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Abstract

This paper is concerned with the consensus tracking problem of stochastic multi-agent
systems with both output, partial state constraints, and input saturation via event-
triggered strategy. To handle with the saturated control inputs, the saturation function is
transformed into a linear form of the control input. By using radial basis function neural
network to approximate the unknown nonlinear function, the unmeasurable states are

acquired by an adaptive observer. To ensure that the constraints of system outputs and
partial states are never violated, an appropriate time-varying barrier Lyapunov function

is constructed. The control scheme is event-triggered in order to save communication

resources, The proposed distributed controller can guarantee the boundedness of all
system signals, the consensus tracking with a small bounded error, and the avoidance of

the Zeno behavior by using backstepping techniques. The validity of the theoretical
results is verified by computer simulation.
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1. Introduction

A multi-agent system (MAS) consists of a group of agents in which the communication
relationship among agents is modeled by a directed or undirected graph. The research of
multi-agent systems (MASs) has attracted extensive attention due to the autonomy, fault
tolerance, flexibility and cooperation of MASs in complex tasks. Therefore, MASs have
been widely used in different fields such as distributed optimization [1], [2], unmanned
air vehicles [3], tracking control [4], [5] and so on. Consensus problem is a key problem ir
MASs. By distributed coordination, a MAS can for example reach the same state, the sam¢
speed, the same position and the same attitude, So far, the consensus problem of MASs
has been studied by many scholars, such as in [6], [7], [8],[9], [10],[11] and so on.

Due to uncertainty in reality, stochastic system models have been widely used in many

fields, such as chemistry, finance, physics and neuroscience [12], [13], [14] and so on.
Therefore, the research of stochastic multi-agent systems (SMASs) has become a hot
topic in control community, Compared with deterministic MASs, it is more challenging tc
implement consensus tracking in SMASs, In spite of this, some scholars have made
considerable progress in this filed. The consensus problem of SMASs with delay and
noise was studied in [15]. The distributed output synchronization of a class of nonlinear
high-order SMASs with directed network topology was studied in [16], [17]. In [ 18], the
authors proposed an impulsive consensus protocol for perturbed nonlinear SMASs using
comparison system method.

In MASs, an important problem is how to reduce the consumption of limited network
resources. The practice proves that the event-triggered control (ETC) method is a good
choice. The ETC schemes have been proposed as an alternative to the classical periodic
control schemes. The control signal is updated only when the designed triggering rules
are violated. Due to its advantages, the ETC schemes have been widely used in SMASs
[19], [20], [21], [22], [23], [24], [25], [26]. The consensus problem of nonlinear non-affine
pure-feedback SMASs was studied in [19] and a fuzzy adaptive quantized ETC scheme
was proposed. The event-triggered tracking control problem of a class of high order
nonlinear SMASs was studied in [20]. In [21], the authors studied the consensus tracking
problem of continuously switched SMASs with an ETC strategy. In [22], the authors
studied the consensus problem for discrete time SMASs with noises via ETC strategy. In
[23], the authors studied the leader-following consensus problem for a class of high orde
SMASs via output feedback, both event-triggered and self-triggered control schemes
were proposed in undirected networks, A distributed ETC strategy was used in [24] to
study the mean square consensus problem of SMASs. A new centralized/distributed




hybrid ETC strategy was proposed in [25] for leader-following SMASs, The consensus
problem of time-varying discrete-time SMASs with sensor saturation was studied in [26]
using an ETC scheme. The consensus tracking problem for a class of continuous switchin
nonlinear SMASs with an ETC stategy was investigated in [27], The adaptive bipartite
containment control problem for nonlinear SMASs with an event-triggered mechanism
was investigated in [28],

To ensure system efficiency and security, it is necessary to constrain the state and output
of the system. To solve the constraint problem, some scholars have conducted a lot of
research and put forward some effective methods [29], [30]. In these studies, the barrier
Lyapunov function (BLF) method has become a common method for state or output
constrained systems, and the stabilization problem for a class of feedback systems with

multi-state constraints was proposed for the first time in [31]. Since then, the BLF
method has been widely used in systems with various constraints, such as constant
constraints [32], [33] and time-varying constraints [34], [35], [36], [37]. With asymmetric
input dead zones, output constraints and system uncertainties, the problem of adaptive
neural network control for vibrating flexible string systems was investigated in [32]. A

new control algorithm was proposed in [35] for a class of SMASs with time-varying
output tracking constraints. By an adaptive ETC strategy, the control problem of
nonlinear systems with time-varying partial state constraints (PSCs) and input saturatior

was studied in [36]. An adaptive neural network control scheme was proposed in [37] for
a class of SMASs with time-varying full-state constraints (FSCs). Based on the above
literature analysis, there are few researches on SMASs that consider PSCs using ETC
strategies which motivates the research of this paper.

In this paper, a consensus tracking control scheme for SMASs with unknown nonlinearit'
and external disturbance is proposed in directed networks containing a spanning tree.
The output and partial states of the SMASs are constrained by prespecified boundary
functions. A distributed control scheme is developed using an ETC strategy. A state
observer is designed to deal with the unmeasurable states of the system. Moreover, in
some actual physical systems, the problem of input saturation [38], [39] is often
encountered. When the input is saturated, the performance of the system will become
poor or even unstable. The input saturation problem is also considered in this paper and
the designed saturated controller can ensure the achievements of the control objectives.
Compared with the existing works, the contributions of this paper are mainly reflected i1
the following points:



(1) An adaptive distributed ETC scheme with observer is proposed for SMASs with PSC
and input saturation, which can guarantee the consensus tracking with a small
bounded error, the boundedness of all system signals and the avoidance of the Zen«
behavior, Compared with the time-triggered algorithms for SMASs [16], [17], [37]. t
event-triggered schemes [19], [20], [21], [22],[23], [24], [25], [26] can reduce the
communication burden.

(ii) Different from the control schemes [16], [ 18] for SMASs, the unknown nonlinearity
and the external disturbance are both taken into account in this paper via output
feedback in directed networks including a spanning tree. So the model considered i
more general, The unknown nonlinear dynamics are approximated by radial basis
function neural network (RBFNN) [40], in which the unknown parameters are
estimated by adaptive control method. Moreover, the unmeasured states are

estimated by a state observer via output feedback.

(iii5uitable BLFs are designed to guarantee that the output and partial states of the
system can be constrained by time-varying boundary functions, In [33], the time-
varying bound functions are assumed to be constants and only FSCs are considered
[32], [35], the authors considered only the case of output constraints, which is a
special case of the time-varying PSCs considered in this paper.

The remaining of the work is arranged as below. Preliminaries of algebraical graph theor:
and RBFNN are introduced in Section 2. In Section 3, the state observer is constructed. In
Section 4, the event-triggered controller is designed. In Section 5, the stability analysis is
given. In Section 6, a simulation example is given. In Section 7, conclusions are drawn,

Notations : R™ = (0, +00). Amin (+) and Apay (-) denote the minimum and maximum
eigenvalues of a matrix, respectively. | -||, denotes the 2-norm and ||-||,, the co-norm.
min{a; } and max{a; },7 = 1,2, - -, n, represent the smallest one and the biggest in a;,
respectively. For a matrix A, A > 0 means that A is symmetric and positive definite.

2. Preliminaries and problem statement

2.1. Directed graph theory

For a MAS, we usually use a directed graph ¢ to express the communication relations
between agents. Graph ¥( ¥, &, <) consists of a set of agents ¥ = {0,1,2,-..,N},a
set of directed edges & C # x ¥, and a weighted adjacency matrix

o = |a;;] € RNV with 4, j = 0,. .-, N.If agent i can sense agent j, then a;; > (
otherwise a;; = 0.Let .A4; = {j|(j,i) € &} be the neighbors set of agent i and
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P = diag{dlﬁ,dl, dy,--- ,d;\r-} bé the in—tiegree matrix of graph ¢, where d; = ;. 4 a;;.
The Laplacian matrix of graph ¢ is defined as & = (‘Ei.f]{;\"+l)x[N+l} = 9 — &/, Agraph

% contains a directed spanning tree if there exists at least a directed path from the root to
all other agents.
Assumption1

The graph ¢ contains a spanning tree with the leader being its root.

The Laplacian .% can be partitioned as

_5:9:(0 lew)’ (1
R

where %, € RV and % € RV*!.
Lemmal

[71]

All nonzero eigenvalues of ¥ have positive real parts except for zero eigenvalues with 1 as its
right ejgenvector. Zero eigenvalue is simple if and only if 4 contains a spanning tree with
leader as the root.

2.2. System description

Consider the following SMASs:

d&iq = (&i.q+l + diq(éi'at) + fiq(gz—g)}dt +piq(6€)dw! q= 13 23 e, 19 (2)

d‘f‘in = {Sat‘i {ui [f)) + dfﬂ-{‘fz’: f) + fin (iin))dt + Pin {Ei)dwa
C' :E\El"i: 1121"':N1

1

where gq = [&1,&0, - ,@,J,]T € R',q=1,2,---,n,is the state vector and ¢, € R is the
system output. Let §; = [£;,- -, 5?;?,_]71 be the full state, which can be divided into two
parts. Without loss of generality, we assume that the state [§;,,---,&; Q]T is constrained
and the state [§; 5,1, - }Em]i,. unconstrained, where 1 < A < n. In the special case,
when A = 1, only the output of the system is constrained; when A = n, the full states of
the system are constrained. The constrained states §; , g = 1,-- -, A for agent i, are
restricted to time-varying regions |, | < k., (), where k., (¢) is a boundary function,
diq(&;,t) € Ris the external disturbance, which is assumed to be a bounded unknown.




fi,(-) € Rand p,(-) € R denote unknown and smooth nonlinear functions. w € Ris a
r-dimensional standard Brownian motion with E{dw - dw’} = o - o7 dt.
sat; (u;(t)) € Ris the saturated control input, which is defined as

sign(u; () wim, if |ui(t)] > wim, (3)
sati(ui(t)) = u; (t), if |ui(t)] < wim,

where w;,, is a positive constant, It can be transformed into

sati (ui (t)) = x; (wi (t))ui(t), (4)
with y; () defined as

Uim H
ma lfui(t] > Wim » (5)

1, if — i, < ui{t) < Ui,

;j:;”; y if — Ui = Hi{t).

X (ui(t)) =

The function x; (u;(¢)) € (0, 1] indicates the degree of the saturation of u;. In special case
of x;(u;(t)) = 1, that means no saturation occurs. Assume that controller u; does not go
to infinity, which is reasonable for practical applications. Under this assumption, one gets
[41]

0 < I < min(x; (ui (£)))<1, (6)
where Ifl) is an unknown constant, which will be estimated later.
Remark1

According to linear system theory, if a linear system & = A & + Bu is controllable, it can
be transformed into the Brunovsky controller form, which is the linear part of stochastic
system (2). As an extension of general linear systems, stochastic systems (2) can be
applied to a large class of realistic systems, such as aircraft, robots, etc.

Substituting (4) into system (2), we have

d§; = (Ai& + GiG + f; + di + By (ui(t))ui(t))dt + Pi(€;)dw, (7)
(; =C&,i=1,2,---,N,



where

—91 1 0
A; = ,Gi =
_gi,n—l 0 1
_g'in D U
d;y il
di = : )5:' = : y fi
dt’,n—l ‘Ez‘.n—l
dm fm

i1

'.'PI'{E{} =

gt’,n—l.

Gin
[ 1al€)

f-.t'.n—l (£

2i,n—

\ f in (ém_ ]

BT =0,---,0,1]and C = [1,---,0,0].

)

pit (&)

7

pi_.n 1[:'52')
Pin {‘53}

In system (7), A; is Hurwitz by selecting matrix ;. Thus, for given (2; > 0, there exists

P; = 0 such that

AP + PA; = —Q,.

(8)

Control Objectives: The purpose is to design an ETC machanism for SMASs (1) to

achieve the following objectives:

(i) The system outputs (;,7 = 1,---, N, can follow the leader’s output {;, and tracking

errors converge to a small neighborhood of the origin.

(ii) System output and partial state constraints are not violated, ie.
Eigl < ke, (t),q=1,2,---,A,Vt >0,

(iii)All the resulting systems signals are bounded.

(iv)The Zeno behavior [42] can be avoided.

Assumption2

For the leader signal ¢, (t), E,‘U and ¢ g are continuous and bounded, ie.,
¢ < ao,|€y| < @y and || < ay with ag, a; and a, being constants, ¥t > 0.



Assumption3

For the unknown and smooth nonlinear function f;,(-) € R, the following inequality

Fal€,) — Fulé,

1q

)| S‘lLiqUCﬂ _‘Eil|+”'+|Ciq_£iq|)! (9)

holds, where L;, are known positive constants and
Eg'q = [Cﬂsgﬂ!' "1Cf-ql}c1;q S R,q: 1,2,---,n.

Assumption4

For the bounded external disturbance d; (¢, 1), |d; (€,t)| < d; with d; > 0 being a
constant.

Assumption5

The disturbance covariance pT oo p; = 7,57 is bounded withp;, = [p,1, -+, p;,]" -

Lemma2

[43] For ¥(qy,¢,) € R?, the following inequality holds:

P 1
Qa2 < (-T]|Gr'1|litl + a2p™? |2

|2, (10)
where a; > 1,p > 0,as > 1,and (a; — 1)(as — 1) = 1.

Lemma3

[44]
Forany 9 > 0 and 5,
0 < || — ntanh()<0.27857, (11)

2.3. Stochastic Stability

aaa
Definition1

[45] For stochastic system

d§ = g(§)dt + p(€)dw, (12)



where £ € R" is the system state, w is a r-dimension standard Brownian motion,
g(-) € R™" and p(-) € R™"" are locally Lipschitz in £ and satisfy g(0) = 0 and p(0) = 0.
For ¥ f(£) € C*, the differential operator ¢ is defined as:

Z1(€) = o) + +r{p" () Z1p(©)}, (13)
where tr is the trace of matrix.

Lemma4d

[46]

There exist C* function f : R" — R, class 5, functions g, g, and constant 3, 3,, such

that g, ([¢]) < f(£) < g:([¢]) and Zf(£) < —B5f(€§) + By. for ¥t > 0 and V¢ € R™.
Further, there exists a unique strong solution of system (12) for each £, € R" , such that

BIf(§)] < flg)e ™" + 5 ¥t > 0. (14)
2.4. RBFNN

The unknown nonlinear functions are approximated by RBFNNs [47]:

T(€) = 0" p(¢), (15)

with [ nodes, where @(£) = (¢, (€),---,,(€))" € R is the basis function vector,
= (01,---,0,)" € R'is the weight vector and ¢; (€) is chosen as

_T —_
_len ey Gy, (16)

T

@, (§) = exp|
where 4, is the width of ¢, (£) and r; the center.

Using RBENN, a nonlinear function f;, ( g@.q] can be approximated by
f iq (‘5 |'91:q - '.[q(Prq (‘E‘iq ]1 (17)

A - - ~ T . . .
where {iq = €&y €] »a=1,2,--+,n,is the observer state, which will be

designed later. Then, the optimal parameter vector #;, can be expressed as

6;, = arg min| sup |Fig(€,16:) — Fig (€)1, (18)
.5 ed,,

where Q;, and ®;, are compact sets corresponding to #;, and E i respectively.



Meanwhile, the minimum approximation error E@q(giq) is

EW(& } faq( } f@'q (giqw:q)ﬂ (]9)

which is assumed to be bounded based on neural network approximation theory, that is,
|€£Q(Eéq)| < &, with £;, > 0 being a constant,

3. Observer design

An observer is constructed to estimate the unmeasurable states as follows:

gfq - éi.q—l + az;wzg{é :] + giq(yi - éi])? g=12--,n—1, (20)

ém. - Xt(u'i(t ui(t + '9171991?1(&-!-) + gin[yi o éa’l)v
Qi- cfﬂ,i =1,2,---,N,

where 6;,,q = 1,-- -, n, are the adaptive parameter vectors, g ,q = 1, - -, n, are the
observer gain parameters,

Then, the matrix form of system (20) is

{‘ff_ = A€+ Gy + T+ B (wi(8)ui(t), (21)
@:‘ - Og:’!

where f; = laﬂ‘:‘:’z‘l(éﬂ)ﬂ" m‘Pm(‘f )]

- - - - - T
[Bt.fg'q = fiq(g—g) - ffq(éiq}:q =1,2,---,n, f; = [fu,--, fin] and
E,=¢—§&, = [Eﬂ,fﬂ,m,ém]l be the observer error. From (13), (7), (21), one gets
- - - ~T a
de; = (Ai&; + f; + 0, ‘aﬂ'i(ﬁi]+5£+df)dt+ﬂ(£)dwa (22)
where éig = H* —gfq,q = ]. 2 R [ g = diag[éﬂ,gig,- "ty i.n] (f )
[oh (€, 0h(E,)s s ol fm]] = leise s ein]" di = [din, -+ din]

Remark2

The unknown nonlinear function f; in(2)is approximated by RBFNN, and the
incremental function term f iy Will be dealt with the Lipchitz condition given in

Assumption 3,

10



Construct a Lyapunov function V}, as follows

W = 2?111’:;0 = E?LlE?PiEz" (23)
From (13),(22),(23), one has

ZVip = 28] BiE, (24)
=& (ATP + PA)E, + 26 P(0; 0i(§) + f + i +d;) + tr(opl Pp;o”)

< —Auin (@1 1€ ||2 + 25?&(@3%@1) +fite+d)+ tr(op] P;p;io”).

Note that ¢, {é;]‘f’f (&iq)ﬂ 1. Under Assumption3, Assumption4, Assumption5 and from
Lemma 2, one has

27 P f <26 PE) (FTPS)T <2 IR IS L, (25)
267 PO ¢,(E) < N (PIIE 1P + 22,0500, (26)
28] Pi(ei + di) <201 1* + 1B e + 1P 1)1 (27)
and

tr(op? Pip,o’) < 3B |° + L7ieT |, (28)

_ _ _ - - - - T
where &; = (i1, 8l di = (i, din1,din] -

Substituting (25)-(28) into (24), one has

_—_ - T = _ -
LVio < =Auin (@& I° + Mo PIE: " + 51 83 0iq + 1P| 1241 + 201 (29)
BN + 20007 | PlSyoy aLsg + 5 IR + 3loi0] 1.

From (23), (29), one gets

LVy =L(2Y, Vi) (30
<=V O (@) — 2 — 2| BB, gLy — Ao (P)IE: 1P
MY 2036,

1 2 —_ =12 210= 112 2 12
where M) = L|P|? + Lizal P + | B2 2% + | B2 )P

11



4. Event-triggered controller design

An adaptive ETC scheme is designed in this section to solve the control problem
considered in this paper.

To handle the PSCs, a BLF candidate is used for control design, Let us define

_1 K1(2) 31
V(t) = 3log prrrmTrE (31)
where log is the natural logarithm, n(t) is constrained by |7(t)| < (t) with x(t) > 0
being a boundary constraint function.

Remark3

: 1 K (t)
Generally, a BLF is chosen as ;log OO0

differential operator .# defined in (13) contains the second derivative, a BLF defined in
(31) is adopted to avoid the error term appearing in the denominator of the proposed

controller.

. However, for stochastic systems, since the

Lemmab

[46] For any given x(t) > 0 and all 5(t) satisfying |n(t)| < x(t), the following inequality

log — {:;_(;)2 <= {2;_': D holds, where s is a positive integer.

Let

M1 = Ef_laij(& - Cj) + aio (6 — G)s (32)
Mg = éiq - ﬁ'éq! (33)
and

zig = Big — Qig-1,4 =2, ,m, (34)
where 7;, is the local consensus error, ¢, is the leader signal, o, and 1, g = 2, -+ -, n,

are the intermediate control functions and the error surfaces, respectively, and
Big»q = 2, -+, n, is the filter output of the first-order filter, which is defined as

w‘iqﬁiq + JS-r:q = 'O{I',t,'r—ls .B‘i.q[{]) = a'-':,q—l (U)S (35)

where w;, > 0is a constant.

12



Remark4

In order to design a distributed controller, the local consensus error n;; defined in (32) is

introduced instead of {; — (, to avoid requiring global information all the time.
Remark5

Similar to [48], a first-order filter (35) is introduced. Compare with the traditional

backstepping method, the problem of complexity explosion resulting from repeatedly

differentiating virtual control signal «; , , can be avoided.
Step 1:From(2),(17),(19), (32)-(34), one has

dn;y =[dié; EJ\ 1‘5’%3{; ﬁ:‘ﬂ'iﬂ] dt
=di(my + 22 + o + £ + gi%‘l(éﬂ) + 9?1%1(5;‘1)
+ei1 + dip )dt + (dipy; — E?:laijpjl )dw — E_T?;laij ('f:jz
+'Ej2 +ep + é;ij; ¥Pi1 (é_jl] + 3?1 Pi1 (é_;'l} + dj1 )dt — ainCy dt .
Choose the following Lyapunov function

Vi =V +32N, vV,
—Vp + 5V, (Llog =1

K3y () =1, '”

119¢1+z ""1]9 f1),

where 8;; = 65, — 6,1, Cﬁ%) and cﬁj are positive design parameters, r;1 (t) > Oisa
boundary constraint function satisfying |7;; | < &, (f) and will be given later.

From (13),(36), (37), one gets
7 N T
LV :ﬁ[df (Mg + ain + &ip + 8505 (€41) +Ein +din + 6,9 (£51))

; 5 x 2 T s ;
_E;Lla*ij[‘fﬂ +&p +en+ 9?1993'1(511) +0501(En) +din) — ainCol

_ iy ki 1 ( iy - and (k) o 4y
ki (K 1y ) 2 *":‘1 Th (sd - ) wan (K5 77 )
1
i dnf (s} ) d2
5 P o’ Pi1
i (1) {hﬂ -1 } )l i !

N N aij 5T
_Ejzlaijgjzlaijpjlgg pj‘l] o1 811611 + Ej 173 (z] 6. ﬁ'

il

13
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(37)

(38)



Under Assumption3, Assumption4, Assumption5 and from Lemma 2, one has

3 42/ " 2 1-
di—— 4 (ftz +di +ea) < E‘ia(m) LIENP + 3d;, + 122,
B aij(€p +dj1 +€j1)
":1 1’1'4 j_l I\S 52 il J
; N — 42
<3(= i ) +il@ ) + 1 N ayd ;) + 3 (B, 058 51)
3( U 2 1ieN = 2
<yl )+l LILPIEN + 22X ad )" + 22X a550) 7,
1 ( 35 4’7:’1 77;1 _ 4n}y i
2 ‘“541_‘?;'1 () — V?"l wi (ki —1h) w (R =)
oy, ( rF 2
Oy 16n% (k3 —nt ) 160% ;
-ﬁ.%( - mh 5 5”?:14{”;1 ’711} + — 4’151 -+ 4 :751 .
(r ;1_"3'41 (k=) w3 (w11 wh (1 —7)
1“-"‘?)31 ;1 71‘:1 5= -—T
Wblon )y | 317,57 2dd,
oty =) )+ 3ol
L( 303 _ iy (s iy ) . dafy 7
2 K _7?:1 (#] 4 —?‘j’ll:lg i (w —11) "’?1{":1 —14)
4 (k3
+ x?,(n‘*ll t ) 3_15"1,! i= 1“131-’_71 oo’ P
< 1 g"?u 573[1{’5';'] _’?'51}I 16”?1 ’7:'21
""“E[ 4 2 1 ' 24yt 404 2
[”.1 "?41} (”,—1_7?41 K (K} _7?,'1) "‘:51("';1_71'?1}

16mf, (5, — 17 )
i En" 1_?’ ;1 }"‘ (Z; 1“3323—1ﬂw|0'35 |)
Kilky

and

4 4
r}a 6 13
- d (ﬂﬂ + ZIJ) _1 d; ( 11_ ] ) + 41 :,2 iz:lz

o
K’ n:l].

14

(39)

(40)

(41)

(42)

(43)



Substituting (39)-(43) into (38), one obtains that

ZLVa < P i ) [dﬂ{&ﬂ + IE]-11 Yi1 (‘f )) - % - aiﬂéo - Ej?il aij(éjZ (44)
-~ 2
Jlfla_;l{g ))] % + % 1 ||£ || 4"‘?:;2 3d2( nn'lﬂﬂ )
1'31 2 2 2
+izh (o) +gdl ( ) +4(Z aid 1)

-4
K~ "‘i

2 — _ 2
Q(EJ 1045E 1) +%|U£J?| d;-* 4(2_; 1“"»323 lau|‘7.'i‘7§1|)

4 167 (3, ) 1677
(kh—nh)* (e~ (k=)
oy DAY L) €
K’fl [K:IL ??.J "‘;'1 (";'11_'ﬁ;11 )

o1 2 -
(11]9 (di W 140«51}%1(5@'1)—&1]

T

;
"‘Ej\rl a[tj)a (- {l—jn i1 5031[531} 0).

Construct the virtual controller «;; and the adaptive laws A and le as

A .
Sa T : M ki N £ T ; 45
Gy =——— L — Ghpa(€a) + dzxﬂl + dli(zjzla"ﬂ(gﬂ +6i191(E0))) (45)
1
m L] % i e 3 di gy 3y
+ 4 ld ( Kj— 7??1) 2 Kl =1 B 2d; (x, —n,)
__ Ymy o 167 (e r]rl] o 167
di (k) ~ ) di (wh —n4)’ diny (K5~ )
Tj'?] 16*351 :'I ﬂ!]]
i, (K —1y) dird (s .'1_1?1'1) '
- ‘l'r-tl -
O = dig — 11 ‘Pu(le) - f—'ﬂ 01, (46)
and
. 7715 9 - E '
Oy = _T_l,,;-}lc_gl)(!gjl (fjl) - C;E—E'}gﬂ, (47,

where cﬁ’ = 0, cfjl > 0 and ci.?} > () are constants.

Substituting (45)-(47) into (44), one has
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Py < S a1 13% 4 18 4 LR + A4 + 2T P

i1 i

o 2
LN + LY ayd ) + 3 (Ej—lﬂu'ﬂ?inafiwﬂﬂl

-'-ﬂ

I(Ej_laijsjl} 4 A 9 10 +E a;j ,2 Sjlﬁ'ﬂ

(1]

From (37), (48), we have

LV =ZLVy + BN Vi)

1l‘rjrl
<N [-MP &1 - +M”+%n,z L 4o

1

where M = X\ (Q;) — & — 2||P||0 1 qL;, — N (P) —

T

+ iizjﬁrlauz;—lﬂ%ﬂgja; |)
Step 2:From (20),(33), (34), we have
_ ﬁiﬂ
=Nia + 23 + a2 + 9:2"1912 (E ) + i (C 'Ezj) 3{2'
From (34), (35), one has

dzjy = dBy —

where 1, and ¢,; are bounded continuous functions, Thus, there exist v/ ;; > 0 and

¢ > Osuchthat vy < ¥y, |[dy) < dy

Construct the Lyapunov function V5 as

4
Vo= Vi + 28 Vo = Vi + 3 (Log =20 4 1§75, +

’c:‘z(ﬂ Mia 2e ill

tl
[13 E:’le 911
a

HAl? > o0,M® =
1 5__ — 42
MO 13 + Le2 ;m o7 *d! + 1(2Yjayd )" + L(EN au25)

a())dt + ¢y (Ndw,l =2, 0

$%2);

where 8,5 = 0%, — 02, |n;5| < Ki2(t) and cg] is a positive design parameter.

From (13), (50), (51), (52), one has
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(48)

(49)

(50)

(51)

(52)



T -~
LV = ey [(?]13 + ﬂ,gtp,g(rf )+ zig +oup — 050,5(E,)
‘|‘9¢'2 i (Eiz) + 9i2(G — €i2) — Bia) — H,jﬁin:g?}

[1119 912 + (-2 +’r’/’zz)+ 2 2 tr(dl dia)-

id

By Lemma 2 and ¢,, @1—2 )L @&)-‘51. one has

2 T
( f’iﬁ:- + 1850,

424(??:;3—’_3!'3)%1 E] ) + 3 zg3+47?;3?

3.2 T
Eziz tf"(ﬁ’;’z‘f’iz) + 43 2 q‘bﬁzgzu
where +,, and ¢;, are the positive constants.

Substituting (54)-(57) into (53), one gets

LViz < (a“g + 9*990*2(512) + g2 (G — ] a) — Bia — nﬁ:ﬂ
w2 T ~
+%"?;3 + lzf:x +3(5 Py 2,]!2) +30:0: + 4%?2 + 342

il ! 1
+%(,m_,¢} + Al (e e d,) — )

4

3755
+(Ew;ﬁz'ﬁ; B + _¢'q.2)
Construct the virtual controller a;» and the adaptive law ;5 as

3 : : Ty
Q2 :—Céz}f‘?iz — 902G — &a) — 93;‘191:2(‘5 ) — D
1
3

_l_“'-’az"‘iz o E‘n{ s ) . ’1.2(":2 i) +ﬁ32,

Kiy Tl
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(53)

(54)

(55)

(56)

(57)

(58)

(59)



and

Bir = — i cly %2{6 ) — cly iz,

K’f - TL-

(3)

where ¢;;" > 0 and ¢y

., > 0 are constants.

Substituting (59)-(60) into (58), it is clear that

ZLVia é—% - irj'fz + %?}?3 + % 3+ %éiéﬂ + jij ézgiz
+4;'4 + §ih + (%Eg’éz - ;‘2 + 475?2%2
From (52), (61), we have
LVo =L[V) + B, Vi
<L MG - s MO 5, S,

+%é 02 + 135 224 + 28, aij - o 931931 + X0, 0;,0:

4 4
s 3 (T -

Step b,b=3,---,A: From (20),(33),(34), we have
Mib = Mip+1 + Zipr1 + ip + 93;‘?@@55] + 94 (G =€) — B

Construct the Lyapunov function Vj, as

4
N N 1 K 1 5T 5 1.4
i i [

ifs

where 83, = 6, — 83, ;| < ki (t) and CE;)

From (13), (51), (63), (64), one has

7 =T 5 A1 ¢
LV =F"%[(m,b|1 + 0 (§,,) + 2ipr1 +aip — egb‘ﬁﬁb{ﬁib)

+3§;‘pib(ém) + g (¢ — ,fﬂ) — By] — iy i

Fin (kg —113,)

-T'.. ;
+==0404 + 25 (— ;b + i) + 325 tr(Biy bap)-

ib

By Lemma 2 and ¢, @ih){"’g; @T_h) <1, it can be derived that
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is a positive design parameter,

(60)

(61)

(62)

(63)

(64)

(65)



ib
%(mbn + Zipi1) € %(mgf »)% + 3240 T s ©7
Zp ¥y < %Eif}’fb zjy + é: (68)
and
32 tr(diydn) < 343 + %5?&%1 (69)
where «;;, and ¢ are positive constants.
Substituting (66)-(69) into (65), one gets
LVip < (e + 0500 E,) + 96 — €n) — B —) (70)

+i3;b+l + 58+ %{%) + 29t~59‘b Tt T

4
() + O e ou(&,) — 0n)
44

+H3Va%h — = T or > %b)sz
Choose «;, and 8;;, as
Qip =— ifj"'h‘b — 9 (¢; — éil ) — 93';%5@@} - 2("3;2;3”%) 7

n‘bn.b 6 ( :]m,ﬁ)l ﬁ,-a(n;:—nfb) + Bib,
and
b= @) 00 2
where C:{'g) > (0 and cz{.:‘) > () are constants,
Substituting (71)-(72) into (70), it is obvious that

(73)

(3]
: Ci M 1,4 1 ""m
LVip < Ky T ~ 1"l + 1 +l + 4z= b+1 + 9:2:9%& + eabgzb
! ! :L

4 4
1 3759 1 3 744 4
T T 15+ GPar — = + 1z P

19



From (64), (73), we have

LV =ZL[Vp1 + Eilvib]
; . (8) g1 _
<=, MO € |P - s, S M 5 0B

aq :q iy

Lybiizd + 150,60, +EN1% me O + 30,0,
+1ﬁfh+1+zq 2474 + 3 vy
+22:2(%E§q’n§ - =+ %aig}zi]'
Step A + 1: From (20), (33), (34), the following result holds
a1l =Mase T Zia2 T aian + 93;:\—1%,&“ @i’ﬂﬂ]

a1 (G =€) = Bian-

Choose the Lyapunov function V., as

Vasa =Va + E;-r[lV- A+l
=T
=Va + E% l{ ?723_._1 ﬁgi Q+191.ﬁ+1 + %2.’? )

t—1

where 5,;‘;_\,“ = 8;",& 1 — Biasr,and cf & ‘' is a positive design parameter.

From (13), (51), (75), (76), we have that

LVinr =Mia1(Mae + ziace +aian + Bemﬂﬂm 1('5: A1)

=T T
=i a1 3—1('5- a+l) + gi,&+lwi,ﬂ+l(§i,&+l) ~ Bian
T P
+gz A+l (C gal)) tl] gi,A+lgi‘ﬂ 1

Cia
T
+z“1 1( W.aﬂ +11b“5+1) +2 “3.,_1 (¢iPA+1¢z’,ﬂ.—l)'

By Lemma 2 and @; o ., (¢ a&ll)piﬁ+1(£t’,&-l)£1'0ne has

=" -~ -
a1 Oiaaaiaa (€, )< 5man +30ian0ia,
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(74)

(75)

(76)

(77)

(78)



1.9 1,2
Mariace < 3Mam + 3Mate

e

. 3,3 4
MiA+1%i8+2 = gMiaaq T 431 A2

.

1

-
Wi

Zan¥iar < §Pa0Yandan
and

A tr(Olanibian) < Fa + ﬁaimlziaﬂﬂ
where v,  ; and ¢; o, are positive constants.
Substituting (78)-(82) into (77), yields that

LVian < 2‘?14 1+7?;A+1(am+1 +9:.e.+1( 511) Bia+1

’ 15 =
+€i,ﬂ+1(pi,ﬁ+l (§i1ﬂ+l)) + E?}f‘.ﬁ+2 + Eef.ﬁ_lgi,ﬂ.—kl

4 4
373 3 1 3
+(E¢f,a—17i,a.+1 T Tan + 2, ¢5=a+1) i A1

"‘iéf:a—l (ﬂ:',a+1cg‘1& 11Pia1 @i‘ﬁﬂ) —bia1)
+%”§a+1 + %z;:i,&ﬂ + 4-{&17 + %LE,AH'

Choose av; o 11 and #; 4, as

i A1 =—C£i]3+1??f,a-1 9’m+1 §t1) 2715,&-1 - %ﬂiaﬂ

1

3 T ¢ ’
—zﬂf‘g_l - 9:;,:3+1 PiAa+1 '@ijaﬂ) + ﬂ:‘.&+1a

and

i — (1) . (4)
Oiar = Mia+1C a1 Pia0 (ﬁi,f_\_ﬂ) — ¢ A biatr,

3)
i,A+1

(4)

where c{ = ( and Ciarl = 0 are constants.

Substituting (84), (85) into (83), it is obvious that

. _A3) _ 1.4 1.2 1.4
LVian < Cx’,&llfﬁ.ﬁll a1 T 3Miare T T%A42

[4)
Sa T

1 3
+4"fd.e. + 4 zA+l + 3 9:&+Jgrﬂ+1 + 5 ) %&+19%&+1

1 LA+1
373 3 1 3 T4 4
373 5 :

+(5¢; A+ YAl T A e biat1)Zia-
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(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)



From (76), (86), we have

LVan =ZVa + I, Viau] (87)

o3
N @z 2 A i My (3) 4 12
SEL MG -l o O aean + 3ac

A 4 A1 5T 5 A 51 5
+E +11 ,1)6' Oig + lEq_;{Jiqﬂiq + 42‘}:;32“ + E quﬁiq

(3) i A+l 1 A+13
+M, -I—EJ 1@ij fm 93193 Eg_z 41‘ E 43,”!

Atlp3 77 1 3 74\ 4
+Eq:2 (E"’bgqrytq - w_!q + qéxq}zrq '

Step s,s = A +2,--.,n— 1: From (20), (33), (34), one gets

?] 7._-"1 s+1 + Zis+1 + Qg + sttpw (‘E ] + Gis (C‘l } - rB‘eis‘ (88]

Choose the Lyapunov function V; as

1’;:%1"‘2;11%3: 3 l+E ( ﬂfs"‘ ! '9 913+4 w}s (89)

[13

where §;, = 6:, — 0;5,and cg] is a positive design parameter.

From (13), (51),(88), (89), we can deduce that

P

-7 -
LV =n§s(ﬂi,s—l + zier1 + s + 0,0, (f ) gg;‘f’is(g- ) (90)
~T n
_eis‘pis(éi ) ﬁss +gas( - 11)) + []i]9 6
(_ 2o +¢zs) +3 3 Zis tr((;)zs@ﬁss)

By Lemma 2 and ¢;, (5 )Lp (.5 _)=1,one has

(91)
- T =
s 13"935(6 ) %nzz + %9“9,;5,
1 1
MisTi s 1 < En{za + Eni?,s—l—l’ (92]
4
Mg Zist1 “<- %T}i + %2334_1? (93]
3 33 1 (94)

22



2 ‘zgs f?{-‘j)“ qﬁ%s)

where v,, and ¢;, are positive constants.

Substituting (91)-(95) into (90), derives that

LVis <

b=

+

U

3n
1l

+
4
3
is

12%_-,4.1—'— 913915_{_(41!!)13 !z_

4

3

@i | 4

1 .
+H + 4 Lig + F_Pﬁz?(nnc;q 99;5( is) o 9‘5-‘3)'

Construct «;, and 6;, as

—c®

Qi =

and

‘IS n‘!&

éi :1133 Ciq {Pw(‘f )

where c{

%) > Dandc

(4)

;s (Cf - éﬂ)

!.'!?

Hts[pu (é ) = Mg —

= () are constants.

Substituting (97), (98) into (96), one has

LV <D,

37
[2) 1..9953 +( TI["'H,YLS

+32, 4 500
From (89), (99), we have
LV, =¥V, +E.l_ Vis]

i"?
<N -MP|E|P - 2h el

(4]

+Mi[3) + ES =1 :T

N

i1@ij [2]9 O + X,
57353 1

5 Dol Y Al

q=‘2{4¢i¢7¢'¢ wig

Kt

o n33+2nas+l+r1z:.2 l+

g n!q

Wis

S

23

1474

2 Yis

52 ¢EJ)

1
3.3
Eﬂis +

(3)
iq nz'gq

1 s+1
Ee;r 2%ig

Bi.g!

‘u"l‘_

1.2
2n{,s+1

+E”

7?1.3(111.3 + gﬂ(c gil) + 913@33(&-3) - Bis] + % 841

T =
93-49:;.;

(95)

(96)

(97)

(98)

(99)

(100)



Step n: An ETC scheme is developed in this step,

e Control signal:

wi(t) = hi(th), vt € [t, L ). (101)
e ETC mechanism.:

ty = inf{t > 6l (1) = &lwi ()] + mi}, (102)

where h;(t) is an intermediate virtual function which will be designed later.

Gi(t) = hi(t) — ui(t),0 < §; < 1and m; > 0 are design parameters. ¢} is the update
time of the controller. When (102) is triggered, the next update time ti 1 will be
generated. h; (£, ) is invariantin ¢ € [t, ¢ ). According to the above ETC rules,
|hi(t) — ui(t)| < &;|u;(t)| + m; holds in all time.

Remark6

The number of transmissions generated by the triggering mechanism (102) can be
adjusted by design parameters 4; and m;. Larger parameter values result in fewer
triggers. On the contrary, the number of triggers will increase. When §; = 0 and m,; = 0,
it becomes time-triggered one as the special case of the ETC scheme.

Remark7

Compared with the time-triggered strategy, the ETC scheme given in (102) allows the
control signals to be intermittently sent to the actuator as piecewise constants such that
the communication burden from the controller to the actuator can be largely reduced. In
addition, the proposed saturation controller can solve the physical limitation problem of
the system in actual environment.

Similar to the discussion in [49], the control function h; (t) satisfies

hi(t) = (14 o1 (£)d; Jui (t) + oy (t)mi, (103)
where g, (t) and g, (t) satisfy |g, (¢)|<1 and |, (t)| <1, respectively.

From (103), one has

ey m) at)m 104
ui(t] o 140y (t)dy T4o(t)d " ( )

From (20), (33), (34), one has
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f?in = Xi ('Ui (t}}ui( antpm(g ) + g‘iﬂ(Cé - Eil] o Bﬁn' (105)
Choose the Lyapunov function V;, as

Vi =V1 + 3, Vi (106)

1 =2
i T 1z

N
=Va 1+E 1( "'?m Fei Qm—i- t2] 4 in)’

in

e

A £
where @;,, = @ 1“’ ,

n — Oin,and e; =

is a constant satisfying (6). Let e; be the
estimationof e; and e; = ; — ei. En) and .!Eg) are positive design parameters.

From (13), (105), (106), it can be obtained that

g%n :“?m(X:; (ui (”)ui (t) + gg:z'::ain (gm) mcpzn{‘s ) (107)

T o~
_Gincpin{gm) 18171 + gan( 531 )) + (]i] 9 '9%?? + IE_Q]EiEz'

20, (2= 4 i) + 222, (B din)-

2 ~in

By Lemma 2 and ¢, , @m)gofr; @m)SL we have that

108
zmwm == 4 1?')) mﬂym m 4,.)44 1 ( )
(109)
..,I' -
_ﬂmﬁin Pin (Eg-n } < %n{n ; Hm Em )
and
_zl'n, tr(‘b‘!ﬂ 11’1) "‘<‘- %'L?ﬂ + ’1?2 a?ﬂz?nl [110)
where ,, and ¢, are the positive constants.
Substituting (108)-(110) into (107), develops that
Eﬁ“ %Tﬁn + ?i'm (Xi(u'i (t])ul(t) + giﬂ,( i ‘ll) + Gznrpan(gén] (111]

£ 3__ ;_ 1 3 14y 4 IEU ~ &
5 ) ggzngm + (I"!b:n'ﬁ;; T @, + 4,2 qﬁin}za’n + 2 €ifi

i

+ ,1.:'1 + %t‘m. []ij ﬁ:m (Umcin)‘i’m(f ) - SIH)

in

Form (106), (111), one gets

25



LV, =LV, 1 +ZN Vi]
<EN M C;{g}ﬁir En 1 :rl 1 5319 H
1[ ||§ H q—l ] n:l_lq g= &+1 zg '72 + X q=1 r1]

ur

+ixn .2 i+ 1w 29 +EN1¢:J £ 9 105 + Eg—lgiqgfq + Mi[sj

+n‘in (X‘i(ui(tnui(t) + Gin (C‘L - ‘fi]) m?’m('ﬁ ) - Biﬂ.) + nfn
T T EU] —
‘I‘E =2 4 1 + E =2 4 1q + —Hm('-'?m m (Pm(‘f } o ) Itz] —E;E;

Cin i

n 3 1 3 744 4
I: Iwaq T + Eéiq‘)ziq]'

i

From (104), the intermediate continuous control function h; (¢) is designed as

hi(t) = —(1+ &) (qne tanh("m““* )+ 15 tanh(555)).

From Lemma3, (104), one has

Ty X (i (£) ) (2)

L+, (2)d; S Min @in + '! E! |Tlmﬂta.n| + 0.27859,;

o Tin X

I:“'L(t:l ™y Tin 7T
15, tanh( (18,0, );

and

Mg X (i (8)) g (£ [in [Xs (2 (D) @ () (s - [ s (2 () )
1hgy (£)d; - 1o, (£)6; o= 1—4;

From (104),(114),(115) and Lemma 3, we have
Tani(ui (t}}ui (t} “Nin Xin + 'i'l EI |7?-mﬂm| + 0. 55719

By substituting (116) into (112), the following holds that

LV, =LV, 1 +ZN Vi)

<=, MO 52, m—— Eqﬁlw?}!q-i—ﬁ gy,

?

N " ; T n 3)
+imr 2t +iee 8,0, + 3V a L AL

= 1 ij rz]

-

+7J'm( —in + gm.[ i é ) + Q‘Iﬂ(ptn(g ) fBin) + n?n + 0'55719“5
+x7 + 3,38 +

K O (’?m c{n Pin (ﬁin] - éf‘i‘l]

ﬂ

q‘244

1) 4
3

B~ @2 = 373 1 3 74
+IET)E='(51: Wi i | + €5) + Eeo(3ViYig — = ?&éﬁj)zfq
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(112)

(113)

(114)

(115)

(116)

(117)



By (117), design adaptive laws -."91-“, 21; and «a;,, as

(3)

Qin = €y in + 9in (G = €11) + 00 0in (€,) + i — Bin
bin = Minly) Pin (€,,) — iy Bin,
and
e = IEE) i Qtin | — JES) €.
Substituting (118)-(120) into (117), one gets
LV =LVoy + B, Vi
<L -MO R - S el +

q’?ea

FIE 24 1 0.5570; + 121 ,0,,8i, + ENI% - 9 1051

+2p 10,01+ Tpp e o+ MY 4w

4 4
(350 1 3 714
X (¥ Vi — =y Qqﬁiq)z@q :

By completing the square, we have that

qddtq

1‘.”;‘.“‘ ~
+ i—‘E '3
L

4] (4]
i [ T = . =¥ g
g L i
c_l;_l]gil}aiq "-.<_L - 2(-[:'] glﬂ'giq + 1) 9.&‘] 91—&"’
g B
&3] (5] 15)
& =T | AT = e & 2%
Jl. il . il
o2 b < wlnfn + ] 005,
it i it
and
B ~ =~ i =2 i s Y 2 1
e = 1 TR S 3
iEQJ 2i[2] T 2[E2J T 2;5_2} ? 21513.[22] 1

Taking (122)-(124) into (121) and from Lemma 5, one gets
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(118)

(119)

(120)

(121)

(122)

(123)

(124)



2V, <V, [-MPEIP - 22 e log L — 1, e (125)

o, e T
0] (5} (1403 .
i N ':'] =T = fi Ir’ ~2
_( 1)9313%1 E 1!'.1” 931831 - _f2,\ Ei
2¢; =1 2¢! it 21
m 3 ] _ 3 e 3 74 1y.4
s 3 R ! 3T A 1
E =2 ( u] 2 ) 6. E 2( @ig 4 11’5 iq'}rt'q 4,;{{} ‘ﬁiq 4 }zz‘q

l.l |l| u

+z_.,_1a”21¢ Lo +xn, 9‘Te*

-+ 0.5577;

111

+M +2“44 + 35 2; eq]

1 1 4 - -
Select parameters cil}, cflj , cgq}, cgq) s Wigs Yigs -;riq, :,,,;q., ®iq:@ = 2, ,n, such that

A —2c)) > (],c\gqJ _ 3, ( ) > 0and L — 31};,@7@ — %a;}q 1> 0, Let
M2 ) @ ® . (1) 126
b_mlﬂ{m C“ 3 3(," ,'! — 24: 3 ( )
( -3 '-l 3 74
- 3 eq ' w,‘, - 31*{):":}7‘5; - Eéiq - 1}1
fori = 1!"'5qu:21'”:“'
(5) (4] (3
@ _p® f BN g n T I (127)
q i i
+0.5571; 4—'2(!,2,11 +Z‘ _“q,
and
N 4
MW = x¥ M, (128)
The following inequality holds
LV, < bV, + MWD, (129)

5. Analysis of Stability

Theorem1

Consider the nonlinear SMAS (2), under Assumption2, Assumption3, Assumption4,
Assumption5, the state observer (20), and the ETC scheme (101), (102), (113), associated
with the adaptive laws (46), (47), (60), (72), (85), (98), (119), (120), and the intermediate
control functions (45), (59), (71), (84), (97), (118), the consensus tracking can be achieved
with consensus errors remaining within small neighborhoods of the origin, Moreover,
the following objectives can be guaranteed:
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(i) The error signals 7,,, the observer errors £ ;» the adaptive parameter errors f?"iq and &,
satisfy the following bound conditions:

wi T (130)
E(In)) < rig(®)(1 - e OS5 g = 1,04,
1013 131
E(|n,|) < (2V0(0) + 24=)" ,g= A+ 1,---,m, (131)
- 1 % A % (132)
E(ll&;1) < (m) (Va(0) +55-) 7,
= Qﬁ.fa-qﬂ:f[” % (133)
E(|B?q|) = (27@1’?1(0} + T} yq=1,---,n,
and
- 25, W\ T 134
B(Z)) < (B (v, (0) + 22))7, (134)
forte=1,---, N,
(ii) System output and partial state constraints are ensured, ie.,,
Eig < ke, (t)yq=1,2,---, AVt > 0.
(iii)All system signals are bounded in probability.
(iv)The Zeno behavior can be avoided.
Proof: From Lemma 4 and the factof 0 < e "' < 1, one has
BIV(5)] < Va(0)e ™ + 2= < V2 (0) + 2=, (135)
and then
EV(t) < X2t - . (136)
From (106), (135), the following inequality can be obtained
-""-,-iq 1)
E(él()g N;Iq_ﬂ:.lq) < Vn(0)+ %79': 11"'1&1 (137)

Taking the exponent on both sides of (137), yields that

R 3
anrldl g

E(n|) < rig(0)(1 — e O 57) " <hig(t),9 = 1,---, A
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Letsn = [y, sl ¢ =[G, Gy oGl € = ¢~ 1w¢y and
E1(t) = max;_... y{Ki (t)}.Sincen, = & (¢ — 1x(y), thus, from Lemma 1, % is
invertible. Then

Camld g

y — —4V, (D 4
G =Gl < Il < 1l lloe < 11N Ror (£)(1 — (@757 . Therefore, the
consensus errors remaining within small neighborhoods of the origin are ensured,
(i) From (106),(135), one has

E(%n'ffi) ‘gui(ﬂ)—}_ Mbm&q:&_"'lf"anﬁ (138)
and
E(E; P.&;) < V,(0) + 2. (139)

Thus, (131), (132) can be obtained. Similarly, we can obtain (133), (134).

(ii) According to Assumption 2, one has [, | < ag. Thus
- -1
il < 1Clle < 1 oo limlloe + a0 < 177 || maxia,.. v {kin (8)} + aq.
k,._-” {r‘}_{lﬂ

Lz -wecan obtain that [£;,| < k., (t).
1 e

Choosing k;; () <

a~

According ton,, = &£;5 — Biy = &9 — €45 — 2i2 — ay, one has
€in| < |€s9| + |@ir]| + |msa| + |2i2|. Because oy is continuous, there exists a constant

@;; such that |a;; | < @;. From (106), (135), one has E(|z;,]) < (4V,(0) + ‘1"'":[“ ).

1
Letting €; = VI(VH(U] + %)/).mm(}%}, 7; = (4V,(0) + ‘”bﬁ)_L and choosing
ki2(t) = ke, (t) — & — @;n — 74, we can obtain |£;,| < k., (t). Similar to ;, and
choosing «;, (t) = k., (t) — € — @; 41 — 7;, We canobtain |§, | < k., (t) for

q = 3,---,A.Therefore, the time-varying constraints for partial states are never
violated.

(iii)ince Mavt = Sia — Fian =&a — €iavt — Ziat1 — i, thus
Eintl < |&ia 1|+ lial + |ma 1| + |2i,a+1 | From the boundedness of
EMH y a5 M; o+ and z; o 41, We can obtain that §; , , are bounded.Similar to
§ias1:8g>9 = A+ 2,- -+, n, are bounded.Therefore, the unconstrained states are
also bounded.Since £, and &; are bounded and £, = ¢, — é ;» thus, £ ; is bounded.In
P - - 2"4- AW 3
addition, from (133), (134), one has |e;| < ; + |e;| < &; + (ﬂ%u«; (0) + 4=))*

i
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1
2y, M@ 2

and |'§1’q| < |'9z'q| + |éiq| < |6'z'q| + (273'01]:1(0} + ) 4= L---,n, respectively,

Then, all systems signals are bounded.

¥

(iv)Let us prove that no Zeno behavior happens. It needs to prove that t}; 1 t}c =t >0
for all i and k. Since ¢; (t) = h; (t) — u; (t),Vt € [t} ,t} ), thus

1 L
Flal = 47 = sgn(a)és < [hil. (140)

From (113), (118), ; is a function of bounded signals. Thus, |k;| < ¢ with¢ > 0 being a
constant, Note thatlim, ;. < = d;[u;(t)| + m; and si(t},) = 0. Integrating both sides of

(140) from ¢}, tot; | and letting t* = M > 0, the lower bound t* of inter-
execution interval is obtained such that ti T ti = t* > 0. Therefore, the Zeno behavior

does not occur. L.
Remark$8

By selecting appropriate parameters, stability of closed-loop system is ensured by (129).
From (129), we know that larger b and smaller M ) 1ead to faster convergence and
smaller error bounds. However, there is a contradiction between fast convergence and
smaller error bounds. This requires us to find a balance between the fast convergence and
an appropriate error bound by the selection of appropriate parameters,

6. Simulation

An example is provided in this section to illustrate the validity of the proposed ETC
scheme,

Example: Consider a SMAS consisting of four followers and a leader as the reference
signal. The communication relationship among four followers and the leader can be
modeled by a directed graph containing a spanning tree shown in Fig. 1. Each follower is
described as

dé; = (& +da (&, t) + fi(&n))dt + piy (&) dw, (141)
déy = (sati(u;(t)) + dia(&,t) + fi2(&))dt + pip (€;)dw,
Cf. = ‘Eil!i:l!2$3:4!
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where sat; (u;(t)) is given in (4),
din (&,t) = 0.1sin(€ €y), dia (&, 1) = 0.1sin(€, &%), £ (&) = and

—0.1sin(§;; ), fi2 (&) = 0.1&;; cos(§2), Py (§;) = 0.5sin(&;; ) cos(&;, )
pia(€;) = 0.5sin(2¢,,£%). Only state ¢;, are required to be within the specified area. The

given reference signal is {;, = sin(t). Choosing g,; = 5 and g;, = 10, the state observer
(20) can be written as

a = &n+0he,(€0)+5 —Ea) (142)
= X (ui(8))us(t )+91.2{p1‘2(£ ) +10(y; — &4y),
Ci: éilri:172=3}4:

A N
|

Fig. 1. Connected graph.

Set the design parameters of u; (t) in (101), the trigger condition in (102), h; (¢) in (113),
the virtual controller ov;; in (45) and oy in (118), the adaptive laws f;; in (46), 8;2 in (119)

and :Eg in (120), the saturated control sat; (u;(t)) in (3) as:
Cﬁ} = '()1 = 15, 31J =13, 41) =12, 12] = 0{22} = {3? = 70=Cfi? = 69, ke,y = koy =
2e "+ 1.2k, =4de t +24,k,, =4de '+ 2.6, = 0.05,d; = 0.5, u;, =8,m; =

0.1, =¥y = 1,95 = ¥4 = 0.5,¢) =) =) =) =50,cl) =V =cll) =

(4 4) (4 (3
J = 20, 11}:21—32— ) = = 25, 31)—41}—'332—42 4’51—0-53‘%]:
1

for 1 < i < 4.All the initial states are set to 0 apart from £, = &,; = &, = £, = 0.1.
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The simulation results are provided in Fig. 2, Fig. 12. Fig. 2 shows the trajectories of the
states ;;,7 = 1, 2, 3, 4, and the results show that it does not violate the restricted
bounds. Fig. 3 shows the trajectories of the reference signal ¢, and the outputs

(;»i = 1,2, 3,4. The results show that the event-triggered control method can make

¢, = 1,2, 3,4, track the reference signal ¢, within a certain range. Fig. 4 shows the
trajectories of the reference signal ¢, and the outputs (fi- ,i =1,2,3,4. The results show
that the event-triggered control method can make (f vt = 1,2, 3,4, track the reference
signal ¢, within a certain range. Fig. 5 shows the trajectories of observation errors

Eﬂ ,t = 1,2, 3, 4. The results show that the trajectories of E,-l 1 = 1,2, 3, 4 fluctuate very
little in a certain range, Fig. 6 shows the trajectories of the error variable n;, ,7 = 1,2, 3,4
and the results show that it does not violate the restricted bounds. Fig. 7 shows the
trajectories of the states £;, and the observed states 13 % =1,2,3,4. Fig. 8, Fig. 9, Fig. 10,
Fig. 11, show the trajectories of the control inputs u; (t) and the saturated input
sat;(u;(t)),7 = 1,2, 3, 4. Fig. 12 shows the trigger time instants and the inter-event
times of four followers respectively.

4 T T €44 T T —im

—_— kc11 5f c21

2 _kcH -k°2'

0 /\/\/\/ . /\/—\/\/_
2 / ]

-5H

0 5 10 15 20 0 5 10 15 20
time(sec) time(sec)
T —531 10 ! T 541
St Kest Keat
Kest 5f Keat
A /\/\/\/ 0
5 /7
_5 3 ]
L 1 L _10 1 i L
0 5 10 15 20 0 5 10 15 20

time(sec) time(sec)

Fig. 2. The constrains on state £, &,;, &3, and &, .
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Fig. 3. The trajectories of ¢, ¢, , (5, (3. and ¢, with ETC method.
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Fig. 4. The trajectories of {,, {, 5, {5, and ¢, with ETC method.
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Fig. 5. The trajectories of £ ;,, £, €4, and £ ;; with ETC method.
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Fig. 6. The constrains on error variable 7;,,7,,, 73, and n,;.

2 , : : 2

12

0 5 10 15 20 0 5 10 15 20
time(sec) time(sec)

0 5 10 15 20 0 5 10 15 20
time(sec) time(sec)

Fig. 7. The trajectories of £, € 15, a2, €22, &3, € 32, £42. and € 4, with ETC method.
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Fig. 8. Input u; (£) and saturated input sat; (u; (£)).
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Fig. 9. Input u; (¢) and saturated input sats (us (t)).
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Fig. 10. Input u3(t) and saturated input sats (us(t)).
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Fig. 11. Input u,(¢) and saturated input sat, (u,(t)).
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7. Conclusion

In this paper, an adaptive distributed ETC strategy with an observer has been presented,
RBFNN is used to handle the nonlinearity of the system. By constructing a state observer,
the unmeasurable states are estimated, A new saturation controller is proposed for
SMASs, which is more suitable for practical applications. Besides, the time-varying BLFs
are introduced, which can ensure that the partial states constraint conditions are not
violated. Considering the benefit of communication resource saving, an adaptive ETC
strategy has been proposed to guarantee consensus tracking of SMASs. The proposed ETC
strategy can guarantee the boundedness of all system signals, each agent being able to
track the given leader signal within a bounded error and avoiding the Zeno behavior
successfully. Finally, the correctness of the theoretical results is illustrated by computer
simulation.
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