Population density estimate of leopards (*Panthera pardus*) in north-western Mpumalanga, South Africa, determined using spatially explicit capturerecapture methods

Supplementary Material

Leopard resting in a tree at Kruger National Park, Mpumalanga, South Africa. Photo credit: Wayne S. J. Boardman

Declan R. Morris^a, Wayne S. J. Boardman^a, Lourens H. Swanepoel^{b&c}, Greg Simpson^d, Jannie Coetzee^e, Gerrie J. Camacho^e, Todd J. McWhorter^a

^a School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, 5371, Australia.

^b Department of Zoology, University of Venda, Thohoyandou, Limpopo, 0950, South Africa.

^c African Institute for Conservation Ecology, Levubu, Limpopo, 0929, South Africa.

^d Department of Production Animal Studies, University of Pretoria, Onderstepoort, Gauteng, 0110, South Africa.

^d Mpumalanga Tourism and Parks Agency, Nelspruit, Mpumalanga, 1200, South Africa.

Corresponding Author – Declan Morris : <u>declanmorris743@gmail.com</u>

```
> library(secr)
This is secr 3.1.7. For overview type ?secr
> leo <- read.capthist(captfile ="Secr840ccs.txt", trapfile ="SCR201
ocations83(UPDTD).txt", detector = "proximity", fmt = "trapID", covn
ames = "Sex")
No errors found :-)
> plot(leo, rad=30, tracks=TRUE)
> suggest.buffer(leo)
[1] 5729
> fit2 <-secr.fit (leo, buffer =7500, trace =FALSE)</pre>
> esa.plot(fit2,ylim =c(0,2))
> lospoly <- read.csv("lospolygons.csv")</pre>
> mask <- make.mask(traps(leo), type = 'trapbuffer', spacing = 500,</pre>
buffer = 6000, poly = lospoly, poly.habitat = FALSE)
> plot(mask)
MOD1 <- secr.fit (leo, model = q0~1, mask=mask, detectfn=0, CL=TRUE)</pre>
MOD2 <- secr.fit (leo, model = sigma~Sex, mask=mask, detectfn=0, CL=</pre>
TRUE)
MOD3 <- secr.fit (leo, model = g0~Sex, mask=mask, detectfn=0, CL=TRU
E)
MOD4 <- secr.fit (leo, model = list(sigma~Sex, g0~Sex), mask=mask, d</pre>
etectfn=0, CL=TRUE)
predict(MOD1. new=data.frame(h2=factor(c("F"."M"))))
predict(MOD2, new=data.frame(h2=factor(c("F", "M"))))
predict(MOD3, new=data.frame(h2=factor(c("F", "M"))))
predict(MOD4, new=data.frame(h2=factor(c("F", "M"))))
derived(MOD1)
derived(MOD2)
derived(MOD3)
derived(MOD4)
```

modelresult <- AIC(MOD1, MOD2, MOD3, MOD4)
write.csv(modelresult, "modelresult.df.csv")</pre>

Population density estimate of leopards (*Panthera pardus*) in north-western Mpumalanga, South Africa, determined using spatially explicit capture-recapture methods

Declan R. Morris*, Wayne S. J. Boardman, Lourens H. Swanepoel, Greg Simpson, Jannie Coetzee, Gerrie J. Camacho, Todd J. McWhorter

* declanmorris743@gmail.com

Highlights:

- The African leopard is currently facing the threat of extinction largely due to widespread habitat fragmentation that brings them into direct conflict with humans.
- Loskop Dam Nature Reserve is a protected area located in Mpumalanga province, South Africa. Almost no research has been conducted in the region, so little is known about the leopard population persisting on the reserve and the surrounding areas.
- We estimated that the leopard population density on LDNR was 7.7 ± 2.0 (range 4.7-12.6) individuals per 100 km₂. This compared with other density estimates from nature reserves across South Africa which means that LDNR harbours a significant leopard population despite being quite isolated.

This article is part of a thematic collection of articles (Special Issue) of *Mammalian Biology* and covers the following topics and taxa (marked with \square) addressed in the Special Issue:

Arucie Type								
Ø	Original Research	□ Techniques	□ Review		Short Communication		□ Concept Note	
Taxon				To	Торіс			
Terrestrial								
	Bats (Order Chiroptera)	□ Primates : Gr (Family Homin	reat Apes nidae)		Acoustic ID		Identification techniques	
	Carnivores : Bears (Family Ursidae)	Primates : Ol (Family Cercop	d World monkeys		Aerial surveys		Life-history	
	Carnivores : Canids (Family Canidae)	Ungulates : E (Family Bovida	Bovids 1e)		Analytical innovations		Machine learning	
Ø	Carnivores : Felids (Family Felidae)	□ Ungulates : I (Family Cervid	Deers Jae)		Automated pattern recognition	Ø	Mark-recapture analysis	
	Carnivores : Hyenas (Family Hyaenidae)	□ Ungulates : C (Family Giraffi	Giraffes (dae)		Behavioural ecology		Morphometrics	
	Carnivores : Mustelids (Family Mustelidae)	Ungulates : H (Family Equida	Horses ne)	☑	Camera-trapping		Network analysis	
	Elephants (Family Elephantidae)	□ Multiple taxa (3 or more Fam	ι nilies/Orders)	☑	Conservation management		Photogrammetry	
Marine		□ Data management		M	Population ecology			
	Baleen whales : Right what	les 🗆 Large toothed	d whales		Dum munugement		r opulation coology	
	(Family Balaenidae)	(Families Delp) Hyperoodontid	hinidae & 'ae)		Demographic parameters		Site fidelity & Movement	
	Baleen whales : Rorquals (Family Balaenopteridae)	□ Pinnipeds : T (Family Phocid	True seals lae)		Field methodology		Social ecology	
	Carnivores : Bears (Family Ursidae)	Porpoises <i>(Family Phocod</i>)	enidae)		Genetic ID		Software/Package development	
	Carnivores : Mustelids (Family Mustelidae)	Girenians : M (Family Triched	lanatees chidae)		Health conditions		Thermal imagery	
	Dolphins (Family Delphinidae)	□ Multiple taxa (3 or more Fan	l nilies/Orders)		Other: (please specify)			

References

Karczmarski L, Chan SCY, Rubenstein DI, Chui SYS, Cameron EZ (2022a). Individual identification and photographic techniques in mammalian ecological and behavioural research – Part 1: Methods and concepts. *Mammalian Biology* (Special Issue), 102 (3) <u>https://link.springer.com/journal/42991/volumes-and-issues/102-3</u>

Karczmarski L, Chan SCY, Chui SYS, Cameron EZ (2022b). Individual identification and photographic techniques in mammalian ecological and behavioural research – Part 2: Field studies and applications. *Mammalian Biology* (Special Issue), 102 (4) https://link.springer.com/journal/42991/volumes-and-issues/102-4