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Abstract: Gastric cancer (GC) is one of the major causes of cancer deaths worldwide. The disease
is seldomly detected early and this limits treatment options. Because of its heterogeneous and
complex nature, the disease remains poorly understood. The literature supports the contribution of
the gut microbiome in the carcinogenesis and chemoresistance of GC. Drug resistance is the major
challenge in GC therapy, occurring as a result of rewired metabolism. Metabolic rewiring stems from
recurring genetic and epigenetic factors affecting cell development. The gut microbiome consists
of pathogens such as H. pylori, which can foster both epigenetic alterations and mutagenesis on the
host genome. Most of the bacteria implicated in GC development are Gram-negative, which makes
it challenging to eradicate the disease. Gram-negative bacterium co-infections with viruses such as
EBV are known as risk factors for GC. In this review, we discuss the role of microbiome-induced GC
carcinogenesis. The disease risk factors associated with the presence of microorganisms and microbial
dysbiosis are also discussed. In doing so, we aim to emphasize the critical role of the microbiome
on cancer pathological phenotypes, and how microbiomics could serve as a potential breakthrough
in determining effective GC therapeutic targets. Additionally, consideration of microbial dysbiosis
in the GC classification system might aid in diagnosis and treatment decision-making, taking the
specific pathogen/s involved into account.

Keywords: gastric cancer (GC); metabolites; microbiome; H. pylori; dysbiosis; epigenomics; personal-
ized therapy; obesity; asbestos-induced GC; inflammasome

1. Introduction

Stomach cancer, also known as gastric cancer (GC) is one of the key causes of cancer-
related deaths worldwide, with slowly changing 5-year survival rates (5–69%) [1,2]. High
mortality rates due to the disease being difficult to detect in its earliest stages result in most
cases being detected at a nonresectable stage. The incidence of the disease is generally
higher in males than in females [3]. The urgency for specific biomarkers for early detection
of the disease is crucial, as this will offer a better prognosis. The identified biomarkers
could be useful for the development of targeted therapy. Currently, the treatment offered
to cancer patients includes chemotherapy, radiotherapy, surgery, immunotherapy and
hormonal therapy [4]. Nonetheless, these treatment options have their limitations, while
the tumor microenvironment (TME) and other cancer factors foster resistance to therapy.

Cancer therapy is recommended and implemented depending on the severity and
type of cancer. Systematic chemotherapy is the mainstay of treatment for GC patients
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with an advanced stage of the disease [5]. Despite the efforts put in the advancement
of chemotherapy, drug resistance by GC cells remains a challenge due to the disease’s
complexity and multifactorial mechanisms which require a thorough understanding of
the different “omics” and how they interact with each other. The microbiome casts a long
shadow over GC and influences most if not all the “omics” of cancer. The role of the micro-
biome has been reported to contribute to the hallmarks of cancer including inflammation,
cellular invasion and metastasis, apoptosis resistance, and metabolic reprogramming [6–10].
Existing data shows that microbiota undoubtedly regulates tumor initiation, cancer pro-
gression, and resistance to therapy through chronic inflammation induced by pathogenic
agents, dysbiosis, and metabolism rewiring. The emergence of metabolomics brought an
enhanced understanding of the relationship between metabolic regulation in cancer, and
how this is influenced by bacteria-derived metabolites, genetic and epigenetic factors, and
how they are manipulated by the microbiome in GC and other cancers [11–14].

Microbes produce metabolites that have a modulating effect on the host epigenome
leading to carcinogenesis [15]. According to Engstrand and Graham, 2020, data on the GC
microbiome is not compelling enough to show its role in cancer pathogenesis beyond what
is ascribed to H-pylori infection dynamics [16]. The authors hereby review the role of the
microbiome GC carcinogenesis by identifying the association between GC microbiomics
risk factors, host metagenomics, metabolomics, and epigenomics. The review would also
attempt to ascertain the microbiome as one of the root challenges of GC carcinogenesis and
progression, and could therefore be considered as part of the key therapeutic targets of
the disease.

2. Gastric Cancer Subtypes

Distinguishing the subtypes of any cancer is fundamental in aiding in the identification
of biomarkers, exploring treatment options and determining prognosis. Lauren’s criteria
and the 2010 World Health Organization (WHO) classification system are the commonly
used methods to classify GC. Lauren’s criteria categorize cancer into two main subtypes,
the intestinal and diffuse types of adenocarcinomas, and it is mostly used as it provides
information on the clinical management and outcome of the disease [17]. The WHO classifi-
cation system histologically classifies the types into mucinous, papillary, tubular, poorly
cohesive carcinomas, and other rare or mixed histological types such as Paneth cell and
mixed adeno-neuroendocrine carcinomas [18]. However, regardless of the use of these two
systems, recurrence of the disease still occurs in more than 70% of the patients, with more
than 80% of them dying within two years following curative surgery [19].

Gastric cancer was initially classified using pathohistological and anatomical charac-
teristics, however, these were ineffective in guiding therapy with minimal improvement in
disease outcome over time. Clinical and molecular features seem to be more promising in
guiding the choice of effective treatment. Molecular subtypes are identified mainly by using
genomics. In 2011, Tan et al. introduced genomic intestinal (G-INT) and genomic diffuse
(G-DIF) subtypes with distinct histology, gene expression patterns, biological pathways,
and prognosis [20]. These subtypes are somewhat associated with Lauren’s classification.
This is owed to the inherent clinically heterogeneous nature of the disease on account of
the varying molecular characteristics of cancer cells [21]. Thanks to the next generation se-
quencing (NGS) technology, the molecular principles and large amounts of cancer genetics
data can be explored, enabling us to identify novel targets for precision medicine as cancer
subtypes get unfolded. Table 1 shows the different types of GC molecular classifications,
associated genes, and the prognosis of each type. As more data is obtained, the classifi-
cation of GC will be more precise, and personalized therapy will be better guided. This
review provides evidence of the contribution of the microbiome in GC carcinogenesis and
progression. The inclusion of the microbiome as part of the therapeutic intervention more
in particular by taking into consideration the type of pathogen implicated in carcinogenesis
is suggested, thus aiding in biomarker and therapy designs.
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Table 1. Different types of GC molecular classifications.

Classification Subtypes Prognosis Associated Genes Ref.

Intrinsic subtypes
G- INT Better overall survival FUT, LGALS4, CDH17

[20]
G-DIF Poor AURKB, ELOVL5

Lei subtypes

Proliferative

Short disease-free
survival

TP53

[22]Metabolic TP53

Mesenchymal TP53

TCGA

EBV- positive Best PIK3CA, JAK2,
PD-L1/2, BCOR

[23]MSI
Moderate with no

adjuvant
chemotherapy response

PIK3CA, ERBB2/3, EGFR,
PD-L1, MLH1, TP53

GS Worse CDH1, RHOA

CIN Moderate SMAD4, APC, TP53

ACGA

MSI- high Best with lowest
recurrence frequency

ARID1A, MTOR,
KRAS, PIK3CA, ALK, PTEN

[24]

MSS/EMT Worse with highest
recurrence frequency CDH1

MSS/TP53+ Moderate APC, ARID1A, KRAS,
PIK3CA, SMAD4

MSS/TP53- Moderate
ERBB2, EGFR, CCNE1,

CCND1, MDM2, ROBO2,
GATA6, MYC

Combined TCGA
and ACRG

EBV- positive Best PIK3CA, JAK2,
PD-L1/2, BCOR

[25,26]

MSI- high Best with lowest
recurrence frequency

ARID1A, MTOR,
KRAS, PIK3CA, ALK, PTEN

GC with aberrant
E-cadherin * *

GC with aberrant p53
expression * *

GC with normal p53
expression * *

CIMP

CIMP-H * EBV-associated

[27–31]CIMP-L * *

CIMP-N Worse survival *

Abbreviations: genomic instability (G-INT), genomic diffuse (G-DIF), chromosomal instability (CIN), genomic
stable (GS), microsatellite instability (MSI) and Epstein- Barr virus (EBV), microsatellite stable/epithelial-
mesenchymal transition (MSS/EMT), CpG island methylator phenotype-High/Low/Negative (CIMP-H/L/N),

not clearly established (*), increased ( ) and decreased ( ) mutations.

3. The Link between Gut Microbiome and Gastric Cancer Risk Factors

One of the proposed cancer prevention strategies is risk factor (RF) reduction. Treat-
ment of the underlying RF can therefore reduce the risk of developing cancer or aid in
the treatment of cancer resulting from RF predisposition. A systemic review by Yusefi
et al. reported a total of 52 GC RFs which were identified and classified according to 9 cate-
gories influenced by familial genetics, lifestyle, environment, medication, and exposure
to toxins [32]. These categories can be further grouped into two sub-categories; genetic
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and modifiable, with genetic factors being hereditary while modifiable ones are acquired
through lifestyle and can be changed. The most common RFs for GC include Helicobacter
pylori (H. pylori) infection, metabolic syndrome, an increased salt intake with a diet low in
fiber, as well as male gender (two-fold increase in males than females) [1,4,33–35]. Although
GC is more common in males, some subtypes such as the MSI and CIMP-H tumors are
more prevalent in females [23,28,29]. It was initially thought that GC affects people of an
older age (50 to 70 years), however recent findings show an increased incidence in younger
individuals [36,37]. The modifiable RFs often lead to epigenetic alterations, and examples
of these include toxins, diet, obesity, infection, etc. [38]. Figure 1 shows how various RFs
can lead to GC.

Figure 1. The main risk factors for gastric cancer. Environmental factors influence the gut microbiome
and can lead to dysbiosis, one of the main causes of tumorigenesis. H. pylori infection is a shared
risk factor between gastric cancer and diabetes, with diabetes being a risk factor for gastric cancer
on its own. Similarly, Fusobacteria are a common risk factor for obesity and gastric cancer, with
obesity on its own being a risk factor for gastric cancer. Created with BioRender.com. (accessed on
20 September 2022).

3.1. Obesity

The International Agency for Research on Cancer (IARC) regards obesity as the second
leading cause of cancer after smoking [39]. About 3–9% of all cancers are approximated
to stem from obesity, and GI cancer with obesity origin has the worst prognosis [40,41].
One of the risk factors for obesity includes a high fat and sodium diet, which alters the
gut microbiota composition, resulting in gut microbial dysbiosis [42]. Dysbiosis regulates
the susceptibility and initiation of many gut malignancies [43]. Kim et al. found that
Fusobacterium was enriched in fecal samples of metabolically unhealthy overweight and
obese individuals [44]. This shows that bacteria are a common RF in obesity and GC.

3.2. Diabetes

Diabetes is considered an important contributing factor in GC development, and
it is postulated that this is due to shared RFs. These include obesity, a higher infec-
tion/reinfection rate, and a lower eradication rate of H. pylori, as well as the chronic
use of medication [45]. Additionally, increased salt intake may cooperate with H. pylori
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infection in the induction of GC and progression. However, a 2022 metanalysis showed no
association between diabetes and GC risk in the grading of H. pylori infection and other
shared RFs [46]. The authors concluded that diabetes may be associated with excess cardia
GC risk.

3.3. Acid Reflux-Related Disorders

Several studies have indicated the association between gastroesophageal reflux disease
(GERD) and GC [47–50]. The overall 5-year survival rate of gastric cardia adenocarcinoma
is reported at approximately 31% [51]. Two subtypes of gastric cardia cancer exist; one with
GERD origin and the other associated with atrophic gastritis [52]. Misumi et al. defined
gastric cardia carcinoma as “a lesion with its center located within 1 cm proximal and
2 cm distal to the esophagogastric mucosal junction” [53]. In a study by Ye et al, it was
reported that the risk of developing gastric cardia adenocarcinoma persisted following
anti-reflux surgery [50]. This shows that GERD can lead to long-term effects on the stomach
mucosa. Some of the risk factors of GERD are obesity and a diet low in fibre, which can
have an effect on the gut microbiome [54]. Generally, acid reflux is linked to gut microbiome
dysbiosis [55]. A retrospective study by Polat and Polat reported that 82.5% of 1437 GERD
patients had H. pylori infection with 1–3 severity score [56], bearing in mind that H. pylori
infection is a common RF for GC and GERD.

3.4. Chronic Infection and Inflammation

Infection with pathogenic microbiota leads to the upregulation of inflammatory mark-
ers such as cytokines and other secretory proteins. Cytokines such as tumor necrosis factor
(TNF), interleukin- 1 (IL-1) and IL-6 expressed within the TME induce cell invasion, metas-
tasis, angiogenesis, growth, and anti-apoptotic effects [57–59]. Colonization of H. pylori in
the stomach leads to chronic inflammation via the activation of Wnt/β-catenin and other
pathways that get activated by the bacteria’s virulence, which further permits the bacteria
to survive and thrive in the gut [60,61]. The Wnt/β-catenin signaling pathway is crucial
in modulating key cellular processes contributing to carcinogenesis, such as apoptosis,
metastasis, proliferation, and genetic stability [62]. Moreover, Wnt/β-catenin has been
implicated in pancreatic cancer chemoresistance [63].

The H. pylori commonly infects the stomach, leading to chronic diseases such as peptic
ulcer, gastritis, and gastrointestinal (GI) cancers such as GC. The stomach’s naturally acidic
environment assists in preventing infection by pathogens. The H. pylori bacteria can maneu-
ver this acidic environment and alter the overall profile of the gastric microbiome [64,65].
There are three mechanisms that the bacteria utilize to alter the GI microbial profile to favor
their survival [66]. This includes the employment of enzymes such as ureases which help
the bacteria to buffer the acidic pH of the stomach [67]. Secondly, the H. pylori infection ef-
fects changes on the cell cycle of gastric epithelial cells, resulting in the elevated expression
of p21 and p53 proteins and leading to gene mutations [68,69]. In addition, the infection can
lead to abnormal molecular signaling pathways [27]. According to Rossi et al., genomics
and proteomics cannot be used to monitor response to therapy [70]. However, a study by
Goodman et al. provided evidence that cell-free DNA (cfDNA) can be used to monitor
response to chimeric antigen receptor T-cell (CAR-T) therapy in patients with a certain
type of B-cell lymphoma [71]. Similarly, the Lewis protein CA-19 is routinely used as a
gold standard marker for monitoring response to pancreatic cancer therapies [72,73]. The
potential of these “omics” in the area of therapeutics is limited and not well understood.

Gram-negative bacteria including H. pylori are highly resistant to numerous drugs
and antibiotics due to the protection provided by their outer membrane [74]. The chronic
inflammatory response induced by H. pylori predisposes the mucosal cells to carcinogenesis.
In a prospective, double-blind, placebo-controlled, randomized trial published in 2018
by Choi et al., it was observed that GC patients who had either endoscopic resection of
early GC or high-grade adenoma, after receiving H. pylori ablation therapy, had lower
metachronous GC rates compared to their counterparts who received a placebo [75]. Later
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on, the same team conducted a randomized trial that was published in 2020 where they
evaluated the treatment of H. pylori in first-degree relatives of GC patients [76]. Their results
showed that the treatment lowered the risk of developing GC by 55% when compared to
the placebo group. Moreover, the risk of developing GC was lowered in 73% of participants
who were confirmed for H. pylori ablation than those who had persistent infection of
the bacteria. These results confirm the potential use of RFs as therapeutic targets for
cancer therapy.

The H. pylori bacteria initiates GC by causing the DNA to replicate faster due to
the chronic inflammation incited by the organism, and this leads to mutagenesis and
genomic instability. Inflammation is a hallmark of cancer which plays a key role in all
three carcinogenesis stages [77]. The virulence factors of H. pylori, such as the cytotoxin-
associated gene A (cagA), are responsible for its chronic inflammation properties. CagA
functions as an oncoprotein and can trigger MAPK signaling of host cells, leading to
persistent inflammation and uncontrollable proliferation [27]. Additionally, the MAPK
pathway is responsible for chemoresistance in pancreatic cancer and GC cells [78,79]. It is
postulated that cagA travels through the type IV secretion systems (T4SS) upon contact
with the host cell and this triggers the endocytosis of the protein (Figure 2) [80]. The protein
can activate the MAPK/ERK pathway in two ways: by direct binding in a phosphorylation-
independent state or through recruiting the phosphatase SHP2 [81,82]. The SHP2 protein
plays a crucial role in the pathologic activity of cagA and can independently modify ERK
signals autonomous of Ras [8].

Figure 2. Activation of RAS/RAF/MEK/ERK pathway by H. pylori cagA oncoprotein. Upon
contact with the gastric epithelial cell membrane, the bacteria’s T4SS system releases cagA through
a channel, and this triggers endocytosis, a process where proteins get engulfed into the cell. In
the phosphorylation dependent pathway c-Src, tyrosine kinase phosphorylates cagA, followed
by SHP2 phosphatase cleavage of the phosphate groups from cagA. This leads to downstream
activation of the RAS/RAF/MEK/ERK signal transduction pathway which favors tumorigenesis.
The phosphorylation independent pathway is the PI3K/Akt/mTOR, which gets activated by cagA
and results in products that induce tumorigenesis. Created with BioRender.com. (accessed on
27 September 2022).
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The MAPK/ERK is also known as the RAS/RAF/MEK/ERK signaling pathway and
plays a major role in regulating cell differentiation, proliferation and survival. This pathway
is interlinked with the PI3K/Akt/mTOR pathway and can cause compensatory signal
transduction in cases where the other is compromised [83]. The coupled inhibition of
the two pathways has been effective in tumor stasis and overcoming drug resistance of
GI tumor cells [84,85]. An elevated expression of the Ras protein is positively associated
with increased Akt protein levels. Thus, PI3K/Akt/mTOR is an alternative pathway to
Ras/Raf/MEK/ERK for EGFR signaling [86]. This may affect the efficacy of anticancer
treatment, and therefore this must be considered when developing novel anticancer thera-
pies. The bacteria can also initiate GC through aberrant DNA methylation, which will be
discussed in more detail later in the review. Moreover, the expression of DNA mismatch
repair (MMR) genes MutS and MutL are decreased in H- pylori-positive gastric mucosa [87].

The antibiotic metronidazole functions by interacting with the DNA of the target
organisms (Gram-negative bacteria) breaking down DNA strands and causing the loss of
DNA integrity and the ultimate inhibition of protein synthesis [88]. Metronidazole gets
activated upon reduction by the protein ferredoxin (Figure 3). The concentration gradient
created upon reduction increases the diffusion of metronidazole into the bacterial cell and
cytotoxic free radical generation [88]. The drug has been shown to be successful in treating
H. pylori; however, the bacteria has evolved to be resistant to it and can only be effective
when in combination with esomeprazole and amoxicillin [89,90].

Figure 3. Metronidazole’s mode of action. The inert drug enters susceptible bacterial cells through
passive diffusion. Metronidazole is activated through its reduction by ferredoxin. Upon activation
of the drug, a concentration gradient is formed, and this favors the increased uptake of the drug
into the organism, thus elevating its antimicrobial effect. DNA damage subsequently leads to
protein synthesis inhibition and consequent apoptosis. Created with BioRender.com. (accessed on
27 September 2022).

Another type of Gram-negative bacteria, Fusobacteria, is considered a RF for GC. The
Fusobacterium spp., predominantly F. nucleatum, are frequently found in abundance in GC,
pancreatic and colorectal tumors compared to non-cancerous tissues [43,91,92]. F. nucleatum-
positivity has been linked to overall worse survival in Lauren’s diffuse type of GC and
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MSI-high status of colon cancer [91,93]. It is therefore safe to assume that F. nucleatum
predisposes individuals to the MSI-high subtype of GC. Just like H. pylori, Fusobacteria
can be eradicated with metronidazole therapy. The bacteria is known to be highly sensitive
to the drug [94]. Apart from bacteria, other viruses such as Epstein-Barr virus (EBV),
which is sometimes referred to as human herpesvirus 4 (HHV4), raises the risk of GC by a
factor of 18 times and the EBV-associated GC (EBVaGC) is observed more in males than
in females [95]. EBVaGC contributes to approximately 10% of all GC cases worldwide
and is more common in the early stages of the disease [96]. Other viruses with potential
association with GC include the human papillomavirus (HPV), hepatitis B virus (HBV),
John Cummingham virus (human polyomavirus 2) and human cytomegalovirus [97]. More
research on these viruses is required to determine their role in GC pathogenesis.

4. Other Microbes Implicated in GC Pathogenesis

Carcinogenesis describes the process of cancer formation which stems from irreversible
genetic alterations or interruptions due to internal and external factors. It is a multistage
molecular process involving (i) initiation, (ii) promotion and (iii) progression [98,99]. The
microbes can either directly affect the cells and lead to carcinogenesis or tamper with the
body’s cellular pathways to support its growth and sustainability. The gut microbiome,
which is also known as the human second genome, plays a major role in the pathogenesis
of GI cancers including colorectal, pancreatic, liver and gastric [43,100–102]. Bacterial
and viral pathogens negatively influence the host’s genomic stability and integrity by the
destruction of DNA strands, thereby initiating tumor development [103]. Approximately
95% of the human body’s microbiota resides in the gut and the microbes generally assist in
maintaining the balance between health and disease [104]. There appears to be microbiome
dysbiosis in most cancers, and this has been found to aggravate tumorigenesis. Although
the microbiome is implicated in a number of cancers, the exact mechanisms by which they
lead to cancer is still controversial. This is due to the low biomass of the microbiota in
the TME, making it challenging to study them further [105]. Thanks to omics studies, this
challenge can be overcome, as they shed light on the role of the gut microbiome in cancer
pathology, prevention, and therapy [106].

4.1. The Boas-Oppler Bacillus

The lactic acid bacillus (lactobacillus), which is commonly called the Boas-Oppler
Bacillus, dates back to 1895 when Izmar Isidor Boas and Bruno Oppler described the role of
these Gram-positive bacteria in GC [107]. In their study, the researchers discovered that the
bacillus was present in abundance in the gastric juices of 95% of GC individuals included in
the study. This has been observed to be common, especially in patients with an advanced
stage of the disease [108]. Lertpiriyapong et al. reported that infection of insulin–gastrin
(INS-GAS) transgenic mice with L. murinus ASF361 led to the development of gastric
neoplasia via the upregulation of oncogenes and pro-inflammatory genes [109]. Lactobacilli
produce lactic acid/lactate which plays a huge role in the Warburg effect, a hallmark of
cancer. Additionally, the Lactobacilli play a role in the production of excessive amounts
of N-nitroso compounds (NOCs), which are carcinogenic and predispose H. pylori-free
individuals to GC [110,111]

4.2. Mycoplasma

The study of the role of mycoplasma infection in cancer development dates way back
to the 1950s [112]. They are Gram-negative bacteria that belong to the class Mollicutes [113].
The bacteria are commonly known for causing infections of the ear, respiratory system,
lungs, urogenital tract and also to cause sexually transmitted infections (STIs) [114]. The
well-studied pathogenic species include Ureaplasma urealyticum, M. fermentans, M. penetrans,
M. hominis, M. genitalium, M. pneumoniae, M. hyorhinis, etc. The M. hyorhinis species is
implicated in the development of GC [7,112,115–117]. Although mycoplasma have been
detected in GC biopsies, the infection is not considered a RF for the disease [118]. Research
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has shown that mycoplasma cause inflammation, which instigates cancer initiation and
progression [119,120].

A p37 lipoprotein located on the outer membrane of M. hyorhinis has been proven to
play a key role in tumorigenesis [116,121,122]. The p37 protein heightens the expression
of inflammation-associated genes such as vascular cell adhesion molecule 1 (Vcam1), IL-6,
IL-1, and lipocalin 2 (LCN2) [119]. Additionally, p37 promotes cell invasiveness by blocking
contact inhibition, and this has been observed in melanoma, gastric and prostate carcino-
mas [116,121,122]. Gong et al. demonstrated that p37 promotes the metastasis of human
GC and lung cancer cells through the activation of matrix metalloproteinase-2 (MMP-2) and
EGFR/PI3K/AKT/ERK pathways [7]. Another mechanism by which the mycoplasma pro-
motes metastasis is via the accumulation of β-catenin and the activation of its Wnt signaling
pathway [121,123]. Moreover, metastasis in GC by M. hyorhinis can be initiated through
activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) [10]. The
NLRP3 is an inflammasome critical in caspase-1 modulated inflammation in response to
pathogenic organisms [124]. Because these organisms lack peptidoglycan and are Gram-
negative, this makes them extremely resistant to antibiotics [114]. The M. hyorhinis infection
has been linked with the diffuse-type GC with a higher infection rate in advanced stages
(TNM III/IV) than in earlier stages of the disease [117]. On the other hand, M. hyorhinis can
cause chronic infections which induce chromosomal instability, and one can classify this
under the TCGA CIN subtype of GC [10,23]. The age group of GC patients who are more
likely to be infected with mycoplasma is the elderly [117].

5. Compounds Linked with GC Induction
5.1. Contribution of Microbes in Asbestos-Induced GC

Amosite, actinolite, chrysotile, anthophyllite, crocidolite, and tremolite are the six
types of asbestos of which chrysotile (white asbestos) is the most abundant (99%) and is
also exceedingly hazardous and lethal [125,126]. However, this does not mean that the
other types are less harmful, as they also possess toxicity to some extent [127]. The link
between asbestos and GI cancers was first demonstrated by Selikoff et al. in 1960, then
in 2012, a review by Kim et al. reported that among all GI cancers, GC is the one that is
greatly linked with asbestos exposure [128,129]. Oksa et al. summarized the association
between GC and asbestos exposure and concluded that the risk of developing GC is
directly proportional to asbestos exposure with the risk ranging from 15% to 20% [130].
In a study by Patel-Mandlik and Millette, an olive baboon that was fed chrysotile was
discovered to have asbestos fibers deposited in its stomach while other pieces were able to
relocate to most neighboring tissues except for the small intestine [131]. This shows that
the fibers cannot be digested and can remain in the stomach for longer periods of time
before their excretion [132]. Because of its strength and chemical properties, the material
does not get digested or broken down, and the exposure elicits scarring and irritation,
resulting in inflammation of the tissue [132]. Data shows that prolonged asbestos exposure
leads to chronic inflammation and cellular stress, which activates the MAPK pathway and
related transcription factors leading to immune response gene expression [133]. The gut
microbiome plays a vital role in modulating immune homeostasis and GC inflammation.
However, its association with asbestos in cancer is poorly reported.

Stanik et al. evaluated the ability of L. casei and L. plantarum to biologically break down
white asbestos fibers [134]. The bacteria were successful due to their ability to produce lactic
acid, which contains hydrogen ions that can remove magnesium ions from the crystalline
structure of the asbestos fibers. A study by Seshan showed that when chrysotile is exposed
to strong acids like those of the stomach or water, the physical and chemical properties of
the asbestos change as the magnesium is lost from the asbestos [135]. There is evidence
that shows that L. plantarum is capable of preventing H. pylori-induced inflammation of the
gastric mucosa and restores balance to the gut microbiome, which is altered during such
an infection [136]. Pretreatment with these bacteria was able to slow down the expression
of inflammatory cytokines and cell infiltration. Similarly, L. casei has an anti-cancer effect,
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as it is able to inhibit the mTOR and NF-kB signaling pathways, thereby leading to the
cellular apoptosis of GC cells [137]. Figure 4 shows how L. casei and L. plantarum could
potentially prevent GC carcinogenesis. From this information, we can deduce that these
two Lactobacilli species can be used to aid in the treatment of GC, more in particular one
with an asbestos origin.

Figure 4. The role of microbiota in asbestos-induced GC.

Asbestos fibers can be ingested and pass through the esophagus and lodge into the
stomach lining. These fibers do not pass through to the small intestines where they could
possibly go through the process of excretion but remain in the stomach long enough to
induce GC.

(A) L. Plantarum has the ability to block H. Pylori-induced inflammation that is associated
with GC development.

(B) L. Casei bacterium downregulates pro-oncogenic signaling pathways (NF-kB and
mTOR) thus inhibiting cancer development and progression.

(C) This pair of bacteria can alter the chemical and structural properties of white asbestos
by the removal of magnesium ions, a process that could be explored as preventative
therapy in individuals exposed to asbestos fibers or as therapeutic intervention in
asbestos-induced GC.

5.2. Enterobacteriaceae and Nitrosamines Production

Nitrosamines are carcinogenic N-nitroso compounds which can nest in the stomach
and are produced when amines react with nitrites. They can either be ingested as an outside
source or produced from ingested food with the help of certain bacteria [138]. Foods that
contain nitrites include processed meats, fish, fried bacon, beverages, and cheese [138].
Cigarettes and E-cigars also release some nitrosamines called tobacco-specific nitrosamines
(TSNAs) when inhaled and can result in DNA damage and mutagenesis [139]. Exposure
has been correlated with GC RFs such as diabetes and pathogenesis to the mammary
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glands, leading to breast cancer [140–142]. In breast cancer TSNAs actively bind nicotinic
acetylcholine receptors (nAChRs), activating its signaling pathways. The alpha7 receptor
(α7nAChR) is an oncoprotein that plays a role in both the initiation and progression stages
of breast cancer carcinogenesis [143]. The estrogen receptor-positive type of breast cancer
carcinoma has been shown to express the α7nAChR in high levels [143]. Nitrosamines have
been reported in lung cancer as activators of the NF-kB and PI3K/AKT signaling pathways,
which are pivotal in cell proliferation [144].

There is a positive correlation between ingestion from nitrosamine sources and
GC [145–147]. The nitrosamine hypothesis dates back to the 1950s and paved the way
for research investigating the role of the gut microbiome and GC until the focus shifted
towards H. pylori’s role in chronic inflammation. Nitrate reductases are secreted by Gram-
negative bacteria called Enterobacteriaceae. These enzymes catalyze the conversion of nitrate
to nitrite [148]. These bacteria play a key role in nitrosamine production in the gut. In
a study by Sarhadi et al., Enterobacteriaceae was found to be abundant in fecal samples
of different GC types [149]. Similar findings were reported by Liu et al., who detected
Escherichia and Streptococcaceae in abundance in GC patients [150]. Qin et al. reported an
abundance of Enterobacteriaceae in diabetic patients, one of the risk factors of GC [151].

6. The Role of the Gut Microbiome on the Epigenomics of GC

Since the human genome coexists with the gut microbiome it is only fitting that a
form of crosstalk exists between the two genomes in order to maintain homeostasis [152].
The metabolites released by certain gut microbiota have regulatory effects that induce
epigenetic modifications, thereby influencing gene expression. Although it is not yet clearly
understood how these metabolites modify host gene expression, metabolites produced by
gut microbiota including biotin, short-chain fatty acids (SCFAs), amino acids, etc., have
been implicated in these alterations. It is worth noting that metabolic reprogramming
and epigenetic remodeling are closely linked hallmarks of cancer and mutually regulate
each other [153]. Epigenetic alterations appear phenotypically and do not originate from
changes in the DNA sequence [154]. These alterations can be trans-generationally inherited,
and genes involved in oncogenic pathways are often affected by epigenetic modifications
rather than mutations [155]. The alterations begin to occur during the preliminary stages of
tumorigenesis and are potential therapeutic targets for GC as they are more specific [156].

Although epigenetic changes can be reversed, prolonged exposure to epigenetic alter-
ing agents that lead to the retention of a gene regulatory protein often result in permanent
changes [157]. In the case of H. pylori, a form of class I carcinogen can potentially induce
carcinogenesis through epigenetic modifications in the form of hypermethylation-silencing
of numerous tumor suppressor genes (TSGs) [158]. TSGs’ aberrant DNA methylation as
a result of H. pylori infection takes place on the promoter CpG island, and this represses
the transcription of corresponding downstream genes which may result in irreversible
TSG inactivation [159]. Similarly, EBV-positive GC has the CpG island methylator phe-
notype [160]. A study on gerbils showed that GI cancers could possibly be prevented
by suppressing DNA methylation induction [161]. Infection with the HBV increases the
risk of developing GC, especially in patients without familial history of the disease [102].
Infection with this virus affects the methylation of a number of TSGs including p16 and
lead to uncontrollable cellular proliferation [13]. Chronic infection with HBV can also lead
to irreversible methylation. There has not been much reported on the effect of HBV treat-
ment in GC patients, and more studies are needed to further explore this area of research.
Figure 5 indicates how epigenetic-involved infection with the above-mentioned pathogens
can result in tumorigenesis.
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Figure 5. Summary of the effect of CpG island methylation as a result of pathogen infection.
(A): Pathogens come into contact with the infected host cell, leading to events that cause hyper-
methylation of the CpG island to occur. Methylation of CpG islands of the promoter results in TSG
silencing and uncontrolled cell proliferation, thus inducing gastric cancer. “X” represents the inhibi-
tion of TSG activation. (B): In the absence of pathogens, normal methylation takes place. Cell division
is under surveillance as normal transcription continues and TSGs are expressed. Me - methylation,
TSG - tumor suppressor gene. Created with BioRender.com. (accessed on 27 September 2022).

7. The Effect of Proton Pump Inhibitors on the Gut Microbiome

Accumulating evidence shows that prolonged use of proton pump inhibitors (PPIs)
increase the risk of developing GC [162–164]. The PPIs are generally used to treat acid
reflux related disorders, GERD, peptic ulcers, Zollinger-Ellison syndrome (ZES), pancre-
atitis, and esophagitis [165–167]. Most of the above-mentioned diseases are RFs of GC,
thus supporting the potential link between prolonged use of these drugs and their con-
tribution to GC carcinogenesis. The mode of action for PPIs is to block gastric hydrogen
potassium ATPase in an acidic environment [168]. In the process, these inhibitors cause gut
microbiome dysbiosis via gastric-acid suppression, indulging the profusion of pathogenic
bacteria [55,163].

8. Gut Microbiome in Metabolic Rewiring

Metabolomic data shows that there is a link between the metabolic and epigenetic
mechanisms and that these mechanisms are differentially regulated in normal and ma-
lignant cells due to their intrinsic metabolic variances [169]. The gut microbiome is a
key regulator of metabolism, which means dysbiosis can disrupt homeostasis and lead
to metabolic rewiring. Metabolic rewiring forms part of the hallmarks of cancer and is
crucial for tumors as they require increased amounts of energy to supply cells that are
constantly growing and proliferating at an increased rate. Reprogramming is made possible
through dysbiosis, the stimulation of oncogenes, and mutated metabolic enzymes [170].
The key pathways involved in this rewiring include mitochondrial biogenesis, glutaminoly-
sis, anaerobic glycolysis, lipid metabolism, and other biosynthetic pathways, most of which
are regulated by specific bacteria [171].

Normal cells generally utilize oxidative phosphorylation (OXPHOS) to generate ATP
for the energy required for cellular function, whereas cancer cells depend on anaerobic
glycolysis, an observation termed the Warburg effect. Just as in other tumors GC exhibits the
Warburg effect, a phenomenon whereby tumor cells display an increased uptake of glucose
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and its conversion to lactate through glycolysis in the cytoplasm instead of traditional
OXPHOS in the mitochondria [172]. OXPHOS and glycolysis are interlinked and cooperate
to maintain energetic homeostasis; however, for a long period of time, it was believed
that carcinogenesis leads to the permanent impairment of the mitochondrial OXPHOS,
automatically switching cancer cells to the glycolytic pathway [172,173]. This metabolic
alteration affects the availability of a number of metabolites including acetyl-CoA. The
tumorigenic effect of glycolysis is that it enables tumor cells to limit the availability of
glucose on the TME and this impairs immune cells’ function against the tumor [174]. An
enzyme called pyruvate kinase M2 (PKM2) which catalyzes phosphoenolpyruvate (PEP) to
pyruvate in the rate-limiting step of glycolysis is very crucial in cell metabolism and the
Warburg effect. The dimeric PKM2 is a trait that all proliferating cells have in common and
favors lactate production in tumor cells, and is highly oncogenic [175].

Short-chain fatty acids are metabolites of bacteria that play a vital role in gene reg-
ulation, and the most common ones are acetate and butyrate. The Warburg effect can be
reversed by a phenomenon called the “Butyrate Paradox”, where cancer cells switch from
glycolysis to OXPHOS upon butyrate exposure. Certain types of healthy gut microbiota pro-
duce the beneficial compound butyrate through anaerobic fermentation of high-fiber foods.
The bacteria known to produce butyrate include Eubacterium, Clostridium, Ruminococcus
and Coprococcus [176]. There is a lack of data on studies comparing the quantity of these
bacteria in GC patients and their healthy counterparts. This information might be useful in
determining if GC might result as a consequence of their deficiency.

A study by Bouwens et al. showed that a high-fiber diet effectively lowered the risk
of colon cancer [177]. Mounting evidence indicates that the activity of metabolic enzymes
including PKM2 in colon cancer are altered through the direct binding of butyrate, con-
sequently reversing the Warburg effect and enhancing chemotherapy [169,178]. Butyrate
binding inhibits the phosphorylation of the PKM2 enzyme and encourages its tetrameriza-
tion (Figure 6). In cancer cells, butyrate accumulates as a result of the Warburg effect, as
these cells depend on glucose as their main source of energy. Accumulated butyrate func-
tions as a histone deacetylase (HDAC) inhibitor, which terminates cell cycle progression
through altered gene expression, and this enhances the response to chemotherapy [179].

Figure 6. The anti-cancer effect of butyrate. Butyrate molecules are produced through the fermentation
of fiber by bacteria. The molecules accumulate in cancerous gastric epithelia as the Warburg effect
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addicts these cells to the glucose metabolism and the increased production of lactate. Lactate triggers
events that lead to VEGF upregulation, subsequently leading to cancer progression. Butyrate helps
fight off cancer through the Butyrate Paradox phenomenon in two ways: (1) by travelling to the
nucleus where it functions as a HDAC inhibitor which terminates cell cycle progression through
altered gene expression; and (2) by reversing metabolism from anaerobic glycolysis to conventional
OXPHOS through binding PKM2, altering it to a more active dephosphorylated tetrameric form.
This favors energy production through the Krebs cycle. VEGF—vascular endothelial growth factor,
HDAC—histone deacetylase. Created with BioRender.com. (accessed 27 September 2022).

9. Gut Microbiome and its Products in Gastric Cancer Therapy
9.1. Bacteriotherapy

Bacteriotherapy is a promising field of cancer therapy that utilizes genetically mod-
ified bacteria, or a live but weakened form, as well as bacteria-derived substances or
particles such as peptides that have anticancer properties [180]. Bacteriocins are secondary
metabolites in the form of peptides released by bacteria such as the Lactobacilli and have
antibacterial properties which inhibit the growth of other bacteria [181]. These metabolites
can be divided into four categories; class I (mw: <5 kDa) which are also known as lantibi-
otics, class II (mw: <10 kDa) which are thermostable, class III (mw: >30 kDa) which are
heat-labile and able to disrupt cell membranes, and lastly class IV, which consists of proteins
with lipid or carbohydrate components [182]. Bacteriocins are effective in inhibiting the
growth of antibiotic-resistant strains as well as pathogenic bacteria, thus maintaining gut
homeostasis [183,184]. This is not the only anti-cancer trait that these peptides have. They
can also induce cytotoxicity and apoptosis, making them attractive for cancer therapy.
Ou et al. hypothesized that an increase in colorectal cancer risk is due to the disproportion
of the health-promoting and carcinogenic metabolites [185]. This might be true for all GI
cancers, as they are all influenced by metabolism.

9.2. Butyrate-Based Therapy

Sodium butyrate is capable of inducing GC cell apoptosis through the elevation of
death-associated protein kinase (DAPK1/2) and caspase 3 expression, and depression of
Bcl-2 [186]. Panebianco et al. showed that butyrate supplementation heightens kidney
and liver damage markers, as well as inducing apoptosis and inhibiting cell growth of
pancreatic cancer cells both in vitro and in vivo [187]. As previously mentioned, butyrate
can actively bind the PKM2 enzyme and reverse the Warburg effect (Figure 6). In a study
by Geng et al., treatment of colonocytes with butyrate was able to increase the efficacy of
chemotherapy and repair DNA synthesis [178]. Another molecule that has the same effect
on PKM2 as butyrate is the heat shock protein 40 (HSP40) chaperone. This novel discovery
was made by Huang et al., where HSP40-PKM2 binding resulted in the downregulation of
the PKM2 protein levels and in turn regulated glucose metabolism by inhibiting glycolysis
and cancer cell development [188].

Wang et al. investigated the role of PKM2 in GC, and it was discovered that there is an
overexpression of the protein in GC patients and that this overexpression was linked to
poor prognosis and clinicopathologic parameters of the disease [189]. In the same study,
the in vitro and in vivo knockdown of PKM2 displayed inhibition of tumor progression
in GC cell lines and xenograft mice, respectively. Additionally, their results showed that
when PKM2 is treated with short hairpin RNA (shRNA) which gets processed to small
interfering RNA (siRNA), one of the pillars of epigenetic modifications halts tumor growth
and progression, along with cell migration and proliferation. Various studies showed
that PMK2 expression’s impediment by shRNA elevates the sensitivity of tumor cells to
treatment with docetaxel, and that cells with silenced PKM2 were more prone to undergo
apoptosis [88,190,191].
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9.3. F. Nucleatum as Potential Therapeutic Target

Postoperative adjuvant chemotherapy is often administered to lower the risk of cancer
recurrence. F. nucleatum infection persists post-neoadjuvant chemoradiotherapy (nCRT) in
colorectal cancer, and this is linked to high relapse rates, which is a major cause of tumor
recurrence [9]. Yu et al. demonstrated that F. nucleatum promotes chemoresistance by regula-
tion of autophagy through loss of miR-18a* and miR-4802, and this loss is influenced by the
activation of the TLR4/MYD8 [192]. The TLR4/MyD88 pathway leads to the downstream
activation of the NF-κB pathway, which plays a substantial role in cancer development and
progression [193,194]. In addition, the authors suggested that the quantity of F. nucleatum
be determined for individual patients so that the regimens could be personalized and given
in combination with chemotherapy [192]. The F. nucleatum bacterium therefore plays an
important role in cancer prognosis. An ongoing interventional study in Shanghai, China
has enrolled 294 colorectal cancer patients in postoperative stages II/III [195]. They aim to
use oral metronidazole to reduce the abundance of F. nucleatum in patients having a high
bacterial count of the organism to explore whether the drug can improve the potency of
postoperative chemotherapy in patients with colorectal carcinoma. An additional study
on metronidazole was a clinical proof-of-concept interventional study in Zealand, Den-
mark [196]. This study was based on the observation that F. nucleatum-positive xenograft
mice displayed decreased tumor load and intratumoral profusion of the bacteria following
oral administration of metronidazole [197]. Their study explores the effect of combining
fosfomycin with metronidazole for the treatment of colon biofilms and adenomas. A few
studies have shown that biofilm formation and F. nucleatum are mostly linked to right-sided
colon cancers and adenomas [198,199].

9.4. Anti-Mycoplasma Therapy

Inhibitors of MMPs, ERK have been proven to block the p37-induced invasion in GC
cells, and this can be manipulated for potential therapy in M. hyorhinis patients [7]. Either
treatment of GC cells with the β-catenin inhibitor XAV939 or its knockdown was able to
halt metastasis and therefore these could further be explored for the treatment of GCs [121].

9.5. CRISPR/Cas9

Genomic therapeutic clinical trials that are ongoing include clustered regularly in-
terspaced short palindromic repeats (CRISPR), which have the ability to move us from
hype to reality by providing insight into essential therapeutic gene targets, mechanisms
of tumorigenesis, and to allow provocative studies in drug resistance [200,201]. CRISPR
makes up the genomic editing system and the hallmark of the native bacterial defense
mechanism which has been adapted in cancer immunotherapy [202–204]. Accidentally
discovered by Ishino and his colleagues in the 1980s, the CRISPR is made of two genetic
units, CRISPR loci which contain spacers and repeats, and operons of cas genes [202,205].
The CRISPR/Cas9 system is categorized into two classes (I and II) and the well-known
CRISPR/Cas9 forms part of the type II of class II which has a relatively simpler structure
and can easily be studied [206]. The key components of the CRISPR/Cas9 system are the
guide RNA (gRNA) and the Cas9 protein. Though the gRNA of prokaryotes can only
recognize viral DNA, its synthetic form is generated with the ability to target any gene
sequence for editing [207]. A recent paper stated that The Sichuan University’s West China
Hospital in Chengdu was the first to enroll patients for a non-randomized clinical trial
study on CRISPR cancer therapy from 2016 to 2018. In this study they had two primary
end points, safety and feasibility, as well as efficacy as the secondary endpoint [208].

Lu et al. transfused gene-edited T-cells to non-small cell lung cancer (NSCLC) pa-
tients by using the CRISPR/Cas9 technique. The transfused cells had the protein called
programmed cell death protein 1 (PD-1) edited such that it does not bind the PD-L1 ligand
of cancer cells and inherently prevent immunosuppression. Their results showed that the
CRISPR/Cas9 gene-edited T-cells are safe with minor side effects and are feasible for use in
clinical settings. Similar findings were observed by Su et al., where EBVaGC xenograft mice
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were transfected with PD-1-disrupted T-cells using the CRISPR/Cas9 system and displayed
an increased immune response and cancer cell death [209]. Thus, this type of immune
checkpoint targeted therapy can be trialed on GC patients, particularly the EBV and MSI
subtypes, since they are associated with PD-L1 overexpression [28]. It is advised that future
clinical trials should utilize more advanced gene editing approaches to improve therapeutic
efficacy [208]. An example is the retron library recombineering (RLR) approach. Unlike
CRISPR/Cas9, RLR functions without cutting DNA and can be applied to huge populations
of cells within a short space of time [210]. So far, the system has been performed in bacterial
cells and displays more than 90% efficiency. Though this technology is still at its infancy
stages, its efficacy as far as gene editing therapy is concerned looks promising.

9.6. PI3k/Akt/mTOR Signaling Pathway Targets

The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin
(mTOR) pathway is a key therapeutic target of cancer cells, as its components are ob-
served to be activated in most cancers including GC. It is worth noting that a few PI3K
inhibitors have been endorsed by the US Food and Drug Administration (USFDA) for the
treatment of advanced metastatic breast cancer as well as chronic lymphocytic leukemia
and small lymphocytic lymphomas [211]. This pathway plays a huge role in regulating
cell proliferation, tumor cell growth, angiogenesis, migration, survival and therapeutic
resistance [212]. Genetic mutations detected in GC correlate with altered signals involv-
ing the PI3K/Akt/mTOR pathway, and overactivation has been observed in up to 40%
of tumor types [213]. An example of these genes is the PI3K’s p110 catalytic subunit
PIK3CA, which is the third most frequently mutated gene in GC following tumor protein
53 (TP53) and AT-rich interactive domain-containing protein 1A (ARID1A) and has been
implicated as an oncogene in various cancers [23,214,215]. Mutations of this gene activate
the PI3K/AKT/mTOR signaling pathway and other downstream signaling pathways,
which leads to tumorigenesis [216].

The cause of mutations of genes involved in the PI3K/AKT/mTOR pathway is not
clear; however, it is debatable that they might occur as a consequence of dysbiosis. This is
based on data that shows that probiotic bacteria of the family Lactobacillaceae, which are
known to restore eubiosis, an interspecies balance of the microbiome, can prevent cancer
through modulation of the involved pathways and the immune response [217]. L. casei
and L. fermentum form part of the natural microbiome of the oral, GI, and vaginal tracts in
humans [218]. They have been reported to prevent GC by reducing the expression levels of
NF-κB and IκB, which decreases the phosphorylation of PI3K and Akt, thereby inhibiting
the growth of GC cells [137,219]. Probiotics containing these bacteria could be administered
to GC mice and the response to therapy monitored.

9.7. Microbial Ablation

The higher the microbial diversity in the gut microbiome, the more favorable the
outcomes of cancer treatment will be [220]. As mentioned earlier, H. pylori infection is a top
RF for GC. Following H. pylori ablation treatment, the gut microbiota profiles were altered
and a decline in ghrelin levels were observed in H-pylori-positive patients [221]. In a study
by Aykat et al., KC mouse models’ inflammation by oncogenic Kras led to fungal dysbiosis
characterized by M. globosa, promoting pancreatic tumor progression through the activation
of the mannose-binding lectin (MBL)-C3 cascade while mycobiome ablation shielded the
mice against oncogenic progression [222]. The ablation of pathogenic organisms involved
in GC is one of the systems that could be explored further in pre-clinical studies with the
intention of translating these studies into clinical trials.

10. Conclusions and Future Considerations

Evidently, GC carcinogenesis is induced by infection with different microbial pathogens
resulting in the emergence of dysbiosis. Dysbiosis restoration therapy could pave the way
for improved management and alleviation of the disease. Gram-negative bacteria are at
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the forefront of cancer initiation, development, and resistance to therapy. The fact that
these pathogens have a protective layer makes them challenging to treat. One of the most
effective treatments for such bacteria, metronidazole, can be used in combination with
other antibiotics to deliver a more desirable effect. The GC categories can also be classified
according to the type of carcinogenic organism detected in an individual. This can be
considered when designing a personalized cancer treatment. Combinatorial therapies can
therefore be designed with a specific antibiotic depending on an individual’s disease profile.

The TME microbiome influences certain pathways in the cancer hallmark and studying
them might provide insight into the mechanisms of GC development and progression.
Most of these pathways are interconnected and undergo compensatory signal transduction,
necessitating the development of therapeutic drugs with combinatory elements or targets.
Risk factor management and treatment are crucial in the management of GC. Some of
the RFs are common in both RF diseases, and cancer and can be managed to decrease
the chances of developing GC and other GIT cancers. Most GI cancer cells respond in
a similar manner, and therefore clinical trials performed in one type of cancer could be
reproduced in another. The toxicity of the effective existing treatments should be lowered
by altering treatment regimens or by adding cytoprotective agents such as misoprostol and
sucralfate, which may protect the body from some of the side effects during clinical trials.
The challenge of the complexity of GC can be overcome through the understanding of the
different molecular subtypes of the disease and appreciating that this could be achieved
through the integration of multi-omics.
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