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ABSTRACT In order to meet the strong diversification of services that demand network flexibility that
will be able to serve the dire need for transmission resources, network slicing was embraced as a plausible
solution. Reinforcement learning (RL) has been applied in resource allocation (RA) problems, but has not yet
marked the translation from traditional optimization approaches primarily due to its inability to satisfy state
constraints. The aim of this article is to address this challenge. This article proposes a logical architecture for
network slicing based on software-defined networking (SDN), where an SDN controller controls the network
slicing process in a centralized fashion, andmanages the resource allocation (RA) process with the help of the
slice manager. The considered problem jointly addresses power and channel allocation using a hybrid access
mode for ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband (eMBB)
slices. Proper assumptions on the arrival rates, packet length distributions, as well as power and delay
constraints were used to design the behavior of the reward function to realize a constrained RL approach.
Here, the Bellman optimality equation was reformulated into a primal-dual optimization problem through the
use of Nesterov’s smoothing technique and the Legendre-Fenchel transformation. The proposed algorithm
shows favorable performance over the traditional RL strategy in attributes favoring eMBB services, i.e., the
average bit rate, and significantly outperforms both baselines in attributes favoring URLLC services, i.e.,
average latency. Systematically, on the power-delay performance evaluation, it shows that it can adapt very
well in rapidly time-varying non-Markovian environments and still successfully satisfy the delay constraints
of the applications hosted on a slice.

INDEX TERMS 5G, Bellman optimality, constrained reinforcement learning, eMBB, mMTC, network
slicing, non-Markovian, power-delay, resource allocation, satisfaction degree, URLLC.

I. INTRODUCTION AND BACKGROUND
The design of traditional mobile and wireless networks has
always focused on supporting specific services such as voice,
messaging, and internet access. However, with the unprece-
dented and accelerated development of wireless networks
towards the fifth generation (5G), mobile network operators
(MNOs) face the ever-escalating challenges of meeting the
demands of diverse vertical industry applications [1]. For the
5G new radio (NR) to be able to simultaneously accommo-
date and meet the demands of these industry applications and
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services, the network must be able to focus on the require-
ments of each 5G use case. 5G use cases boast of services
with diverse requirements such as ultra-low latency as well
as high resilience for real-time control of critical systems.
Typical examples of these services include, but not limited to:
(i) the enhancedmobile broadband (eMBB), (ii) ultra-reliable
and low-latency communication (URLLC), and (iii) mas-
sive machine-type communications (mMTC). These services
illustrate the wide diversity of their associated requirements,
enabling a paradigm shift that can only be handled by slicing
the physical network into logical sub-networks - a concept
referred to as network slicing. The network slicing concept
is not new as it dates back to distributed service architectures
such as distributed cloud computing systems [2].
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A network slice can be defined as a virtual network that
is implemented on a physical network such that it creates
the illusion that slice tenants are operating on their own
dedicated physical networks. In network slicing, the physical
network is split into numerous logical or virtual network,
each logical network tailored to serve particular services or
applications. As a result, the network slicing paradigm is pre-
determined to manage the diversity of emerging applications
by enhancing the performance and flexibility requirements
of the physical networks [3]. This was a way of keeping up
with the tremendous amount of data that is generated by the
enormous number of user equipments from the applications
they run on a daily basis. However, this has caused remark-
able challenges for network designers in terms of making
sure that new designs have a considerable positive influence
on network slicing performance. Therefore, network slicing
determines the self-contained and logical networks consisting
of a combination of dedicated instances of resources [4].

With the rise of the internet of things (IoT), more especially
the fastest growing IoT paradigm known as the industrial IoT
(IIoT), network slicing cuts the physical network into several
end-to-end virtual networks. Each virtual network obtains
logically independent network resources for supporting the
richer services [5]. When the Third Generation Partnership
Project (3GPP) released the initial 5G network recommen-
dations, i.e., 5G NR evolution in Release 15 [6], this gave
assistance to analytical communications, huge vehicular-to-
everything, as well as mMTC. As a result, a corresponding
data traffic was anticipated to develop many-folds over the
years. The first complete set of the physical layer design
allows achievements of improved metrics for latency and
reliability that can support new use cases of URLLC. With
this rapid development of mobile devices, several appealing
applications were developed for the eMBB use case, fur-
ther enhancing the necessity of increasing quality of service
(QoS) [7]. Before a new slice is orchestrated, the mobile
network operator (MNO) has to first determine the required
slice functionality as well as the required resources. For
example, the anticipated applications to be handled by the
eMBB slice are those requiring high throughput, which entail
faster download speeds for increased seamless experience.
The eMBBuse case is one of the three defining characteristics
of 5G networks with throughput speeds expected to even-
tually reach 20 Gbps once the millimeter wave (mmWave)
frequencies become available [8].

The second use case is anticipated to confront the
unmatched demand for reduced latency in communications,
i.e., the URLLC slice to handle delay-constrained applica-
tions such as automotive communications and remote health-
care [9]. Then, in line with the IIoT and the dictates of
the Industry 4.0, the mMTC slice corresponds to the gigan-
tic amounts of data produced by millions of sensors. The
MNO may be required to select a slice template that fits the
requirements of each slice and parametrize it according to
its demands. The resource allocation (RA) and scheduling
algorithms applied for admitting traffic in each slice at each

transmission time interval (TTI) is evaluated based on the
average throughput, fairness, and spectral efficiency [10].
This means that the variables such as bandwidth, packet
losses, signal strength, latency, user density, network protocol
and topology, that affect throughput, are the ones that need
to be investigated. However, given the critical nature of the
URLLC applications, its traffic flows have to be given higher
priority over the others, which might cause negative perfor-
mance effects on the other types of applications [11]. Since
themobile andwireless devices are not aware of this interrupt,
packet losses for the devices running eMBB and mMTC
applications may increase sharply. This is an inevitable coex-
istence problem that leads to performance degradation, and
can only be mitigated using proper mechanisms. In other
words, more flexible resource allocation (RA) and scheduling
approaches are required to be able to support the eMBB
services without compromising the other services. Another
possible way to handle this coexistence problem is: when a
request is generated for a URLLC service, prompt access to
the wireless medium must be granted for immediate packet
transmission. Since the sum of demands for transmission
resources are expected to be high and very dynamic for all
the slice types, especially during peak hours, dynamic RA
is required in network slicing. When using dynamic RA, the
utility function of each network slice can be maximized while
individual users control their transmission powers in order
to reduce interference. The objective of this article is to test
the effectiveness of the approach in solving the coexistence
problem by maximizing the throughput of the eMBB slice,
while giving priority to URLLC users.

II. PREVIOUS RELATED WORKS
The discussion of the state-of-the-art algorithms related to
this researchwork begins with a focus on the use of traditional
optimization approaches in network slicing. By traditional
optimization approaches, reference is made to mathemat-
ical programming techniques such as game/queuing theo-
retic approaches, etc. Then focus will be shifted to learning
based strategies, where reinforcement learning (RL) strate-
gies related to this work are discussed. In each case, only a
few outstanding research contributions that are in resonance
with the objectives of this work will be reviewed.

A. MATHEMATICAL PROGRAMMING APPROACHES
With the existence of different slices and services in the same
physical network creating a challenging RA task, the impact
of algorithms for maximizing data rate, spectral efficiency,
as well as fairness, is reduced. In an attempt to address
this challenge, the authors in [10] formulated a URLLC and
eMBB RA problem as an optimization problem with the
aim of maximizing the average throughput of eMBB appli-
cations, while simultaneously satisfying the latency require-
ments of URLLC applications. Dynamic programming was
then applied to achieve an optimal RA for URLLC traffic on
a TTI level that minimizes the negative impact on the average
throughput of eMBB applications. The authors did this in
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addition to maintaining a tolerable level of fairness among
eMBB users. Their approach was implemented on heuristic
scheduling algorithms where the URLLC traffic punctures
the preserved/pre-allocated resources of eMBB users upon
arrival. Numerical simulations were conducted in order to
evaluate the effectiveness of this approach and the obtained
results indicated how the approach was able to minimize the
negative impact of URLLC traffic on the performance in
terms of the achievable data rate, spectral efficiency, as well
as the fairness.

The authors in [12] studied network slicing and slice coor-
dination on the radio access network (RAN) where they
formulated the problem as a bi-convex one. However, due
to the existence of some complicated couplings between
RAN RA for each slice and the coordination between slices
sharing the same network resources, slicing of the RAN
becomes challenging. In order to cope with this challenge,
the authors then designed two algorithms that address the
couplings of the bi-convex problem, whose objectives were
to minimize two important components, i.e., (i) the aggregate
load of gNB slice for load balancing, and (ii) the cost of the
backhaul links for all the slices for delay minimization. The
second objective captures two important inter-dependencies,
i.e., (i) the dependency between the radio bandwidth at the
gNB as well as caching slice allocation to minimize the
aggregate load of each slice, and (ii) the dependency between
the caching and backhaul slice allocation that minimizes the
aggregate backhaul delay. Computer simulations were used
in evaluating the performance of the proposed algorithms,
and their efficiency proved their validity in solving network
slicing problems at the RAN side. However, one shortfall was
on the realization that the algorithms do not have any global
convergence guarantees. Conversely, the results also showed
that a global solution can be achieved in a simplified scenario
consisting of only two tenants, which compares well with
the convergence performance of exhaustive search. When
the number of tenants was increased, the simulation results
indicated that the two proposed algorithms converge to a
similar performance to that of the Interior Point Optimizer
(IpOPt) solver, which validates their efficacy.

With energy consumption being a very critical issue for
MNOs that deeply impacts the cost of service provisioning,
MNOsmay have difficulties in copingwith high energy costs.
Since network slices require different types of resources,
which include energy in order to fulfill the requirements of
each application, the legacy energy efficiency models are
considered a critical concern. In order to address this critical
energy consumption issue within the limited radio and power
resources, the authors in [13] designed a dynamic energy
and cost-efficient RA strategy for IoT services. To achieve
the objective energy efficient slicing, the authors proposed
a RAN slicing and scheduling scheme that would ensure
extreme QoS of differentiated IoT services. Here, a coexis-
tence scenario of URLLC and eMBB services was considered
in an software-defined networking (SDN)-enabled wireless
RAN for allocating the shared resources. In this regard, the

authors focused on guaranteeing the reliability and the latency
of sporadic URLLC uplink (UL) traffic while simultaneously
improving the QoS of continuous eMBB services such as
video. The URLLC traffic was characterized by small and
sporadically data packages, whereas eMBB traffic was char-
acterized by large payloads. In order to guarantee sufficiently
high and stable image and video quality and content, high
peak data rates and high bandwidth were considered. In order
to simultaneously support URLLC and eMBB services, the
SDN controller was used to allocate corresponding resources
to each network slice and to also control the performances
of the devices on each slice. A dynamic optimization model
for service quality and power consumption was then used
to design a cost function in both the time domain and fre-
quency bandwidth for heterogeneous services - constrained
by latency. In order to ease the complexity of the model,
a novel two-timescale algorithm was designed using Lya-
punov optimization. From this, (i) a long-timescale band-
width allocation, and (ii) short-timescale service control,
were the two resulting sub-algorithms. The utility function
for this approach was derived using hard latency guarantees,
while its theoretical optimality was analyzed according to the
relationship between the control parameters and the service
performance. The performance of the proposed approach
was evaluated through simulations, where the performance
analysis explicitly characterized the relationship between
the control parameters and the services performance, which
included the power consumption and user the satisfaction.
In comparison, the proposed algorithm proved to outperform
baseline in terms of the total cost and hard latency.

The enhancement of reliability in mobile and wireless
communication networks is critical in keeping a high level
of energy efficiency in autonomous systems, more espe-
cially in emergency situations, such that unmanned aerial
vehicles (UAVs) have increasingly become topical among
researchers over the past few years. As a result, UAV relay
networks are taunted as the most significant complements
for terrestrial infrastructure in providing robust network cov-
erage and capacity. To this effect, some researchers began
focusing on either eMBB payload communication or URLLC
control information, but not both. For instance, the authors
in [14] investigated the multiplexing of eMBB payload and
URLLC control information communication for multi-UAV
relay networks. The proposed multi-UAV comprehensively
considered path losses, small-scale channel fading, as well
as different QoS requirements for both use cases. With the
objective of improving the total data rate, while reducing
power consumption, the authors formulated the multiplexing
problem as a joint user association, bandwidth, and trans-
mission power optimization. However, the problem seemed
non-convex and NP-hard as a result of the coupling of con-
tinuous and integer variables. The solution to this prob-
lem was made even more challenging by the differences in
capacity characteristics and requirements for both use cases.
To mitigate these challenges, the authors proposed to equiva-
lently decompose the original optimization problem into two
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sub-problems, i.e., a URLLC problem and an eMBB prob-
lem. After decomposing it, closed-form expressions for opti-
mal bandwidth and transmission power were derived for the
URLLC problem, while an iterative solution framework for
alternatively optimizing user association, the bandwidth and
transmission power was developed for the eMBB problem.

B. REINFORCEMENT LEARNING-BASED APPROACHES
The reinforcement learning (RL) strategy is used to address
the fixed RA mechanisms that may result in a low uti-
lization of resources, hence violate users’ QoS demands in
specific slices due to network demand fluctuations. It does
so by bringing together a resource management system
with a dynamic resource adjustment technique known as
the Q-learning algorithm. From the analysis in section II-A
above, it is evident that the process of resource utilization
is a complicated one for traditional optimization approaches
since they cannot effectively perform resource orchestration.
The reason for this is the lack of accurate models, as well as
the existence of dynamic hidden structures within the prob-
lems. In order to address this resource utilization issue, the
authors in [15] formulated the network slicing problem using
constrained Markov decision processes (CMDPs) and solved
it using constrained RL. The CMDPwas used to indicate how
the constrained RL has to be applied in a scenario consisting
of hidden dynamics. The authors set up a gNB scenario
consisting of three types of services, i.e., video, Voice over
LTE (VoLTE), and URLLC, with each service having random
users. The gNB had a fixed total bandwidth of 100Mbps, and
the task was to allocate bandwidth to all the types of users.
Thus, at the start of each time slot, the gNB had to make a
decision on the bandwidth allocation based on the number
of users currently on each slice, while tracking cumulative
and instantaneous constraints. In order to handle these con-
straints, an adaptive interior-point policy optimization and
projection layers was used. The user throughput as well as
the user dissatisfaction per slice with respect to the service
received were the main attributes in performance evaluation.
The performance evaluation through simulations indicated
that the proposed constrained RL strategy was effective in the
proposed RA objective and in comparison, it outperformed
other baseline algorithms.

All the applications in network slicing have opened new
business opportunities and business models are required for
each slice in the form of a service level agreement (SLA).
This forms a tenant-based network slicing scenario, where
the MNO offers network slices to tenants to generate rev-
enue. In this case, the QoS of individual users translates to
a slice satisfaction degree if the service provision meets the
SLA [16]. In this way, every tenant that rents a network
slice from the MNO has to pay a fixed amount either a
monthly or annual fee for the resources shared according to
the contract signed between them. However, such a fixed RA
mechanism usually lead to a low utilization of resources and
even user QoS violations caused by fluctuations in network
demand. In order to address this issues, the authors in [17]

introduced a resource management strategy by proposing a
dynamic resource adjustment algorithm using the RL strat-
egy from the tenant’s perspective. Here, multiple slices were
built on the same physical network comprising of the RAN
and core network, where virtual network functions (VNFs)
and transmission resources were the two different types of
resources that were spread across the entire physical network
to be shared. Here, three stakeholders, i.e., the MNO/slice
provider, the slice tenant, and the end-user, interact in order to
realize the end-to-end communication service. The resource
management problem for network slicing was modeled as an
MDP, and a technique for dynamic resource adjustment that
was aimed at maximizing tenants’ profits while ensuring that
QoS demands for end users were met was developed using
Q-learning. The performance of the proposed scheme was
evaluated using numerical simulations, where the results
demonstrated that the proposed algorithm significantly
increases the tenants’ profits compared to the existing fixed
RA methods while satisfying the QoS requirements of end
users.

C. RESEARCH MOTIVATION
The new 5G services, with immersive and high-stake appli-
cations, are posing unprecedented challenges for MNOs in
terms of both system design and algorithmic solutions. Proper
allocation of resources is very crucial in the telco business
and it may result in significant reductions in operating costs
and increased revenues. Since the allocation of resources
is a repetitive task that can be effectively automated using
artificial intelligence (AI) strategies, the application of rein-
forcement learning (RL) results in varying results, which
are seldom optimal. The efficient exploration of the state
space in the current RL applications in RA still remains a
challenge. It cannot carry out deep exploration due to the
epsilon (ε)-greedy exploration strategy, hence suffers from
poor convergence. This challenge consequently results in
more cycles required to reach convergence, and becomes
unfeasible when the network becomes large with a large
state space. When using function approximation in RL, the
Bellman optimality equation is applied as a rule of thumb,
which has some guarantees of stability when dealing with
single-objective problems.

However, when multi-objective optimization problems
such as the ones encountered in network slicing are
attempted, obtaining a solution for the Bellman optimality
equation with stability guarantees becomes as challenge. As a
result, performing slice evaluation and management on-the-
fly becomes a huge challenge since this requires the collec-
tion and correlation of a mixture of variables on network
conditions, the slice services, as well as the user require-
ments. The fundamental difficulty emanates from the fact
that the Bellman operator may easily become an expansion,
resulting in an oscillation and even divergent behavior for the
Q-learning algorithm. This has been a pervasive problem in
the RL community for a long time, while the application of
RL strategies in other fields continued - completely ignoring
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this fact. Therefore, the motivation behind this research work
is to apply the RL strategy in network slice RA, using an
optimization technique that will solve the Bellman error while
maximizing the average throughput for eMBB users and
satisfying latency requirements for URLLC users.

D. RESEARCH CONTRIBUTIONS
In order to address the problems associated with RL in order
to enable it to handle the QoS requirements of slice users,
a constrained RL approach is adopted. The contributions of
this article are summarized as follows:

1) THE OPTIMIZATION PROBLEM
An optimization problem for assigning network slice require-
ments to two 5G use cases so that their total utility can be
maximized if formulated. The proposed model considers a
physical network that is sliced into two logical sub-networks,
where slice 1 provides eMBB services to the internet, while
slice 2 offers URLLC to the edge cloud and cache. The con-
straints associated with the QoS of each network slice request
are monitored by a software-defined networking (SDN) con-
troller whose task is to decouple the network control from the
data plane, and centralize management of queues. In line with
the 5G RAN concepts, slice orchestration and management
are controlled by the SDN controller, which uses the north-
bound application programming interface (API) to obtain
slice requests from slice tenants. Also, in this model, a slice
manager receives channel quality information and the number
of physical resource blocks (PRBs), sends it to the SDN
controller, which then determines an assignment policy to
the slice manager. The resource scheduling for the latency-
critical traffic of the different users of the URLLC slice
requires a proper queuing strategy that is incorporated into
a properly constrained technique.

2) THE PROPOSED ALGORITHM
The problem was formulated using a constrained reinforce-
ment learning (RL) strategy in order to tackle the challenges
faced by the conventional RL strategy in resource allocation.
Proper assumptions of Poisson distribution on the arrival
rate, exponential distribution on packet lengths, as well as
the constraints were conveniently specified in designing the
behavior of the reward function. For instance, systems like
network slicingwhere the system has to interact with different
slice tenants, different slice users, as well as the service
level agreement (SLA), must satisfy safety and reliability
constraints [35]. The fundamental difficulty with the tra-
ditional RL strategy, with regard to the Bellman optimal-
ity equation, was addressed by reformulating the Bellman
optimality equation into a primal-dual optimization prob-
lem through the use of Nesterov’s smoothing technique [20]
as well as the Legendre-Fenchel transformation [23]. Then,
through the observation of the ‘‘log−

∑
− exp’’ function,

a novel constrained RL strategy, which enables the derivation
of slice admission control decisions, was realized. The perfor-
mance evaluation results show that the proposed method can

effectively solve the network slicing problems with less com-
plexity that the conventional RL strategy. The power-delay
evaluation of the proposed algorithm show that it can also
adapt well in rapidly time-varying non-Markovian environ-
ments and still successfully satisfy the delay constraints of
the hosted applications.

E. NOTATIONS AND ARTICLE OUTLINE
For ease of readability and exposition, the notations used in
this article and their descriptions are listed in TABLE 1 below.

TABLE 1. List of notations and their definitions.

The rest of our work is outlined as follows: The system
model and problem formulation as well as the resource per-
centage optimization problem is presented in section III.
Section IV discusses the problem formulation of the baseline
and its solution using dynamic resource percentage thresh-
old. Section V presents the formulation and solution of the
proposed network slicing problem using solution resource
allocation solution using constrained RL. Section VI dis-
cusses the two algorithms together with their respective
computational complexities. The simulation results depicting
the performance of the proposed algorithm are reported in
Section VII; and Section VIII gives concluding remarks
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about the performance that was observed between the two
algorithms.

III. PROPOSED NETWORK AND SYSTEM MODEL
Consider a network slicing architecture where a SDN con-
troller uses the north-bound application programming inter-
face (API) to obtain slice requests from slice tenants [24]. The
proposed SDN-based network slicing architecture is shown in
FIGURE 1 below.

FIGURE 1. The proposed SDN controller-based network slicing scheme.

As shown in FIGURE 1 above, the physical network is
sliced into two logical sub-networks, which offer connec-
tions between users and specific network components. For
instance, slice 1 is offering URLLC services by reserving
communication and buffer resources from users to the edge
cloud/cache, while slice 2 offers eMBB services between
users and the internet. In line with the cpncepts of the 5G
RAN, the slice orchestration and management are controlled
by an SDN controller, which creates an instance or slice
manager for each network slice deployed and also dynam-
ically assigns resources for each network slice by giving
its manager the to allocate it to the tenants [25]. An SDN
controller is used to decouple the network control from the
data plane, hence centralizing the management of queues.
Here, the SDN controller is responsible for collecting chan-
nel quality information from the gNBs for the RA process.
Then, the SDN controller sends the assignment policy to the
slice manager, which then controls the slices by abstracting
the users from the SDN controller and also coordinates the
scheduling decisions [29]. The slice manager uses a voting
process to specify the rate policy,ψ(r), to the SDN controller,
which then decides on the maximum throughput per slice
and then issues a scheduling decision,ψj,k (r), assigning slice
users to appropriate gNBs.

A. PRELIMINARIES
1) PHYSICAL LAYER PARAMETERS
A time-slotted systemmodel is assumed in this work whereby
the system is time-slotted with the duration of each time slot

corresponding to a long-term evolution (LTE) TTI. A fre-
quency non-selective channel is considered and the orthog-
onal frequency division multiple access (OFDMA) scheme
is adopted [27]. In this case, channel gains are governed
by the path loss model defined in [28]. The set of channel
states is assumed to be discrete, finite, and constant over
the duration of the time slot. In this way, channel conditions
can be perfectly estimated and the sequence of their states
is modeled using a Markov chain with distinct transition
probabilities. It is further assumed that at each transmission
instance each user connects to only one gNB, the schedul-
ing decision, ψj,k (r), translates to the gNB-user association
factor, ψn,j,k (r).

2) SYSTEM LEVEL PARAMETERS
A set,N = {1, 2, · · · ,N } of gNBs, where each gNB operates
based on constant power transmission and uses proportional
fairness to allocate PRBs from a set J = {1, 2, · · · , J} [26].
The MNO is offering two pre-defined slice types, i.e., eMBB
and URLLC, such that the overall set of network users, K is
split into two subsets of slice users, i.e., K1 and K2 such
that K = K1 + K2. Here, the SDN controller controls the
network slicing process in a centralized fashion. The arrivals
on the eMBB and URLLC slice types are defined by the
parameters λ1,n and λ2,n, respectively. As such, the queuing
model employed considers both request arrivals and request
service (acceptance) as Poisson processes, such that every
request in the queue follows the single-server birth-death
process, hence the feature of theM/M/1 queuing system are
directly applied.

IV. MATHEMATICAL PROBLEM FORMULATION
Assuming uniform power allocation technique over all PRBs
is assumed, such that the achievable data rate per-user per-
slice can be defined as follows:

rk =
J∑
j=1

ψn,j,k · rn,j,k , (1)

whereψn,j,k represents a binary decision variable whether the
k-th user is allocated the j-th PRB of gNB n or not, given as
follows:

ψn,j,k =

{
1, if PRB j assigned to k
0, otherwise,

}
(2)

and

rn,j,k = W · log2

(
1−

pn,j,k · gn,j,k∑
m6=k,m∈K pj,m · gn,j,m + σ

2

)
,

(3)

where W (in Hz) is the system bandwidth, and the signal-to-
interference-plus-noise ratio (SINR) is the second term inside
the bracket, which, in the sequel is represented by γn,j,k .
The term pn,j,k is the transmission power of the k-th user
on the j-th PRB on gNB n, gn,j,k represents the overall gain
between the k-th user and the n-th gNB, which includes
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the antenna gain, the shadow fading and the path loss. The
expression

∑
m6=k,m∈K pj,m · gn,j,m is the sum of the con-

glomerated interference from the other user, but the k-th;
whereas σ 2 denotes the Gaussian noise power. Due to critical
URLLC applications such as autonomous vehicles, where
obstacles are frequently encountered along the signal path,
the transmission power function is defined by channel gains
measured over short time scales, hence Rayleigh fading [30]
is considered.

A. THE OPTIMIZATION PROBLEM
Assuming that the lifetime of each slice type to be an expo-
nentially distributed random variable [31], and slice accep-
tance is based on the preference of the MNO regarding the
SINR requirements. Then, using the dynamic resource per-
centage threshold scheme, a dynamic RA objective to maxi-
mize the UL capacity of eMBB services under the constraint
of maximum transmission power of users and guaranteed data
rate for URLLC users is given as follows:

r (1)n,j,k =
β · γ th1,n

λ1,n
·W · log2(1+ γn,j,k ), ∀k ∈ K1 (4)

where
β·γ th1,n
λ1,n

represents the fraction of the bandwidth remain-

ing for eMBB slice. This means that the eMBB slice receives
β·γ th1,n
λ1,n
·W of the total gNB resources. Once the resources have

been reserved for the URLLC slice, the remaining task is to
maximize the per-user data rate in the eMBB slice. To achieve
this objective, a single-objective optimization problem can be
defined as follows:

P : argmax
P

N∑
n=1

J∑
j=1

K∑
k=1

r (1)n,j,k (5)

subject to

C1 :
J∑
j=1

pj,k ≤ pmax , ∀k ∈ K

C2 :
J∑
j=1

r (2)n,j,k ≥ r (2)req, ∀k ∈ K2 (6)

where the decision variable P in (5) represents the set of
transmission powers, which has been translated from γn,j,k .
The constrain C1 imposes a restriction on the maximum
transmission power for all users, i.e., k ∈ K, allocated PRBs
in the n-th gNB. It must be noted that by ensuring that its
UL transmission power is less than or equal to the maximum
allowed transmission power, pmax , the interference conditions
will be met. The constraint C2 ensures that the minimum
required data rate for URLLC users, i.e., k ∈ K2, is always
met. Here, it is assumed that each K2 user generate only one
service flow at a time with a required service rate r (2)req. Thus,
r (2)req represents the minimum data rate threshold to guarantee
the data rate for URLLC users, whereas r (2)n,j,k is the data rate
for all k ∈ K2.

B. THE DYNAMIC RESOURCE PERCENTAGE
THRESHOLD SCHEME
The improved dynamic resource percentage threshold
scheme allocates slice resources based on the total num-
ber of URLLC users currently being served by each gNB.
The admission control condition for the allocation of slice
resources to users is employed taking into account their
interference levels. Using this condition, when an eMBB
user requests an UL connection, the gNB has to check if by
accepting the new eMBB connection request it will meet the
admission control condition. This is accomplished by calcu-

lating the new admission condition, βnew =
β·γ th1,n
λ1,n+1

, whose
sole purpose is to prevent the gNB from being overloaded
resulting into low data rate. This admission control condition
operates by increasing the number of eMBB users by 1, then
compares the result with the admission bandwidth threshold
for the eMBB slice, i.e., β(1)1,n. This admission bandwidth
threshold is the minimum equi-spaced channel per user as
discussed in [9], and the admission constraint for eMBB users
that ensures the protection of URLLC services on slice K2 is
imposed as follows:

βnew ≥ β
(1)
1,n. ∀n ∈ N (7)

This admission constraint can be illustrated using an admis-
sion control probability as follows [32]:

φn =

{
1, βnew ≥ β

(1)
1,n

0, otherwise

}
. (8)

Therefore, the total number of eMBB users associated with
the n-th gNB is be given as follows:

λ1,n =
β · γ th1,n

βnew
− 1 = βγ th1,n(β

(1)
1,n)
−1. (9)

So, if 0 ≤ λ1,n =
β·γ th1,n
βnew
− 1 ≤ β · γ th1,n(β

(1)
1,n)
−1, it means that

the n-th gNB is under-loaded in terms of eMBB users, thus

the admission probability equals 1. However, if
β·γ th1,n
βnew
− 1 >

β · γ th1,n(β
(1)
1,n)
−1, it means the n-th gNB is overloaded and

the connection request has to be rejected. Then, in order
to balance the load over the set of gNBs, the SDN con-
troller employs an immediate retry procedure, whereby users
rejected may attempt admittance and gain service in their
respective slices from nearby gNBs. At a departure instant
of any connection, the corresponding PRBs are released, and
system state transition occurs and admitting another slice user
awaits to take the state back to occupied.

C. TRANSFORMATION THROUGH COMPLEMENTARY
GEOMETRIC PROGRAMMING
To solve the objective function in (5), which is non-convex
due to inter-site interference, it must be first transformed
into its linear form. In order to transform the non-convex
function into a convex function, power control by comple-
mentary geometric programming [33] is employed to trans-
form it into a convex function. Complementary geometric
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programming is based on successive approximation and even
here we use geometric programming for power allocation.
Here, the gNB dynamically adjusts the resources allocated
for eMBB users, which first guarantees data rates for URLLC
users before allocating the remaining resources to eMBB
users. Furthermore, eMBB users will be admitted only if
they meet the admission control condition set in (7) and the
SINR minimum requirement, γ0, which is based on the SINR
of users. As stated earlier, the eMBB users are supposed to
meet this minimum requirement at the gNB in order to be
accepted in case there are still resources available in their
designated slice. At his point, an SINR-based admission
control condition is formulated as follows:

γn,j,k ≥ γ0, (10)

where γ0 represents the SINR constraint imposed by the gNB.
The gNB computes the resource percentage threshold, ρ1,n,
which is based on the total number of URLLC users that are
currently being served and their minimum required data rate,
r (2)req. This is specifically computed by the n-th gNB for eMBB
users is as follows:

γ th1,n = 1− ρ1,n, (11)

where

ρ1,n =
r (2)req∑N (2)

u=1
β

N (2) log2(1+ γn,j,k )
. (12)

Once this is done, power control by complementary geo-
metric programming is used to compute the optimized UL
capacity for eMBB users, which requires some lower bound
substitution and variable transformation. The problem in (5)
can then be transformed into its convex equivalent by using a
relaxation approach, i.e., introducing alternative variables and
approximations. At this point, a lower bound which is tight
with equality at a chosen value of γ0 is obtained as follows:

% · log γ0 + χ ≤ log (1+ γ0), (13)

where % and χ are fixed approximation parameters defined
as follows:

% =
γ0

1+ γ0
, and χ = log(1+ γ0)− % · log γ0.

(14)

Then, using α and χ in (14), the lower bound of (4) can be
reformulated as follows:

r̂ (1)n,j,k =
β · γ th1,n

λ1,n
·% · log2 γn,j,k + χ. (15)

Therefore, the original optimization problem in (5) can be
transformed to maximize the UL capacity under the con-
straint of maximum power transmission of users and guaran-
tee data rates for URLLC users per gNB. However, (15) is still
non-convex and still requires some further transformation.
At this point, as stated in [33], the lower bound can be

transformed into convex by letting pj,k = ep̂j,k in (15) and
p̂j,k = ln pj,k . Then, (15) can be reformulated as follows:

Zn,j,k =
%

ln 2

[
ln gn,j,k + p̂j,k − ϕ

]
+ χ, (16)

where

ϕ = ln

∑
m6=k

e(p̂j,m)gn,j,m + σ 2
+ η

 , (17)

where

η =
∑

m∈Mneighbor
n

ep̂j,m · gn,j,m. (18)

Then, by substituting (17) and (18) into (16),
a ‘‘log−

∑
− exp’’ function is observed, which was proven

to be convex in [33]. Therefore, after the lower bound variable
transformation and approximation, the initial optimization
problem in (5) can be reformulated as follows:

P∗ : argmax
P

N∑
n=1

J∑
j=1

K∑
k=1

r̃ (1)n,j,k , (19)

subject to

C1∗ :
J∑
j=1

pj,k ≤ pmax , ∀k ∈ K

C2∗ :
J∑
j=1

r̃ (2)n,j,k ≥ r (2)req, ∀k ∈ K2 (20)

where

r̃ (1)n,j,k = r̂ (1)n,j,k (e
p̂j,k ; %, χ). (21)

This means that the variation of resources reserved for eMBB
is based on the number of URLLC users that are currently
being served, and the conditions stated in (7) and (10) are
adopted in this scenario. In this case, the overall SINR at the
n-th gNB can be represented as follows:

γn,j,k =
pj,kgn,j,k∑

m6=k,m∈Mn
pj,mgn,j,m + I intern,j + σ

2
, (22)

where I intern,j is the cluster interference. However, due to the
existence of other gNBs, the SINR at gNB n changes, thus
substituting (22) into (4), which is a lower-bound substitu-
tion, the function is still non-convex. Therefore, the function
requires some further transformation into a convex through
another substitution and observing the ‘‘log−

∑
− exp’’

function, which is time consuming and computationally com-
plex. In order to address this issue, this problem is solved as
a constrained problem discussed in [34].
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V. THE PROPOSED CONSTRAINED REINFORCEMENT
LEARNING SCHEME
In order to achieve the near-constraint satisfaction of both
slices, a constrained RL strategy, which allows the algorithm
policy, π∗, to guarantee the slicing policy, π (r), behavior
throughout the observation period T . The initial stage of
the proposed strategy operates similar to the dynamic RPT
approach in the sense that it is also based on the SINR require-
ment, which then translate to power and rate allocation. Thus,
at the gNB the SINR can be defined as follows:

γ
(2)
0 =

p0p
(2)
0∑K

k=1 pkg
(2)
k + σ

2
, (23)

where p0 is the transmission power of the gNB, assumed to
be at constant power, g(2)0 represents the channel gain between
the URLLC users and the gNB, pk is the transmission power
from all users associated with the gNB, and gk is their cor-
responding channel gains. The SINR of the k-th user can be
defined as follows:

γ
(1)
k =

pjg
(1)
j∑

j6=k pkg
(1)
k + p0g

(1)
0 + σ

2
, (24)

the term g(2)0 is the channel gain between the URLLC user
and the gNB, g(2)k is the channel gain of the k-th eMBB user
to the gNB, g(1)0 is the channel gain between the URLLC user
and the j-th gNB, pj denotes the transmit power of the j-th
eMBB user, g(1)j represents the channel gain of the j-th eMBB
user. In order to achieve the objectives of network slicing, the
following SINR constraints are imposed:

γ
(2)
0 ≥ γ0, and γ

(1)
k ≥ γk , k ∈ K, (25)

where γ0 is the SINR threshold for URLLC users, while γk
is the SINR threshold for eMBB users, such that the overall
transmission power is given, tight with equality, as follows:

pk =
ϑk (σ 2

+ g(1)0 p0)

g(1)j (1−
∑K

k=1 ϑk )
, where ϑk =

(
1−

1
γk

)−1
.

(26)

In order to ensure that the SINR thresholds are met, a valid
power allocation expression must be derived. To obtain
a valid power allocation expression, the condition 1 −∑K

k=1 ϑk > 0 must first be met. After replacing the eMBB
transmission powers from (26) into (23), the SINR constraints
in (25) can be represented as follows:

K∑
j=1

ϑjαj ≤ 1, where αj=

{
g(2)j (σ 2

+ g(1)0 )p0

g(1)j (g(2)0 p0/γ0 − σ 2)
+ 1

}
.

(27)

where αj is obtained after some algebraic manipulations.
Thus, by properly adjusting the parameter γk , the transmis-

sion rate of devices on the eMBB slice, r (1)k , will automati-
cally be adjusted. At this point, the eMBB users will try to

obtain and maintain an optimal power assignment that meets
the interference constraints in (25), thereby maximizing their
performance. Thus, the problem of finding a transmission
power and corresponding bit rate has now become that of
finding an optimal SINR, γ̂k . Based on the assumption of con-
stant power at the gNB, the term γ0 is assumed to be constant,
as a result γk is the one that needs to be adjusted by slice
users in order to meet the conditions in (26) and (27). This is
achieved by trying to adapt the transmission rate as follows:
(i) using the relationship between the modulation scheme and
the SINR ofK1 users, and (ii) using the relationship between
the delay and outage probability for K2 users.

A. RESOURCE ALLOCATION MODEL FOR eMBB SERVICES
Due to the transmission latency tolerance of the eMBB com-
munication, the achievable bit rate is amore practicalmeasure
of the throughput. For instance, when user k ∈ K1 sends a
connection request, the bit rate achieved at the gNB can be
determined as follows:

r (1)k =
∑
k∈K1

ψj,k · r
(1)
n,j,k , (28)

where ψj,k ∈ [0, 1] is user association as defined earlier
in (7), and rn,j,k is the transmission rate as defined in the
previous section, which, for eMBB users is given as follows:

r (1)n,j,k = W1 · log2(1+ ς · γn,j,k ), (29)

withW1 representing the bandwidth allocation for the eMBB
slice, the expression (1+ ς · γn,j,k ) shows the number of bits
contained in a modulation symbol. This takes only a small
number of integer values in practice, while the constant ς
relates the SINR to the target transmit bit error rate (BER)
requirement [36]. This means that eMBB devices have to
explore the set of available SINRs that also match with their
match with both their BER requirement. It must, however,
be noted that when the eMBB devices adjust their γn,j,k ,
they consequently adjust their modulation schemes, as well
as their transmission rates, r (1)n,j,k .

B. RESOURCE ALLOCATION MODEL FOR URLLC SERVICES
A URLLC created slice is a delay-critical slice that serves
users with strict delay requirements such as autonomous vehi-
cles [37]. The scheduling of an unexpected packet generation
by URLLC users is one of the most important issues in the
proposed mechanism, since an arriving URLLC is stored
in a specific transmission buffer. The transmission of each
packet takes no less than one TTI. However, the stochastic
nature of channel conditions, payload size, and availability
of resources are the main challenges towards achieving the
stringent latency requirements. This challenge may end up
forcing the scheduling to increase the TTI of a packet [14].
Therefore, a proper URLLC communication model must be
able to ensure high reliability by overcoming the variations
in channel conditions. To achieve this, the outage probability
for each user on the URLLC slice needs to be achieved
using a proper delay constraint [38]. Then, from each data
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packet sequence, a maximum expected delay, dk,max , must
be fulfilled. Assuming that the queue has a backlog of q2,n(t),
and the URLLC traffic is arriving at a rate λ2,n per slot, the
queue revolves as follows:

q2,n(t + 1) = max{q2,n(t)+ λ2,n − r
(2)
n,j,k , 0}. (30)

where t + 1 represents the next slot, and r (2)n,j,k is the slice rate
for serving traffic admitted based on the admission control
in (24). Using Little’s theorem, the average delay of the
queue can be obtained as dk = (qt + λ2,n)/r

(2)
n,j,k . Then,

the corresponding delay outage probability of of the user
k ∈ K2 can be given as follows:

Pr{dk ≥ dk,max} = e−(r
(2)
n,j,k−λk,max )dk,max , (31)

where λk,max is the maximum data arrival rate per slot. inK2.

C. THE OPTIMIZATION PROBLEM
Due to the resource limitation at the gNB, when the resources
at the gNB cannot provide service for all the associated users,
the optimization goal is to maximize the sum of the total
satisfaction degree for all users [39]. In order to maximize
the utilization of network resources, the average satisfaction
of both slices in the network can be formulated as follows:

R(γk ) =
1
K

 ∑
∀k∈K1

r (1)k +
∑
∀k∈K2

r (2)n,j,k

 . (32)

Then, maximizing this average satisfaction for both traffic
types require an optimization problem formulated as follows:

P∗∗ : π̂k = arg max
∀π∗∈5

K∑
i=1

R(γk )(π
∗), (33)

subject to

C1∗∗ :
K∑
k=1

ϑ(γk )(π
∗) ≤ 1− ε,

C2∗∗ :
∑
m6=k

αmϑ(γm)(π
∗) ≤ 1,

C3∗∗ :
K∑
k=1

N∑
n=1

ψn,k = N , ψn,k ∈ {0, 1},

C4∗∗ :
N∑
n=1

ψn,kr
(1)
n,j,k ≥ σ0, ∀k ∈ K1,

C5∗∗ : Pr{dk ≥ dk,max} ≤ ε0, ∀k ∈ K2, (34)

where 5 in P∗∗ represents the set of all possible policies,
while the constraint in C1∗∗ enforces the power allocation
condition. The constraintC2∗∗ is from (27) and puts an upper-
bound on the aggregate interference from the eMBB users -
but the k-th. C3∗∗ makes sure that all users make full use
of the available PRBs; C4∗∗ enforces the transmission rate
of user k to stay above the transmission rate requirement
in the eMBB slice; and the constraint C5∗∗ guarantees the
outage probability is lower than ε0. This means that the SDN
controller must estimate the appropriate transmission rates to
make sure that the URLLC outage probability does not reach

the packet error constraint, ε0. Thus, at each time instant, the
state space of the system is defined as s(t) = {Ik (t), I(t)},
where Ik (t) ∈ [0, 1] is a binary indicator specifying whether
or not the k-th user is causing aggregated interference.

D. SOLVING THE CONSTRAINED PROBLEM
Since (33) takes the form of a constrained Markov decision
process (CMDP), a constrained policy optimization method,
which is a general-purpose policy search algorithm from
constrained RL [21], is proposed. At this point, each eMBB
device observes the state space, s(t) ∈ S, and executes
an appropriate action by following a policy, π (s(t), a(t)),
π ∈ 5. The information in C1∗∗ and C2∗∗ is supposed to
be communicated by the eMBB devices to their associated
gNB n. Based on this information, the eMBB devices are
instructed to adjust their transmission power levels by select-
ing possible actions from a set of SINRs, where the finite
discrete space of candidate SINRs is represented as follows:

A = {γ1, γ2, · · · , γi, · · · , γK }, γi ∈ 0 (35)

where 0 is a finite set of possible SINR levels. By following
a strategy, π (s(t), a(t)), each eMBB device has the task of
searching from the finite discrete space containing all candi-
date SINRs in order to obtain the optimal solution, R(γk )(π

∗).
This is an immediate return obtained using the command
assignment a(t) ∈ A while the system is in state s(t) ∈ S.
At this point, the optimization task is to obtain the policy
that maximizes the received discounted reward, γ tR(γk )(π

∗),
where γ t denotes the discount factor. Letting s0 = s(t)
denote the initial or start-state of the system, the finite horizon
expected discounted reward can be represented using a state-
value function as follows:

V (s(t), π∗) =
T−1∑
t=0

γ tE
[
R(γk )(s, a)|π

∗, s0
]
. (36)

Then, the eMBB slice users can repeatedly make their deci-
sions that finally allow them to obtain their optimal policies
that lead to the maximization of the expected sum of dis-
counted rewards. Through the use of the Bellman optimality
principle [22], a solution for (36) can be obtained by taking
the optimal action assuming that all possible strategies by
other devices are optimal. The maximization of the expected
sum of rewards is expressed as follows:

V ∗(s, π∗) = max
a

[
R(γk ) + γ

t
∑
s′
p(s′|s, a)V (s′, π∗)

]
, (37)

where p(s′|s, a) represents the transition probability from the
current state s(t) towards the next state of the system, s′ =
s(t + 1), after taking optimal action a. In (37), the optimal
policy, π∗, is related to the state-value function, V ∗(s, π∗),
as follows:

π∗(a|s) = argmax
a

{
R(γk ) + γ

tEs′|s,a
[
V ∗(s′)

]}
, (38)

where Es′|s,a[·] is the conditional expectation operator with
respect to the state-value function V ∗(s, π∗). The state tran-
sitions are determined by the power allocation that results in
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a return, i.e., either a reward or a penalty. To proceed from
here, another version of the Bellman optimality equation,
equivalent to (37), is employed and is stated as follows:

V (s) = max
π (·|s)∈PA

Ea∼π (·|s)
[
R(γk ) + γ

tEs′|s,a[V (s′)]
]
,

(39)

where Ea∼π (·|s) is the expectation of selecting an action while
following the policy π (·|s). Here, it can be seen that (39)
makes the role of the policy, π∗, very explicit, which creates
distance discrepancy between the left and right hand-sides.
the max operator over PA induces some non-smoothness to
the objective function such that any slight change in the state-
value function, V , causes a large difference in (37). In other
words, the max operator causes some instability in the opti-
mization process. In order to minimize this discrepancy, (39)
may be jointly optimized over V ∗(s, π∗) and π∗ to lead to a
convex function. To achieve this and subsequently arrive at a
convex function, the square distance needs to be minimized
by minimizing the squared Bellman error as follows:

V ∗(s) = min
V

Es∼δ[(
max

π (·|s)∈PA
Ea∼π (·|s)

[
R(γk )+γ

tEs′|s,a[V (s′)]
]
−V (s)

)2
]
,

(40)

where the parameter δ denotes a distribution such that
δ(s) > 0, ∀s ∈ S. It must, however, be noted that for δ = 0 is
still the original Bellman equation. In this way, the reward
has been shaped and a reward function equivalent of an MDP
is obtained. Thus, the parameter δ can be viewed as trying
to control the degree of smoothing, such that smoothing the
Bellman operator requires δ > 0. To solve the instability
and discontinuity that is as a result of the max operator, the
Nesterov smoothing technique is used to smooth the Bellman
operator. However, since the policy, π∗, is a conditional dis-
tribution over the set of actions, A, an entropy regularization
is used such that (37) is rewritten as follows:

Vδ(s) = max
π (·|s)∈PA(

Ea∼π (·|s)(R(γk ) + γ
tEs′|s,a

[
Vδ(s′)

]
)+ δH (π, s)

)
,

(41)

where H (π∗, a) = −
∑

a∈A π
∗(a, s) logπ∗(a|s). Since

negative entropy is defined as the conjugate of the
‘‘log−

∑
− exp’’ function, the objective in (37) can be

equivalently reformulated in accordance with the narrative of
Theorem 2.2 in [23] as follows:

Vδ = δ log

(∑
a∈A

exp

(
R(γk ) + γ

tEs′|s,a
[
Vδ(s′)

]
δ

))
,

(42)

where the ‘‘log−
∑
− exp’’ observed in (42) is an effective

smoothing approximation of the max operator. However, due
to the practical convenience of working with the Q-function

instead of the state-value function V ∗, the V ∗(s, π∗) in (37)
can be approached by a Q-function that is updated as follows:

Q∗(s, a) = ᾱtQ(s, a)+ αt
[
R(γk ) + γ

tQ∗(s′)
]
, (43)

where ᾱt , (1 − αt ), 0 < αt < 1 is the learning rate, and
Q∗(s′) is the Q-value of the k-th eMBB device corresponding
to the maximum Q∗(s′) = maxbQ(a, s′) in the new state s′

after selecting and performing the action a.

VI. DISCUSSION AND COMPUTATIONAL COMPLEXITY
OF ALGORITHMS
A. DYNAMIC RESOURCE PERCENTAGE
THRESHOLD ALGORITHM
The dynamic resource percentage threshold algorithm begins
by allocating resources for theURLLC services, then reserves
the remainder for eMBB services. This process, which is
assumed for both the algorithms, assumes that URLLC ser-
vices are deserving of high priority treatment. The procedure
for the dynamic resource percentage threshold scheme is
outlined in Algorithm 1 below.

Algorithm 1 Procedure for the Dynamic Resource
Percentage Threshold Algorithm

Input: β, pmax , σ 2, β
(1)
n

Output: r (1)n,j,k
01: Initialize input parameters
02: For n = 1 : N do
03: For j = 1 : J do
04: For k = 1 : K do
05: Compute the channel gain, gn,j,k
06: Use γ th1,n and β to compute the number of

users that can be admitted into the eMBB
slice using (9)

07: When a URLLC user is admitted, compute
new ρ1,n under the current SINR using (12)

08: If eMBB user request uplink then
09: Compute new admission condition, βnew
10: If (βnew ≥ β

(1)
1,n) then

11: Accept eMBB user into eMBB slice
12: Compute r (1)n,j,k after lower bound and

variable transformation.
13: Maximize r (1)n,j,k .
14: Else
15: Reject eMBB user
16: End If
17: End If
18: Re-compute γ th1,n under the current SINR’s

of associated users
19: End For
20: End For
21: End For

In this algorithm, an admission control policy is first derived
in order to obtain the number of users to be admitted into the
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eMBB slice. This is achieved through (9). This step is inde-
pendent of the kind of traffic that each eMBB device is offer-
ing to the system, hence is has a computational complexity of
order 1, i.e., O(1). After the SINR-based admission control
condition has been obtained, the resource percentage thresh-
old is computed using (12). It must, however, be noted that
the objective function in (5) is non-convex, which makes its
optimization process NP-hard. Since the proposed dynamic
RPT optimization problem is inherently non-convex and
NP-hard, it is beneficial to reduce and relax it to transform
it into its convex alternative.

In order to achieve convexity, successive convex approx-
imation were performed using a complementary geometric
programming technique, which is an efficient two-step iter-
ative approach, whereby for a given power allocation, the
first step is to derive the user association. Then, using the
obtained user association, the second step derives an opti-
mum power allocation using complementary geometric pro-
gramming. The complementary geometric programming is
employed to optimize the power control problem tomaximize
the number of successfully admitted users. This operation
requires the location indices of the different users with respect
to the associated gNB. This process, which appears in line
10 to line 18 of Algorithm 1 is the one that contributes
more into the increase in computational complexity, more
especially the time complexity. The variation of resources
reserved for the eMBB slice is finally found in (21) based
on the total number of users that are currently being served
by the URLLC slice.

The objective function in (5) is still non-convex even
after this transformation, this is justified by substituting (22)
into (4). Although it is beneficial to reduce and relax the
optimization problem in (5) into its convex form, there is cer-
tainly a cost associated with doing so. Therefore, the compu-
tational cost in terms of longer algorithm convergence times
or more cycles required towards convergence are expected.
The convex constraint sets that are required always make the
complexity grow exponentially with the number of variables
such as schedulability constraints. It must, however, be noted
that this is similar to a fixed learning policy, whereby the
process of learning the states and the actions is a stationary
Markovian.

B. COMPLEXITY OF THE PROPOSED CONSTRAINED
REINFORCEMENT LEARNING SCHEME
In the RL strategy, the complexity comes with the repeated
negotiations, although the strategy/automaton of the game
has to be included when computing the complexity in the
equilibrium concept. The equilibria differs along three task
complexity measures, i.e., (ii) the cardinality of the choice
space, where a stage is equivalent to an information set that
is facing the player along the path leading to an equilibrium;
(ii) the level of iterative knowledge of rationality, and (iii) the
level of iterative knowledge of strategy. With the dynamic
version of the algorithm, a non-stationary Markovian process
results, and the algorithm converges in the sense that there is

no history of the learning process. In this case, the process
of learning the states and actions eventually becomes sta-
tionary Markovian. However, the sampling distribution could
be replaced by the stationary distribution of the underlying
stationary Markovian process, which is an observation that
brought out the need for a dynamic learning algorithm. The
procedure for the constrained RL strategy that demonstrates
the effectiveness of the CMDP on the Q-learning algorithm
in network slicing is outlined in Algorithm 2 below.

Algorithm 2 Procedure for the Proposed Constrained
Reinforcement Learning Algorithm

Input: β, pmax , σ 2, β
(1)
1,n, αt , γ

t , ε, δ

Output: r (1)n,j,k , r
(2)
n,j,k , π

∗,R(γk ).
01: Initialize learning parameters, αt , γ t , ε, and δ
02: ∀s ∈ S and a ∈ A, initialize Q(s, a) = 0
03: Using steps 02 to 07 in Algorithm 1, obtain the

optimal user association
04: For each iteration do
05: Use the user association to obtain the optimal

power allocation using (26)
06: For each TTI do
07: Observe power control condition using (27)

& create system state s(t) = [Ik (t), I(t)]
08: Formulate return using satisfaction in (32)
09: Determine possible action a(t) ∈ A in (35)
10: Use the policy π (s(t), a(t)) to select

appropriate action to maximize reward
γ tR(γk )(π

∗) and observe V ∗i (s, π
∗) in (37)

11: Use optimal policy in (38) to smooth the
Bellman operator, i.e., (39) - (41)

12: Observe the log−
∑
− exp function in (42)

13: End For
14: Update Q∗(s, a) by using (43)
15: Increment timer and move system state to s′

16: End For

1) ALGORITHM INITIALIZATION
The formulation of the resource allocation problem using
the constrained RL formulation is identical to the CMDP
optimization problem of the general finite-horizon CMDP
problem in (40). The algorithm parameters are initialized
in line 01 and the initialization of the Q-function to zero,
i.e., Q(s, a), in line 02, which entails the starting point of
the algorithm. This means that the Q-table is initialized
with zeros, i.e., no learning history, which is done to avoid
undirected exploration such that the algorithm immediately
works towards reward maximization. After the initialization,
line 03 of Algorithm 2 calls line 02 - 07 of Algorithm 1
for SINR adjustment and optimal user association which aids
in power allocation as stated in line 05. This step involves
matrix-vector multiplications, which have a complexity of
O(n2) [42]. In this case, the first Q-value that experiences
a change is the one for or related to the action that leads to
the reward state. The choice of smaller learning rates, i.e.,
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αt = 0.1, is to avoid speeding up the process to convergence
at a local optimization solution - typical of higher learn-
ing rates. The discount factor, γ t , which affects how much
weight must be given to future rewards in the value function,
was set to 0.9. This is because a value γ t = 0 results in
state-action values that represent immediate rewards, whereas
higher values tend to represent the cumulative discounted
future rewards an agent is expecting to receive by behaving
under the policy π∗.

2) ACTION EXPLORATION AND EPISODIC
REWARD FUNCTION
In terms of action selection, a persistent exploration learning
policy, π∗, that stores information about the relatedness of
states and actions in the Q-table, is used. From the action
set, A, of candidate SINRs, the algorithm selects the best
action that translates to the optimal transmission power,
subsequently to achieving γ tR(γk ). The traditional ε-greedy
approach is used with respect to the estimated Q-function
with a probability as stated in [41]. The reason for this is
to make sure that all state-action pairs are explored enough
before the algorithm converges to a particular decision. Using
the power allocation result, observing the system state is first
step of the inner iteration, which happens every TTI. This
step avoids too much interference on other users, which leads
to the formulation of the satisfaction for users of each slice.
The action selection step in line 09 is followed by line 10,
which implements the exploration rule that defines the next
state the system has to go to next. This includes the Q-values
for all the actions, and as it is stated in [43], the number
of steps executed by the algorithm is always bounded by
an expression that depends only on its initial and current
Q-values; whose computational complexity is well discussed
in [45]. Using the proposed constrained RL algorithm, the
computational complexity of action selection which is well
documented in [45] was substantially reduced. Due to the
role of the policy, π∗, being made explicit in (39), a distance
discrepancy is created resulting into a Bellman error. This
discrepancy is minimized by optimizing (39) over V and π ,
which results in the minimization of the squared Bellman
error in (40).

3) UPDATING Q-VALUES AND REACHING THE
REWARD STATE
Reaching the reward state requires resolving the Bellman
error for better algorithm convergence, which requires a few
additional steps from (36). This is done in acknowledgement
of the existence of the Bellman error, which leads to unstable
solutions. It must be noted that the traditional RL strategy
ignores the existence of the Bellman error and only uses a
single update step to adjust Q(s, a) and arrive at a solution.
Then an immediate reward R(s, a) ∈ R is obtained. If the
agent starts in state s ∈ S and proceeds to execute actions for
which it receives immediate reward,Rt , at time step t , the total
reward that it would receive over its lifetime is R(γk ), as stated
by line 10. The smoothing of the Bellman operator in line 11
leading to the convex observation in line 12, the effective

finite horizon power control condition is supposed to increase
the computational complexity of the algorithm. Then, after
resolving the instability issue through the Nesterov smooth-
ing technique, the average reward of the Q-learning algo-
rithm with respect to the episodic allocation of network slice
resources is observed through the ‘‘log−

∑
− exp’’ function

in (42). Throughout the iterations of the Q-learning algo-
rithm, the Q-function is updated using (43). The calcula-
tion indicate that the law of iterated logarithm holds for the
learning process underlying the constrained RL strategy leads
to (42). Thus, with a discount factor γ t = 0.9 > 0.5, the
asymptotic convergence of the Q-learning algorithm used by
the constrained RL strategy is O(n2). Immediately the agent
begins approaching the reward state, the number of steps can
be exponential in the number of states. Then, the Q-function
value of each state-action pair can be augmented with an
estimate of its uncertainty to guide exploration, and to achieve
faster learning and a higher reward during learning. After
the smoothing of the Bellman operator, the state-action pairs
are populated and Q(s, a) is updated as shown in line 14.
This value, i.e., Q(s, a), is then used in the approximation of
the optimal total reward received. If C5∗∗ is not true, which
means URLLC applications will suffer delays, then Q(s, a)
is adjusted using information local to the previous state.
Then, due to the process of transfer learning, the worst-case
computational complexity of this stage becomes quadratic,
i.e., O(n2), which is lower than the upper bound on the
complexity of the Q-learning algorithm. The state-of-the-art
RL strategies in RA states that the computation time cannot
be upper-bounded by less than O(n3).

VII. PERFORMANCE EVALUATION
This section presents the numerical results of the proposed
algorithm considering gNBs using hybrid access mode.

A. SIMULATION PARAMETERS
The performance evaluation is for semi-stationary users with
a system bandwidth of 100 MHz centered on a component
carrier frequency of 3.5 GHz. For the sake of making this
work repeatable by other researchers, the non-default simula-
tion parameters used in the proposed algorithm are tabulated
in Table 2 below.

TABLE 2. Simulation parameters.
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Here we used a static simulator, MATLABTM , the CVX
tool for solving geometric programs is used to solve the
NP-Hard optimization problem in (5). The evaluation results
reported in this section are based on the objective of maxi-
mizing the UL capacity of eMBB users per gNB and utility
function of the corresponding slice. It is worth noting that
the dynamic resource percentage threshold scheme operates
without exclusively relying on the learning rate. For both
the RL and constrained RL strategies, a traditional default
value for the learning rate, α = 0.1 was used as a starting
point for the problem, then the learning rate was reduced to
αt = 0.01. The performance evaluation of these algorithms
is in terms of: (i) convergence performance, and (ii) average
slice throughput, with a focus on traffic averaging, similar
traffic, as well as dissimilar traffic.
• Traffic Averaging: This is the most trivial way of eval-
uating the algorithm, which is by averaging the accu-
mulated reward. Since reward maximization is the core
of all RL strategies, averaging makes both traffic types
to share the same reward function. The averaging tech-
nique, however, does not provide much insight into the
different behaviors that the agent may elicit due to cross-
talk error.

• Similar Traffic: In this case, the system evolves to
maximize the throughput of all admitted traffic without
concentrating on the access delay. In this way, both traf-
fic types are treated as similar. However, this technique
quickly indicates the need to capture task-specific met-
rics such as throughput and delays from each episode.
This comes in the form of splitting tasks into dissimilar
traffic.

• Dissimilar Traffic: This is a highly intricate problem,
where the scheduling problem is done over a time-
varying set of devices with heterogeneous traffic con-
texts. Here, the ability of the algorithm to schedule
traffic of different classes of requirements, which is the
objective of network slicing, is evaluated. The metrics
were calculated as averages over 100 episodes for each
environment in order for each algorithm to obtain statis-
tically significant results.

B. EVALUATING CONVERGENCE PERFORMANCE
It must be noted here that since the RL algorithms imple-
mented by Stable-Baselines have varying parallelization
capabilities, they are not compared based on their wall-time
consumption. Thus, the convergence rates evaluated in this
section refers to time consumption in terms of simulation
steps per episode an agent takes to make a decision. There-
fore, the time efficiency score is a number of iteration steps
instead of percentage values. The evaluation begins with the
default learning rate, which is then substantially reduced to
observe the generalization accuracy of both the RL strategies.
The convergence results for averaged traffic, evaluated at
learning rates αt = 0.1 are presented in FIGURE 2 below.
In FIGURE 2 above, the dynamic RPT algorithm exhibits

a steady increase in the required steps for convergence as

FIGURE 2. Comparison of convergence rates when traffic averaging is
used at αt = 0.1.

the number of users increase. The traditional RL algorithm
required less iterations atK = 5, outperforming the proposed
algorithm at that epoch. However, the proposed algorithm
exhibits a steady decrease in the number of required iterations
at each epoch as the number of users increased. The conver-
gence results for averaged traffic are evaluated at learning rate
αt = 0.01 in FIGURE 3 below.

FIGURE 3. Comparison of convergence rates when traffic averaging is
used at αt = 0.01.

In FIGURE 3 above, the learning rate was decreased to
αt = 0.01 and the algorithms show a steady performance
as the number of users increase. Even the baseline algorithm
shows a plateau at 15 ≤ K ≤ 30. It must be noted that at
this point, the Q-learning algorithm has not yet been tasked
to separate the traffic received from both network slices,
but average it. The performance results when the Q-learning
algorithm is learning similar traffic from both slices are
shown in FIGURE 4 and FIGURE 5 below.
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FIGURE 4. Comparison of convergence performance when system is
learning similar traffic αt = 0.1.

In FIGURE 4 above, the convergence performance of the
traditional RL and the constrained RL is the same throughout
the range, constant at 5 ≤ K ≤ 15, and tends to exhibit
an improvement that matches the traditional RL between
15 ≤ K ≤ 20, then becomes constant thereafter. This insta-
bility exhibited by these results are due to the correlations
present in the sequence of observations, since similar traffic
is learned here. The same performance evaluation is repeated,
now with a reduced learning rate of αt = 0.01, as shown in
FIGURE 5 below.

FIGURE 5. Comparison of convergence performance when system is
learning similar traffic at αt = 0.01.

The performance consistency brought by the decrease in
learning rate from αt = 0.1 to αt = 0.01 can be observed.
Also, at a lower learning rate, the instability observed in
FIGURE 4 above is addressed. However, as it can be seen,
this comes at a cost of increased iterations per epoch. The
asymptotic behavior shown by the constrained RL strategies
show that the use of a smoothed Bellman operation might

have solved the issue of algorithm instability and oscillation.
The convergence performance is evaluated using dissimilar
traffic in FIGURE 6 below.

FIGURE 6. Comparison of convergence performance when system is
learning dissimilar traffic at αt = 0.1.

The results shown in FIGURE 6 above indicate that at
learning rate αt = 0.1 the proposed constrained RL algorithm
outperforms the other two baselines with early convergence
as the number of users increase. The learning rate is then
reduced once again, and the performance is shown in Fig. 7
below.

FIGURE 7. Comparison of convergence performance when system is
learning dissimilar traffic at αt = 0.01.

The results shown in FIGURE 6 and FIGURE 7 above
demonstrate the convergence performance of the algorithms
while dealing with dissimilar traffic from the two slices. From
the results reported in this section, it was observed that the
dynamic RPT algorithm takes ‘‘artificially’’ more steps to
reach a decision. Asmentioned earlier, the convergence of RL
strategies is historically unstable given the sparseness of the
rewards that are observed from the environment as well as the
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difficulty of learning from scratch, i.e., Q(s, a) = 0. But the
results in this section show that the instability can be handled
well using the constrained RL strategy, more especially at
lower learning rates. Even though this comes at the cost of
more iterations per epoch, the added number of iterations
is very small compared with the dynamic RPT algorithm.
On overall, the results show the reason why the learning-
based approaches, with proper exploration, actually perform
better than the traditional methods in terms of time taken to
converge based on observed states and action taken. From
the results shown above, it can be seen that the proposed
algorithm is not very superior to the conventional RL in
terms of cycles required to converge. This proves the greedi-
ness of the conventional RL strategy can control its rate of
convergence, which is a tendency that was avoided by the
constrained RL strategy. Greediness is a relevant concern in
every optimization algorithm, and was successfully avoided
in the propose approach, some positive results to that effect
begin to manifest in the following subsection.

C. SLICE THROUGHPUT EVALUATION
In this subsection, a performance comparison of the proposed
constrained RL algorithm with two baseline algorithms is
done in terms of the average bit rate. The throughput per-
formance is evaluated based on the objective of throughput
maximization as a function of an increasing number of admit-
ted users. The performance evaluation using traffic averaging
and learning rate, αt = 0.1 is shown in FIGURE 8 below.

FIGURE 8. Comparison of average bit rate when system is using traffic
averaging at αt = 0.1.

In FIGURE 8 above, all the algorithms show a similar trend of
a decreasing average bit rate as the number of users increases.
However, the proposed constrained RL algorithm seems to
be lagging behind in performance compared to the two base-
line algorithms until the number of admitted users reaches
K = 10, where it then shows to outperform the conventional
RL, but still lags the dynamic RPT. This shows that even
though the dynamic RPT algorithm faces challenges in terms

of computational complexity, it is actually a good scheme for
task scheduling with resource utilization optimization. How-
ever, despite its high computational complexity, the dynamic
RPT demonstrates superior performance over the proposed
algorithm, which is a behavior that has been reported before
in [47]. It can be seen that when 20 ≤ K ≤ 30, the
performance improvement of the constrained RL scheme
matches that of both baselines, which shows that it is able
to approach the numerical throughput gain of the dynamic
RPT scheme as the number of users increase. The same
performance evaluation is conducted with a lower learning
rate as shown in FIGURE 9 below.

FIGURE 9. Comparison of average bit rate when system is using traffic
averaging at αt = 0.01.

In FIGURE 9 above, the learning rate, αt , was decreased
from αt = 0.1 to αt = 0.01, and the proposed constrained RL
strategy lags the dynamic RPT algorithm by 0.5%, and out-
performs the conventional RL strategy by 0.1%. This shows
the sensitivity of the proposed algorithm to a reduction in
learning rate as it approaches the performance of the dynamic
RPT algorithm better than in FIGURE 8. The reason for this
behavior is that at the beginning of the Q-learning algorithm,
the value distribution has to demonstrate belief while still
working on receiving a better reward. This is because its
initialization state did not include some learning history in
the form of previous rewards, i.e., Q(s, a) = 0. The perfor-
mance of the algorithms is evaluated for similar traffic with a
learning rate of αt = 0.1 on FIGURE 10 below.

The results shown in FIGURE 10 above show that the
performance of the proposed constrained RL algorithm is
slightly better than the traditional RL algorithm, but still
slightly lags the dynamic RPT algorithm. Performance eval-
uation results for αt = 0.01 are shown in Fig. 11 below:

FIGURE 10 and FIGURE 11 above show results where
the task of the agent has been split, but still viewing traffic
as similar. The reflection of the constrained RL algorithm
here is clearly seen as it better approximates the performance
of the dynamic RPT algorithm. It can be seen, however,
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FIGURE 10. Comparison of average bit rate when system is learning
similar traffic at αt = 0.1.

FIGURE 11. Comparison of average bit rate when system is learning
similar traffic at αt = 0.01.

in FIGURE 11 above, that the dynamic RPT algorithms
outperforms the proposed constrained RL strategy by 0.46%,
and the conventional RL strategy by 0.39%. By matching
the best existing algorithm up to a factor of horizon depen-
dence, the proposed constrained RL algorithm is showing to
be suitable for network slicing problems. This means that
researchers working on single network slices can benefit from
this technique. However, when working in network slicing,
the problems usually require one to deal with at least two
slices or three. In that case, one is said to be dealing with
the core problem of network slicing. By taking the important
advantages of constrained RL strategies one can be able
to handle different slices simultaneously. In working with
different network slices and treating the traffic as dissimilar
is a very intricate, yet exiting, problem. In this case, the
expression in (32) is split and each part treated independent
of the other. For this task, classification, regression, and

decision-making are utilized, and the results for learning rate
αt = 0.1 are shown in FIGURE 12 below:

FIGURE 12. Comparison of average bit rate when system is learning
dissimilar traffic at αt = 0.1.

The results for learning rate αt = 0.01 are shown in
FIGURE 13 below:

FIGURE 13. Comparison of average bit rate when system is learning
dissimilar traffic at αt = 0.01.

The results reported in FIGURE 12 and FIGURE 13 above
show the importance of decreasing the learning rate. It must
be noted that in this case, the network slicing traffic was
treated as dissimilar and the lower learning rate allowed the
proposed algorithm to almost match the performance of the
dynamic RPT algorithm. The results have shown that at a
lower learning rate, there is a significant impact on gener-
alization accuracy of the proposed constrained RL strategy.
The results obtained indicate that by starting with the default
learning rate, i.e., αt = 0.1, and then reducing it results is a
better generalization accuracy. However, this better general-
ization comes at a cost in the form of the number of iterations
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towards convergence at each epoch. However, the cost of
an additional few computational iterations can be tolerated
since slices are traded over longer intervals. On the basis of
these results, it is evident the proposed algorithm, with the
help of the SDN-OpenFlow enabled network improves the
network efficiency, and performs better when the learning
rate, αt = 0.01.

D. LATENCY AND POWER-DELAY EVALUATION
In this section, the proposed algorithm and the baselines are
compared in terms of their performance regarding latency.

1) AVERAGE LATENCY VS MEAN ARRIVAL RATE
The evaluation of the average latency as a function of the
mean arrival rates at αt = 0.1 is shown in FIGURE 14 below.

FIGURE 14. Average latency vs mean arrival rates with background traffic
of 10 Gbps at αt = 0.1.

In FIGURE 14 above, the average latency increases with
the number of connected users, i.e., mean arrival rate. The
dynamic RPT algorithm violates the latency constraints,
while the both the conventional RL and the proposed algo-
rithm have a much better performance. The reason behind
this performance gain is that the delay requirement is satisfied
using C5**, which has a better response when learning-
based utility-driven algorithms are used than when the tra-
ditional utility-delay trade-off approaches are used. The
adaptive intelligence of the constrained RL strategy allows
for existing knowledge to either be changed or discarded,
while new knowledge is being acquired. For instance, when
eMBB devices observe the state space and execute the policy
π (s(t), a(t)), they also communicate the information inC1**
and C2** to the gNB.
It can be seen in FIGURE 15 above, that the proposed

algorithm outperforms the conventional RL strategy with a
performance difference of 11.7%. the average latency of the
proposed algorithm improved by 5.0% from what its perfor-
mance was at αt = 0.1 in FIGURE 14. The behavior of the

FIGURE 15. Average latency vs mean arrival rates with background traffic
of 10 Gbps at αt = 0.1.

target delay level is evaluated as a function of the latency
scheme defined by C5**, as shown in FIGURE 16 below.

FIGURE 16. Behavior of the tail distribution of latency at αt = 0.1 with
background traffic of 10 Gbps.

As shown in FIGURE 16, when αt = 0.1, all the algo-
rithms violate the the latency requirement, but the proposed
algorithms gives better performance. However, when αt is
adjusted to 0.01, the proposed algorithm is able to meet the
latency requirement, as shown in FIGURE 17 below.
Shown in FIGURE 17 above is the tail distribution of

the latency, which shows how the system achieves delays
compared to the target delay threshold. As opposed to the
average delay, the tail distribution offers useful insights into
the URLLC use case. Thus, by imposing the probabilistic
latency of dk,max = 10 ms on the arrival rate, the violation of
the latency constraint becomes easy to trace. From the above
results on latency, the inability of dynamic RPT algorithm to
adapt to epistemic uncertainties, such as hidden structures,
is exposed. Due to this lack of this subsequent ability, it is
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FIGURE 17. Behavior of the tail distribution of latency at αt = 0.01 with
background traffic of 10 Gbps.

at a disadvantage in exploring and learning new information
from the system.

2) THE POWER-DELAY PERFORMANCE
In this part, the sensitivity of the proposed constrained RL
algorithm is examined on non-Markovian system behavior,
whose dynamics are very challenging for the conventional
RL strategy to adapt to. Here, the power-delay performance
is evaluated to observe the time-averaged power consumption
per slice, based on the constraints of the stability of the
queues. As the physical quantity, dk , in C5** has an upper-
bound in practical systems, this evaluation seeks to point
out situations when the probabilistic delay levels are shifted
below their normal values, thus shifting the system out of the
normal Markovian behavior. The power-delay performance
of the proposed constrained RL strategy is evaluated for both
slice types at αt = 0.01. The constrained RL strategy is
further used to evaluate the effects of adjusting the latency
thresholds on the different slices on the power consump-
tion of the system. In this evaluation, the learning rate, αt
is fixed at 0.01, only the probabilistic latency is adjusted.
The following figures show comparison between eMBB (left
y-axis) and URLLC (right y-axis), where each point on the
graph corresponds to the average transmission power of that
corresponding slice.

In FIGURE 18 above, the latency probabilistic adjustment
values for eMBB and URLLC are ε0 = 1.5 and ε0 = 0.05,
respectively. Then, the value for eMBB is reduced, while for
URLLC is kept constant at ε0 = 0.05, and the performance
is shown in FIGURE 19 below.

FIGURE 19 above, the latency values for eMBB and
URLLC are ε0 = 1.3 and ε0 = 0.05, respectively. With
this adjustment, the average transmission power of the eMBB
slice increased tremendously, while a reduced power con-
sumption is seen on the URLLC slice. Then, the latency
adjustment is performed for the URLLC slice, keeping the

FIGURE 18. Average eMBB/URLLC transmission power (Watts).

FIGURE 19. Average eMBB/URLLC transmission power (Watts).

eMBB slice at the original value, and the performance results
are shown in FIGURE 20 below.

FIGURE 20. Average eMBB/URLLC transmission power (Watts).

FIGURE 20 above, the latency values for eMBB and
URLLC are ε0 = 1.5 to ε0 = 0.03, respectively. With the
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reduction in the probabilistic latency of the URLLC slice,
a corresponding increase in the average transmission power
is witnessed. The average power-delay performance shown in
the above figures shows that as the probabilistic adjustment
of the latency value for a certain slice is reduced, the average
transmission power increases corresponding to the sensitivity
of that slice to delay requirements. As the reduction of the
probabilistic latency values happens on a certain slice, the
behavior of that slice becomes increasingly non-Markovian,
which causes the system to move to higher power consump-
tion state. These results show that even in rapidly time-
varying non-Markovian environments, constrained RL is able
to successfully adapt in order to continue satisfying the delay
constraints of the applications hosted on that particular slice.

VIII. CONCLUSION AND FUTURE WORK
In this article, the application of dynamic resource percentage
threshold in network slicing was presented and compared
with the proposed constrained RL strategy. The objective
was to improve network slice admission and management by
considering the creation and configuration of the two slices
with different traffic on demand. Apart from the problem
of improving network slice admission and management, the
problem presented itself as a non-convex constraint set, with
upper bounds on SINR as a function of the transmission
power vector in order to reduce the interference to other
network users. The proposed constrained RL-based slicing
scheme was used to address both the non-convexity of the
problem as well as the most pervasive RL problem that leads
to an oscillating behavior of Q-learning algorithms. This was
done by reformulating the Bellman optimality equation into a
primal-dual optimization problem using smoothing and trans-
formation techniques. Using the mathematical techniques
from Nesterov and Legendre to perform some approxima-
tions and transformations, the constrained RL strategy was
obtained, which enabled for the derivation of a policy that
ensures that slices are allocated the resources they require.

In validating the feasibility of the proposed constrained RL
strategy, the convergence rate and slice throughput in terms
of the average bit rate were used. The established complexity
upper bounds seem to be the best available - presently - for
both sequential and parallel computation and outperform the
dynamic RPT algorithm by orders of magnitude. System-
atically, the proposed constrained RL algorithm compares
favorably with the baseline algorithms at the default learning
rate of 0.1, in terms of average bit rate. These complexity
upper bounds actually represent significant improvements
over even the traditional RL strategy, more especially when
the learning rate is decreased from 0.1 to 0.01. The perfor-
mance evaluation results show that the proposed algorithm
can effectively solve network slicing problems with less com-
plexity that the conventional RL strategy. The power-delay
evaluation of the proposed algorithm show that it can also
adapt well in rapidly time-varying non-Markovian environ-
ments and still successfully satisfy the delay constraints of
the hosted applications.

A. DISCUSSION OF SUBSTANTIAL IMPACT
In practical network slice management problems, both the
dynamics of resource availability (e.g., channel fading) and
resource elasticity of the active slices must be considered
when allocating resources. The proposed algorithm imbued
the dynamic RPT algorithm into the RL strategy to ensure
constraint satisfaction, leading to the constrained RL strat-
egy. The advantages of the constrained RL strategy are that:
(i) it guarantees the satisfaction of joint constraints with high
probability, which is crucial for safety tasks; (ii) it attains the
optimal average reward much faster than the conventional RL
strategy, which is also justified by the results on convergence.
This indicates that the proposed constrained RL algorithm
outperforms both dynamic RTP and the conventional RL in
terms of the time it takes to converge to the optimal solution;
(iii) it has adaptive intelligence that is superior than the con-
ventional RL strategy since it allows for existing knowledge
to either be changed or discarded, while new knowledge is
being acquired. For instance, when eMBB devices observe
the state space and execute the policy π(s(t), a(t)), they also
communicate the information in C1** and C2** to the gNB.

B. LIMITATIONS AND DISADVANTAGES
However, the proposed algorithm also has several disad-
vantages in wireless network optimization: (i) robustness -
performing optimization in a central manner, i.e., with the
SDN controller, presents a single isolated point of failure;
(ii) decentralized optimization - sharing the information
collected/stored in the clouds with a centralized controller
is not economically efficient due to the time-varying net-
work topology, energy constraints, as well as privacy issues;
(i) convexity/non-convexity - the way in which the pro-
posed algorithm is handled, which is similar to the heuris-
tic treatment of first justifying the convexity, i.e., achieving
log−

∑
exp. This is the same approach used by the dynamic

RPT algorithm, which is very efficient, but computationally
complex. As a result, of this treatment, the proposed algo-
rithm is seen not to outperform the dynamic RPT in terms
of achievable bit rate, but hugely outperforms it in terms of
convergence rate. Since with this constrained RL approach,
the task of the learning agent becomes slightly different from
that of the traditional RL strategy in that it learns the transition
dynamics without using the reward information, it is able to
address the fundamental limitations of RL.

C. RECOMMENDATIONS FOR FUTURE WORK
The application of this approach needs to be extended to
incorporate more slices and even multiple slice objectives.
In this way, the envisioned future work comprise of con-
sidering the connectivity resources as well as the existence
of multiple data centers in complex network slicing models.
The current algorithm can be used, either in its current form
or as an improved version, to ind the joint optimal power
control as well as the dynamic power management policies
even when the traffic arrival patterns and statistics of the
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propagation channel are unknown. The modeling of such a
problem would be structured in a way that action exploration
is eliminated in order to enable virtual experience. The aim of
this kind of a modeling approach is to dramatically improve
the performance of each network slice. The performance
of the obtained solution would then be evaluated in terms
of computational complexity, scalability, convergence rate,
as well as stability.
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