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Abstract 

Breast cancer (BC) is the most prevalent cancer in females and the leading cause of cancer 

deaths. Treatment options include mastectomy, chemotherapy, and radiotherapy.  While 

these treatments can improve 5-year survival rates and reduce recurrence risk, they also 

affect healthy cells and not are effective for metastatic BC. To address these limitations, 

alternative therapies targeting only cancerous cells such as mesenchymal stromal/stem cell 

(MSC) therapy and a novel chemotherapeutic agent, 2-methoxyestradiol (2-ME), have been 

explored. 

MSCs have the ability to “home” to the tumour microenvironment (TME) and either promote 

or suppress tumour progression. Previous studies resulted in inconsistent results because of 

varied experimental designs including xenograft models that yielded conflicting results due 

to cross-species variations, limiting their interpretation. To overcome this, an isogenic mouse 

model of spontaneous BC was utilized to investigate the effect of MSCs on BC development. 

MSCs isolated from FVB/N mouse adipose tissue (mASC) were administered to heterozygous 

FVB/N-Tg(MMTV-PyVT)634Mul/J female mice that develop palpable mammary tumours. 

While no significant change in mammary tumour mass and volume was observed with mASC 

treatment, necrosis in lung lesions increased. Also, there was reduced number of CD163+ M2 

macrophages and increased CD3+ T cells in the lungs but not mammary tumours in treatment 

group. Vegfr1, cd105 and mtdh were downregulated in the lungs suggesting an anti-tumour 

effect, potentially due to the presence of trapped mASCs. Overall, 13 of the measured 

cytokines were higher in the mASC treated group. These findings indicate that mASCs have 

an anti-tumour effect on pulmonary metastatic BC. 

The effect of 2-ME, a compound known for its anti-proliferative and anti-angiogenic 

properties, on the different stages of BC tumour development, is still unknown and was 

therefore investigated. The effects of 2-ME treatment on early- and late-stage BC were 

compared. While 2-ME treatment of early-stage BC led to reduced tumour necrosis with 

increased mass and volume of mammary tumours, a greater number of necrotic lesions and 

CD163 macrophages were observed in pulmonary metastatic tumours. Conversely, 2-ME 

treatment of late-stage BC inhibited tumour growth, increased CD3+ T cells and induced 

tumour necrosis. However, survival rates were not improved. Cytokine measurements of 
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early-stage BC indicated that 2-ME may have a pro-rumour effect. These findings suggest that 

2-ME treatment has an antitumour effect on late-stage BC but does not enhance survival 

while no significant benefits were observed with 2-ME treatment of early-stage BC. 

Interestingly, 2-ME treatment before the appearance of palpable tumours resulted in a 

significant increase in tumour mass. This pro-tumour activity was accompanied by lower 

numbers of CD3+ T cells in the TME and elevated levels of the pro-inflammatory cytokine 

interleukin (IL)-1β. However, 2-ME treatment also led to fewer CD163+ macrophages in the 

TME, increased tumour necrosis, increased IL-10, and reduced IL-6 and IL-27 levels. This 

suggests that 2-ME may promote tumour development at the onset and early stages of BC 

development.   

In summary, BC is a complex disease with various stages, including tumour initiation, growth, 

progression and metastasis, and treatment effectiveness varies according to cancer stage. 

While mASCs show promise in treating pulmonary metastatic BC, 2-ME demonstrates an anti-

tumour effect in late-stage BC but lacks efficacy in early-stage BC. Understanding the diverse 

responses to these treatments is crucial for developing targeted therapies that can effectively 

combat BC at different stages of progression. 

Keywords: Breast cancer, mesenchymal stromal/stem cells, 2-methoxyestradiol, tumour 

microenvironment, metastasis, tumour progression, macrophages, T cells, cytokines, 

targeted therapies.  
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Chapter 1 

1. Introduction 

Cancer is a non-communicable disease (NCD) that is a leading cause of death and reduces life 

expectancy in all nations worldwide 1. According to the World Health Organisation’s (WHO) 

estimates in 2019, cancer ranks among the top two causes of death under  the age  70 years 

of age in 112 out of 183 countries 2. Moreover, cancer causes 30% of all premature deaths of 

people aged between 30 and 69 years 3.  It was estimated that there were 19.3 million new 

cancer cases and 9.9 million cancer-related deaths in 2020 1, which is an increase from the 

2018 statistics of 18.1 million new cases and 9.6 million deaths 1-2. The incidence and mortality 

rates are continuously increasing worldwide 2.  Female breast cancer (BC) ranks second as 

most frequently diagnosed cancer with 2.3 million new cases and is also the most prevalent 

cancer in females, and the leading cause of cancer death in women 1-2.  

1.1 Breast Cancer Incidence and Risk Factors 

1.1.1 Breast cancer incidence 

Current BC prevalence is based on new cases documented in 159 of 185 countries and is the 

leading cause of death in more than 110 countries 1. In 2020, BC has overtaken lung cancer to 

become the leading cause of global cancer incidence with 2.3 million new  cases diagnosed 

worldwide, resulting in over six hundred thousand deaths. BC is responsible for 1 in every 4 

cancer cases and 1 in every 6 cancer deaths in women 1. BC incidence has increased over the 

past decades in numerous countries in Asia, Africa, and South America 2. The mortality rate 

in sub-Saharan Africa is now the world’s highest with late-stage presentation (stages III/IV) 

being the reason behind the low survival rates 1. Africa has the second-lowest incidence rate 

(30 per 100 000) compared to the other continents like Europe and North America (90 -120 

per 100 000), but with the highest BC mortality rate. The BC incidence varies across Africa, 

with southern Africa having the highest incidence rate in sub-Saharan Africa. However, taking 

Africa as a whole, southern Africa has the second-highest incidence rate after northern Africa 

and the second-lowest mortality rate 4-5. 

The rise in BC incidence in Africa has significant socioeconomic impact, as the cost of treating 

BC exceeds what the average household can afford  4,6. Moreover, the high BC mortality rate 
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may be attributed to a lack of appropriate treatment strategies, competing health priorities, 

and a late stage of diagnosis 4,6. In South Africa, BC is the leading cancer in female and women 

have a lifetime risk of 1 in 29 of developing the disease, with an age-adjusted incidence rate 

of 31.4 per 100 000 women and a mortality rate of 16.4 6-7. South Africa is a middle- to low-

income country, and 80% of women in low-resource communities are unaware of BC warning 

signs. This lack of knowledge is common in older women living in rural areas and this may 

contribute to a late diagnosis 5. 

1.1.2 Risk factors  

There are several BC risk factors, including family BC history, genetic mutations, increased 

age, and lifestyle choices 8. These risk factors contribute to the increase in the development 

of BC in African women 5. 

Lifestyle  

The adoption of a westernized lifestyle includes changes in diet 5. Traditionally, an African diet 

has consisted of mainly of vegetables, fibre and grain 8 which has been replaced with a high-

fat diet and ultra-processed carbohydrates which may promote cancer 8-10. Furthermore, a 

high-fat diet may lead to obesity 11, which is a risk factor since oestrogen production is 

increased in obesity and may in turn increase the risk of breast, ovarian and other cancers 12. 

Besides diet, lifestyle changes include late childbearing age, heavy alcohol intake and reduced 

physical activity 5.  

Genetic mutations 

Two high-risk genes that are associated with BC are BRCA1 and BRCA2 13. Mutations in these 

genes have been implicated in hereditary BC 13.  Mutations in the BRCA genes have been 

detected in approximately 3-5% of BC patients 13. Females carrying BRCA germline mutations 

are at a high risk of developing BC by the age of 70 years. Moreover, the frequency of 

mutation at that age is 85% and 84% for BRCA1 and BRCA2 respectively 14. In South Africa, 

the most notable BC mutation is BRCA2 5999del4, which is predominantly found among 

Afrikaners, stemming from a founder effect. This mutation was also detected in mixed-race 

and Xhosa women in the Western Cape province 15-16. Numerous other genes have been 

implicated in BC development including  p53, ATM, CHEK2, PTEN, NBS1, PALB2, CDH1, and 

STK11 13-14. 
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Other risk factors 

Additionalrisk factors for increased BC among African women. These include prolonged life 

expectancy that permits the disease to manifest, poor awareness and/or the availability of 

healthcare services, poor availability of diagnostic technology and skills, or a combination of 

these factors 4. Moreover, late menopause, early menarche, environmental contaminants, 

drug exposures, and immunologic and hormonal factors are also BC risk factors 5. 

1.2 Breast Cancer Types and Metastasis  

Breast cancer tumours vary in size, morphology, and behaviour. There are different types of 

BC, including ductal carcinoma in situ, lobular carcinoma in situ and invasive lobular 

carcinoma among others. BC is divided into three types: triple-negative BC (TNBC), luminal, 

and human epidermal growth factor receptor 2 (HER-2) 17. Furthermore, the grade, stage, and 

hormonal receptors of these types vary 18. Moreover, these types have various risk factors, 

pathological features, and clinical presentations. TNBC lacks the expression of progesterone 

(PR), oestrogen (ER), and HER-2  19-20. These tumours are large (4.1 ± 2.7 cm), basal-like, and 

highly invasive, and the mass has a well-circumscribed margin and acoustic enhancement 19,21. 

The pathological features of TNBC are the internal fluid component at the posterior 

enhancement 21. This subtype is found mainly in women under the age of 40 years and is 

detected in 15-20% of BC patients 19-20,22. In comparison with other subtypes, the survival time 

is shorter and the mortality rate in the first 5 years after initial diagnosis is 40% 19. Distant 

metastasis occurs in about 46% of TNBC patients and the median survival time is 13.3 months 

after metastasis 19. Metastasis frequently involves visceral organs and the brain 19. 

The luminal A subtype lacks the expression of HER2, but is positive for ER and PR and accounts 

for about 60-70% of all BC cases 19,23-24. Luminal A accounts for approximately 60% BC cases 

and is correlated with a good prognosis 22. The luminal B subtype accounts for roughly 10-

30% of all BC cases, is associated with a poor prognosis, and is differentiated by the presence 

of an ER+ and/or PR+/HER2+ status 22,25. However, luminal A expresses low Ki-67 (<14% 

tumour cell positivity) and luminal B expresses high Ki-67 (≥14% tumour cell positivity), 

suggesting that luminal A has lower proliferation rate compared to luminal B 23. Luminal A 

tumours are low grade, with infiltrating ductal carcinoma being the most common histologic 

subtype and absent distant metastasis in approximately 61.5% of BC patients diagnosed with 
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luminal A tumours 25-26. Luminal B tumours is associated with absent lymphovascular invasion, 

with well-differentiated infiltrating ductal carcinoma being the most common histologic 

subtype 26. The ten-year survival rate for patients with luminal A is higher (54.4%) than for 

patients with luminal B (46.1%) 27. Luminal tumours metastasize to the bone, the liver and the 

lung 27. The median survival time after metastasis is 2.2 years and 1.6 years for luminal A and 

luminal B respectively 27. That notwithstanding, the median survival time for brain metastasis 

is 4 months and 7.3 months for luminal A and B respectively 28. 

Human epidermal growth factor receptor 2 (HER2+) BC is ER and PR negative and HER2 

positive 29. It is one of the most aggressive BC subtypes and is incurable when diagnosed at 

stage IV 30. HER-2 is overexpressed in 15-30% of invasive BC 31. HER2+ BC metastasizes to the 

brain, liver, bones, lung and lymph nodes 32-33. Median overall survival for HER2+ metastatic 

BC patients is 63 months 34. Patients with stage I, II, and  III BC who received drug treatment 

had a 5-year recurrence risk of 7, 11, and 13% respectively 35. All these factors make BC a 

heterogeneous disease that also differs in clinical behaviour resulting in differences in 

response to therapies and clinical outcome 36. 

Metastatic tumours are the cause of most deaths from BC and not the primary tumour. 

Metastasis occurs when circulating tumour cells (CTCs) migrate from the primary tumour site 

to a secondary location via the bloodstream. The process of metastasis begins when the cell-

to-cell adhesion of tumour cells and cell adhesion to the extracellular matrix (ECM) are 

altered. Cell-cell adhesion is maintained by E-cadherin, when this protein is switched off, N-

cadherin is switched on and induces an epithelial-to-mesenchymal transition (EMT). At the 

EMT state, dissociated tumour cells migrate and invade the local surrounding tissues and 

intravasate into lymphatic vessels or the blood stream (Figure 1). After tumour cells 

intravasate, they spread to distant organs and proliferate. Within the target organ, these cells 

attach to capillary beds before extravasating into the parenchyma of the organ, proliferating 

and stimulating angiogenesis within the organ 37.  
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Figure 1: Dissociated breast cancer cells intravasate into the bloodstream and circulate. 1. Dissociated BC cells, 
2. Intravasation, and 3. Circulating tumour cells (created in BioRender.com). 

 Tumour cells undergo all these steps while simultaneously evading apoptotic signals and the 

host immune response. The successful infiltration of tumour cells into secondary sites is 

dependent on the completion of these steps 37. Additionally, the process is repeated to induce 

further metastasis. Evidence suggests that EMT plays a crucial role in tumour progression 

when it comes to invasion and intravasation into the bloodstream and extracellular matrix 

(ECM) degradation. CTCs are rare in healthy individuals and are therefore used as markers to 

detect cancer metastasis and are important for predicting clinical outcome 37.  

1.3 Tumour microenvironment  

The tumour microenvironment (TME) consists of various cell types such as endothelial 

progenitor cells, hematopoietic cells, and carcinoma-associated fibroblasts to name some, 

which are present in the same environment as the tumour cells. Also, in the TME are 

inflammatory cells that arrive early in the TME during tumour development, and their 

crosstalk determines tumour progression or antitumor immunity 38-39.  
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1.3.1 Immune response to tumours 

Antigens bound on the major histocompatibility complex class I (MHC I) of tumour cells are 

recognized by antigen-presenting cells (APCs) such as dendritic cells (DCs). DCs migrate to the 

lymph node and present the antigen to cytotoxic CD8+ T cells, resulting in activation, 

differentiation and clonal expansion of these cells. The cytotoxic (CD8+) T lymphocytes, leave 

the lymph node, enter circulation, migrate to sites if inflammation, including TME, and 

infiltrate the TME to secrete granzymes and perforin that damages the tumour cell 

membranes resulting in cell lysis 17,40-41.   

Helper T cells (CD4+ T cells) recognize antigen peptides bound to major histocompatibility 

complex class II (MHC II) expressed by APCs. Subsequently, CD4+ T cells release cytokines that 

assist DCs to activate CTLs which will stimulate a cytotoxic response. Furthermore, effector 

CD4+ T cells differentiate into helper T cell type 1 (Th1) that stimulates a cytotoxic response 

or an antibody immune response. Th1 cells secrete cytokines including interferon-gamma 

(IFNγ), transforming growth factor β (TGFβ), tumour necrosis factor-alpha (TNFα) and 

interleukin 2 (IL-2). Except for TGFβ, all these cytokines are pro-inflammatory cytokines that 

play a role in CTL activation, enhance tumour antigen presentation, stimulate 

proinflammatory macrophage (M1) and natural killer (NK) cell antitumour activity, and 

regulate T cells and antibody production by B cell. Subsequently, cytokines such as TNFα 

trigger the production of interleukin 1 (IL-1), interleukin 6 (IL-6) and interleukin 8 (IL-8). Each 

of these interleukins engages in various roles including enhancing lymphocyte and monocyte 

binding to endothelial cells (ECs), increases B cell activation and T cell proliferation, activates 

neutrophils to produce prostaglandins and induce differentiation of B cells into plasma cells 
40-41. Taken together, these cytokines oppose tumourigenesis 41. 

Effector CD4+ T cells also differentiate into helper T cell type 2 (Th2) which stimulates an anti-

inflammatory response. Th2 cells produce cytokines such as interleukin 4 (IL-4), interleukin 

10 (IL-10), interleukin 13 (IL-13) and TGFβ that promote tumour progression. These cytokines 

suppress M1 polarization while inducing anti-inflammatory macrophage (M2) polarization, 

stimulate M1 to M2 transition of tumour-associated macrophages (TAMs) and promote the 

metastasis of mammary cancer cells into the lungs 39,41. Furthermore, by producing 

immunoglobulins and cytokines, chronically activated B cells promote the accumulation of 

innate cells such as DCs, NK cells and macrophages in the neoplastic stroma. When these 
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innate cells become polarized, as during chronic inflammation, a rich proangiogenic and 

protumoral microenvironment is provided 41. Additionally, IL-6, IL-10 and granulocyte-

macrophage colony-stimulating factor (GM-CSF) decreases macrophage cytotoxicity, 

promoting tumour progression by preventing antigen presentation by macrophages and 

monocyte differentiation into DC 41. Myeloid cells, cancer cells and T cells secrete TGFβ which 

is an important regulator of EMT and metastasis 39. Regulatory T cells (Treg) are other anti-

inflammatory cells that function to prevent autoimmune diseases by repressing self-reactive 

cells. Treg inhibits the cell-to-cell contact ability of CTLs, DCs, NK cells and B cells, therefore, 

inhibiting immunosuppression and promoting cancer progression 17,41. Anti-inflammatory 

cytokines stimulate pro-tumour B cell responses and accelerate tumour progression by 

suppressing anti-tumour activity 41.  

1.3.2 The complexity of the TME 

Cancer is described as a “wound that never heals” because tumours are in a chronic state of 

inflammation, similar to chronic wounds 42. However, the immune response is similar to that 

of wound healing pathways except that it is abnormal 43. Abnormal refers to tumour stroma 

forming as a result of activation of abnormal wound healing pathways 43. The immune 

response to cancer is highly complex, with some immune factors promoting pro-inflammation 

while other factors promoting an anti-inflammatory response. These opposing responses are 

crucial for adequate wound-healing mechanisms that stem from mechanical injuries. 

Proinflammatory cells are necessary for tumour cell destruction; however, high levels of these 

cells cause chronic wounds 44. 

The immune response abnormality may in part be due to the tumour cells producing 

immunosuppressants that suppress the immune response, causing an immune tolerance that 

permits tumour cells to spread to adjacent tissues 40. Some of the immunosuppressive factors 

that tumour cells produce include cytokines such as TGFβ, IL-10, and cell types, such as TAMs, 

Tregs and tumour-associated fibroblasts. In the TME, TAMs are the most abundant infiltrating 

cells and can transform between M1 and M2 phenotypes 45. The secretion of IL-4, IL-10 and 

TGF-β by tumour cells, polarizes TAMs into an M2 phenotype in the TME 45. TAMS can also 

secrete molecules such as TNF-α, TGF-β, IL-10 and IL-13 that promote tumour cell invasion, 

EMT and metastasis 46-47. 
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Cancer stem cells (CSCs) which can self-renew and differentiate, are present in most solid 

cancers including breast, brain, ovarian, liver, pancreas and prostate cancers 48-50. CSCs 

differentiation increases tumour aggressiveness, accelerating cancer progression 48-49. CSCs 

are required for intratumoral heterogeneity and thus are involved in tumour onset, 

expansion, relapse, metastatic spread, and therapeutic resistance 48-49.  In the TME, various 

cell types such as cancer-associated fibroblasts (CAFS), mesenchymal stromal/stem cells 

(MSCs) and exomes secrete factors that maintain and promote CSCs phenotypic transition 48-

49. However, the transition mechanism between non-CSCs and various CSC subsets is still 

poorly understood 49. 

MSCs are found throughout the body and can differentiate into multiple stromal cell lineages 
50. In response to the production of IL-10, vascular endothelial growth factor (VEGF) and GM-

CSF by tumour cells, MSCs infiltrate the tumour and secrete fatty acids and exosomes into the 

TME thus reducing anti-tumour T-cell activity in BC by increasing chemoresistance 50. 

Moreover, MSCs support tumour growth through various mechanisms such as suppressing 

the immune response, CSCs enrichment, differentiate into pro-tumorigenic stromal 

components, and  promotes tumour cell survival, EMT, angiogenesis and metastasis 51. 

Moreover, driven by  cytokines, MSCs can transdifferentiate into a M2-like phenotype or M2 

macrophages 52. Additionally, exosomes are used by tumours to connect to MSCs and re-

program their functional profile from trophic to pro-tumorigenic. This is achieved when 

exosomes interact with MSCs surface receptors and are absorbed by MSCs. This interaction 

leads to molecular, transcriptional and translational changes converting MSCs into producers 

of factors required for tumour growth  52.  All these anti-inflammatory factors skew TME 

towards an immunosuppressive and anti-inflammatory state 53. However, contradictory 

reports have shown that MSCs also have anti-tumorigenic functions such as encouraging 

immune response, cellular signalling regulation, angiogenesis inhibition and promoting 

tumour cell apoptosis 51. However, the majority of studies support a pro-tumorigenic effect 

on MSCs  51. 

Some anti-inflammatory factors appear to support both the progress and inhibition of tumour 

cells, such as TGFβ which is an anti-inflammatory growth factor that encourages 

tumourigenesis but also inhibits early tumour development and epithelial cell differentiation 
39,54. TGF-β play an essential role in other crucial pathways involved in tumorigeneses such as 
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the PI3K/AKT, Ras, Wnt, IFN-γ, TNF-α, Hedgehog, Hippo and Notch pathways 55. The GM-CSF 

activates phagocytosis and antibody-dependent cell-mediated cytotoxicity (ADCC) which 

results in cell lysis through complement activation 40.  

 

Tumour cells that secrete cytokines suppress the immune system, and the dual functionality 

of some of these cytokines contributes to the TME's complexity. Several cancer types have 

cures, while other cancers such as BC have no current cure due to its complex nature. 

However, some treatments can eradicate, ease the severity, or slow down tumour 

progression.  

1.4 Treatments 

There are several treatments for BC such as mastectomy or breast-conserving surgery, 

tumourectomy, chemotherapy, hormone therapy and radiotherapy. These therapies have 

increased the 5-year relative survival rate of American women from 74.8% to 90.3% from 

years 1975 to 1977 and 2003 to 2009 respectively 56. However, metastatic BC remains 

incurable 57. Treatment is dependent on the type or subtype of BC a patient has been 

diagnosed with. Treatment options for TNBC are limited because of the lack of expression of 

ER, HER2 and PR 19,58. Nonetheless, the main treatment for TNBC is chemotherapy, combined 

with the angiogenesis inhibitor bevacizumab, or neoadjuvant chemotherapeutic drugs 19,58. 

The United States National Comprehensive Cancer Network (NCCN) guidelines suggest 

chemotherapeutic combinations based on anthracycline, cyclophosphamide, taxane, 

fluorouracil and cisplatin. For example the following combinations are currently used to treat 

BC; a combination of docetaxel + cyclophosphamide (TC), adriamycin + cyclophosphamide 

(TAC), fluorouracil + methotrexate + cyclophosphamide, paclitaxel + fluorouracil + epirubicin 

+ cyclophosphamide, and taxel/docetaxel + adriamycin + cyclophosphamide (TAC) 19. All these 

are the favoured TNBC adjuvant regimens 19. Taxanes inhibit microtubule depolymerization 

by causing spindle fibres not to form during mitosis thus inhibiting cell division and inducing 

apoptosis 19,58. Anthracyclines are antibiotics derived from Streptomyces peucetius, a class of 

chemotherapeutic drugs that decrease the risk of relapse and mortality rate in 25-30% of BC 

patients 19,58. Cyclophosphamide is converted in the liver to aldophosphamide and is activated 

in tumour cells by cytochrome P450 to produce acrolein and nitrogen mustard with alkylating 

activity 19. Nitrogen mustard is cytotoxic to tumour cells 19. Thymidylate phosphorylase in the 
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tumour catalyses capecitabine which transforms into cytotoxic 5-Fluorouracil (5-Fu) 19. 

Cisplatin is a platinum agent that prevents replication fork formation and produces double-

strand breaks by generating inter- and intra-strand double strand DNA crosslinks 58. 

Capecitabine is used as a treatment for metastatic or advanced BC in combination with 

paclitaxel chemotherapy 19. Immunotherapy drug atezolizumab has been used in combination 

with microtubule stabilizers paclitaxel to block PD-L1 in BC 19. Surgery and radiotherapy are 

also used as standard treatment strategies 58 TNBC has high heterogeneity thus treating this 

subtype is challenging and an increasing number of BC patients have developed resistance to 

chemotherapy drugs such as taxanes and anthracyclines, which are used to for high risk 

patients and are standard treatments for early-stage TNBC patients 19,58. Hence, new 

treatment strategies are needed to improve patient outcomes and eliminate residual TNBC.  

Treatment for HER2 positive BC includes trastuzumab and lapatinib, which are used for early-

stage BC and have been shown to significantly reduce the risk of relapse 59-60. However, there 

is a potential risk for heart and lung damage 59.  Trastuzumab is a monoclonal antibody that 

binds to the extracellular domain (ECD) of the HER2 receptor. The anti-tumour mechanisms 

include inhibiting cleavage of HER2 ECD, inhibiting dimerization of ligand-dependent HER 

receptor, inhibiting downstream signal transduction pathways, triggering cell cycle arrest, 

angiogenesis inhibition, DNA repair interference, and triggering apoptosis 59-60. Lapatinib is 

the other treatment approved for HER2-positive patients with advanced BC 59. Lapatinib 

inhibits HER2 and HER1 intracellular tyrosine kinase activity, suppressing tyrosine 

autophosphorylation and thus downstream pathways such as PI3K/Akt Akt (phosphoinositide 

3-kinase/Ak strain transforming) and MAPK/Erk1/2 (mitogen-activated protein kinase/ 

extracellular signal-regulated kinase) 59-60. The neoadjuvant drug pertuzumab in combination 

with trastuzumab resulted in a higher event-free survival rate in BC patients than either drug 

alone 61. Cyclophosphamide (TC) is another commonly used neoadjuvant chemotherapy 19. 

These drugs have improved the overall survival of patients but numerous patients develop 

resistance and thus do not benefit from these agents 60.  

Luminal BC treatments include radiation, surgery, and chemotherapy 22. Luminal A is treated 

with endocrine therapy that targets oestrogen receptors or oestrogen synthesis through 

inhibiting activation of Pi3K/ signalling pathways 22,62. For luminal B advanced or metastatic 

BC, Lapatinib B is used in combination with an aromatase inhibitors 22. Furthermore, 
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combining tamoxifen with luteinizing hormone-releasing hormone improved disease-free 

survival in patients with luminal B subtype but not the luminal A subtype 63. Additional 

treatment for luminal B includes cixutumumab, dalotuzumub, and MK-0646 which targets the 

insulin growth factor pathway, MK-2206, XL-147 and XL-765 which inhibit the PI3k/AKT 

pathway, and TKI-258 and ADZ-4547 that target the fibroblastic growth factor pathway 64.  

Traditional treatments are successful with early diagnosis, a good prognosis and a decreased 

risk of recurrence 65. However, these treatments are non-discriminatory and also target 

healthy cells, not just cancerous cells. Additionally, these treatments are not effective for 

advanced and metastatic BC 66. These limitations warrant a different therapeutic approach 

that targets only cancerous cells such as immunotherapy and cell therapy 66-67. There are 

several immunotherapies such as antibody-based immunotherapy, cancer vaccine 

immunotherapy, adoptive T cell transfer immunotherapy, and T cell transfer immunotherapy. 

These therapies elicited an immune response that targeted only cancer cells 66.  

Immunotherapies such as checkpoint antagonists have been approved for numerous cancers 

including programmed death ligand-1 (PD-L1) and cytotoxic T lymphocyte-associated antigen 

(CTLA-4) which may be beneficial for metastatic BC 17,68. 

2-Methoxyestradiol (2-ME) and MSCs are two treatments that have been shown to have an 

effect on BC. MSCs are a cellular therapy and 2-ME is an anti-cancer agent.  

1.4.1 2-Methoxyestradiol 

2-ME is an anti-cancer agent that has been demonstrated both in vitro and in vivo to have 

anti-angiogenic and anti-proliferative properties 69. 2-ME is a natural endogenous steroid that 

is a metabolite of 17β-estradiol (E2) 70-71. E2 is generated by O-methylation of estradiol at the 

2-position and sequential hepatic hydroxylation 72-73. 2-ME is produced by catechol-O-

methyltransferase and cytochrome P450 enzymes. Catechol-O-methyltransferase (COMT) 

transfers a methyl group to 2-OH or 4-OH groups from cofactor S-adenosyl methionine 

catalysing O-methylation of catecholestrogens to form 2-ME and 4-methoxyestradiol 73. 

Cytochrome P450 hydroxylation yields either 2-, 4- or 16 α-hydroxyestradiol oestrogens 

provided that C-2, C-4 or C-16 are hydroxylated 73. COMT is expressed in multiple tissues such 

as the brain, kidneys, liver and erythrocytes and it catalyses while cytochrome P450 is found 

in the liver 73-74. Generally, oestrogens are crucial regulators for cell survival, cell proliferation 
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and differentiation in various tissues and organs, however, 2-ME is an anti-angiogenic and 

anti-proliferative molecule that induces apoptosis of actively dividing cells in vitro and in vivo 
74. This drug targets dividing cells and spares quiescent cells 75. By targeting actively dividing 

cells, 2-ME displays a unique mechanism of action that distinguishes it from conventional 

oestrogens.  

 

Figure 2: 2-ME metabolic pathway and chemical structure: (A) E2 undergoes oxidation by cytochrome P450 1A1 
(CYP1A1) to form 2-hydroxyestradiol (2-OHE2). Subsequently, 2-OHE2 is methylated by COMT, leading to the 
generation of 2-ME. Further, metabolism of 2-ME can occur via UDP-glucuronosyltransferase (UGT), resulting in 
the production of 2-methoxyestradiol glucuronide (2-ME-G). The predominant metabolite of 2-ME, 2-ME-G, is 
subsequently excreted in the urine.  (B) Chemical structure of 2-ME (Copied from Mothibeli et al) 76. 

1.4.2 Mesenchymal stem/stromal cells  

Cellular therapy is another alternative treatment for BC.  MSCs are heterogenous cells that 

resemble fibroblastic cells 77-78. These cells are commonly isolated from adipose tissue, bone 

marrow, and the umbilical cord 77. MSCs can also be isolated from other tissues such as blood, 

dental pulp, skin, muscle, cartilage and amniotic fluid 77. MSCs can differentiate into 

adipocytes, osteoblasts, chondroblasts and fibroblasts in vitro 78. To be considered MSCs, they 

must exhibit plastic adherence, have the ability to self-renew but also to differentiate into 

adipocytes, osteoblasts, and chondrocytes, and express the following surface markers: CD73, 

CD90, and CD105, while lacking the expression of CD11b, CD14, CD19, CD79, and the human 

leukocyte antigen - DR isotype (HLA-DR) 77-78. Mouse MSCs express Sca-1, CD29, CD44 and 

CD105 and lack the expression of CD11b, CD34, CD45 and TER-119 79. 

MSCs “home” to sites of injury and elicit an immune response to assist in the healing process 

of chronic wounds 80. For this reason, MSCs have been used to treat bone, spinal cord, and 

neural injuries successfully in preclinical studies and clinical trials involving patients 81-83. 

Furthermore, in vivo studies demonstrated that ASCs may be used to treat multiple sclerosis, 
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glioblastoma, acute kidney injuries, chronic kidney failure, osteoarthritis, obstructive 

pulmonary disease, myocardial infarction, inflammatory bowel syndrome and ischemic stroke 
84. MSCs have been identified as a potential delivery vehicle for anti-cancer agents due to 

their ability to migrate to sites of injury and TME 85. In the TME, MSCs elicit an immune 

response, as well as anti- and pro-tumorigenic activities 86. As previously mentioned, there 

are contradictory reports on the effect of MSCs in the TME and these reasons were reported 

by Oloyo et al.  87. In vivo studies were conducted using xenogeneic models in which human 

MSCs are combined with BC cells and injected into an immunocompromised mouse strain. 

Cross-species experiments can increase genetic variability, resulting in contradictory results. 

Furthermore, the differences between BC cells with varying mutations and the different 

strains of mice used that are genetically different, add to the molecular complexity, 

contributing to the varying results.  

Given the above, in this study aimed to investigate the influence of 2-ME and MSCs on 

tumorigenesis and metastasis in vivo using a mouse model of spontaneous mammary 

carcinoma. The objectives are as follows: 

 To assess the impact of mASCs and 2-ME derivatives on the progression rate, volume, and 

mass of primary mammary tumours in transgenic mice. 

 To quantitatively assess the pulmonary lesion burden in transgenic mice. 

 To perform comprehensive histopathological analysis of mammary and metastatic 

tumours. 

 To investigate the extent of infiltration of CD163 M2 macrophages and CD3 lymphocytes 

within the TME in both mammary and lung tissues. 

 To explore the plasma cytokine profile of mice with and without tumour metastasis. 
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Abstract: Background: The role of mesenchymal stromal/stem cells (MSCs) in tumour development 
and progression remains a subject of debate. Previous studies have reported contradictory outcomes, 
possibly due to variations in experimental design and the use of xenograft models. Xenograft models 
limit interpretation and translation due to cross-species variability. To address these limitations, an 
isogenic mouse model of spontaneous breast cancer (BC) was employed to investigate the impact of 
murine MSCs on BC development and progression. Methods: MSCs isolated from FVB/N mouse 
adipose tissue (mASCs) were administered to female mice with palpable mammary tumours. Tumour 
volume and mass were assessed, and analysis of histopathological necrosis and gene expression was 
conducted on mammary (MT) and lung metastatic tumours (LT). Results: No change in MT mass and 
volume was observed between mASC-treated and control mice. However, mASC treatment led to 
increased necrosis in LT but not in MT. Immunohistochemistry revealed that mASC-treated mice had 
fewer CD163+ anti-inflammatory macrophages in the LT but not in the MT. Tgf-β3, vegfr1 and cd105 
were observed and downregulated in both MT and LT in mASC-treated mice. The downregulation of 
cd36 and tgf-β3 contributes to pro-tumourigenic activities whereas the downregulation of vegfr1 and 
cd105 is associated with an anti-tumour effect. In the mASC treatment group, all cytokines tested for, 
except IL-27, were elevated. Conclusion: This study suggests that mASCs are anti-tumourigenic in 
pulmonary metastatic BC. Our findings emphasize the importance of considering the tumour 
microenvironment and employing relevant animal models when investigating the impact of MSCs on 
tumour progression. 
Keywords: Mesenchymal stem cells, breast cancer, tumour growth, tumour progression, metastasis, in 
vivo  

1. Introduction 
Breast cancer (BC) is the most prevalent cancer in females and the leading cause of cancer deaths [1, 2]. 
In 2020, 2.3 million new female BC cases were diagnosed worldwide with over six hundred thousand 
deaths recorded. BC accounts for 1 in 6 cancer mortalities and 1 of every 4 cancer cases in women [2]. 
Current BC treatments, such as mastectomy or breast-conserving surgery, tumourectomy, 
chemotherapy, hormone therapy and radiotherapy, have all increased the 5-year relative BC survival 
rate [3]. However, these treatments are non-discriminatory as they also target healthy cells, in addition 
to not just cancerous cells. Furthermore, these treatments are not effective against advanced and 
metastatic BC [4]. It is thus clear that improved treatments are needed, especially treatments that 
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selectively target cancerous cells, such as cellular and immunotherapy [4]. Mesenchymal stromal/stem 
cells (MSCs) are a heterogenous population of cells that morphologically resemble fibroblastic cells [5-
7], and can be isolated from most adult tissues, with adipose tissue (ASCs), bone marrow (BM-MSCs) 
and umbilical cord (UC-MSCs) being the most frequently used tissue sources [5]. Multipotent MSCs 
have the capacity to self-renew and are able to differentiate into adipocytes, osteoblasts, chondrocytes 
and other cell types [5, 6]. Due to the immunomodulatory and regenerative properties associated with 
these cells, in vivo studies have investigated the use of these cells to treat multiple conditions such as 
sclerosis, glioblastoma, acute kidney injuries, chronic kidney failure, osteoarthritis, obstructive 
pulmonary disease, myocardial infarction, inflammatory bowel syndrome and ischemic stroke [8]. 
MSCs are reported to “home” to the tumour microenvironment (TME) where they elicit an immune 
response that either promote (pro-tumorigenic) or suppress tumour (anti-tumorigenic) progression [9]. 
 
Adipose tissue is rich in MSCs, containing 500-fold more of these cells per gram of tissue than MSCs 
present in a similar volume of bone marrow [10]. Breast tissue is mainly composed of adipose tissue 
(fat cells) and serves as an important endocrine organ by secreting signalling molecules that regulate 
various cellular processes [10]. The secretory profiles of breast adipocytes of BC patients and healthy 
controls differ and it has been suggested that growth factors and other signalling molecules secreted 
by breast adipose tissue contributes to BC development and progression [11]. 
 
Numerous studies, both in vitro and in vivo, have demonstrated that MSCs from sources other than 
adipose tissue promote BC progression [12-15]. As mentioned earlier, adipose tissue is rich in ASCs. 
Several studies indicated that ASCs promote BC cell proliferation, migration and invasion [16-19]. 
Furthermore, several in vivo studies have demonstrated that ASCs induce primary tumour growth, 
epithelial to mesenchymal transition (EMT), angiogenesis and metastasis [8, 20-23]. ASCs secrete 
several cytokines, such as IL-6, IL-8 and VEGF, IL-10, TGFβ-1, MMPs, chemokine ligand 2 (CCL2) and 
CCL5 resulting in elevated levels of these cytokines in the TME and which are suggested to stimulate 
BC progression [18, 24-28]. Furthermore, metastatic lesions are often observed in the lungs and 
occasionally in the liver and spleen of BC patients [8, 21, 22]. Knockdown of leptin expression in obesity-
altered ASCs (obASCs) in SCID mice decreased primary tumour volume and significantly reduced the 
number of metastatic lesions in the liver and lung [29, 30]. It also has been suggested that mutations in 
BC associated genes such as BRCA1 in ASCs promotes BC invasion and growth [27]. Mouse adipose 
mesenchymal stem cells (mASCs) have been observed to promote tumour growth and metastasis 
through increased secretion of insulin-like growth factor-1 [8, 20]. 
 
In contrast, numerous studies have suggested that ASCs inhibit BC progression [31-39], and ASCs 
significantly decrease BC cell proliferation, promote BC cell apoptosis, reduce BC cell invasion and 
tumour migration, reduce tumour mass and slow tumour growth rate [34, 35, 40]. Using immortalized 
BC cell lines (MDA-MB-231 and T47D), Clark et al. (2015) [39] observed in vitro that ASCs inhibit BC 
cell migration and invasion through the secretion of tissue inhibitor of metalloproteinases inhibitors, 
TIMP-1 and TIMP-2.  ASCs also inhibit BC by downregulating EMT genes such as TWIST1, CDH2, 
Snail1 and Snail2 [37].  Exosomes produced by ASCs have been associated with decreased BC cells 
viability [40]. In summary, there is currently no consensus regarding the effect of ASCs on BC 
progression and more studies are needed to understand the interactions between ASCs and BC cells 
[27]. 
 
The contradicting findings of the effect of ASCs on BC tumour progression have been extensively 
reviewed by Oloyo et al. (2017 [41], who concluded that the significant variation in experimental 
design/approaches is one of the major contributors to the different outcomes observed. Study 
approaches range from using either primary human-derived ASCs isolated from mammary tissue or 
lipo-aspirates, human-derived ASCs isolated from breast tissue from mastectomies of BC patients [17, 
22, 27, 36, 38], or mouse-derived primary ASCs [42-44] to investigate the effect of ASCs on human-
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derived immortalized BC cell lines, such as MCF-7, MDA-MB-231, ZR-75-1, T47D, BT-474, CG5, SK-
BR-3, HCC1937 and MDA-MB-435 [18, 19, 22, 23, 31, 36] or murine breast carcinoma cells such as E0771, 
4T1 and Met-1 [8, 20].  
 
In vivo, both xenograft and allograft experimental models have been used to investigate the effect of 
ASCs on BC development, progression and metastasis. Allograft experimental models have 
investigated the effect of mASCs on mouse mammary adenocarcinoma cells [20, 34, 35], while xenograft 
experimental models utilized human BC cells and human ASCs in experimental animal models [18, 19, 
22, 23, 31, 36]. Moraes et al. (2016) and Li et al. (2020) used an allograft experimental design whereby 
BALB/c and C57BL/6J mice developed tumours after receiving 4T1 and E0771 BC cell lines injected into 
their fat pad. A week later these animals received mouse ASCs (mASCs) derived from gonadal adipose 
tissue and inguinal fat pads from C57BL/6J mice. The mice received ASCs with either CD90high or 
CD90low extracellular vesicles (EVs). In comparison to ASCs-CD90high, ASCs-CD90low resulted in 
significantly reduced tumour mass and slower tumour growth rate [34, 35]. These studies 
demonstrated that ASCs (directly or indirectly) inhibits BC progression.  
 

Investigating the impact of mASCs on BC progression and metastasis using an isogenic mouse model 
of spontaneous mammary tumour development is believe to yield more physiologically relevant 
observations that could result in improved translational to the human setting. This more accurately 
recapitulates what might occur in patients who incidentally have a small or latent tumour and who 
might receive autologous ASCs for a variety therapeutic purpose, unrelated to tumorigenesis per se, 
for example for regenerative medicine indications.  
 
The effect of mASC treatment on BC progression and metastasis was investigated using an isogeneic 
FVB/N-Tg(MMTV-PyVT)634Mul/J mouse model. These animals contain the MMTV-PyVT (mouse 
mammary tumour virus- polyoma virus middle T antigen) transgene which induces spontaneous 
development of primary mammary tumours [45]. The mouse model used in this study demonstrates a 
progression of mammary gland tumours that mimics the stages of human ductal BC. These tumours 
exhibit similarities to luminal B subtype of human BCs, as revealed by gene expression profiling. 
Additionally, they share histopathological characteristics and express basal-like markers, resembling 
aggressive basal-like BC in humans [45]. Genes involved in tumour invasion, angiogenesis, and 
metastasis such as cd36, endoglin (cd105), transforming growth factor- beta 3 (tgf-β3), vascular 
endothelial growth factor receptor 1 (vegfr1) and metadherin (mtdh) [46-51] were also investigated. 
Immunohistochemical analysis of CD3 and M2-associated (CD163-positive) macrophages was likewise 
performed.  
 

2. Materials and Methods 
2.1. Animal studies  
The study was approved by the Faculty of Health Sciences Research Ethics Committee (ethics reference 
no.: REC166-19) and the Animal Ethics Committee (ethics reference no.: 534/2019) of the University of 
Pretoria. Animal husbandry was conducted at the Onderstepoort Veterinary Animal Research Unit 
(OVARU). FVB-TgN(MMTV-PyVT) mice were purchased from Jackson Laboratory (The Jackson 
Laboratory; Bar Harbor, ME, USA) and were used for breeding and isolation of mASCs. To obtain 
heterozygous offspring, hemizygous males were bred with wild-type females. The resulting offspring 
were genotyped, and the heterozygous females were recruited into the study while the heterozygous 
males were used for breeding. A total of 20 heterozygous female mice (n = 10 for mASC-treatment 
group and n = 10 for control group) were used for this study. 
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2.2. Genotyping 
The KAPA Mouse Genotyping Kit (KAPABIOSYSTEM, Cape Town, South Africa) was used for 
genotyping according to the manufacturer’s instructions. Briefly, DNA was extracted from 2 mm 
mouse tail biopsies and placed in 0.2 mL microcentrifuge tubes.  The forward primer 5-’ 
CAAATGTTGCTTGTCTGGTG-3’ and reverse primer 5’-GTCAGTCGAGTGCACAGTTT-3’ specific 
for internal positive control and the forward primer 5’- GGAAGCAAGTACTTCACAAGGG-3’ and 
reverse primer 5’- GGAAAGTCACTAGGAGC GGG-3’ specific for the transgene was used in the PCR 
genotyping experiment. The two pairs of primer sequences were obtained from Jackson Laboratory 
website (The Jackson Laboratory; Bar Harbor, ME, USA). Amplification was done using a thermocycler 
(GeneAmp® PCR System 9700) for 35 cycles under the following conditions: Initial denaturation at 
95˚C for 3 minutes, denaturation at 95˚C for 15 seconds, annealing at 60˚C for 15 seconds, and extension 
for 15 seconds for 2 minutes. The amplicons were separated on a 2% agarose gel containing ethidium 
bromide using electrophoresis. The purpose was to determine their size, and this was achieved by 
running the gel alongside a molecular marker (FastRulerTM low range DNA ladder (Thermo Scientific)) 
with a molecular mass ranging from 50 bp to 1500 bp. The electrophoresis process was conducted at 
120V for 30 minutes.  
2.3. mASC isolation and in vitro expansion  
The inguinal white adipose tissue (ingWAT) excised from wild-type FVB/N mice under sterile 
conditions, was placed in a tissue culture dish and minced in a biosafety cabinet (ESCO, BSC class II). 
The minced tissue was transferred into 30 mL digestion medium (pre-prepared) that constituted of 
0.8mg/mL collagenase II (Gibco,ThermoFisher, MA, USA,) dissolved in tissue medium ((1% fatty acid-
free bovine serum albumin (BSA) (Sigma-Aldrich, Darmstadt, Germany)) dissolved in Hanks’ balance 
salt solution (Sigma-Aldrich, Darmstadt, Germany), and placed in a water bath at 37˚C for 45 minutes 
(vortexed every 5 minutes). The digested tissue was then filtered through a 200 µm nylon mesh into a 
50 mL tube containing 10 mL complete culture media (CCM; 20% foetal bovine solution (FBS) (Gibco, 
ThermoFisher, MA, USA), 2% Pen/Strep (Gibco, ThermoFisher, MA, USA), 1% glutamine (Sigma-
Aldrich, Steinheim, Germany) and 0.2% amphotericin (Sigma-Aldrich, Steinheim, Germany) in 
DMEM/F-12 (Lonza, Whitesci, Switzerland). The filtrate was centrifuged (SL-16R, Thermo Scientific) at 
500 g for 7 minutes after which the supernatant was aspirated leaving behind the pellet. The mASC 
pellet was resuspended in CCM, plated at 5x103 cells/cm³ in 75 cm³ culture flasks and placed in a 
37˚C/5% carbon dioxide (CO2) incubator (Labotec, Thermo Scientific). The cell culture medium was 
changed twice a week and cells were passaged when they became confluent. At passage 5, mASCs were 
cryopreserved by resuspending dissociated cells in freezing medium (70% FBS, 20% Dulbecco's 
modified Eagle medium/F12 (DMEM/F12) supplemented with 10% dimethyl sulfoxide (DMSO)), 
transferred to cryovials (Lasec, Greiner Darmstadt, Germany) and stored in liquid nitrogen vapor 
(Statebourne biorack 4800, Thermo Scientific, Washington, UK). To thaw the mASCs, 700 µL of FBS 
was added to the cryovials and centrifuged at 500g for 7 minutes and then plated at 5x103 cells/cm³ in 
75 cm³ culture flask. The mASCs used for this study were at passages 6 to 8. 
 
2.4. Characterisation of mASCs 
The immunophenotypic profile and adipogenic and osteogenic differentiation capabilities of the 
mASCs were determined before the cells were used in in vivo experiments.  
 
2.4.1. Flow cytometric analysis of mASCs  
mASCs were immunophenotyped at passage 3 using a Cytoflex flow cytometer (Beckman Coulter, 
Florida, USA). Immunophenotyping was done as previously described with some modifications [52]. 
Briefly, mASCs were washed twice using PBS and dissociated by adding 7 mL trypsin (GIBCO, Life 
Technologies™, New York, USA), followed by incubation for 4 minutes in a 37 °C/5% CO2 incubator. 
An equal volume of CCM was added to the dissociated cell suspension followed by centrifugation at 
500g for 7 minutes. An aliquot of the cell suspension (100 µL) was transferred to a flow cytometry tube 
after which 5 µL of each antibody was added to cells and incubated for 15 minutes in the dark. The 
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anti-mouse antibodies used to stain the cells were CD45-Brilliant Violet 421 (30-F11) (Biocom, 
Biolegend, San Diego, CA, USA), CD90.2-APC (53-2.1), CD31-PE (390), CD29-FITC (HMb1-1), CD105-
PE-C7 (MJ7/18) and CD106-PE-C7 (429) purchased from eBioscience, Invitrogen (San Diego, CA, USA). 
The cells stained with CD105 were processed in a separate tube because this marker has the same 
fluorochrome as CD106. The data was analysed using Kaluza Flow Cytometry analysis software 1.2 
(Beckman Coulter, Miami, USA).  
 
2.4.2 Adipogenic and osteogenic differentiation  
For adipogenic differentiation, mASCs were plated at a density of 2000 cells/cm³ in a 6-well plate. The 
cells were differentiated into the adipogenic lineage as previously described [52] with slight 
modifications. Briefly, CCM was added to cells at passage 3 to serve as non-induced controls (3 wells); 
adipogenic induction cocktail consisting of Dulbecco's Modified Eagle's Medium (GIBCO, Life 
Technologies™, New York, USA) supplemented with 20% FBS, 2% Pen/Strep, 10 µg/mL insulin (Gibco, 
ThermoFisher, MA, USA), 0.5 mM 3-isobutyl-methlyxanthine (IBMX), 5 mM dexamethasone, 200 µM 
indomethacin. Indomethacin, IBMX and dexamethasone were purchased from Sigma-Aldrich, 
Darmstadt, Germany. After differentiation period of 21 days, cells were stained using 2.5 µg/mL 4′, 6-
diamino-2-phenylindole, dihydrochloride (DAPI) (Life Technologies, Oregon, USA) and 50 ng/mL Nile 
red (Life Technologies, Oregon, USA). Images for were captured at 10X magnification using a ZEISS 
Axio Vert.A1 inverted microscope (Carl Zeiss, Gottingen, Germany). 
 
For osteogenic differentiation, 2000 cells/cm³ were plated in a 6-well plate at passage 3. The 
differentiation procedures were performed as described by Seavey et al. [53], with the exception that 
cells were differentiated for 21 days instead of 14 days as described by the authors. Osteoblast staining 
was performed as described by Koch et al. 2007 [54], with a few minor modifications. In summary, the 
culture media was removed, and 10% formalin was added to the cells followed by incubation for 1 hour 
in at room temperature (RT). After fixation, the cells were stained with 2% alizarin red for 45 minutes 
at RT. The solution was aspirated, and wells washed 4 times with dH2O, and 1 mL PBS was added. 
 
2.5. mASCs treatment and tumour measurements 
Experiments done on both control (untreated) and treatment groups were performed on 10 mice each. 
Each mouse in the mASCs treatment group received 2x10⁶ mASCs suspended in 100 µL 0.9% SABAX 
saline solution (Adcock Ingram, South Africa) through intraperitoneal injection (IP) on days 30 and 37 
(from time of birth). On day 44, the mice received 1.6x10⁶ mASCs; the adjustment was due the number 
of mASCs available and was made to ensure that all animals received the same number of cells. Each 
mouse in the treatment group thus received a total number of 5.6x10⁶ mASCs over a period of 44 days. 
Mice in the control group received 100 µL of saline solution at each time point; the administration route 
was the same. Palpable primary tumours were measured once a week until termination, using a calliper 
to determine tumour volume. Volume was calculated using the formula L x W² / 2; L (length) and W 
(width). At termination, the mammary tumours were excised and weighed (Sartorius, Göttingen, 
Germany) to determine the tumour mass [in grams (g)] per animal.  
 
2.6. Histology and Immunohistochemistry 
Mammary and lung tissues were collected from mice in both (control and mASCs treated) groups after 
they were euthanized and fixed in 10% neutral buffered formalin (NBF). Haematoxylin and eosin 
staining was performed as previously described by Dhanraj et al. 2021 and Pitere et al. 2022 [55, 56]. To 
visualize CD163-positive macrophages, the tissues were processed and stained, with minor 
modifications, using a rabbit monoclonal anti-mouse antibody directed against CD163, as previously 
described [55, 56]. Briefly, 3-micron sections were cut from formalin fixed paraffin embedded (FFPE) 
tissue blocks and baked overnight in a 58°C oven.  Slides were deparaffinized in xylene, hydrated with 
decreasing concentrations of alcohol and washed with distilled water. Endogenous peroxidase was 
quenched in 3% hydrogen peroxide for 5 minutes at 37°C. Antigen retrieval was performed in a high 
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pH buffer (Dako Envision FLEX Retrieval solution high pH, Agilent Technologies, Denmark), after 
which the sections were rinsed in phosphate buffered saline (PBS) followed by blocking the background 
staining with protein block (NovolinkTM Leica Biosystems, Newcastle Upon Tyne, UK) for 30 minutes 
at room temperature to reduce background staining.  Sections were incubated overnight at 4°C in a 
1:300 rabbit monoclonal anti-CD163 antibody [EPR19518] (ab182422) (Abcam, Cambridge, UK).  Slides 
were once again rinsed in PBS and detection performed using anti rabbit NovolinkTM Polymer Detection 
Kit (Leica Biosystems) for 25 minutes at RT.  Slides were once again washed in PBS and chromogen 
detection performed (4 minutes at 37°C) using 3,3′-diaminobenzidine (DAB) (NovolinkTM Polymer Kit). 
Sections were rinsed and counterstained in haematoxylin for 1 minutes.  Dehydration in alcohol, 
clearing in xylene and mounting in DPX followed.  Negative controls were performed substituting the 
anti CD163 antibody with PBS. For CD3 IHC, 3-micron sections were cut, and the process was 
performed similarly to CD163 with a few differences. Antigen retrieval was performed in a low pH 
buffer (Cell Conditioning Solution CC2, Ventana Medical Systems, Inc Arizona USA). Sections were 
incubated with a 1:100 rabbit monoclonal anti CD3 (Abcam ab16669 clone SP7) antibody at room 
temperature for 120 minutes. Slides were rinsed in PBS and detection performed using anti rabbit 
Polymer HRP IgG (NovolinkTM Polymer Detection Kit, Leica Biosystems) for 30 minutes at room 
temperature.  Negative controls were performed substituting the CD3 antibody with PBS. Images were 
captured at 40X magnification using a Leica AT 2 Aperio scanner (Leica Biosystems, Nussloch, 
Germany) and analyzed using Qupath software, version 0.2.3 (The Queens University of Belfast, 
Northern Ireland). 
 
2.7. mRNA isolation and RT-qPCR 
Total cellular mRNA was extracted from mammary and lung tissues of treated and untreated mice 
using the E.Z.N.A.® Total RNA Kit I (Omega Bio-Tek, Norcross, GA) following the manufacturer’s 
instructions. The quality of mRNA was determined using the Nanodrop spectrophotometer (Inqaba, 
Biotec, South Africa). Complementary DNA (cDNA) was generated from mRNA using the 
SensiFAST™ cDNA synthesis kit (Meridian Bioscience®, USA) according to the manufacturer’s 
instructions and was quantified using a Nanodrop spectrophotometer. TaqMan RT-qPCR was used to 
determine the expression of the following genes: cd105 (Mm00468252_m1), tgf-β3 (Mm00436960_m1), 
vegfr1 (Mm00438980_m1), mtdh (Mm00482588_m1) and cd36 (Mm00432403_m1). gapdh 
(Mm99999915_g1) was used as reference gene. For RT-qPCR, 15 µL master mix containing 10 µL 
TaqMan fast advanced master mix (2X), 1 µL TaqMan assay probe (20X), 4 µL nuclease-free water and 
5 µL (30 ng/µL) cDNA (sample template) were added to wells in a 96-well plate. The plate was run in 
standard mode on a QuantStudio™ 6 Flex Real-time PCR (Applied Biosystems™, MA, USA) under the 
following conditions for 40 cycles: incubation at 50 ˚C for 2 minutes, polymerase activation at 95 ˚C for 
10 minutes, denaturation at 95˚C for 15 s, extension at 60 ˚C for 1 minute. The software of QuantStudio 
6 and 7 measured the threshold limit (Ct value) and the comparative CT method was used to calculate 
gene expression fold changes using the formula: ∆CT = CT average mASCs – CT average reference 
gene, ∆CT = CT average control – CT average for reference gene; ∆∆CT= ∆CT mASCs - ∆CT control; 
Fold change = 2 ‾∆∆CT.  

2.8. Measurement of plasma cytokines 
Approximately 800 µL of blood was collected in EDTA tubes through cardiac puncture and centrifuged 
at 14 000 rpm (28 766g) for 15 minutes. Approximately 250-300 µL of plasma was collected from each 
sample into 2 mL microcentrifuge tubes. The Legendplex mouse inflammation panel (13-plex) kit 
(Biolegend®, San Diego, CA, USA) was used for cytokine profiling. The assay was performed according 
to the manufacturer’s instructions. The levels of the following 13 mouse cytokines which were 
determined: Interleukin-23 (IL-23), IL-1α, interferon-gamma (IFN-γ), tumour necrosis factor-alpha 
(TNF-α), monocyte chemoattractant protein-1 (MCP-1), IL-12p70, IL-1β, IL-10, IL-6, IL-27, IL-17A, IFN-
β, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Cytokines levels (present in 
standards and samples) were measured using the Cytoflex flow cytometer (Beckman Coulter, 
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California, USA). Standard curves were generated according to manufacturer’s instruction. Cytokine 
concentration levels were determined using the LEGENDplesTM data analysis software [version 8.0; 
BioLegend, San Diego, USA (https://legendplex.qognit.com/)]. All the analysis was done using the 
Biolegend’s data analysis software. 

2.9. Statistical analysis  
Statistical analysis was performed using GraphPad Prism (version 5; GraphPad Software Inc., San 
Diego, CA, USA). Data was expressed as mean ± standard error of mean (SEM). Two-tailed unpaired 
student T-test was used to compare means between two groups. A two-way ANOVA and multiple 
comparison test were used to compare means of more than two categories.  

3. Results 
3.1. mASCs characterisation 
To confirm that the cells used were mASCs, cells were immunophenotyped using a panel of anti-mouse 
antibodies. mASCs are positive for CD29, CD105, and negative for CD31, CD106, CD45 and CD90.2. 
The markers, CD31- and CD29+ were identified in 99.58% cells, of which 94.38% lacked the expression 
of CD106 and CD45 (Figure 3A-B). Moreover, 98.79% of these cells co-expressed CD29 and lacked 
CD90.2 (Figure 3C). Moreover, 99.85% of the mASCs expressed CD105 (Figure 3D). In panels (E_H), 
the overlay dot plots clearly indicate the negative controls (isotypic controls) in green and the cells 
stained with the respective monoclonal antibodies in red.  Adipogenic and osteoblastic differentiation 
were assessed to confirm the multipotent differentiation of these mASCs. Lipid droplet accumulation 
was observed in mASCs induced to undergo adipogenic, confirming successful adipogenic 
differentiation, while there was an absence of lipid droplets in the non-induced cells (Figure 4A-B). 
Osteogenic differentiation was observed with the presence of calcium deposits that are found in 
osteoblasts which are visibly red in the induced cells, while no differentiation occurred in the non-
induced mASCs (Figure 4C-D).  
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Figure 3: Representative flow cytometry two-parameter plots of mASCs immunophenotype: (A-D) 
Two-parameter flow cytometry plots indicate that mASCs were positive for CD29 and CD105 and 
negative for CD31, CD45, CD90.2 and CD106. Plots A – H were gated (region A) on viable, intact ASCs 
(E-H) Overlay dot plots to indicate the isotypic controls (negative control) (green) and cells that were 
stained with the respective monoclonal antibodies (red).  

 

Figure 4: Adipogenic and osteogenic differentiation of mASCs: Representative microscopy images of 
mASCs induced to undergo adipogenic differentiation; (A) non-induced mASCs stained with DAPI 
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and Nile red (no visible lipid droplet accumulation observed, indicating no differentiation). (B) Nile 
red-stained lipid droplets were observed in mASCs induced to undergo adipogenic differentiation, 
confirming successful adipogenic differentiation. C – D; Osteogenic differentiation of mASCs; (C) non-
induced mASCs stained with Alizarin red showed no calcium deposits present, (D) mASCs successfully 
differentiated into osteoblast that contain calcium deposits that stain red.  All images taken at 10X 
magnification.  Scale bar represented by the horizontal line indicates length of 4µm, 2µm 7µm and 9µm 
for panels A, B, C and D, respectively. 

3.2. mASCs effect on tumour volume and mass 
To test for the effect of mASC treatment on tumour growth and progression, the size of mammary 
tumours was measured once a week for 4 weeks using a calliper. Measurements commenced after mice 
received the last dose of mASCs. Each mouse in the mASC group received 2x10⁶ cells on days 30, 37 
and 1.6 x10⁶ cells on day 44; Therefore, the mASCs treated group received a total of 5.6 x 106 cells over 
a 14-day period. On week 3 after treatment, a larger number of mice (60%) that received mASC 
treatment developed palpable tumours earlier compared to 30% in the control group (Figure 5A). This 
observation suggests that the administration of mASCs resulted in earlier tumour initiation. At the 
point of termination, tumours were removed, measured (size), volume calculated, and weighed to 
determine tumour mass. On average, no change was observed in tumour volume (p-value =-0.7782) 
and mass (p-value = 0.6411) between the mASC treated and untreated groups (Figure 5B-C). Our results 
therefore suggest that mASCs may have contributed to tumour initiation but not progression. 

 

Figure 5: Tumour volumes and mass. (A) A larger number of mice in the mASC group developed 
tumours earlier. (B) On average at termination, mammary tumour volume and, (C) mass were similar 
in both groups (N=10 in each group). 

3.3. Histopathological analysis of tumours from mammary and lung tissues 
Five tumour and lung tissue sections from the mASC treated and control groups (5 sections per group) 
were selected for H&E staining. Boundaries were drawn manually around necrotic areas and another 
boundary was drawn around the entire tissue section (Figure 6A-B).  The degree (level) of tumour 
necrosis was measured by dividing the total sum of the necrotic areas with the area of the entire tissue 
section to determine the percentage of necrosis observed. Tumour necrosis (p-value = 0.3486) was 
higher in the control group compared to the mASCs treated group (Figure 6C). However, the mASC 
treated mice displayed higher levels of necrosis in the lung tissue (Figure 6D). Although the result was 
not statistically significant, the p-value of 0.0882 suggest that mASC treatment promotes tumour cell 
necrosis. In summary, our results suggest that mASC treatment inhibited necrosis in primary 
mammary tumours but enhanced necrosis in the lungs. 
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Figure 6: H&E sections of tumour and lung sections . (A) Red boundaries encircle necrotic tissues, while 
a blue boundary surrounds the entire tissue on mammary tumour and lung tissue. Scale bar 
represented by the horizontal line indicates lengths of 800µm and 1mm for mammary and lung tissues.  
(B) Tumour necrosis was lower in the mASC treated group. (C) Higher levels of necrosis were observed 
in the lungs of the mASC treated group (N=5 in each group).  

3.4. Immunohistochemical analysis of CD163-positive M2 macrophages in tissues 
Five lung and mammary FFPE tissue sections from mASC treated and untreated mice were randomly 
selected for immunohistochemistry processing The percentage of positively stained cells was determined 
by dividing the total number of positive cells by the total number of all macrophages multiplied by 100. In 
mammary tumours, the number of CD163+ M2-associated anti-inflammatory macrophages (dark 
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brown stained cells) (Figure 7A) was greater in the mASC treated group (Figure 7B). However, in the 
lung tissue, there were fewer CD163+ macrophages in the mASC treated group. (Figure 7C). Despite 
these observations, none of the results reached statistically significance. The p-value for lung tissue was 
0.0770 and in tumour tissue, it was 0.8763. In summary, our findings suggest that mASCs contribute to 
a higher anti-inflammatory response in primary mammary tumours but not the lungs.  

 
 

 

Figure 7: (A) Representative Immunohistochemistry images of M2 involvement in primary mammary 
tumour and lung. CD163+ cells stained dark brown. Scale bar represented by the horizontal line 
indicates a length of 100µm for all tissues. (B) and (C) Quantification of CD163+ cells in the primary 
tumours and lungs, respectively. (B) Anti-inflammatory CD163+ cells were more frequent  in the mASC 
treated group. (C) Fewer  CD163+  cells were observed in the mASC treated group B & C: N=5 in each 
group.  

3.5. Immunohistochemical analysis of CD3 positive T cells in tissues 
Five randomly selected lung and mammary tissue sections from both the treated and untreated groups 
were stained with a monoclonal antibody directed against the pan T-cell marker, CD3. A greater 
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number of CD3+ T-cells (stained dark brown; Figure 8A) were observed in the mammary tumours and 
lung tissues of mASC treated mice (Figure 8B and 8C); however, the differences observed between the 
treated and untreated groups were not significant (mammary tumours p-value = 0.3025, lung tissue p-
value = 0.0938).  
 

 

 

  

Figure 7: Representative immunohistochemistry images of CD3 in primary mammary tumours and 
lung tissue. The horizontal line on the image served as a scale bar, representing uniform length of 
100µm. (A) CD3+ T-cells appear dark brown. More CD3+ T-cells were observed in mammary tumours 
(B) and lung tissue (C) of mASCs treated mice.  

3.6. Effect of mASCs treatment on gene expression in mammary and lung tissues 
Five genes [cd36, tgf-β3, vegfr1, eng (cd105), and mtdh], previously reported to be important in BC growth 
and progression, were investigated. GAPDH (gapdh) was used as the reference gene. The expression of 
tgf-β3, vegfr1 and cd105 were all downregulated in both primary mammary tumours and lungs of 
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mASC-treated mice (Figure 9A-C). The expression of mtdh was similar to controls in mammary tumours 
(Figure 9D) and cd36 expression was similar to controls in lung tissue (Figure 9E). 

 

 

Figure 8: Fold change in gene expression within mammary and lung tissues of mice treated with 
mASCs, demonstrating SD<2%.(N=10 in each group). 

3.7. Cytokine concentrations  
The plasma concentrations of all the cytokines measured were higher in the mASC-treated group except 
for IL-27 (p = 0.4463) where no change was observed between untreated and treated groups. Although 
not statistically significant, the following cytokines were notably higher in the mASC-treated group 
when compared to controls (untreated): IFN-γ (p = 0.3464), IL-1α p = 0.5614), IL-1β (p = 0.2559), IL-6 (p 
= 0.2237), IL-10 (p = 0.2332), IL-12p70 (p = 0.5308), IL-17A (p = 0.2501), and TNF-α (p = 0.1399). 
Additionally, MCP-1 (p = 0.2405), IL-23 (p = 0.8053) and IFN-β (p = 0.3051) also showed increased levels 
in the mASC-treated group (Figure 10). 
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Figure 9: Plasma cytokine concentrations in control and mASC-treated groups: The concentration of all 
cytokines measured was higher in mice in the mASC group compared to those in the control group 
(N=5 in each group). White bars represent cytokines levels observed in the control group. Grey bars 
represent cytokine levels observed in the mASC-treated group. 

4. Discussion 
In this study, The influence of mASCs on breast cancer development and progression was investigated 
using a mouse model of spontaneous mammary carcinogenesis. This model is believed to more 
accurately reflect expected outcomes when BC patients (humans) receive ASCs as cellular therapy. The 
isogeneic experimental design used in this study limits genetic variability, which has been a major 
limitation in previous studies, and is therefore, we believe likely to result in a more accurate reflection 
of the (human) clinical setting. Heterozygous female mice that spontaneously develop mammary 
tumours with lung metastasis were given either saline or mASCs intraperitoneally over a 14-day period 
(3 different time points, 7 days apart) and were terminated 28 days after receiving the last dose. There 
was no difference in mammary tumour volumes and mass between the untreated and treated groups. 
However, twice as many mice in the mASC treatment group developed palpable mammary tumours 
between days 60-65 from the time of birth compared to the control group. Lengyel et al. (2018) suggest 
that adipocytes and ASCs present in adipose tissue in close proximity to mammary glands secrete 
extracellular matrix molecules such as collagen IV and have been implicated in BC progression [57].  
Furthermore, ASCs are known to secrete several growth factors, chemokines and cytokines such as 
platelet-derived growth factor (PDGF-BB), chemokine ligand 5 (CCL5), VEGFA, VEGFB, stroma-
derived factor 1α (SDF-1α), stem cell factor (SCF) and hepatocyte growth factor (HGF) that support BC 
cells proliferation in the TME  [58].  Another study showed that WAT ASCs are recruited by tumours 
and promote growth [42]. BC xenograft studies have also reported an increase in pro-inflammatory 
cytokines that causes BC progression by stimulating growth in a paracrine manner [17, 29, 59]. We also 
observed a notable increase, although not significant, in pro-inflammatory cytokines (IFN-γ, IL-1α, IL-
1β, IL-6, IL-17A, IL-12p70, and TNF-α) in the mASC treatment group. In this study, all 13 cytokines 
measured were higher in the mASC treatment group. Interleukin 10 which was also high is a potent 
anti-inflammatory cytokine [60]. Eterno et al. (2014) using a xenograft model suggested that ASC-
associated pro-inflammatory cytokines cause an increase in BC proliferation but do not maintain 
tumour growth [24]. ASCs are, therefore, not necessarily tumorigenic but rather exacerbate tumorigenic 
behaviour by creating an inflammatory environment [24]. The earlier detection of palpable tumours in 
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the mASC-treatment group with no difference in tumour growth (volume and mass) observed in this 
study suggests that mASCs only exacerbate tumour initiation but not tumour progression. 
 
Chemotherapeutic drugs eradicate cancer cells via necrosis [61]; therefore the presence of necrotic tissue 
is an indicator of anti-tumour activity. More CD163+ macrophages and less necrotic tissue were 
observed in the mammary tumours of mASCs treated mice. However, lower numbers of M2-associated 
CD163+ macrophages and more necrotic tissue were observed in the lung of mASC treated mice. The 
expression of CD163+ macrophages was used as a prognostic indicator for predicting BC recurrence-
free survival [62]. An in vivo study found that high CD163 expression increased metastatic ability and 
tumorigenicity  [62]. An increased number of CD163+ macrophages has been linked to reduced overall 
survival of BC patients, metastases, early recurrence and increased production of TGF-β1, IL-10 and 
VEGF [63, 64]. Moreover, Shabo et al. (2008) demonstrated that CD163+ macrophages are present in 
greater numbers in the TME of advanced histological grade BC [62, 64]. Therefore, an increase in the 
number of CD163+ macrophages is detrimental in BC, and this was only observed in mammary 
tumours and not the in lungs of mASC treated mice compared to controls. However, CD3+ T-cell 
numbers were greater in mASC treated mice than in controls. High CD3 T numbers is associated with 
a decreased risk of relapse, favourable outcome, and increased survival [65, 66]. Thus, despite the 
higher number of CD163+ macrophages in mammary tumours, the high number CD3+ T-cells in the 
mammary TME shows that there potentially could be an anti-tumour effect if the number of days of 
life was allowed to increase. 

In the primary mammary tumour of mASC treated mice, cd36 was downregulated but no change was 
observed in its expression in the lungs. A pro-tumour marker, cd36 is a transmembrane receptor 
involved in angiogenesis, apoptosis, adipocyte differentiation, immune signalling and TGF-β activation 
[49, 50, 67]. Studies on a variety of human BC cell lines demonstrated that downregulation of cd36 
expression supports the progression of an aggressive, metastatic and invasive tumour cell type while 
upregulated cd36 was observed in non-aggressive BC cells [68, 69]. The mouse FVB/N-Tg(MMTV-
PyVT)634Mul/J model contains PyVT oncogene that activates numerous pathways that lead to an 
aggressive tumour phenotype [70]. This may explain the downregulation of cd36 expression in 
mammary tumours and no change in expression in the lungs of mASC treated mice. Therefore, the 
more aggressive a tumour, the lower the cd36 level thus supporting tumour development and an 
increased likelihood of having metastatic potential [67, 69]. 

The expression of tgf-β3 and vegfr1 (FTL1) were downregulated in both primary mammary tumours 
and in the lungs in mASC treated mice. In BC, these two genes are mainly involved in  angiogenesis 
[71]. Downregulation of TGF-β3 has been associated with the early development of BC in ductal 
carcinoma in situ [72]. Furthermore, downregulated TGF-β3 is correlated to TGF-β3 gene loss of 
heterozygosity in human breast cancer [73]. TGF-β3 restoration in mice inhibits tumour invasion, 
metastasis, and angiogenesis [73, 74]. Moreover, tumour growth, metastasis and angiogenesis were 
inhibited in a BC xenograft nude mouse model treated with TGF-β3 alone in vivo [74-76]. An in vivo 
study by Hank et al. (2020) demonstrated the lack of TGF-β3 expression created an immunotolerant 
TME by increasing TGF-β signalling in the dendritic cell (DC) population and upregulated CCL22 
myeloid DCs and indoleamine 2,3-dioxygenase (IDO) DCs [77]. Treg infiltration was mediated by these 
DCs, hence promoting BC development in 4T1 murine BC model [77]. This study shows that mASC 
treatment downregulates tgf-β3 possibly creating a pro-tumour effect. Vascular endothelial growth 
factor interacts with vegfr1 to stimulate angiogenesis and is involved in BC development and metastasis 
[47]. Generally, vegfr1 is absent in healthy breast tissue but expressed in BC cells [78]. The expression of 
vegfr1 maintains the survival of BC cells and is associated with a poor prognosis in BC patients [78, 79]. 
As long as vegfr1 is expressed, there is metastatic potential but the degree of vegfr1 expression 
determines its tumorigenic and metastatic involvement. Various studies have reported that elevated 
expression of vegfr1 is linked to metastasis of multiple cancers including BC and a shorter survival time 
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[78, 80-83]. The result of this study shows that mASC-treatment exert an anti-tumour effect by 
downregulating vegfr1 expression. 

The expression of cd105 was also downregulated in both mammary tumour and in the lungs. Lack of 
or low expression of cd105 in primary mammary tumours is linked to gene methylation and poor 
clinical outcome in BC [84, 85]. It has also been demonstrated that cd105 downregulation leads to 
increased invasion and tumorigenicity [86, 87]. Additionally, cd105 overexpression decreases migration 
and metastasis [84, 85]. Thus, mASC treatment may promote a pro-tumour effect by downregulating 
cd105 expression. 
 
Mammary tumours did not show any change in the expression of mtdh which was downregulated in 
pulmonary metastasis. Metadherin is an oncogenic protein that promotes metastasis, cancer 
progression and chemoresistance in mammary carcinoma [51, 88]. Primary mammary tissues highly 
express mtdh compared to normal tissue [89]. Overexpression of mtdh correlates with increased risk of 
relapse and poor disease-free survival [90]. Thus, this study suggests mASC treatment has an anti-
tumour effect in pulmonary metastasis by downregulating mtdh expression.   
 
The effect of mASC treatment on primary mammary and pulmonary metastatic tumours produced 
pleiotropic effects on the different molecular factors investigated. However, the combination of these 
varied molecular events resulted in a measurable phenotypic outcome which suggests a pro-tumour 
and anti-tumour effect of mASCs on mammary and pulmonary tumours, respectively. The pro-tumour 
effect exerted by mASC treatment include the following; (i) double the number of mice in the mASC 
treatment group developed tumours early; (ii) more CD163+ macrophages were observed in mammary 
tumours of the mASCs treated mice, and (iii), downregulation of cd36, tgf-β3, and cd105, all of which are 
constituents that outweigh the anti-tumour effect exerted by the downregulation of vegfr1, thereby 
contributing to less necrosis observed in mammary tumours of mASC treated mice. Although the 
number of CD3+ T-cells was higher in mASC treated mice, this was not enough to render an anti-
tumour effect. On the contrary, the anti-tumour effect produced by mASC treatment on pulmonary 
metastasis includes the following: (i) the lower number of CD163+ macrophages; (ii) the higher number 
of CD3+ T-cells; and (iii) the downregulation of mtdh and vegfr1 which is suggestive to be strong enough 
to outweigh the pro-tumour activity resulting from the downregulation of cd105 and tgf-β3, thereby 
resulting in an increase in tumour necrosis. Furthermore, it is possible that the strong anti-tumour effect 
by mASCs observed in the lungs, but not in primary mammary tumours may be as a result of mASCs 
being trapped in the lungs [91]. This could suggest that there were fewer cells in the primary mammary 
tumour to render a net anti-tumour effect. It will be interesting to explore a different mode of 
administration such as direct injection of mASCs into the mammary gland to ensure that mASCs are 
present in that locale and investigate the effect on BC progression. 

5. Conclusion 
In an attempt to recapitulate the clinical scenario of individuals with BC receiving MSC treatment and 
to investigate the possible outcomes of such treatment, an isogenic experimental design was used to 
investigate the effect of mASCs on BC progression in a transgenic MMTV-PyMT mouse model that 
spontaneously develops mammary tumour with pulmonary metastasis. This study suggests that 
mASC treatment produced a pleiotropic effect on BC progression by demonstrating pro-tumour 
activity on primary mammary tumours and anti-tumour activity on pulmonary metastatic tumours, 
resulting in less and more tumour necrosis respectively at these sites.  
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Chapter 3 
This chapter has been presented in the final manuscript version submitted for publication (appendix 
F) submitted to the Cell Biochemistry & Function journal (Manuscript number CBF-23-0192), which is 
currently under review. 
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ABSTRACT 

BACKGROUND: The prevalence of breast cancer (BC) continues to increase and is the leading cause of cancer 
deaths in many countries. Numerous in vitro and in vivo studies have demonstrated that 2-methoxyestradiol (2-
ME) has antiproliferative and antiangiogenic effects in BC thereby inhibiting tumour growth and metastasis. The 
effect of 2-ME was compared between early and late-stage BC using a transgenic mouse model – FVB/N-
Tg(MMTV-PyVT) – of spontaneously development of aggressive mammary carcinoma with lung metastasis. 
METHODS: Mice received 100 mg/kg 2-ME treatment immediately when palpable mammary tumours were 
identified (early-stage BC; experimental group 1) and 28 days after palpable mammary tumours were detected 
(late-stage BC; experimental group 2). 2-ME was administered via oral gavage three times a week for 28 days 
after initiation of treatment, while control mice received the vehicle containing 10% dimethyl sulfoxide (DMSO) 
and 90% sunflower oil for the same duration as the treatment group. Mammary tumours were measured weekly 
over the 28-day period and at termination, blood, mammary and lung tissue were collected for analysis. Mice with 
a tumour volume threshold of 4000mm3 were euthanized before the treatment regime was completed. RESULTS: 
2-ME treatment of early-stage BC led to lower levels of mammary tumour necrosis, while tumour mass and 
volume were increased. Additionally, necrotic lesions and anti-inflammatory CD163 expressing cells were more 
frequent in pulmonary metastatic tumours in this group. In contrast, 2-ME treatment of late-stage BC inhibited 
tumour growth over the 28-day period and resulted in increased CD3+ cell number and tumour necrosis. 
Furthermore, 2-ME treatment slowed down pulmonary metastasis, but did not increase survival of late-stage BC 
mice. Besides late-stage tumour necrosis, none of the other results were statistically significant. CONCLUSION: 
This study demonstrates that 2-ME treatment has an antitumour effect on late-stage BC, however with no increase 
in survival rate, while the treatment failed to demonstrate any benefit in early-stage BC.  

Keywords: 2-methoxyestradiol, breast cancer, tumour growth, metastasis, in vivo 

1. Introduction 
Female breast cancer (BC) incidence has surpassed lung cancer with about 2.3 million new cases in 2020 [1]. BC 
incidence  is based on new cases documented in 159 of 185 countries and is the leading cause of death in 110 
countries [1]. Although current treatments increase survival rate, they target both cancer and healthy cells [2, 3]. 
Moreover, some of these treatments may be ineffective for late-stage metastatic BC [3]. Given the limitations of 
current treatments, other therapies have been investigated. One such therapy is a promising anti-cancer agent 
called 2-methoxyestradiol (2-ME), a natural endogenous steroid that is a metabolite of 17β-estradiol (E2) [4-6]. 
E2 is generated by O-methylation of estradiol at 2-position and sequential hepatic hydroxylation [6, 7]. 2-ME is 
anti-angiogenic and antiproliferative and induces apoptosis of actively dividing cells in vitro and in vivo [8, 9]. 
The apoptotic nature of 2-ME effectivity extends to oestrogen-independent and oestrogen-dependent cell lines 
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[10].  2-ME targets dividing cells during the mitosis (G2/M) cell cycle phase and spares quiescent cells [11, 12]. 
This drug binds to the colchicine binding site on tubulin, inducing microtubule depolymerisation and inhibiting 
microtubule assembly [13, 14], consequently inhibiting proliferation and inducing apoptosis [15]. However, 2-
ME does not impact the extent of tubulin assembly but impedes the rate [16].  

Due to the anti-angiogenic and antiproliferative effects of 2-ME, numerous studies have investigated its effect on 
BC. Many in vitro studies have demonstrated that 2-ME inhibits tumour initiation, tumour growth, metastasis, 
and induces apoptosis in various BC cells in a dose-dependent manner [17-20]. This is achieved by inhibiting 
microtubule turnover which leads to cell cycle arrest and apoptosis [7, 21]. Furthermore, 2-ME decreases cell 
viability with increased 2-ME concentrations and exposure time [17]. LaVallee et al. (2008) exposed the MDA-
MB-231 BC cell line to 2-ME analogues and found that the analogues induced G2-M cell cycle arrest and 
apoptosis after 4-16 hours and 16-24 hours respectively [22]. Many in vivo studies have also demonstrated the 
antitumour effect of 2-ME [14, 18, 22-24]. However, some studies have suggested that the antiproliferative effect 
of 2-ME is limited  [17, 18]. These studies suggested that 2-ME may not inhibit, but rather slow the rate of tumour 
growth, and that if 2-ME is administered for a longer period of time before tumours appear, it may actually 
increase tumour growth. [17, 18]. Other studies suggested that lack of antitumour activity may be due to 
suboptimal 2-ME concentrations which exhibit stimulatory effects, but not the inhibitory effect of 2-ME which is 
dose-dependent [17, 23]. The treatment dosages varied from 20 mg/kg to 150mg/kg given for varying numbers of 
days. All these studies have xenograft models except for one allograft study where C3(1)/Tag transgenic mice 
developed spontaneous oestrogen receptor-negative mammary carcinoma and were treated with 150mg/kg/day 
with 2-ME for 6 weeks [18].  Treatment was given orally for two different periods before tumours formed at 12 
weeks and after 18 weeks of age when palpable tumours were 0.5cm in diameter [18]. 2-ME decreased tumour 
growth and burden in both treatment periods [18]. 

A xenograft study with a similar treatment design, whereby 2-ME treatment at a concentration of 150mg/kg/day 
was given orally for 33 days when tumours reached 0.5cm in diameter, revealed that 2-ME inhibited angiogenesis 
and tumour growth from implanted MBA-MB-231 cell lines [23]. This study showed that a higher concentration 
of 2-ME given for a longer period can induce antitumour effects. However, a higher concentration (150mg/kg/day) 
did not always result in antitumour activity. In another xenograft study, 2-ME was given intraperitoneally and 
orally at 150mg/kg/day and 75mg/kg/day respectively for 19 days after palpable tumours had developed. 
Treatment with 2-ME showed no antitumour activity but, instead, increased tumour growth in mice inoculated 
with oestrogen receptor-negative MBA-MB-435 cells and oestrogen-dependent MCF-7 cells [25]. Klauber et al. 
(1997) suggested an optimal concentration of 75mg/kg/day is needed to avoid toxic effects such as weight loss, 
diarrhoea, hair loss and lethargy [14]. Despite the contradicting reports, most studies have clearly shown that 
prolonged administration of 2-ME renders an anti-tumour activity after palpable tumours have developed. 

Cytokines are involved in various stages of BC and play a crucial role in either inhibiting or stimulating BC 
invasion and proliferation [26, 27]. Interferons, interleukins (IL) such as IL-12 and IL-18 inhibit BC while IL-6, 
IL-1,  transforming growth factor β (TGFβ) and IL-11 stimulate BC [26]. These cytokines are secreted by immune 
cells such as macrophages and T cells contributing to the inflammatory tumour microenvironment (TME) [27, 
28]. BC cells secrete factors that differentiate macrophages toward the M2 phenotype [29]. M2-associated 
CD163+ macrophages are a prognostic marker for BC and metastasis and an increased number of CD163+ 
macrophages are associated with decreased patient survival [30-32]. In contrast, higher levels of CD3+ cells are 
associated with good prognosis biomarkers such as CD8 and CD20, and are associated with increased survival 
[33-35]. 

Many studies have demonstrated an anti-tumour effect of 2-ME on BC progression, most of which are xenograft 
models. However, no study has investigated the distinct effect of 2-ME treatment on early- and late-stage BC 
progression. In this study a transgenic mouse model (FVB/N-Tg(MMTV-PyVT)634Mul/J) that spontaneously 
develops mammary tumours with lung metastasis (exhibiting an aggressive phenotype of BC) [36] was used  to 
investigate and compare the effect of 2-ME treatment on early- and late-stage BC progression. Moreover, the 
cytokine profile and immunohistochemistry of some prognostic biomarkers were also investigated.  
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2. Materials and Methods 

2.1 Animal studies  
This study was approved by the Faculty of Health Sciences research ethics committee (ethics reference no.: 
REC166-19) and the animal ethics committee (ethics reference no.: 534/2019) of the University of Pretoria. The 
FVB-TgN(MMTV-PyVT) mouse model was obtained from Jackson Laboratories (The Jackson Laboratory; Bar 
Harbor, ME, USA) and mice were bred to obtain heterozygous offspring by crossing hemizygous males with wild-
type females. All offspring were genotyped, and only heterozygous females were included in the study.  

2.2 Animal genotyping 
Mouse genotyping was performed using the KAPA Mouse Genotyping Kit (KAPABIOSYSTEM, Cape Town, 
South Africa) according to the manufacturer’s instructions. Briefly, a 2 mm mouse tail biopsy was placed in 0.2 
mL microcentrifuge tubes and deoxyribonucleic acid (DNA) was extracted. For polymerase chain reaction (PCR) 
genotyping experiments, two pairs of primer sequences obtained from the Jackson Laboratory website (The 
Jackson Laboratory; Bar Harbor, ME, USA) were used. The forward primer 5’- 
GGAAGCAAGTACTTCACAAGGG-3’ and reverse primer 5’- GGAAAGTCACTAGGAGC GGG-3’ were 
specific for the transgene and the forward primer 5-’ CAAATGTTGCTTGTCTGGTG-3’ and reverse primer 5’-
GTCAGTCGAGTGCACAGTTT-3’ were specific for internal positive control.  A thermocycler (GeneAmp® 
PCR System 9700, CA, USA) was used to amply DNA under the following conditions: initial denaturation at 
95˚C for 3 minutes, denaturation at 95˚C for 15 seconds, annealing at 60˚C for 15 seconds, and extension for 15 
seconds for 2 minutes for 35 cycles. The sizes of the amplicons were determined using ethidium bromide-stained 
2% agarose gel electrophoresis.  

2.3 2-ME treatment and tumour measurements 
Treatment was divided into two experimental groups: one for early-stage BC and the other for late-stage BC. The 
early-stage BC (Ex. 1) treatment commenced immediately when palpable mammary tumours were felt. The late-
stage BC (Ex. 2) treatment began 28 days after palpable tumours were felt. In both experiments, mice received 
100mg/kg of 2-ME in a vehicle made up of 90% sunflower oil (Sunfoil, South Africa) and 10% DMSO given 
three times per week via oral gavage for four weeks followed by euthanization of animals. The control mice 
received the vehicle.  Late-stage BC mice on average received treatment 8 times in both (control and treatment) 
groups. Mice that reached the mammary tumour volume threshold of approximately 4000 mm3 were terminated 
to avoid suffering as a result of tumour burden. Mice in the early-stage BC group received 2-ME treatment a total 
of 12 times. 

A 2-ME concentration of 100mg/kg administered 3 times a week was chosen based on literature to avoid adverse 
effects in mice. During the duration of the treatment, palpable mammary tumours were measured once a week 
and at termination using a calliper. Tumour volume was calculated using the formula L x W² / 2; L (length) and 
W (width) [37]. At termination, mammary tumours were excised, and the mass measured in grams (g) on a scale 
(Sartorius, Göttingen, Germany). A light microscope (OLYMPUS, SC 100, Dubai, UAE) was used to identify 
and physically count the number of metastatic lesions on the surface of the lungs. Images were also captured using 
the CellSens dimension imaging software (XV imaging, product version 3.9, Hague, Netherlands). A total of 18 
heterozygous female mice (9 for 2-ME and 9 for control) were used for each of the experimental procedures. 

2.4 Histology and immunohistochemistry 
Lung and mammary tissues were collected from euthanized 2-ME treated and control group mice and fixed in 
10% neutral buffered formalin. Haematoxylin and eosin (H&E) staining was performed as previously described 
[38, 39]. Immunohistochemical analysis for CD163 and CD3 was also performed according to previously 
described protocols [38, 39] with slight modifications. Briefly, formalin-fixed paraffin-embedded (FFPE) tissue 
blocks were cut into 3-micron sections and baked in a 58 °C oven overnight. Xylene was used to deparaffinize 
slides whereafter they were hydrated with decreasing concentrations of alcohol to distilled water. A 3% hydrogen 
peroxide solution was used to quench endogenous peroxidase for 5 minutes at 37°C. Antigen retrieval was 
performed using a high pH buffer retrieval solution (Dako Envision FLEX Retrieval solution high pH, Agilent 
Technologies, Denmark), washed in phosphate buffered saline (PBS) and background staining was subsequently 
blocked with a protein block (Novolink Leica Biosystems, Newcastle Upon Tyne, UK) for 30 minutes at room 
temperature (RT). The sample sections were incubated overnight at 4°C in a 1:300 anti-CD163 antibody 
[EPR19518] (ab182422) (Abcam, Cambridge, UK) and washed in PBS. Detection of the antigen-antibody binding 
site was performed with NovolinkTM Polymer Detection Kit (Leica Biosystems) as recommended by the 
manufacturer. Slides were rinsed in PBS and incubated with 3,3′-Diaminobenzidine (DAB) (NovolinkTM Polymer 
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Kit) for chromogen detection. Sections were washed and counterstained in haematoxylin for 1 minute, dehydrated 
with increasing concentration alcohol solutions, cleared in xylene and mounted with dibutylphthalate polystyrene 
xylene (DPX). CD3 IHC was performed on 3-micron sections in a manner similar to CD163 but with a few 
differences. The antigen was retrieved using a low pH buffer (Cell Conditioning Solution CC2, Ventana Medical 
Systems, Inc Arizona USA). At RT, sections were incubated in a 1:100 rabbit monoclonal anti CD3 (Abcam 
ab16669 clone SP7) antibody for 120 minutes. Slides were rinsed in PBS and detected for 30 minutes at RT with 
anti-rabbit Polymer HRP IgG (NovolinkTM Polymer Detection Kit, Leica Biosystems). The negative controls were 
prepared by staining with PBS instead of CD163 or CD3 antibody. The Leica AT 2 Aperio scanner (Leica 
Biosystems, Nussloch, Germany) was used to capture images at 40X magnification and Qupath software 
(https://github.com/qupath/qupath/releases/tag/v0.3.2), version 0.3.2 (The Queens University of Belfast, Northern 
Ireland) was used for analyses. Each scanned tissue section was imported into the software, and the image type 
was set to brightfield (H-DAB). A boundary was drawn around tissue section limits in order to focus only on the 
cells within the section. To distinguish between positive and negative cells, the estimation stain vector was set to 
automatic. The software was trained by identifying positively stained cells and indicating to the software what 
was viewed as positive cell detection. The detection image parameter was set to “optical density sum”, and the 
scan was initiated. After completion, the result showed the number of positive, negative, and total cell counts. The 
number of positive cells was divided by the total number of cells to obtain the percentage of CD163 and CD3 
positive cells. 

2.5 Measurement of plasma cytokines  
Mice were euthanized with isoflurane (Isofor; Piramal I Healthcare, Mumbai, India) and blood (800 µL) was 
collected via cardiac puncture into ethylenediaminetetraacetic acid (EDTA) tubes and centrifuged at 28487 g for 
15 minutes. Plasma (250-300 µL) was aliquoted in 2 mL microcentrifuge tubes. For cytokine profiling the 
Legendplex mouse inflammation panel (13-plex) kit (Biolegend®, San Diego, CA, USA) was used. The kit tested 
for 13 mouse cytokines which are monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), tumour necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), IFN-β, 
interleukin-1 alpha (IL-1α), IL-1β, IL-6, IL-10, IL-12p70, IL-17A, IL-23 and IL-27.  The assay was performed 
according to manufacturer’s instructions. Briefly, increasing standard concentrations (standard supplied with kit) 
were prepared (in duplicate) in a 96-well plate, and data acquired on a Cytoflex flow cytometer (Beckman Coulter, 
California, USA). A standard curve was generated. The plasma samples were diluted two-fold, and staining was 
performed according to the manufacturer’s instructions. The samples were analysed using a Cytoflex flow 
cytometer and the respective cytokine concentrations calculated using Biolegend’s data analysis software 
https://legendplex.qognit.com/.  

2.6 Statistical analysis  
GraphPad Prism version 5 (GraphPad Software Inc., San Diego, CA, USA) was used for statistical analysis. To 
compare means between two groups, a one-tailed unpaired t-test was used.  Data were presented as mean ± 
standard error of the mean (SEM). To compare the means of more than two categories, a multiple comparison test 
and a two-way ANOVA was used. 

3. Results 

3.1 Effect of 2-ME on tumour volume and mass 
Heterozygous female mice were genotyped and those that had the MMTV-PyVT transgene were included in the 
study (Fig 11). Tumour mass is the measure of tumour weight, and tumour volume is the calculated volume based 
on tumour diameter [40]. In early-stage BC (Ex 1), there was no statistically significant difference in tumour 
volumes between both groups at termination while there was an increase in tumour mass in the 2-ME treated mice 
(Fig 11a-b). The mice in the 2-ME treated mice had continuously higher tumour volumes throughout the 4-week 
period although this was not statistically significant (Fig 11c). In late-stage BC (Ex 2), tumour volume and mass 
were lower in the 2-ME group at termination (Figure 12a-b). Tumour volumes of both groups were similar at 
weeks 1 and 2, but in weeks 3 and 4, lower tumour volumes were observed in the 2-ME group (Fig 12c), although 
this was not statistically significant. 
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Figure 10: 2-ME treatment of early-stage BC. (a) Average tumour volumes were the same in both groups at termination (p = 0.2847). (b) The 
average tumour mass was higher in the 2-ME treated group (p = 0.1004). (c) Throughout the 4-week period, tumour volumes of 2-ME treated 
mice were higher (N=9 in each group). 

Figure 11: 2-ME treatment of late-stage BC. (a) Tumour volume (p = 0.0729) and, (b) tumour mass (p = 0.2624) was higher in the control 
group. (c) Equivalent tumour volumes were observed in weeks 1 and 2 but higher tumour volumes were observed in the control group in 
weeks 3 and 4 (N=9 in each group). 

3.2 Effect of 2-ME on pulmonary metastasis 
Mouse lungs were examined for pulmonary lesions at termination. Pulmonary lesions which appeared as nodules 
were identified and counted. The lesions in early-stage BC were smaller compared to late-stage BC lesions which 
were larger with varying sizes (Fig 13a). In early-stage BC treated mice, the number of pulmonary lesions was 
higher in the 2-ME group compared to the control group with a p-value of 0.1169 (Fig 13b). Likewise, in late-
stage BC treated mice, a greater number of pulmonary lesions were observed in the 2-ME treated mice (Fig 13c) 
although this was not statistically significant. 
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Figure 12: (a) Pulmonary lesions of early-stage BC were smaller (arrows) and a combination of small (black) and large (blue) lesions were 
observed in late-stage BC. The horizontal line on the image serves as a scale bar, indicating a uniform length of 100µm for all tissues. (b) A 
greater number of pulmonary lesions were observed in both the early-stage and (c) late-stage (p = 0.1654) 2-ME treated mice (N=9 in each 
group).  

3.3 Histopathological analysis of tumours from mammary and lung tissues 
The H&E images taken were analysed by drawing red lines around the necrotic regions and a blue line around the 
entire tissue (Fig 14a). No necrotic pulmonary regions were observed for early-stage BC. To calculate the 
proportion of necrotic tissue, the total sum of the necrotic regions was divided by the area of the entire tissue. 
Mammary tumour necrosis was lower in the 2-ME group (p = 0.3176) in early-stage BC (Fig 14b). Only 1 mouse 
in the 2-ME group had pulmonary necrosis. In late-stage BC, tumour necrosis was significantly (p=0.0169) higher 
in the 2-ME group than in the control group (Fig 15a-b). Pulmonary necrosis was lower in the 2-ME group, albeit 
not significant (p = 0.3480) (Fig 15c).   
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Figure 13: Histopathological analysis of mammary tumour and lungs in early-stage BC mice treated with 2-ME. (a) Early-stage tumour and 
pulmonary tissues labelled with red boundaries representing necrotic regions. Mammary tumour and lung tissue sections with varying scale 
bars representing 500µm, 800µm and 1mm.(b) Greater tumour necrosis was observed in the control group compared to the 2-ME group 
(Control N=6, 2-ME N=5).  
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Figure 14: Histopathological analysis of mammary tumour and lung tissues from late-stage BC mice treated with 2-ME. (a) Red boundaries 
surrounding necrotic areas of late-stage mammary tumours and pulmonary tissues are shown with arrows. Mammary tumour and lung tissue 
sections with showing different scale bars denoting sizes of 500µm, 800µm, 1mm and 5mm.  (b) Tumour necrosis was significantly higher in 
the 2-ME treated mice, p=0.0169 (Control N=4, 2-ME N=6). (c) Control group pulmonary necrosis was higher than in the 2-ME group (Control 
N=4, 2-ME N=5).  

3.4 Immunohistochemical analysis of CD163 positive M2 macrophages  
Dark brown stains represent CD163+ macrophages (Fig 16a). In early-stage BC, the number of CD163+ 
macrophages in 2-ME treated mice were lower in mammary tumour tissues but higher in lung tissue (Fig 16b-c). 
In late-stage BC, there was no difference in the number of CD163+ macrophages between the 2-ME treated and 
the control group both in mammary and lung tissues (Fig 17a-c). 
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Figure 15: Immunohistochemistry for CD163 staining in mammary tumour tissue and lung of early-stage BC treated with 2-ME. (a) In early-
stage mammary and lung tissue, brown staining represents CD163+ macrophages. IHC images of mammary and lung tissue sections, each 
with a scale bar indicating 100µm. (b) Early stage 2-ME treated mice had a lower number (p = 0.1617) of CD163+ macrophages in mammary 
tissue and (c) a higher number (p = 0.0811) of CD163+ macrophages in lung tissue (N=5 in each group).  
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Figure 16: Immunohistochemistry for CD163 staining (brown-stained cells) in mammary tumour tissue and lung of late-stage BC treated with 
2-ME. (a) Late-stage mammary and lung tissue immunohistochemistry. IHC images displaying mammary and lung tissue sections, each with 
a scale bar of 100µm (b) A similar number of CD163+ macrophages was noted in the mammary (p =0.4546) and (c) lung tissues in both 
groups  (p = 0.3729) (Control N=3 and 2-ME N=5). 

3.5 Immunohistochemical analysis of CD3 positive cells  
Stained (brown) cells represent CD3+ T-cells (Fig 18a and 19a). No difference was observed between groups for 
mammary tumours and pulmonary metastasis in early-stage BC (Fig 18b-c). However, in late stage-BC, the 
number of CD3+ T-cells was higher in the mammary tumours, but lower in the lung tissue of 2-ME treated mice 
(19b-c). None of the results were significant. 
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Figure 17: (a) CD3+ T-cells are stained brown and encircled in red. IHC images of mammary and lung tissue sections, with a scale bar of 
100µm indicating the length.  (b-c) No difference was observed in early-stage BC (p = 0.3665) for both mammary tumours and pulmonary 
tissue (p = 0.4040). (Control N=3 and 2-ME N=5). 
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Figure 18: (a) CD3+ T-cells are encircled in red. IHC staining if mammary and lung tissue sections, each with a scale bar of 100µm. (b) In 
late-stage BC, a higher number of CD3+ cells were observed in mammary tumours (p = 0.3018) and (c) fewer CD3+ cells were detected in 
the pulmonary tissue (p = 0.2243) of 2-ME treated mice (Control N=3 and 2-ME N=5). 

3.6 Effect of 2-ME on the longevity of late-stage BC 
The number of days mice in the late-stage BC experimental group lived before termination was evaluated to assess 
the effect of 2-ME on survival. Importantly, mice with mammary tumours that reached a volume of approximately 
4000 mm3 were terminated due to heavy tumour burden that impaired quality of life. The decision to terminate 
was determined by a qualified veterinarian.  On average, mice in the 2-ME group lived for fewer days compared 
to mice in the control group (Figure 20). However, as previously stated, the tumour volumes of the 2-ME group 
were lower at the point of termination.  
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Figure 19: Days of survival of late-stage BC mice. At termination, the number of days of survival of mice in the control group exceeded that 
of the 2-ME treatment group (N=9). 

3.7 Cytokine concentrations associated with early stage BC 
Cytokines associated with inflammation were measured in the plasma 2-ME treated and untreated mice in early-
stage BC. The following cytokine concentrations were similar in both groups:  IL-1α (p = 0.0892), IL-1β (p = 
0.4336), IL-12p70 (p = 0.4179), IL-17A (p = 0.3907), and GM-CSF (p = 2354). Cytokines that were higher in the 
2-ME treated group were IFN-β (p = 0.0731), IFN-γ (p = 0.1864), IL-10 (p = 0.2279), IL-23 (p = 0.3353), MCP-
1 (p = 0.103) and TNF-α (p = 0.1063), with IFN-β, IFN-γ, IL-10 and MCP-1 notably high, but not statistically 
significant. IL-6 (p = 0.1569) and IL-27 (p = 4232) levels were lower in the 2-ME group (Figure 21). 

 
Figure 20: Plasma cytokine concentrations of the control and 2-ME (Ex 1) groups: Cytokine concentrations that were notably higher in the 2-
ME group were IFN-β, IFN-γ, IL-10 and MCP-1 while IL-6 and IL-27 were lower. The other cytokines were present at equivalent levels in 
both groups (N=5 in each group). 
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4. Discussion 
The effect of 2-ME on early- and late-stage BC was investigated using a transgenic mouse model that represents 
an aggressive form of spontaneous mammary carcinoma. The study aimed to simulate a clinical scenario in which 
2-ME treatment is given early (when a palpable tumour first appears) or late (28 days after a palpable mammary 
tumour first appears), depending on the stage at diagnosis. The mice were given 100 mg/kg 2-ME treatment orally 
3 times a week for 4 weeks. Thus, the total number of doses administered in the early-stage BC group was 12. 
Due to the decision to terminate earlier due to excessive tumour burden in the late-stage BC group, the total 
number of doses administered in both the 2-ME treated and control groups was 8.  

In early-stage BC, mammary tumour volumes in the 2-ME treated and control groups were the same, but tumour 
progression was more rapid and tumour mass increased. The latter observation is supported by the lower degree 
of mammary tumour necrosis seen in the 2-ME treated group, as increased cancer cell necrosis indicates an anti-
tumour effect [41]. However, the number of CD163+ macrophages was lower in mammary tumours, which does 
not support the findings considering the phenotypic characteristics of higher tumour progression and increased 
tumour mass. The number of CD3+ T-cells in the mammary TME was similar in both groups. These phenotypic 
results may account for the similar tumour volumes at the point of termination, since large tumours are associated 
with fewer CD3+ T-cells [42], and CD163+ macrophages are associated with median-sized tumours [43]. 
Although mammary tumour volumes in the 2-ME treated group were higher in the week preceding termination, 
this was not the case at termination. Due to the drug's prolonged exposure, it appears that 2-ME inhibits tumour 
growth. Longer 2-ME exposure has previously been shown to cause BC cell apoptosis [17], suggesting that if 2-
ME is given for a longer period it may have an anti-tumour effect. Furthermore, pulmonary lesions were more 
common in the 2-ME treated group, as evidenced by a higher number of CD163+ macrophages detected, but there 
was no discernible difference in the number of CD3+ T-cells. An in vivo study demonstrated that increased 
CD163+ macrophages led to enhanced metastatic ability and tumorigenicity [32], and we observed similar trends. 
Taken together, our findings suggest that 2-ME did not cause an anti-tumour effect. A study by Huh et al. on the 
late intervention of 2-ME which correlates with the early-stage BC group in this study, found that there was a in 
60% decrease tumour volume in 2-ME treated C3(1)/Tag transgenic mice compared to controls, and suggested 
that a high dose of 150 mg/kg can decrease tumour volume and inhibit angiogenesis [18]. This result is contrary 
to what we found in this study and could be because of the increased dosage of 150 mg/kg/daily for 6 weeks. 
Similarly, another study reported that  2-ME is anti-tumorigenic, but with a high dose of 150 mg/kg/day for a 
period of 33 days [44].  There are several other studies with a similar experimental design to the early-stage group 
i.e., treatment was initiated after detecting the presence of palpable tumours. However, the dose and duration of 
treatment varied with the dose ranging from 50 mg/kg/day for 16 days to 75 mg/kg/day for 30 days [14, 24, 45]. 
Despite the concentration variations all studies reported an anti-tumour effect for 2-ME. Oral administration of a 
concentration of 25 mg/kg/day has proven effective against metastasis [46].  What stands out between previous 
studies and this study is that 2-ME was administered daily in most studies as opposed to the approach used in this 
study, which used a spaced-out treatment (thrice per week for 4 weeks). In hindsight, the dosage schedule should 
be reconsidered in future studies as it seems that anti-tumour effect of 2-ME is based on its consistent 
bioavailability to the TME. This hypothesis is supported by a study on the pharmacokinetics of 2-ME which 
reported that the bioavailability of 2-ME at 10 mg/kg was low after 24 hours in the plasma of mice [47]. 
Furthermore, the authors reported that oral administration of 20 mg/kg/day for 28 days showed no statistically 
significant effect on tumour growth [47]. Taken together, the results suggest that 2-ME should be given daily at a 
dose higher than 20 mg/kg/day to cause an anti-tumour effect. 

Notably, 2-ME-treated mice had higher levels of  the inflammatory cytokines, IFN-β, IFN-γ, IL-10, and MCP-1, 
while IL-6 and IL-27 were lower. Studies have shown that MCP-1 is elevated in BC and has been implicated in 
BC progression [27, 48]. Moreover, MCP-1 is involved in cancer initiation and activates monocytes that promote 
pulmonary metastasis in BC [49, 50]. Interferons are anti-tumourigenic and inhibit BC cells' capacity to form 
mammospheres [51, 52]. Interleukins 6 and 10 are anti-inflammatory cytokines that are also protumorigenic [27, 
53]. Significantly elevated IL-27 levels have been observed in BC patients and are associated with tumour growth 
[54]. Despite the fact that elevated levels of interferons appear to indicate an anti-tumor effect, most of these other 
notable cytokines indicate that 2-ME may have a pro-tumour effect in early-stage BC. 
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Contrary to early-stage BC, the 2-ME effect in late-stage BC suggests anti-tumour activity. Tumour volume, mass, 
and tumour progression were lower in the 2-ME group. This observation was supported by tumour necrosis which 
was significantly higher in 2-ME-treated mice, as was the number of CD3+ T-cells. CD3+ T-cell number is 
associated with increased survival, and patients with low levels of  CD3+ T-cells had an elevated risk of relapse 
in BC [55, 56]. However, there was a similar number of CD163+ macrophages in mammary tumours of the 2-
ME-treated and control groups. Furthermore, pulmonary lesions were higher and pulmonary necrosis was lower 
in the 2-ME-treated group. This phenotypic finding is further supported by the presence of fewer CD3+ T-cells 
in the pulmonary tissue.  Also, despite having less pulmonary necrosis on average in the 2-ME group, more mice 
in this group had pulmonary necrosis. This suggests that 2-ME slowed down pulmonary metastasis which is 
supported by the lack of difference in the number of CD163+ macrophages observed between the 2-ME and the 
control groups. Taken together, our data suggests that 2-ME rendered an anti-tumour effect on mammary tumours, 
but not on pulmonary metastases. These results demonstrate that 2-ME treatment is not effective in inhibiting 
metastasis in mice that receive treatment late. Generally, treating advanced BC with current therapies is 
challenging [57, 58], and advanced BC treatments are aimed at prolonging and improving quality of life [59, 60]. 
Studies have shown that 2-ME treatment inhibits tumorigenesis in advanced BC and increases the overall survival 
rate [18]. An anti-tumour effect was also observed on late-stage BC, but 2-ME failed to increase overall survival. 
In previous studies, 2-ME treatment was given to mice either on the day of inoculation [24], or after the appearance 
of palpable tumours [14, 18, 44]. To our knowledge, this is the first in vivo study that used this late-stage BC 
treatment strategy. Further studies are needed to understand the effect of 2-ME on advanced mammary carcinoma 
from a mechanistic perpective. Furthermore, the role of 2-ME in the TME, the pharmokinetic profile of the drug 
and its effect on leucocytes should be investigated. This could lead to the development of optimal 2-ME treatment 
strategies capable of eliminating BC cells at every stage. 

5. Conclusion 
Our data suggests that 2-ME has the potential to be an effective treatment for late-stage BC, demonstrating anti-
tumour activity, whereas for early-stage BC, most of the evidence suggests a  pro-tumour effect. In late-stage 
BC, 2-ME inhibited tumour growth, increased tumour necrosis, and slowed pulmonary metastasis. In early-stage 
BC, pulmonary metastasis was associated with increased tumor volume and a higher number of CD163+ 
macrophages. Because the effect of 2-ME on the two BC stages differed, future research should focus on the 
mechanism and influence of 2-ME in the TME of the various BC stages for the treatment to be an effective cancer 
therapy. 
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Supplementary Figures  
 

 
Figure 21: PCR amplicons. The ruler ladder (L) indicates the sizes of the amplicons. The transgene bands were 556 bp (blue arrow) and the 
internal positive control bands were 200 bp (blue arrow). The numbers 500-537 were utilized to identify the mice. 
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ABSTRACT 

BACKGROUND: The anti-cancer agent 2-methoxyestradiol (2-ME) has been shown to have anti-proliferative 
and anti-angiogenic properties. Previously, the effect of 2-ME on early- and late-stage BC was investigated in 
vivo using a transgenic mouse model (FVB/N-Tg(MMTV-PyVT)) of  spontaneous mammary carcinoma. Anti-
tumour effects were observed in late-stage BC with no effect on early-stage BC. Given the contrasting results 
obtained from the different BC stages, we have now investigated the effect of 2-ME when administered before 
the appearance of palpable tumours. METHODS: Each mouse received 100 mg/kg 2-ME on day 30 after birth, 
twice per week for 28 days, while control mice received vehicle only. Animals were terminated on day 59. 
RESULTS: 2-ME increased tumour mass when compared to the untreated animals (p=0.0139). The pro-
tumorigenic activity of 2-ME was accompanied by lower CD3+ T-cell numbers in the tumour microenvironment 
(TME) and high levels of the pro-inflammatory cytokine interleukin (IL)-1β. Conversely, 2-ME-treatment 
resulted in fewer CD163+ cells detectable in the TME, increased levels of tumour necrosis, and increased IL-10 
plasma levels, low IL-6 and IL-27. CONCLUSION: Taken together, these findings suggest that 2-ME promotes 
early-stage BC development.  

Keywords: 2-methoxyestradiol, breast cancer, in vivo, tumour growth, metastasis 

3.2 Introduction 
Breast cancer (BC) is one of the most frequently occurring cancers (Alwan 2016; Kreiter et al. 2014). It is the 
most prevalent cancer among women worldwide, accounting for nearly 25% of all cancer cases in women 
according to the World Health Organization (WHO) (Alwan 2016). Surgery is usually the first treatment option 
for and can include either lumpectomy or mastectomy (Rubino et al. 2003; Tesarova 2013; Giordano et al. 2005). 
Radiation therapy is often used to eliminate cancer cells that have escaped surgery (Rubino et al. 2003; Tesarova 
2013; Giordano et al. 2005). Hormonal therapy is used to prevent oestrogen from promoting the growth of certain 
types of BC (Rubino et al. 2003; Tesarova 2013; Giordano et al. 2005). Chemotherapy is a systemic treatment 
that primarily inhibits DNA synthesis and mitosis leading to apoptosis in rapidly driving cancer cells (Senapati et 
al. 2018). Depending on the stage of the cancer, chemotherapy may be administered before or after surgery 
(Rubino et al. 2003; Tesarova 2013; Giordano et al. 2005).  

Advances in the development of chemotherapy include more targeted treatments that specifically targets proteins 
involved in cancer cell growth and progression in cancers including  BC, ovarian cancer,  and prostate cancer 
(Senapati et al. 2018). 2-Methoxyestradiol (2-ME) targets the colchicine-binding site in tubulin and alters 
polymerization kinetics hindering tumour vascularization and growth (Eichenlaub-Ritter et al. 2007; Pérez-Pérez 
et al. 2016). Numerous studies in BC, both in vivo and in vitro, have demonstrated that 2-ME has anti-angiogenic 
and anti-proliferative properties (Huh et al. 2006; Mabjeesh et al. 2003; LaVallee et al. 2008; Snoeks et al. 2011; 
Klauber et al. 1997; Vorster and Joubert 2010; Tang et al. 2020; Tevaarwerk et al. 2009). Moreover, the use of 2-
ME has been shown to enhance the effects of chemotherapy in the treatment of  BC (El-Zein, Thaiparambil, and 
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Abdel-Rahman 2020). For example, combining 2-ME with paclitaxel, a widely used chemotherapy drug, has been 
shown to improve treatment outcomes in preclinical models of BC (El-Zein, Thaiparambil, and Abdel-Rahman 
2020). Despite its promising anti-tumour properties, more research is required to fully comprehend the potential 
benefits and risks of 2-ME in BC treatment. 

Cytokines are generated by different cell types present in the TME and contribute to a complex, dynamic system 
by facilitating crosstalk between the different cell types. The majority of the cytokines are produced by 
macrophages and infiltrating T-helper (Th) cells (Chavey et al. 2007; Hong et al. 2013). The Th subsets, Th1 and 
Th2 are antagonistic to each other and produce cytokines that initiate different activities (Chavey et al. 2007; Hong 
et al. 2013). Th1 cells effectively generate an anti-tumour immune response by secreting granulocyte macrophage 
colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), IL-2, IL-12 and TNF-α that stimulate cytotoxic 
lymphocytes and macrophages (M1) thereby promoting inflammation and cellular immunity  (Chavey et al. 2007; 
Hong et al. 2013). Th2 cells produce IL-4, IL-5, IL-2, chemokine ligand 2 (CCL2) also referred to as monocyte 
chemoattractant protein 1 (MCP-1), CCL7, and CCL11 which stimulate antibody production by B cells and M2 
macrophage polarization that is essential in mediating a humoral immune response and which has been reported 
to enhance mammary tumour development (Chavey et al. 2007; Hong et al. 2013). A recent study has revealed 
that B and T lymphocytes can indirectly exert pro-tumour activity by regulating the bioactivity of myeloid cells 
such as monocytes, macrophages and mast cells leading to metastasis and resistance to endocrine therapies 
(DeNardo et al. 2011). Chemotherapy drugs act non-specifically on various cell types in the TME, influencing 
cytokine production by these cells, hence affecting tumour growth and progression.  For example, paclitaxel, a 
chemotherapeutic drug, is a microtubule destabiliser that is used to treat BC (White et al. 1998). Paclitaxel 
increases IL-1β (IL-1β), IL-10, IL-6, and IL-8 in the plasma (White et al. 1998; Pusztai et al. 2004).  However, 
this drug decreased the level of tumour necrosis factor alpha (TNF-α) (Panis et al. 2012). Furthermore, paclitaxel 
increases T cell (CD3+) activation in BC patients and increased T-cell clones inside tumours (Melichar et al. 2001; 
Chun et al. 2022). This indicates that multiple cytokines and leukocytes are present in the BC tumour 
microenvironment (TME) (Chavey et al. 2007; DeNardo et al. 2011). 

The number of CD3+ T-cells  and M2-associated CD163 macrophages in the TME are prognostic factors in BC 
patients (Celepli et al. 2022). Following antigen recognition, CD3 (T-cell receptor) initiates a signalling cascade 
that activates both CD4+ and CD8+ T cells (Brown et al. 2014), which are referred to as tumour infiltrating 
lymphocytes (TILs) and are involved in eliminating tumour cells (Rathore et al. 2014; Zhou et al. 2020). Increased 
numbers of CD3+ cells in the TME are associated with small tumour size, decreased lymph node metastasis and 
increased overall BC patient survival (Rathore et al. 2014; Barbosa et al. 2021; Mukherjee et al. 2020). 
Conversely, increased numbers of CD163+ macrophages are associated with poor prognosis, large tumour size, 
metastasis, distant recurrence, tumour progression, and decreased survival (Maisel et al. 2022; Fortis et al. 2017; 
Jamiyan et al. 2020; Shabo et al. 2009).  

The effect of 2-ME on early- and late-stage mammary carcinoma was previously investigated in a transgenic 
mouse model (FVB/N-Tg(MMTV-PyVT)) that spontaneously develops mammary carcinogenesis. 2-ME 
treatment was initiated (i) as soon as palpable tumours appeared for early-stage BC investigation or (ii) on day 28 
after the appearance of palpable tumours for late-stage BC investigations. 2-ME treatment of late-stage BC 
inhibited mammary tumour growth and slowed pulmonary metastasis while a pro-tumour effect was observed in 
early-stage BC. This apparently contrasting effect of 2ME on early- and late-stage BC may suggest that the anti-
tumour effect of 2-ME may be dependent on the stage of mammary carcinoma, thus prompting the initiation of 
this study. This study therefore aimed to investigate the effect of 2-ME on tumour initiation in FVB/N-Tg(MMTV-
PyVT transgenic mouse model. This was done to investigate the BC stage-specific effect of 2-ME treatment and 
to further explore the potential of 2-ME as an effective preventive treatment in a scenario where BC development 
is evident such as in hereditary BC.  

2. Material and Methods 

2.1 Animal studies 
This study was approved by the University of Pretoria Faculty of Health Sciences Research Ethics Committee 
(ethics reference no.: REC166-19) and the Animal Ethics Committee (ethics reference no.: 534/2019). The FVB-
TgN(MMTV-PyVT) mouse model was obtained from Jackson Laboratory (Bar Harbor, ME, USA), and mice 
were bred to produce heterozygous offspring by crossing hemizygous males with wild-type females. All offspring 
were genotyped, and only heterozygous females were used in the study. 
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2.2 Animal genotyping 
The KAPA Mouse Genotyping Kit (KAPABIOSYSTEM, Cape Town, South Africa) was used to genotype mice 
according to the manufacturer’s instructions. A 2 mm mouse tail biopsy was placed in 0.2 mL microcentrifuge 
tubes, and DNA was extracted. Two primer pair sequences obtained from the Jackson Laboratory website (The 
Jackson Laboratory; Bar Harbor, ME, USA) were used for polymerase chain reaction (PCR) genotyping 
experiments. The forward primer 5’-GGAAGCAAGTACTTCACAAGGG-3’ and reverse primer 5’-
GGAAAGTCACTAGGAGG-3’ were specific for the transgene, while the forward primer 5-
‘CAAATGTTGTCTGGTG-3’ and reverse primer 5’-GTCAGTCGAGTGCACAGTTT-3’ were specific for the 
internal positive control. A thermocycler (GeneAmp® PCR System 9700, CA, USA) was used to amplify DNA 
under the following conditions: initial denaturation at 95°C for 3 minutes, denaturation at 95°C for 3 minutes, 
denaturation at 95°C for 3 minutes, denaturation at 95°C for 3 minutes, denaturation at 95°C for 15 seconds, 
annealing at 60°C for 15 seconds, and extension at 2 minutes for 35 cycles. The amplicon sizes were determined 
using 2% agarose gel electrophoresis stained with ethidium bromide (10 mg/mL). 

2.3 2-ME treatment and tumour measurements 
In this experiment, mice (30 days of age) were given 100mg/kg of 2-ME in a vehicle consisting of 90% sunflower 
oil (Sunfoil, South Africa) and 10% dimethyl sulfoxide (DMSO) two times per week via oral gavage for four 
weeks before being euthanized. The vehicle alone was given to control mice. Treatment was administered a total 
of 8 times and began on day 30 after birth, which is before palpable tumours appeared. On average, palpable 
tumours appeared at day 50 after birth as determined in our laboratory (data not shown). Mammary tumours were 
excised, and the mass measured on a scale (Sartorius, Göttingen, Germany) at termination in grams (g). A light 
microscope (OLYMPUSSC 100, Dubai, UAE) was used to identify and count the number of lesions on the lung 
surface. CellSens dimension imaging software (XV imaging, product version 3.9, Hague, Netherlands) was used 
to process images. Eighteen heterozygous female mice (9 for 2-ME-treated and 9 for control) were used. 

2.4 Histology and immunohistochemistry 
Lung and mammary tissues were collected from both euthanized 2-ME treated and control group mice and fixed 
in 10% neutral buffered formalin. Haematoxylin and eosin (H&E) staining was performed as previously described 
(Dhanraj et al. 2021; Pitere et al. 2022), and immunohistochemical analysis for CD163 and CD3 staining was 
conducted with minor modifications as previously described (Dhanraj et al. 2021; Pitere et al. 2022). Formalin-
fixed paraffin-embedded (FFPE) tissue blocks were cut into 3-micron sections and baked overnight at 58°C. After 
deparaffinizing the slides in xylene, they were hydrated with decreasing concentrations of alcohol to distilled 
water. Endogenous peroxidase was quenched for 5 minutes at 37°C with a 3% hydrogen peroxide solution. After 
antigen retrieval with a high pH buffer retrieval solution (Dako Envision FLEX Retrieval solution high pH, 
Agilent Technologies, Denmark), background staining was blocked for 30 minutes at room temperature with a 
protein block (Novolink Leica Biosystems, Newcastle Upon Tyne, UK).The sample sections were washed in 
phosphate buffer saline (PBS) after being incubated overnight at 4°C in a 1:300 anti-CD163 antibody solution 
[EPR19518] (ab182422) (Abcam, Cambridge, UK). The antigen-antibody binding site was identified using the 
NovolinkTM Polymer Detection Kit (Leica Biosystems) as directed by the manufacturer. For chromogen 
detection, the slides were washed in PBS and incubated with 3,3′-diaminobenzidine (DAB) (NovolinkTM 
Polymer Kit). Sections were washed and counterstained in haematoxylin for 1 minute before being dehydrated in 
increasing concentrations of alcohol, cleared in xylene, and mounted with dibutylphthalate polystyrene xylene 
(DPX). CD3 IHC was performed on 3-micron sections in the same manner as CD163, but with a few differences. 
Using a low pH buffer, the antigen was retrieved (Cell Conditioning Solution CC2, Ventana Medical Systems, 
Inc Arizona USA). Sections were incubated in a 1:100 rabbit monoclonal anti CD3 (Abcam ab16669 clone SP7) 
antibody solution for 120 minutes at room temperature. Slides were rinsed in PBS and detected with anti-rabbit 
Polymer HRP IgG for 30 minutes at RT (NovolinkTM Polymer Detection Kit, Leica Biosystems). PBS was used 
as a negative control instead of CD3 or CD163 antibody. The Leica AT 2 Aperio scanner (Leica Biosystems, 
Nussloch, Germany) was utilized to capture images at 40X magnification, and Qupath software (The Queens 
University of Belfast, Northern Ireland), version 0.3.2, was used for analysis. The software was used to import 
each scanned tissue section, and the image type was set to brightfield (H-DAB). To focus solely on the cells within 
the section, a perimeter was drawn around the tissue section. The estimation stain vector was set to automatic to 
distinguish between positive and negative cells. The software was trained by identifying positively stained cells 
and indicating to it what constitutes positive cell detection. The detection image parameter was changed to “optical 
density sum,” and the scan was initiated. The final result displayed the number of positive, negative, and total cell 
counts. The percentage of CD163 and CD3 positive cells was calculated by dividing the number of positive cells 
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by the total number of cells. The magnification of the images was 100µm (immunohistochemistry), 500µm and 
800µm (histology). 

2.5 Measurement of plasma cytokines 
Mice were humanely euthanized with isoflurane (Isofor; Piramal I Healthcare, Mumbai, India), and 800 µL of 
blood was collected via cardiac puncture in ethylenediaminetetraacetic acid (EDTA) tubes and centrifuged at 
28766g for 15 minutes. Aliquots of plasma (250-300 µL) were placed in 2 mL microcentrifuge tubes. The 
Legendplex mouse inflammation panel (13-plex) kit (Biolegend®, San Diego, CA, USA) was used for cytokine 
profiling. The kit tests for 13 mouse cytokines MCP-1, GM-CSF, TNF-α, IFN-γ, IFN-β, IL-1α, IL-1β, IL-6, IL-
10, IL-12p70, IL-17A, IL-23 and IL-27. The assay was carried out in accordance with the manufacturer’s 
instructions. In summary, increasing standard concentrations (supplied with kit) were prepared (in duplicate) in a 
96-well plate to generate a standard curve. Analyses were done using a Cytoflex flow cytometer (Beckman 
Coulter, California, USA), ’and Biolegend’s data analysis software (https://legendplex.qognit.com/) was used to 
calculate cytokine concentrations. 

2.6 Statistical analysis 
For statistical analysis, GraphPad Prism version 5 (GraphPad Software Inc., San Diego, CA, USA) was used. A 
parametric one-tailed unpaired t-test was used to compare means between two groups. Data is presented as the 
mean plus standard error of the mean (SEM). A multiple comparison test and a two-way ANOVA were used to 
compare the means of more than two categories.  

3. Results 

3.1 Effect of 2-ME on the rate of tumour appearance 
Seven mice in the 2-ME group and 3 mice in the control group developed palpable tumours earlier (between day 
45 and day 52), while 2 mice and 6 mice in the 2-ME and control groups respectively, developed tumours later 
(between day 53 and day 59) (Figure 23).  

 
Figure 22: The time taken for mice to develop palpable mammary tumours. In the 2-ME and control groups, seven mice as opposed to three 
mice in the control group developed tumours earlier, respectively. 

3.2 Effect of 2-ME on tumour volume and mass 
The volume and mass of mammary tumours were measured at the time of termination. On average, no difference 
was observed in tumour volumes (Figure 24a), but tumour mass was significantly higher (p=0.0139) in the 2-ME 
treated group compared to the control group (Figure 24b). Importantly, the tumour mammary volumes and 
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masses of each mouse were totalled; the plotted dots thus represent the total tumour volumes and masses of each 
mouse. 

 
Figure 23: (a) No difference was observed in tumour volumes in the 2-ME treated and control groups (p = 0.3319). (b) A significantly greater 
tumour mass was observed in 2-ME treated mice (p=0.0139; p<0.05) (N=9 in each group).  

3.3 Histopathological analysis of mammary and lung tissues 
Mammary tumour and lung tissues from 2-ME treated and control groups were stained with H&E. Blue boundaries 
were drawn around the entire tissue region while red lines surround necrotic regions, and the arrow heads point 
to smaller necrotic regions (Figure 25a). Tumour necrotic tissue was greater in the 2-ME treated group compared 
to the control group (Figure 25b). The result was however not statistically significant. Pulmonary necrosis was 
minimal and was detected in 2 mice from each group with similar necrotic area percentages. The lack of difference 
observed was likely due to premature termination, i.e. animals were terminated before pulmonary metastasis had 
time to occur. 
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Figure 24: (A) Blue boundaries surround the tumour and necrotic regions are surrounded by red boundaries and arrows. Histology images 
showcasing various sizes (1mm, 2mm and 800µm) along with a scale bar. (B) More extensive (p = 0.1031) necrotic regions were observed in 
mice that were treated with 2-ME (N=4). 

3.4 Immunohistochemical analysis of M2 associated CD163 macrophages  
Immunohistochemistry was performed on tumours from mammary and lung tissues in each group (2-ME treated 
and control group). The CD163+ cells stained dark brown (Figure 25a). A lower number of CD163+ cells were 
detected in the mammary tumours of 2-ME treated mice compared to controls, while no change was observed in 
the lungs (Figure 25b-c). The result was not statistically significant. 
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Figure 25: (a) CD163+ cells stained dark brown with red boundaries. (b) A lower number of CD163+ cells (p = 0.1965) were detected in the 
2-ME group while no change was observed in the lungs (p = 0.3450) (c) (N=5 in each group). IHC images accompanied by a 100µm scale 
bar for reference. 

3.5 Immunohistochemical analysis of CD3 positive cells 
The dark brown stained cells indicate CD3+ cells (Figure 26a). The number of CD3+ cells was significantly lower 
in the mammary tumours of the 2-ME group (p=0.0217; Figure 26b). Similarly, fewer CD3+ cells, although not 
significantly different compared to the control group, were observed in the lungs of the 2-ME-treated group 
(Figure 26c).  
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Figure 26: (a) CD3 immunohistochemistry in mammary and lung tissue. IHC images with a scale bar representing 100µm. Significantly lower 
number of CD3+ cells were observed in mammary tissue in the 2-ME group (p=0.0217) (p=0.05) (b) and lower number of CD3+ cells were 
detected in the lung tissues of the same group (c) (N=5 in each group).  

3.6 Cytokine profile  
Plasma cytokine levels were measured in both 2-ME treated and untreated mice. The cytokine concentrations that 
were similar in both groups were IL-1α (p = 0.2063), IFN-γ (p =0.4562), TNF-α (p = 0.1206), IL-17A (p = 2408) 
and GM-CSF. Cytokine levels that were lower in the 2-ME treated group include IL-23 (p = 0.1914), IL-12p70 
(p = 0.0776), IL-10 (p = 0.3183) and IFN-β (p =0.3231). The 2-ME treated group had higher levels of IL-1β (p = 
0.2182). Notably, high levels of IL-6, and IL-27 were observed in the control group (Figure 28). 

 
Figure 27: Cytokine profiles of 2-ME treated and control group (N=5 in each group). IL-6 was significantly higher (p = 0.0057) (p = 0.05), 
and IL-27 (p = 0.3317) were notably higher in the control group.  

4. Discussion 
In this study the effect of 2-ME was investigated when administered before the development of mammary 
carcinoma in a MMTV-PyVT transgenic mice that spontaneously develop palpable tumours. The mice received 
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2-ME (100mg/kg) treatment via oral gavage twice per week for a period of 4 weeks while the control animals 
received saline. By day 51, more mice in the 2-ME group (n = 7) compared to the control group (n = 3) developed 
early palpable mammary tumours. The findings suggest that 2-ME may be involved in promoting early mammary 
tumour development. In the prevention study, Huh et al. reported a similar finding whereby enhanced tumour 
multiplicity and growth were observed after 2-ME treatment (Huh et al. 2006). The significantly lower number of 
CD3+ T cells observed in the 2-ME group (p=0.0217) may have contributed to the significant (p=0.0139) tumour 
mass increase. High intertumoral CD3 is associated with good prognosis because of its cytotoxic activity  (Rathore 
et al. 2014; Singh, Dees, and Grewal 2021): therefore, the low CD3+ T cell number indicates a protumour effect. 
2-ME decreases CD3+ T cell proliferation, but does not affect the cytokine production of T cells (Luc et al. 2015). 
Tumour necrosis was observed in the 2-ME group which could be as a result of the lower CD163+ cell numbers 
present in the TME. A low number of CD163+ cells is associated with greater overall patient survival (MIURA 
et al. 2017). It is also possible that the high levels of necrosis observed in the tumours of mice given 2-ME may 
be more related to the drug’s anti-angiogenic effects previously reported (Huh et al. 2006), rather than the low 
number of CD163+ cells. 2-ME may have reduced the blood supply to the tumour by inhibiting angiogenesis, 
resulting in hypoxia and subsequent necrosis (Pribluda et al. 2000). However, the expression of angiogenic 
markers was not investigated in this study and should be considered in the future.  It is also plausible that together 
with 2-ME activity, other immune cells such as neutrophils may be implicated in necrosis (Yee and Li 2021).  

Pulmonary metastasis was also investigated. The 2-ME group had no lung lesions, while two mice in the control 
group had one lung lesion each. This is likely because mice were terminated early.  Based on the Jackson 
laboratory reports, about 94% of female mice develop pulmonary metastasis by three months (Guy, Cardiff, and 
Muller 1992). Another study observed that pulmonary metastasis in this model occurred after 10 weeks (Shishido 
et al. 2013). Only 2 mice, 1 from each group, had similar levels of necrotic tissue in the lungs. Both groups had a 
similar number of M2-associated CD163+ cells. The most plausible explanation is that the termination timepoint 
on day 59 is shorter than when pulmonary metastasis is anticipated in this model. The number of CD3+ T cells 
were fewer, although not significantly, in the lungs of the 2-ME group when compared to the control group. As 
previously mentioned, 2-ME inhibits CD3+ T cell proliferation. (Luc et al. 2015)  Interestingly, Cimino-Mathews 
et al found that fewer CD3+ T cells are associated with metastatic BC, a finding that is also aligned with our 
observation (Cimino-Mathews et al. 2013). In this study, animals were terminated at the beginning stages of 
metastasis (before 10 weeks) resulting in a few cancerous cells migrating to the lungs and subsequently prompt 
the recruitment of CD3+ T cells to the lungs. However, these findings should be interpreted with caution, and it 
is recommended that future studies should allow the experimental animals to live for at least  4 months in order 
to adequately assess the effect of 2-ME on pulmonary metastasis when treatment is initiated before the 
development of primary mammary tumour.  

Among the thirteen cytokines investigated, IL-6 plasma levels were significantly lower in the 2-ME group, while 
IL-27 exhibited notably reduced levels in the treated group. Both  are pleiotropic cytokines (Yoshimoto et al. 
2015; Kishimoto 2006), and an elevated level of expression is associated with BC tumour progression, therapeutic 
resistance, and poor prognosis (Manore et al. 2022; Gyamfi et al. 2018; Sullivan et al. 2009; Khodadadi et al. 
2014; Lu et al. 2014). Low levels of IL-10, IL-12p70, IL-23, and IFN-β were observed. These cytokines are all 
pro-inflammatory cytokines with the exception of IL-10 which is anti-inflammatory (Xie et al. 2016). These pro-
inflammatory cytokines have anti-tumour effects such as inhibiting BC proliferation (Stanilov et al. 2009; Doherty 
et al. 2017; Nicolini, Carpi, and Rossi 2006).  Anti-inflammatory IL-10 is associated with poor prognosis, and in 
animal models, inhibiting IL-10 signalling hinders tumour growth (Wang et al. 2022). Additionally, IL-6 functions 
as an anti-inflammatory cytokine by promoting potent IL-10 cytokine production by T cells (Jin, Han, and Yu 
2013). Moreover, Yasukawa et al showed that activated monocytes and macrophages produce IL-10 in response 
to IL-6 (Yasukawa et al. 2003). Both IL-6 and IL-10 were low in the 2-ME group, and this could possibly account 
for the low CD3+ and CD163+ cell numbers observed, resulting in the lower levels of these cytokines. Although, 
one of the outcomes is beneficial and the other pathogenic, this shows that 2-ME influences multiple immune 
cells that exhibit contradictory effect on BC progression. The 2-ME treated group had higher levels of pro-
inflammatory IL-1β compared to controls. IL-1β is a pro-inflammatory cytokine that promotes BC growth and is 
associated with poor prognosis (Tulotta et al. 2021; Holen et al. 2016). Taken together, the low levels of IL-12p70, 
IL-23, and IFN-β combined with high level of IL-1β are likely to contribute to the tumour mass increase observed. 
However, the differences in these cytokines considering both the 2-ME and control groups is not noticeable let 
alone significant. Therefore, when considering the notably low (IL-6 and IL-27) and high (IL-10) level of 
cytokines as well as lower number of CD163+ cells, 2-ME may have rendered anti-tumour effects such as the 
greater tumour necrosis. 
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The findings of this study supported the findings of our initial investigations where we found that 2-ME treated 
mice also had higher tumour mass in early-stage BC. However, this observation was not made when 2-ME was 
administered to late-stage BC animals. This finding is supported by the observation of fewer CD3+ T cells in the 
TME, although in early-stage BC, CD3+ T cells were similar in both control and 2-ME treated groups. Late-stage 
BC had lower tumour mass and higher CD3+ T cell numbers. These results suggest that the number of CD3+ T 
cells in the TME may be important. There was also a significant increase in tumour necrosis observed in late-
stage BC. Numerous studies have reported that 2-ME is anti-tumorigenic, decreasing or slowing tumour growth 
(Mallick, Paul, and Banerjee 2015; Klauber et al. 1997; Mabjeesh et al. 2003; Cicek et al. 2007), although in these 
studies, 2-ME treatment was initiated after palpable tumours were present. Additionally, the dosage and duration 
of 2-ME varied, ranging from 25mg/kg/day to 150mg/kg/day and from 16 days to 29 days (Mallick, Paul, and 
Banerjee 2015; Klauber et al. 1997; Mabjeesh et al. 2003; Cicek et al. 2007). Our results suggest that 100mg/kg 
of 2-ME treatment administered eight times may be optimal for promoting necrosis. 

Based on the findings of this study, it is still unclear whether 2-ME can be used in individuals who are predisposed 
to BC. Additionally, the mechanism of action of 2-ME, especially in the different stages of BC, is not fully 
elucidated, and more studies are required to understand the pleiotropic effect of 2-ME in BC stages over a longer 
period. However, our findings do suggest that 2-ME contributes to earlier development of mammary carcinoma 
but the effect of tumour progression in this transgenic mouse model needs further investigation. If more mice were 
included in the study for a longer time to allow for pulmonary metastasis, a more conclusive result might have 
been observed. The significant increase in tumour mass could be the result of significantly fewer CD3+ T cells. 
However, there were fewer CD163+ cells and greater tumour necrosis in 2-ME treated mice. Moreover, there 
were no other noticeable changes in the lungs except for fewer CD3+ T cells in the 2-ME group, that could be a 
result of 2-ME inhibiting T cell proliferation. However, since the time was shorter than when pulmonary 
metastasis is expected in this model, this result should be interpreted with caution. Considering the above, 2-ME 
has a pro-tumour effect that has the potential to change into an anti-tumour effect if treatment is initiated early 
before tumour development and for a longer time (more than 28 days) before mice are terminated (between day 
100 to 110 in this model) as reported in many studies (Mabjeesh et al. 2003; Huh et al. 2006; LaVallee et al. 2008). 
The best anti-tumour outcome was observed in late-stage BC in terms of mammary tumours, but not metastasis 
and longevity. Moreover, 2-ME administered with hormone and chemotherapeutic drugs such as paclitaxel, 
tamoxifen and doxorubicin, led to an enhanced anti-tumour effect (Nair et al. 2007; Mueck, Seeger, and Huober 
2004; Azab et al. 2008). This combination may render anti-tumour effects in various stages of BC and should be 
considered in future experimental design.  

5. Conclusion 
In this study, we found that 2-ME treatment promote early palpable mammary tumour development and 
progression. The significant tumour mass increase occurred in response to pro-tumour cellular events, such as 
fewer CD3+ cells and signalling changes, such as higher IL-1β levels and lower levels of IL-12p70, IL-23 and 
IFN-β, in the TME. Despite this, there was evidence of anti-tumour activity such as the low number of CD163+ 
cells, greater necrosis, high levels of IL-10 and low levels of IL-6 and IL-27. Therefore, 2-ME promoted initiation 
of early tumour development while also providing anti-tumour activity at the molecular level. 
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Chapter 5 

General discussion and conclusion 

Breast cancer (BC) is the leading cancer in females and there are several treatments that 

increase survival including chemotherapy, radiotherapy and hormone therapy 1-2. These 

treatments, however, are non-discriminatory, attacking both healthy and cancer cells, and 

are ineffective for BC at advanced/or metastatic stages 3. These constraints necessitate a new 

therapeutic approach that will be more specific in targeting only malignant cells, such as 

immunotherapy and cell therapy. Mesenchymal stromal/stem cells (MSCs) have been shown 

to have potential as a form of cell therapy for the treatment of many diseases including 

cancer. In cancer studies, MSCs are shown to elicit both anti- and pro-tumorigenic immune 

responses in the tumour microenvironment (TME) 4. Furthermore, Oloyo et al. performed an 

extensive systematic review on the role of MSC in tumour growth and reported that there are 

contradicting findings on the effect of MSCs in the TME 5. One of the key contributors to these 

contradictory outcomes was the immense variation in experimental design/approach (as 

mentioned in chapter 2) that include xenogeneic and allogeneic models, introducing an 

element of genetic incompatibility which limits clinical translation. In order to overcome the 

genetic incompatibility associated with these models, an isogenic/syngeneic approach was 

used that would reduce any genetic barrier and provide better translation of the findings to 

the human context. 2-Methoxystradiol (2-ME) is an anti-proliferative and anti-angiogenic 

drug that has been proven to be effective against BC in numerous in vitro and in vivo studies 
6 (referenced in chapter 3). However, no research study has explored the effect of 2-ME 

therapy on the different stages of BC development in vivo. Therefore, the aim of the study 

was to investigate the influence of mASCs and 2-ME treatment on tumour progression and 

metastasis in vivo using FVB/N-Tg(MMTV-PyVT)634Mul/J mice at different stages of BC 

development. This mouse model was chosen because it spontaneously develops mammary 

carcinoma and progression to lung metastasis.  

The results from mASC treatment of BC showed there was no difference in mammary tumour 

volume and mass between the treated and untreated control mice. Moreover, more necrotic 

lesions were seen in lung but not mammary tumour in the mASC-treated mice. Furthermore, 

immunohistochemistry showed there were fewer CD163+ anti-inflammatory macrophages in 
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lung tissue but not in mammary tumour in the mASC-treated mice. CD3+ T cells were elevated 

in both mammary tumour and lung tissue in mASC-treated mice when compared to untreated 

control mice. The cytokine profile revealed that mASC-treated mice produced increased levels 

of circulating pro-inflammatory cytokines. The gene expression profile showed that 

transforming growth factor beta (tgf-3β), vascular endothelial growth factor receptor 1 

(vegfr1), and endoglin (cd105) were downregulated in both mammary tumour and lung tissue 

of mice treated with mASCs. However, in mASC-treated mice, cd36 and metadherin (mtdh) 

were only downregulated in mammary tumour and lung tissue, respectively. Downregulation 

of vegfr1 and cd105 is known to be anti-tumorigenic, while downregulation of cd36 and tgf-

3β is considered to be pro-tumorigenic. The downregulation of vegfr1, cd105, and mtdh in 

lung tissue is likely to produce an anti-tumour effect, which could be due to the presence of 

mASCs trapped in the lungs as has been shown in another study 7. These results suggest that 

mASC therapy has a pleiotropic effect on BC progression in vivo, with pro-tumour activity in 

primary mammary tumours and anti-tumour activity in pulmonary metastatic tumours, 

resulting in reduced tumour necrosis and higher lung necrosis, respectively. 

The results of 2-ME treatment in early- and late- stage BC were different. Early-stage BC 

treatment denotes the commencement of treatment as soon as palpable tumours were 

detected, whereas late-stage BC denotes advanced BC with metastases, which is 28 days after 

the detection of palpable mammary tumour. 2-ME therapy in early-stage BC reduced 

mammary tumour necrosis while promoting tumour progression. Furthermore, there were 

more necrotic lesions and anti-inflammatory CD163+ M2 macrophages in metastatic lung 

tumours of the 2-ME group compared to the untreated group. The inflammatory cytokines 

IFN-β, IFN-γ, IL-10, and MCP-1 were increased in mice treated with 2-ME, but IL-6 and IL-27 

were decreased. Even though higher interferon levels appear to imply an anti-tumour effect, 

when taken together the cytokine profile suggests that 2-ME may have a pro-tumour effect 

in early-stage BC. On the other hand, 2-ME treatment of late-stage BC suppressed tumour 

development during a 28-day follow-up period, resulting in increased CD3+ T cell number and 

mammary tumour necrosis. In addition, 2-ME therapy delayed pulmonary metastasis but did 

not reduce mortality in mice with late-stage BC. Our findings suggest that 2-ME has the 

potential to be of benefit in late-stage BC as a result of its anti-tumour activity, while the data 

in early-stage BC points to a pro-tumorigenic effect. 
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Given the results observed for early- and late-stage BC, the effect of 2-ME on tumour initiation 

and progression. The findings demonstrated that administering 2-ME prior to tumour 

development in mice accelerated the growth of mammary carcinoma, resulting in a 

statistically significant (p=0.0139) increase in tumour mass. Furthermore, the decrease CD3+ 

T-cell number in the TME combined with high levels of the pro-inflammatory cytokine 

interleukin (IL)-1, are in line with 2-ME's observed pro-tumour activity. 2-ME treatment, on 

the other hand, resulted in fewer CD163+ M2 macrophages recruited into the TME, enhanced 

tumour necrosis, elevated plasma IL-10, and reduced plasma IL-6, and IL-27. Overall, the 

findings indicate that 2-ME promotes tumour formation throughout the early phases of 

cancer development while also providing anti-tumour activity at the molecular level, albeit in 

a limited capacity.  

The lack of statistical significance in the study may be attributed to the study design. If the 

mice in the mASC group, the 2-ME early-stage BC group, and the 2-ME initiation experiment 

group were allowed to remain for a longer duration, it is possible that the results would have 

shown significant differences. Furthermore, the administration of 2_ME injection, instead of 

oral administration, might have been hindered by low bioavailability, thus impacting its 

effectiveness. In order to access the potential effects, alternative administration methods 

could be explored. Despite these considerations, further investigations are warranted to draw 

conclusive findings and access the true impact of 2-ME in these contexts.Comparing the effect 

of 2-ME on tumour initiation, early- and late-stage BC, the results  obtained demonstrated 

that 2-ME enhances mammary tumour initiation and progression, and thus may not be 

suitable for treatment in people with familial BC or at early stages of BC development since 

tumour mass increased in both the tumor initiation and early BC stages. The significant 

increase in tumour mass in the initiation stage can be attributable to the TME having 

significantly fewer CD3+ T cells. However, in late-stage BC, increased infiltrating CD3+ T cells 

in the TME and enhanced tumour necrosis contributed to reduced tumour mass and volume 

compared to the control. Regarding pulmonary metastasis in all three stages, no significant 

anti-tumour effect was detected. Taken together, anti-tumour benefits of 2-ME 

treatment were demonstrated primarily in late-stage BC.  

The limitations of this study includes; 
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I. The mASCs administered into mice were not tracked in vivo to assess if the observed 

effect on tumour growth was due to the presence of mASCs at the tumour site or due 

to a MSC-associated paracrine effect. 

II. More in depth investigations of the various immune cells present in the TME would 

have provided information on the effect of the different treatments (mASCs or 2-ME) 

on immune cell composition or regulation in the TME, and should be considered in 

future studies. 

III. The sample size for each experiment was 18 (9 control, 9 treated). Increasing the 

sample size could have significantly improved the study's power in multiple ways. It 

would enhance statistical precision, increase sensitivity to detect real effects, and 

improve the generalizability of results. Additionally, larger sample sizes lead to more 

reliable and robust findings, higher statistical power, and potential subgroup analysis. 

Therefore, a larger sample size in experiments can lead to more reliable, accurate, and 

generalizable results, improving the overall quality of the study and its potential 

impact on the scientific community. 

Based on the limitations and observations of this study, recommendations for future studies 

includes; 

I. In settings where MSC tracking technologies are not available, injecting mASCs directly 

into breast tumours to ensure their availability in the TME should be considered to 

reduce the likelihood of the stem cells becoming trapped in the lungs, and will provide 

a better understanding of the effect of MSCs in the TME on BC progression. 

II. Regarding the 2-ME treatment of the early-BC and tumour initiation stages, mice 

should be allowed to live for about 35 and 56 days, respectively. That will allow for the 

collection of more data points to more accurately evaluate survival post-treatment.  
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