR 1, 2, 3, 4  

Table 2 
Thermophysical specification of water and nano-additives [42,43].  

Property Water TiO2 DWCNT 

ρ
(
kg.m− 3) 998.2 4250 2100 

cP
(
J.kg− 1 .K− 1) 4182 686.2 710 

k
(
W.m− 1.K− 1) 0.6 80.2 3000 

μ
(
kg.m− 1.s− 1) 0.001003 – –  
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Verification 

The numerical findings is verified according to the similar model 

presented by Sheikholeslami et al. [54] and the Nuave are compared 
(Fig. 3). As observed, the difference between the amounts of the Nuave 
gained in the present solutions is minor (about 3.11%) compared to the 

Table 3 
Governing equations [44–48].  

Equation name Formula Eq. No. 

continuity equation 
∇

(

ρm U→m

)

= 0  
(1) 

mixture velocity or mass-averaged velocity 
U→m =

ρsϕs U→s + ρbf ϕbf U→bf

ρm  

(2) 

mixture density ρm = ρsϕs + ρbf ϕbf  (3) 
momentum equation 

ρm

(

U→m∇U→m

)

= − ∇ P→ + μm

(

∇U→m +

(

∇U→m

)T
)

+ ∇

(

ρbf ϕbf U→dr,bf U→dr,bf +ρsϕs U→dr,s U→dr,s

)

+ ρm g→
(4) 

drift velocity of particles U→dr,bf = U→bf − U→m  
(5) 

base fluid drift velocity U→dr,s = U→s − U→m  
(6) 

energy equation 
∇

(

ρbf ϕbf U→bf hbf +ρsϕs U→shs

)

= ∇
((

ϕbf kbf + ϕsks

)
∇ T→

) (7) 

volume fraction equation 
∇

(

ρsϕs U→m

)

= − ∇

(

ρsϕs U→dr,s

)
(8) 

slip velocity U→bf,s = U→bf − U→s  
(9) 

drift velocity and relative velocity U→dr,s = U→s,bf −
ρsϕs
ρm

U→bf,s  
(10) 

velocity is through the Schiller and Naumann 
U→bf,s =

d2
p

18μbf f d

ρs − ρm
ρs

α→
(11) 

f d = 1 + 0.15Re0.687
s  

α→ = g→−

(

U→m∇U→m

)

Reynolds number 
Res =

U→mdpρm
μm  

(12) 

describe the k-ε model 
∇

(

ρm U→mk
)

= ∇

[(

μm +
μt,m

σk

)

∇k
]

+ Gk,m − ρmε  (13) 

∇

(

ρm U→mε
)

= ∇

[(

μm +
μt,m

σε

)

∇ε
]

+
ε
k
(
c1Gk,m − c2ρmε

)

turbulent viscosity 
μt,m = Cμρm

k2

ε  
(14) 

production rate 
Gk,m = μt,m

(

∇U→m +

(

∇U→m

)T
)

(15) 

Thermal energy ηc =
Ec

I∙A
=

Qin∙ρin∙cp,in∙(Tout − Tin)
6∙104∙I∙A  

(16) 

efficacy 
ηn =

En

I∙A
=

pfo∙Qin∙ρin∙cp,in∙
(
Tfo,out − Tin

)
+ (1 − pfo)Qin∙ρin∙cp,in∙

(
Tfi,out − Tin

)

6∙104∙I∙A  
(17) 

Exergy efficacy 

ηex =

Q̇HTF − ṁHTFcp,HTFln
(

T∞

Ti,HTF

)

− Q̇HTF − ṁCFcp,CFln
(

To,CF

Ti,CF

)

+ VIηP  

(18) 

Heat transfer rate Q̇HTF = h(Ti,HTF − Ts) (19)  

Fig. 2. Nuave for DWCNTs-TiO2/water hybrid nanofluid in SC containing a TIG 
for Re = 28000, ϕ = 3%, PR = 4, and different grid resolutions. 

Fig. 3. Nuave versus Re: comparison between the results obtained from the 
present simulations and the ones reported by Sheikholeslami et al. [54]. 
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Fig. 4. Nuave versus Re in a SC containing a TIG with various twisted ratios for 
different nano-additives concentrations. Fig. 5. Contours of velocity for TPHNFs for ϕ = 3%, Re = 28000, and (a) PR =

1, (b) PR = 2, (c) PR = 3, and (d) PR = 4. 
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Fig. 6. Temperature contours for TPHNFs for ϕ = 3%, Re = 28000, and (a) PR 
= 1, (b) PR = 2, (c) PR = 3, and (d) PR = 4. 

Fig. 7. ΔP against Re in a SC containing a TIG with various PRs for ϕ = 1%, 2% 
and 3% 
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results of Sheikholeslami et al. [54]. Therefore, the accuracy of the 
simulations is ensured. 

Results and discussion 

The findings of simulation are presented in the following. The effect 
of dissimilar twisted ratios of the TIG inside the SC on the Nuave, ΔP, 
thermal–hydraulic evaluation index, and energy efficacy are examined. 
Moreover, the counters related to velocity, streamlines, pressure, and 
temperature inside the SC consisting of the TIG with twisted ratios of 1, 
2, 3, and 4 are provided for the volume fraction of 3% and Re = 28000. 

Effect of TIG twisted ratio on average Nusselt number 

Fig. 4 shows the variations of the Nuave in terms of Re in a SC con-
taining the TIG for various twisted ratios and nano-additives concen-
trations. As seen, the Nuave enhances with the Re. In fact, the flow 
velocity augments by augmenting the Re and consequently, the heat 
transfer coefficient intensifies, leading to intensification in the Nuave. At 
a constant Re, augmenting the turbulent twisted ratio intensifies the 
mean Nusselt number [33]. Placing the TIG in the SC increases the 
mixing and turbulence of the DWCNTs-TiO2/water HNF flow, resulting 
in an enhancement in the η of the SC. At Re = 28,000, the installation of 
TIG with PR = 4 increases the Nuave by 61.23%, 62.87% and 63.46% for 
ϕ = 1%, 2% and 3%, respectively. 

In general, with increasing PR value, turbulence and fluctuations in 
nanofluid flow would be enhanced and heat exchange increases. As a 
result, the average value of Nusselt number increases [33]. 

Velocity contours for TPHNF are shown in Fig. 5 for Re = 28000, ϕ =
3%, and various PRs. As observed, neighboring the walls, the fluid ve-
locity is equal to the wall velocity because of the no-slip boundary 
condition. Therefore, the velocity near the wall is zero and increases to 
touches its highest value at the collector center. According to the ve-
locity contours, it can be observed that the density of streamlines in-
tensifies by augmenting the TIG twisted ratio, leading to amplification in 
the velocity [33]. As fluid flow hits the TIGs, a separation phenomenon 
arises; which leads to the creation and rotation of vortices, and conse-
quently η is improved. 

Fig. 6 demonstrates the contours of temperature for the TPHNF for ϕ 
= 3%, Re = 28000, and various PRs.. As seen, the surface temperature of 
the TIG increases with the collision of the nanofluid flow and the effect 
of radiation from sunlight. 

Effect of innovative turbolator twisted ratio on pressure drop number 

Fig. 7 shows the ΔP against Re in a SC containing a TIG with various 
twisted ratios of 1, 2, 3, and 4. As seen, the ΔP is always increased for all 
cases by augmenting the Re and TIG twisted ratio. In addition, the ΔP 
increases with the nano-additive concentration. At Re = 28000, adding 
the TIG with PR = 4 increases the ΔP by 309.40%, 311.21% and 
314.77% for casese of ϕ = 1%, 2% and 3%, respectively [33]. 

The contours of pressure for the TPHNF at Re = 28000 and ϕ = 3% 
are shown in Fig. 8 for different twisted ratios of 1, 2, 3, and 4. As seen, 
the streamlines concentration intensifies with augmenting the twisted 
ratio, leading to an enhancement of the pressure. In addition, the fluid 
flows between the turbolator blades, causing streamlines to contract. 
Moreover, with increasing the length of the SC, the pressure reduces. In 
all cases of turbolator inside the SC, the inlet pressure has its highest 
amount. The cause for the high pressure in these areas is the flow 
stagnation because of its hit with the turbolators. Hence, the velocity 
alters to pressure and then the pressure gradually decreases as the flow 
passes through the TIG blades. 

In general, with increasing PR value, the flow becomes more dis-
torted and turbulent. On the other hand, with increasing PR, the contact 
surface of the fluid with the TIG wall increases and the amount of shear 
stress would be more. With increment shear stress, the pressure drop 

Fig. 8. Pressure-related contours for TPHNFs at ϕ = 3% and Re = 28000 within 
the SC at (a) PR = 1, (b) PR = 2, (c) PR = 3, and (d) PR = 4. 
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Fig. 9. Thermal hydraulic performance against Re for a SC containing a TIG 
with various twisted ratios and different nano-additives concentrations. 

Fig. 10. Streamline contours for TPHNFs at Re = 28000 and ϕ = 3% at (a) PR 
= 1, (b) PR = 2, (c) PR = 3, and (d) PR = 4. 
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increases [33]. 

Effect of TIG twisted ratio on thermal and hydraulic performance 
coefficient 

Changes in thermal–hydraulic coefficient versus Re in a SC con-
taining a TIG with various twisted ratios are shown in Fig. 9 for different 
twisted ratios of 1, 2, 3, and 4. As seen, in all cases the value of the 
thermal–hydraulic performance coefficient is more than 1. Thus, it can 
be understood that installation of a TIG and augmenting its twisted ratio 
is desirable to enhance thermal–hydraulic index. 

Streamline contours for TPHNFs are displayed in Fig. 10 for a ϕ = 3% 
and Re = 18000 within the SC at different PRs. They have been given. As 
observed, the streamlines concentration intensifies with augmenting 
twisted ratio in the illuminated TIG. 

Effect of TIG twisted ratio on energy efficacy 

Energy efficacies against Re in a SC containing a TIG with different 
twisted ratios and volume fractions are illustrated in Fig. 11. As seen, for 

all twisted ratios, the energy efficacy is always increased with aug-
menting Re and nano-additive concentration. Also, the maximum en-
ergy efficacy at all Re and volume fractions is related to the state in 
which the PR = 4 is used. At ϕ = 3%, by augmenting the Re from 7000 to 
28000, the amount of energy efficacy increases by 21.08%, 21.47%, 
21.81 and 22.19% for cases of TIGs with PR = 1, 2, 3 and 4, respectively 
[41]. 

Effect of TIG twisted ratio on exergy efficacy 

Exergy efficacy against Re in a SC containing a TIG are shown in 
Fig. 12 for dissimilar volume fractions and twisted ratios. As seen, the 
exergy efficacy has an upward trend with augmenting Re and nano- 
additive concentration, and a decreasing trend with augmenting 
twisted ratio. At ϕ = 3%, by amplifying the Re from 7000 to 28000, the 
amount of exergy efficacy increases by 23.26%, 23.13%, 23.07 and 
22.90% for cases of TIGs with PR = 1, 2, 3 and 4, respectively. 

In general, with increasing Reynolds number, the Nuave which is an 
indicator of heat transfer rate, increases. On the other hand, also 
increment the volume fraction increases the heat conduction coefficient 

Fig. 11. Energy efficacy against Re in a SC containing a TIG with different twisted ratios and volume fractions.  
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and grows up the heat exchange. As a result, the efficiency of exergy 
increases. Also, enhancement of PR value increases the pressure drop 
and thus reduces the performance. As a result of reducing performance 
ability, the exergy efficiency decreases [33]. 

Conclusions 

In this study, a special type of TIG with new geometries has been 
used. This TIG has been studied in several of PR values. The influence of 
TPHNF and TIGs on thermal–hydraulic performance, as well as exergy 
and energy efficacy of a SC in turbulent flow regime was investigated. A 
numerical study was performed for DWCNTs-TiO2/water HNF with 1 ≤
ϕ ≤ 3%, 7000 ≤ Re ≤ 28000, and twisted ratios of 1, 2, 3, and 4. The 
results are as follows: 

• At highest Re and ϕ, the installation of TIG with PR = 4 increases 
the Nuave and ΔP by 63.46% and 314.77%, respectively. 

• The results revealed that the use of a novel TIG is desirable for the 
range of Re between 7000 and 28,000 and ϕ of 1% to 3%. 

• Energy efficacy enhances by augmenting the twisted ratio of the 
TIG. 

• In the case of ϕ = 3% and by augmenting the Re from 7000 to 
28000, energy and exergy efficacies increase by 22.19% and 23.26% for 
PR = 4 and PR = 1, respectively. 
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