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Abstract

We note that, given a coherent OX -algebra F such that each affine
restriction F |Ui is associated with some faithful finitely generated pro-
jective Ri-algebra Ai, if σi is an anti-automorphism of Ai such that
xσi(x) is in Ri for all x ∈ Ai, then F admits one standard involution σ̃,
which commutes with all automorphisms and anti-automorphisms of
F . Next, given a locally finitely presented OX -module E on an affine
scheme X, and an involution of the first kind σ on the sheaf of en-
domorphisms E ndOX (E ), there exist an invertible OX -module L and
isomorphisms ϕ : E ⊗OX L

∼→ E ∗ and Φ : E ndOX (E )
∼→ E ndOX (E ∗)

such that, locally, σ⊗ id = Φ◦m, where m is the natural isomorphism
E ndOX (E ⊗L ) ' E ndOX (E ) on any open U in X.
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1 Introduction
The purpose of this note is to explain the basic theory of involutions on
sheaves of Azumaya algebras.

Here are some classical references:

• Chapter III, §5 in the book [KO74] of Knus and Ojanguren;

• Chaper III, §5 in the book [Knu91] of Knus;

• Chapters 7 and 11 in the book [For17] of Ford;
∗
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• The Book of Involutions [KMRT98] of Knus, Merkurjev, Rost and Tig-
nol when over a field;

• The article [Gro95] Brauer 1 of Grothendieck;

This paper grew out of an attempt to seek counterparts of classical results
pertaining to isomorphisms of some groups associated with central simple al-
gebras in the setting of Azumaya algebras. Of these groups, we may mention
the group Sim(V, b) of similitudes, the group Iso(V, b) of isometries, the group
PSim(V, b) of projective similitudes, all assigned to a nonsingular symmteric
or alternating bilinear vector space, defined over an arbitrary field F .

As is put in [KMRT98, Chap IV], these so-called exceptional isomor-
phisms are of particular interest as they provide equivalences between cat-
egories of algebras with involution. This project requires background work,
which underpins results related to central simple algebras endowed with in-
volutions of the first or second kind. The one result states that given a
finitely generated left A-module M , where A is a central simple algebra over
a field F , and E ≡ EndA(M), then E is a central simple F -algebra and
is Brauer equivalent to A and A ' EndE(M). Conversely, let G be a cen-
tral simple F -algebra; if A and G are Brauer equivalent, then there is an
A-G-bimodule M 6= {0} such that A = EndG(M), G = EndA(M). In the
context of Azumaya algebras, we first observe that given an Azumaya right
R-algebra A, and M an Azumaya left A-algebra such that EndR(M) is a
simple R-module, then B ≡ EndA(M) is an Azumaya R-algebra and A⊗RB
is isomorphic to EndR(M). Moreover, the R-algebra EndB(M) is Azumaya
and isomorphic to A: A ' EndB(M). So, the first part of the stated classical
result (see [KMRT98, Proposition 1.10]) is also verified in this context. As
for the converse, we assume that the ring R is commutative, A is an Azumaya
R-algebra, and M is a free left Azumaya A-algebra such that EndR(M) is
a simple left R-module. Then, EndA(M) is an Azumaya R-algebra and is
Brauer equivalent to the opposite algebra Ao. Furthermore, if B is an Azu-
maya R-algebra Brauer equivalent to the Azumaya R-algebra A, then B is
of the form EndA(M)o, where M is both an A-module and R-progenerator.

Next, assigning to each non-singular bilinear form b : A×A→ R, where A
is an Azumaya R-algebra, with R a local ring, its adjoint anti-automorphism
σb : EndR(A)→ EndR(A), one induces a bijection between the set of equiv-
alence classes of nonsingular bilinear forms on A modulo multiplication by
a unit in R and the set of sdjoint anti-automorphisms of EndR(A). More-
over, R-linear involutions of EndR(A) correspond bijectively to nonsingular
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bilinear forms that are either symmetric or skew-symmetric. This result
generalizes to nonsingular sequilinear forms on A.

Before we consider involutions on sheaves of Azumaya algebras in its
generality, we shall first study involutions on sheaves associated with algebras
of the form EndR(A), where R is a local ring and A an Azumaya R-algebra,
endowed with a nonsingular bilinear form b : A × A → R. For such algebra
sheaves, we observe that the OX-linear involutions ˜EndR(A) → ˜EndR(A)
correspond to nonsingular bilinear forms which are either symmetric or skew-
symmetric. Moreover, if the underlying R-module of A is a faithful, finitely
generated, and projective module, equipped with an anti-automorphism σ
satisfying the property that xσ(x) ∈ R, for all x ∈ A, then σ induces an
involution σ̃ on the OX-algebra F associated with A, which is, in addition,
the only standard involution on F , commuting with all automorphisms and
anti-automorphisms of F .

Now, for a locally projective quasi-coherent OX-module E of constant
rank 2 on a scheme (X,OX), that is, the OX-module E is associated with a
projective R-module of constant rank 2, E turns out to be a commutative
OX-algebra, endowed with a unique standard involution. Finally, for a locally
finitely presented OX-module on an affine scheme X, and σ an involution of
the first kind on E ndOX (E ), there exist an invertible OX-module L , a sheaf
isomorphism ϕ of E ⊗OX L onto E ∗, and an isomorphism Φ : E ndOX (E )→
E ndOX (E ∗) such that, on some appropriate open U in X, σ ⊗ id = Φ ◦m,
where m is the natural isomorphism E ndOX (E ⊗L ) ' E ndOX (E ) on U , and
for any open V in U , ΦV V (s) = ϕ−1

V s∗ϕV , for any section s ∈ E ndOX (E )(V ).

2 Algebraic definition

2.1 Progenerator modules

In this paragraph, we recall some facts on progenerator modules (or simply,
progenerators) that are useful for our topic. For an extensive exposition on
progenerator modules, we recommend [For17] or [Knu91]. Knus does not use
the terminology “progenerator" though, he calls them faithfully projective
modules. It is however proved that, given a commutative ring R, an R-
module is an R-progenerator if and only if it is finitely generated projective
and faithful, (cf. [For17, p. 11, Corollary 1.1.16]).

Definition 2.1. A module M over a ring R (not necessarily commutative)
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is called a progenerator, or R-progenerator, when it is finitely generated and
projective, and its trace is R, viz

TR(M) =

{ n∑
i=1

fi(mi)| n ≥ 1, fi ∈ HomR(M,R), mi ∈M
}

= R.

Equivalently, a finitely generated and projective R-module M is a pro-
generator if every left R-module is a homomorphic image of a direct sum M I

of copies of M over some index set I, see [For17, Ex. 1.1.11].
The following shows that, for projective modules of finite type over a

commutative ring , the condition for being a progenerator entails that the
module is nowhere zero locally.

Theorem 2.2. For any finitely generated projective module M over a com-
mutative ring R, the following are equivalent:

a. M is a progenerator;

b. M is faithful (i.e. has its annihilator reduced to 0);

c. For every maximal ideal m of R, the module M/mM is nonzero;

d. For any connected component of R, the module M is nonzero over that
connected component. In other words, if S is a factor of R, then S⊗RM
is nonzero;

e. Rank(Mp) 6= 0, for every p ∈ Spec(R);

f. Rank(Mp) 6= 0, for every closed point p ∈ Spec(R).

Proof. See [For17, Cor. 1.1.16] for (a) ⇔ (b). We now show that (b)⇒ (c).
Indeed, since annihR(M) = 0, then for every maximal ideal m, mM 6= M.
See [For17, Lemma 1.1.13]. For (c) ⇒ (b), by one more use of [For17,
Lemma 1.1.13], we note that mM 6= M ⇔ m+annihR(M) 6= R, which, since
annihR(M) is a two-sided ideal in R, implies that annihR(M) = 0. Therefore,
M is faithful. Next, since the rank ofM is a locally constant map on Spec(R),
it is therefore constant on any connected component. Thus, M 6= 0 on any
connected component iff its rank is not zero on it. Hence, (d) ⇔ (e). Now,
since Rank(Mp) = Rank(Mm), for all maximal ideal m containing p, (e) ⇔
(f). Finally, by virtue of the fact that Rank(Mp) = dimRp Mp/pMp, where
Rp = Rp/pRp, (f) ⇔ (c).
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Definition 2.3. An R-algebra A is an Azumaya algebra if it satisfies any of
the following equivalent properties:

a. A is a central R-algebra and separable over R.

b. A is an R-progenerator and the natural representation

µ : A⊗R Ao → EndR(A),

defined by µ(a ⊗R bo)(x) = axbo, where a, bo ∈ A and x ∈ R, is an
isomorphism.

c. For any maximal ideal m of R , the quotient A/mA is a central simple
R/m-algebra.

Note in particular that by definition, R injects into A.

Example 2.4 ([For17, 7.1.10]). When M is a progenerator module over a
commutative ring R, the algebra EndR(M) is an Azumaya algebra over R;
in particular, when M = Rn, we have that Mn(Ro) is an Azumaya algebra
over R.

From the geometric point of view, Azumaya algebras over R are exactly
étale forms of matrix rings.

Proposition 2.5 ([For17, Theoorem 10.3.9]). The following are equivalent:

a. A is an Azumaya algebra over R;

b. There is an étale cover {Si → R, i ∈ I} such that for any i, there is an
isomorphism ASi ' Mni(Si) for some ni ≥ 1.

2.2 Modules over Azumaya algebras

When the base ring is a field, an Azumaya algebra is a simple ring, so any
module on an Azumaya algebra that is defined over a field decomposes as a
direct sum of simple ones; simple modules are indecomposable, and there is
only one simple module up to isomorphism (see [Bou58, §7, 2, Prop. 2]). But
when the base is more general, what can be said of this category of modules?

Proposition 2.6 ([For17, Ex. 7.6.7] or [DI71, p. 146, Exercise. 1.1]). If A is
Azumaya over a local ring R, then any two indecomposable A-modules are
isomorphic.
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3 Brauer group
In this section, we discuss the Brauer equivalence on Azumaya algebras and
questions related to this equivalence.

3.1 Brauer equivalence

Definition 3.1. Two Azumaya algebras A and B over R are said to be
Brauer-equivalent provided there are progenerator (i.e. nowhere zero) R-
modules M and N such that

A⊗R EndR(M) ' B ⊗R EndR(N).

Since EndR(M ⊗R N) ' EndR(M) ⊗R EndR(N), this is obviously an
equivalence relation, and furthermore compatible with the tensor product
(over R) of algebras, which thus induces a monoid structure on equivalence
classes. It is clear that isomorphic algebras are in the same equivalence class.
Actually, this monoid is a group, with neutral element [R]. Assuming that
the binary operation is given by setting [A][B] := [A⊗B], the inverse of [A]
is [Ao], since

[A⊗R Ao] = [EndR(A)] = [R]

and A is an R-progenerator. See [For17, Theorem 7.1.4].
It is easy to show:

Proposition 3.2. a. An Azumaya algebra is neutral if and only if there
is a progenerator M such that A ' EndR(M).

b. Azumaya algebras A and B are Brauer-equivalent if and only if there
is an R-progenerator M such that A⊗Bo ' EndR(M).

Proof. This is [For17, Prop. 7.3.4].

We recall that Brauer equivalence relates to Morita equivalence. Suc-
cinctly, two algebras A and B are Morita equivalent if their corresponding
module categories are equivalent, that is, there are additive functors S and
T

ModA
T //

ModB
S
oo

such that ST ' IdModA , and TS ' IdModB . It follows that T ' ⊗A P,
S ' ⊗B Q, where P = T (A) and Q = S(B). See, for instance, [Bas68, p.
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60]. Given a semilocal and connected ring R, H. Bass in [Bas64, Corollary
17.2] shows that two Azumaya R-algebras A and B are Brauer equivalent if
and only if they are Morita equivalent as R-algebras.

Let A be an Azumaya R-algebra, let M be a left A-module and let B =
EndA(M). The action of B on M by evaluation of functions endows M with
a right B-module structure (endomorphisms of M are written on the right-
hand side of the arguments) commuting with that of A; in other words, M
becomes an A ⊗R Bo-module. More precisely, for all a ∈ A, f ∈ B, and
m ∈M , (a⊗ f)m = amf.

For the purpose of the next lemma, recall that a progenerator over a
progenerator is a progenerator [For17, Proposition 1.1.8], that is, given a
ring homomorphism R → S such that S is an R-progenerator, then any
S-progenerator is also an R-progenerator.

Lemma 3.3. Let A be an Azumaya right R-algebra, and let M be an Azu-
maya left A-algebra. Then B := EndA(M) is an Azumaya R-algebra. Fur-
thermore, the natural morphism

A⊗R B → EndR(M)
a⊗ f 7→ (m 7→ f(am) = af(m))

is an isomorphism; therefore, B is Brauer equivalent to the opposite Azumaya
R-algebra Ao.

Proof. Since A is an R-progenerator, and EndA(M) is an A-progenerator,
EndA(M) is an R-progenerator. Moreover, EndA(M), as an R-algebra, is
R-central; therefore, EndA(M) is an Azumaya R-algebra (see [For17, The-
orem 7.1.4]), and consequently, the tensor product A ⊗R B is an Azumaya
R-algebra. Finally, that the map in the statement of Lemma 3.3 is an iso-
morphism of Azumaya R-algebras is easy to see.

By symmetry, if A is an Azumaya left R-algebra and M is a right A-
module , then B := EndA(M) is an Azumaya right R-algebra and B⊗RA '
EndR(M).

Corollary 3.4. Under the hypotheses of Lemma 3.3, the R-algebra E :=
EndB(M), where B = EndA(M), is Azumaya and is isomorphic to A : A '
EndB(M).
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Proof. By virtue of Lemma 3.3, B is an Azumaya left R-algebra; since M is
an Azumaya right B-algebra, it follows that E := EndB(M) is an Azumaya
right R-algebra. Furthermore, since E⊗RB ' EndR(M) ' A⊗RB, it follows
that A ' EndB(M), and the proof is complete.

We then have (compare with [KMRT98, Proposition (1.10)]1):
Conversely to Lemma 3.3, one has

Lemma 3.5. Let R be a commutative ring, and A, B Azumaya R-algebras.
Then, if B is Brauer equivalent to A, B is of the form EndA(M)o, where M
is both an A-module and R-progenerator.

Proof. By [For17, Proposition 7.3.4], there is an isomorphism φ : A⊗RBo '
EndR(M), whereM is an R-progenerator. Plainly, by setting (a⊗1)(x) = ax,
for all a ∈ A and x ∈ M , it turns out that M is an A-module. From
[For17, Theorem. 7.2.3], it follows that the commutant of A (identified to its
image via φ) in EndR(M) is exactly B. In other words, since

EndR(M)φ(A) ≡ EndR(M)A = {f ∈ EndR(M)| fa = af, a ∈ A} = EndA(M),

it follows that
Bo ' φ(Bo) = EndA(M).

-

3.2 Involutions on Azumaya algebras

Let R be a local ring and A an Azumaya R-algebra of finite rank (so A as an
R-module is of finite rank). As is well known, a bilinear form b : A×A→ R
is called nonsingular if the induced map

b̂ : A→ A∗ := HomR(A,R),

defined by
b̂(x)(y) = b(x, y),

1Beware that in [KMRT98] the convention on morphisms of page xvii explains why the
opposite on B does not appear.
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for all x, y ∈ A, is a linear isomorphism. For any f ∈ EndR(A), we define
σb(f) ∈ EndR(A) by setting

σb(f) = b̂−1 ◦ f t ◦ b̂, (3.1)

where f t ∈ EndR(A∗) is the transpose of f . Also it is standard to define
σb(f) by requiring it to verify the property:

b
(
x, f(y)

)
= b
(
σb(f)(x), y

)
,

for all x, y ∈ A. It is clear that σb turns out to be an anti-automorphism
of EndR(A); it is called the adjoint anti-automorphism with respect to the
nonsingular bilinear form b.

Theorem 3.6. Let R be a local ring and A an Azumaya R-algebra of finite
rank. Moreover, let Λ be the map that sends each nonsingular bilinear form
b : A × A → R onto its adjoint anti-automorphism σb. Then, Λ induces
a bijection Λ̃ between the set of equivalence classes of nonsingular bilinear
forms on A modulo multiplication by a unit of R and the set of adjoint anti-
automorphisms of EndR(A). Under the map Λ̃, the R-linear involutions of
EndR(A) correspond to nonsingular bilinear forms which are either symmet-
ric or skew-symmetric.

Proof. The proof is standard; see, for instance, [KMRT98, pp 1-2, Theorem].
Indeed, from relation (3.1), it is clear that for any unit α in R, σαb = σb;

therefore, the map Λ induces a well-defined map Λ̃ : [b] 7→ σb, where [b]
denotes the equivalence class containing b.

Now, let’s show that Λ̃ is one-to-one. To this end, note that if b, b′ are
nonsingular bilinear forms on A, the isomorphism v ≡ b̂−1 ◦ b̂′ is such that

b′(x, y) = b
(
v(x), y

)
,

for all x, y ∈ A; whence, one has, for all f ∈ EndR(A),

σb(f) = v ◦ σb′(f) ◦ v−1,

which can be rewritten as

σb = Int(v) ◦ σb′ ,

where
Int(v)(f) = v ◦ f ◦ v−1,
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for all f ∈ EndR(A). Therefore, if σb = σb′ , then v is a unit in R, and
[b] = [b′].

Next, let’s fix a nonsingular bilinear form b on A. It follows that for any
linear anti-automorphism ν of EndR(A), σb◦ν−1 is an R-linear automorphism
of EndR(A). Since EndR(A) is an Azumaya R-algebra (see [For17, Theo-
rem 7.1.4] along with [For17, Proposition 7.1.10]) and R is local, by the
Skolem-Noether theorem ([For17, Corollary 7.8.15]), σb ◦ ν−1 is an inner
automorphism, that is, σb ◦ ν−1 = Int(u), for some R-linear isomorphism
u ∈ EndR(A). Then, ν is an adjoint anti-automorphism for the bilinear form
b′ defined by

b′(x, y) = b(u(x), y),

which ends the proof of the first part of the theorem.
Finally, if b is a nonsingular bilinear form onA with adjoint anti-automorphism

σb, then the nonsingular bilinear form b′ :

b′(x, y) = b(y, x) for all x, y ∈ A

satisfies the equation
σb′ = σ−1

b .

Therefore, b and b′ are scalar multiples of each other if and only if σ2
b = 1; it

follows that if b′ = εb, for some unit ε, then ε2 = 1. Hence, b is symmetric or
skew-symmetric.

Theorem 3.6 generalizes to nonsingular sesquilinear forms on A. In fact,
let R be a local ring, endowed with a conjugation ϑ, let A be an Azumaya
R-algebra of finite rank (any involution on A clearly induces a conjugation
on R), and let h : A × A → R be a sesquilinear form with respect to ϑ,
that is, h is Z-bilinear and is such that, for x, y ∈ A, and α, β ∈ R,
h(αx, yβ) = ϑ(α)h(x, y)β. It is clear that the argument for the proof of
Theorem 3.6 applies mutatis mutandis in this context as well. Furthermore,
the R-linear involutions of EndR(A) correspond to nonsingular sesquilinear
forms which are either hermitian or skew-hermitian. (A hermitian form on
A (with respect to the conjugation ϑ) is a sesquilinear map h : A × A → R
such that h(y, x) = ϑ(h(x, y)), for all x, y ∈ A. The map h is called skew-
hermitian if h(y, x) = −ϑ(h(x, y)), for all x, y ∈ A.)

More generally, suppose that R is a local ring and a PID, A is an R-
Azumaya algebra, M is a finitely free right A-module, and ϑ : A → A
is an involution (of any kind). Then, for every nonsingular hermitian or
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skew-hermitian form h : M × M → A, there exists a unique involution
σh : EndA(M)→ EndA(M) such that

h(x, f(y)) = h(σh(f)(x), y),

for all x, y ∈ M . The involution σh is called the adjoint involution with
respect to h. See [KMRT98, Proposition 4.1].

On considering the framework of Azumaya algebras over schemes, Theo-
rem 3.6 can be stated as follows:

Theorem 3.7. Let R be a local ring and A an Azumaya R-algebra of finite
rank. The map that sends each nonsingular bilinear form b : A × A → R
onto its adjoint anti-automorphism

σ̃b : ˜EndR(A)→ ˜EndR(A)

is a bijection. Moreover, the OX-linear involutions of ˜EndR(A) correspond to
nonsingular bilinear forms which are either symmetric or skew-symmetric.

Proof. That σ̃b exists and is a sheaf anti-automorphism stems from the fact
that the map

HomR(EndR(A),EndR(A))→ HomOX ( ˜EndR(A), ˜EndR(A)), σ → σ̃

is bijective. See [Bos13, p. 258, Proposition 2].

Now, let A be an R-algebra (not necessarily Azumaya), andX = Spec(R);
let us introduce involutions on OX-algebras F associated with A. An involu-
tion of F is an OX-anti-automorphism of order 2, that is an OX-endomorphism
of F such that, for any given sections s, t of F over the same open subset
U of X, σ(st) = σ(t)σ(s) and σ2 = id.

Definition 3.8. Let R be a ring, A an R-algebra such that the canonical
morphism R → A is injective, X = Spec(R), and F the OX-algebra as-
sociated with A. An involution σ of F is called a standard OX-involution
(or simply standard involution) provided that, for every open U in X, σU is
a standard involution, that is, the morphism OX(U) −→ F (U) is injective,
and aσU(a) ≡ aσ(a) ∈ OX(U) for all a ∈ F (U); the scalar aσ(a) is called the
norm of a, and is often denoted by NU(a) ≡ N (a). By trace of a ∈ F (U),
we mean the element a + σ(a) = N (a + 1) −N (a) − 1 ∈ OX(U), which is
usually denoted by trU(a) ≡ tr(a).
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Whenever the circumstances at hand are clear, we shall write σ for any
component σU of a sheaf morphism σ, so that the condition aσU(a) ∈ OX(U)
of Definition 3.8 simply becomes aσ(a) ∈ OX .

The terminology of Definition 3.8 is classical; cf. [HM08, p. 40, Definition
1.13.7]. On the other hand, let us notice that, cf. [Bos13, p. 258, Proposition
2], the mapping HomR(A,A)→ HomOX (F ,F ), sending any endomorphism
ϕ of A onto its corresponding endomorphism ϕ̃ of F , where for any f ∈ R,
ϕ̃D(f) = ϕ⊗ 1Rf , is bijective; on the strength of this bijection, we note that
for any commutative ring R, an endomorphism σ : A → A is an involution
if and only if its image σ̃ is an involution of F . Indeed, for any p ∈ X, let
a
s
, b
t
∈ Ap; clearly, one has that σ̃p

(
a
s
b
t

)
= σ(ab)

st
= σ̃p

(
b
t

)
σ̃p
(
a
s

)
. Furthermore,

since the mapping A 7→ Ã yields an exact fully faithful functor from the
category of R-modules to the category of OX-modules (cf. [Har77, p. 110,
Proposition 5.2]), it follows that σ̃2 = 1. The converse is straightforward.
For any open set U in X, the U -th component of σ̃ is obtained by setting

σ̃U = lim←−
D(f)⊆U

σ̃D(f) = lim←−
f∈R with D(f) ⊆ U

σf ,

which is an involution on F (U). Because of the bijective correspondence
above, we shall often identify σ with σ̃ whenever there is no confusion.

Now, let us note that the natural morphism ι : R → A gives rise to the
sheaf morphism ι̃ : OX → F , where, if ιf : Rf → Af denotes the localization
of ι at f ∈ R, then, for any open set U in X,

ι̃U = lim←−
D(f)⊆U

ι̃D(f) = lim←−
f∈R with D(f) ⊆ U

ιf .

It is clear from the universal property of projective limits that ι̃ is a functor on
the category of open subsets of X. Now, since injectiveness (of morphisms
of modules) is a local property, and since, for all x ∈ X, OX,x ' Rx (cf.
[Bos13, p. 248, Proposition 9.]) and

Fx = lim−→
D(f)3x

F (D(f)) = A⊗R lim−→
D(f)3x

Rf = A⊗R Rx = Ax,

it follows that the natural morphism ι : R→ A is injective if and only if the
induced morphism ι̃ : OX → F is injective; thus, we have:
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Lemma 3.9. Let R be a ring, X = Spec(R), and A an R-algebra. Then, an
endomorphism σ of A is a standard involution if and only if σ̃ is a standard
involution of F = Ã.

Proof. Indeed, let U be open in X; as a projective limit of the projec-
tive system {F (D(f)) : f ∈ R and D(f) ⊆ U}, F (U) is contained in∏

D(f)⊆U F (D(f)). Moreover, let x ∈ F (U), then ρUf (x) = a
fn
∈ Af , for

some a ∈ A and n ∈ N, and where ρUf : F (U) → F (D(f)) is a restric-
tion map for the OX-module F ; in fact, ρUf = prf , where prf is the nat-
ural projection of

∏
D(f)⊆U F (D(f)) onto F (D(f)). On the other hand,

ρUf (σ̃(x)) = σf (
a
fn

); whence ρUf (xσ̃(x)) = a
fn
σf (

a
fn

) ∈ Rf = OX(D(f)). It fol-
lows that xσ̃(x) ∈ OX(U) for all x ∈ F (U); in other words, σ̃ is a standard
involution of F whenever σ is a standard involution of A. The converse is
immediate.

Corollary 3.10. Let R be a ring, X = Spec(R), A an R-algebra whose
underlying R-module is faithful, finitely generated, and projective; and let σ
be an anti-automorphism of A such that xσ(x) ∈ R for all x ∈ A. Then,
σ induces an involution σ̃ on the OX-algebra F associated with A; it is, in
addition, the only standard involution of F . Moreover, σ̃ commutes with all
automorphisms and anti-automorphisms of F .

Proof. By [HM08, p. 40, Lemma 1.13.8], σ turns out to be the only standard
involution ofA, and commutes with all automorphisms and anti-automorphisms
of A. Moreover, by Lemma 3.9, σ̃ is the only standard involution of F ; since
the mapping ∼ is a functor, σ̃ commutes with all automorphisms and anti-
automorphisms of F .

Corollary 3.11. Let (X,OX) be a scheme and F a coherent OX-algebra
such that if U := (Ui)i∈I is a covering of X by open affine subsets Ui =
Spec(Ri), then, for each i, the restriction F |Ui is associated with some faithful
finitely generated projective Ri-algebra Ai. Moreover, let σi, i ∈ I, be an
anti-automorphism of Ai such that xσi(x) ∈ Ri, for all x ∈ Ai. Then, F
admits exactly one standard involution σ̃; in addition, σ̃ commutes with all
automorphisms and anti-automorphisms of F .

Proof. According to Corollary 3.10, let σ̃i be the only standard involution
of the O|Ui-algebra F |Ui , where, by hypothesis, F |Ui is the O|Ui-algebra
associated with the faithful finitely generated projective Ri-algebra Ai. The
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morphism σ̃ : F → F such that σ̃|Ui = σ̃i is well defined. Indeed, for
all i, j such that Ui ∩ Uj 6= ∅, σ̃i|Ui∩Uj = σ̃j|Ui∩Uj . Clearly, σ̃ is the only
standard involution on F , and it commutes with all automorphisms and
anti-automorphisms of F .

Corollary 3.12. Let (X,OX) be a ringed space, and let I be an OX-ideal
generated by nowhere-zero global sections (f1, . . . , fn). The direct product
L =

∏n
i=1 OX,fi of the sheaves of rings of fractions OX,fi is faithfully flat if

and only if I = OX . Whenever I = OX , the sheaf of rings L is called a
Zariski extension of OX .

Proof. For all i = 1, . . . , n, the ring sheaf extension OX → OX,fi is flat;
therefore L is flat. Now, suppose that L ⊗OX E = 0 for some OX-module
E ; since L ⊗OX E = 0 if and only if (L ⊗OX E )x = Lx ⊗OX,x Ex = 0x = 0,
for all x ∈ X, it is sufficient to show that Lx ⊗OX,x Ex = 0 implies Ex = 0.
But then Ix is the ideal of OX,x generated by germs (f1,x, . . . , fn,x), Lx =(∏n

i=1 OX,fi

)
x

=
∏n

i=1

(
OX,x

)
fi,x

is faithfully flat if and only if Ix = OX,x

(see [HM08, p. 24, Corollary 1.10.6]).

Note that the notation fi,x in the above proof means the germ defined
by the section fi at the point x ∈ X. On the other hand, OX,fi is the sheaf
obtained by sheafifying the presheaf, given by the assignment

U 7→ OX,fi(U),

where, for any open subset U of X,

OX,fi(U) ≡ OX(U)fi =

{
s

ρXU (fi)n
=

s

(fi|U)n
=

s

fni |U
; s ∈ OX(U), n ≥ 0

}
.

For the sake of the sequel, we recall that a quasi-coherent OX-module
E on a scheme (X,OX) is called locally projective if, for all x ∈ X, there
exists an open affine neighborhood U of x such that E |U is isomorphic to
a direct summand of

(
OX |U

)(I), for some indexing set I, (see [RG71, 3.1,
2nd part]). It is also proved in the same paper that a quasi-coherent OX-
module E is locally projective if and only if, for all open affine subschemes
U = Spec(R) ⊆ X, the restriction E |U is isomorphic to some associated sheaf
P̃ , where P is a projective R-module. We say that the locally projective quasi-
coherent OX-module E is of constant rank n if, for any open affine subscheme
U of X, the associated R-module P of E |U is of constant rank n.
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Another useful result at the center of the proof of Theorem 3.13 is con-
cerned with glueing of sheaves. Indeed, given any topological space X, sup-
pose that (Ui)i∈I is an open covering of X, and, for each i ∈ I, Fi is a
sheaf on Ui such that, for each i, j ∈ I, there is given an isomorphism
ϕij : Fi|Ui∩Uj

∼→ Fj|Ui∩Uj satisfying properties: (1) ϕii = id, for all i, and (2)
ϕik = ϕjk ◦ ϕij on Ui ∩ Uj ∩ Uk, for all i, j, k ∈ I. Then, there is a unique
sheaf F on X, together with isomorphisms ψi : F |Ui

∼→ Fi such that, for
each i, j, ψj = ϕij ◦ ψi on Ui ∩ Uj. This result is stated in [Har77, p.69].

Theorem 3.13. Let X be a scheme and E a locally projective quasi-coherent
OX-module of constant rank 2. Then, E is a commutative OX-algebra, en-
dowed with a unique standard involution.

Proof. Let (Ui)i∈I ≡ (Ui,OX |Ui) be an affine open covering of X. For i ∈ I,
let Pi be a projective R-module with the property that E |Ui ' P̃i. Since
Pi is a projective module of constant rank 2, it is a known fact that Pi is
a commutative algebra, endowed with a unique standard involution σi, (cf.
[HM08, p. 42, Theorem 1.13.10]). By Lemma 3.9, σ̃i is a standard involution
of P̃i, i ∈ I. But then σ̃i ∈ H omOX (P̃i, P̃i)(Ui), it follows that, for any pair
(i, j) in I × I with i 6= j, σ̃i|Ui∩Uj = σ̃j|Ui∩Uj is the unique involution on
P̃i|Ui∩Uj ' P̃j|Ui∩Uj . The collection (P̃i, ϕij), where ϕij is the isomorphism
P̃i|Ui∩Uj ' P̃j|Ui∩Uj , is a glueing data for sheaves of sets with respect to the
covering X = ∪i∈IUi. Thus, there is a sheaf of sets F on X together with
isomorphisms

ϕi : F |Ui
∼→ P̃i,

that is,
F ' E .

Since σ̃i|Ui∩Uj = σ̃j|Ui∩Uj , there is a unique standard involution σ̃ on E such
that σ̃|Ui = σ̃i, i ∈ I.

4 Main results

In this section, we purpose to discuss involutions of the first kind on OX-
algebras E ndOX (M̃), where M̃ is the sheaf of modules associated with an
R-moduleM on an affine scheme X = Spec(R). Let N be another R-module
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and assume that ϕ : E ndOX (M̃)
∼→ E ndOX (Ñ) a sheaf isomorphism. For any

open U of X, set

αU : E ndOX (M̃)(U)× Ñ(U)→ Ñ(U)

by
αU(f, s) = ϕUU(fU)(s) ≡ ϕ(f)(s),

for any f ≡ (fV )U⊇V, open ∈ E ndOX (M̃)(U) and s ∈ Ñ(U). The sheaf mor-
phism α ≡ (αU)X⊇U, open defines a left E ndOX (M̃)-structure on Ñ ; we denote
Ñ endowed with the left structure E ndOX (M̃)-structure by ϕÑ . In the sim-
ilar way, we define ϕ−1M̃ . See [Knu91, p. 171, (8.2)].

For the purpose of the sequel, we recall the following (see [NY14]): Let
X be a topological space, A ≡ (A , π,X) a sheaf of unital and commutative
algebras and S ≡ (S , π|S , X) a sheaf of submonoids in A . A sheaf of
algebras of fractions of A by S is a sheaf of algebras, denoted S −1A , such
that, for every x ∈ X, the corresponding stalk (S −1A )x is an algebra of
fractions of Ax by Sx.

In this context, we also recall the following:

Theorem 4.1. [NY14] For all A -modules E and F on a topological space
X, the (S −1A )-morphism

ϑ : S −1H omA (E ,F )→H omS−1A (S −1E ,S −1F ),

given by
ϑx(f/s)(e/t) = f(e)/st,

where x ∈ X, s, t ∈ Sx, e ∈ (S −1E )x, f ∈H omA (E ,F )x, is an (S −1A )-
isomorphism , whenever E is a locally finitely presented A -module.

In the same vein, we recall the following isomorphism, whose proof may
be found in [CF15, p.33, Lemme 2.4.1.6].

Lemma 4.2. The natural map

H omOX (E ,F )(U)→ HomOX(U)(E |U(U),F |U(U)) = HomOX(U)(E (U),F (U)),

where U is open in X, is an isomorphism of modules if and only if the OX-
modules E and F are free or locally free of finite type and X = Spec(R).
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Now, let us recall that an R-module M is locally finitely presented if
R = (fi), i ∈ I, that is, R, as an ideal, is generated by some elements fi ∈ R,
and, for every i ∈ I, there is a presentation

Rµi
fi

// Rηi
fi

//Mfi
// 0 ,

where ηi, µi ∈ N. It is known that, given an R-module M , if M is locally
finitely presented, then it is finitely presented.

Lemma 4.3. Let M be a locally of finite presentation R-module. Then,

˜EndR(M)
∼→ E ndOX (M̃),

where X = Spec(R) and M̃ the sheaf of modules associated with M .

Proof. For any f ∈ R, by Theorem 4.1,

˜EndR(M)(D(f)) = EndRf (Mf ),

and
E ndOX (M̃)(D(f)) = EndOX |D(f)

(M̃ |D(f)),

whence we have ˜EndR(M)(D(f))
∼→ EndOX |D(f)

(M̃ |D(f)). (See Lemma 4.2 for
the aforementioned isomorphism.) Moreover, since the D(f) form a basis for
the Zariski topology on X, the sought isomorphism follows.

Now, suppose that M and N are locally finitely presented progenerator
R-modules such that ϕ : E ndOX (M̃) → E ndOX (Ñ) is an isomorphism; so
the component ϕX : EndR(M) → EndR(N) is an R-module isomorphism.
By [Knu91, p. 181, Lemma 8.2.1], there exist an invertible R-module L
and an isomorphism ρ : M ⊗ L → ϕXN of EndR(M)-modules such that
ϕX(f) = ρ(f ⊗ 1)ρ−1, for every f ∈ EndR(M). (The EndR(M)-structure on
M⊗L is given by the assignment (f,m⊗l) 7→ f(m)⊗l.) By the isomorphism
([Bos13, p. 258, Proposition 2])

HomR(EndR(M),EndR(N))
∼→ HomOX ( ˜EndR(M), ˜EndR(N))

given by α 7→ α̃, one has ϕ̃X : ˜EndR(M) → ˜EndR(N). But then, by virtue
of Lemmas 4.2 and 4.3, ϕ̃X = ϕ; thereafter, by [Har77, p. 110, Proposition
5.2], the isomorphism ρ̃ : M̃ ⊗ L̃ ∼→ ϕÑ is such that

ϕ̃X(f) = ρ̃(f̃ ⊗ 1)ρ̃−1,
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for every f ∈ EndR(M).

Thus, we have proved the following

Lemma 4.4. Let M and N be locally finitely presented progenerator R-
modules such that sheaves E ndOX (M̃) and E ndOX (Ñ) are isomorphic (via
an isomorphism ϕ), where M̃ (Ñ , resp.) is the associated sheaf of R-modules
for M (N , resp.) on the affine scheme X = Spec(R). Then , there exist
an invertible R-module L and an isomorphism ρ̃ : M̃ ⊗ L̃ ∼→ ϕÑ such that
ϕ̃X(f) = ρ̃(f̃ ⊗ 1)ρ̃−1, for every f ∈ EndR(M).

This result can be generalized to the following context: Let E , F be
locally finitely presented progenerator OX-modules on an affine scheme X =
Spec(R), and ϕ : E ndOX (E )

∼→ E ndOX (F ). For any open subset U ⊆ X,
F (U) carries a left E ndOX (E )(U)-module structure; in fact, by Lemma 4.2,
E ndOX (E )(U) is isomorphic to EndOX(U)(E (U)), and the action of E ndOX (E )(U)
on F (U) into F (U), is given by (f, s) 7→ ϕU(f)(s), for any f ∈ E ndOX (E )(U)
and s ∈ F (U). Hence, F turns out to be a left E ndOX (E )-module on X,
and we shall denote it by ϕF . In a similar way, ϕ−1E denotes E endowed
with the right E ndOX (F )-structure obtained through ϕ−1.

The sought generalization can now be formulated as follows:

Lemma 4.5. Let E and F be locally finitely presented progenerator OX-
modules, where X = Spec(R), and let ϕ : E ndOX (E )

∼→ E ndOX (F ). Then,
there exist an invertible OX-module L and an isomorphism ρ : E ⊗L

∼→ ϕF
of E ndOX (E )-modules such that ϕx(f) = ρx(f ⊗ 1)ρ−1

x , for all x ∈ X, and
f ∈ E ndOX (E )x = EndOX,x(Ex).

Proof. By virtue of a variant of the well-known Morita equivalence for OX-
stacks (see [KS06, p. 475, Theorem 19.5.4]), functors ( ) ⊗OX E : MOX →
EndOX

(E )M and H omEndOX
(E )(E , ) : EndOX

(E )M → MOX are inverse equiv-
alences; consequently, the OX-module L = H omEndOX

(E )(E , ϕF ) is in-
vertible with inverse L −1 = H omEndOX

(E )(ϕF ,E ). We thus obtain an
E ndOX (E )-isomorphism ρ : L ⊗ E

∼→ ϕF as in the classical case (see
[Knu91, p. 171, Lemma 8.2.1]). For all x ∈ X, the localization ρx : Lx⊗Ex →
(ϕF )x is bijective, i.e., HomEndOx (Ex)

(Ex, ϕxFx) ⊗ Ex → ϕxFx is bijective.
The equality ϕx(f) = ρx(f ⊗ 1)ρ−1

x , for all x ∈ X, and f ∈ EndOX,x(Ex), is
guaranteed by [Knu91, p. 171, Lemma 8.2.1].
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Lemma 4.5 does not hold at the level of sections in general: for, the
sheaf E ⊗ L is generated by the presheaf (U 7→ E (U) ⊗ L (U))X⊇U, open,
and E (U)⊗L (U) is not in general bijective to ϕUF (U). However, section-
wise, one may relax the conditions on progenerator OX-modules E and F
to obtain the following lemma.

Lemma 4.6. Let E and F be locally finitely free progenerator OX-modules
on X = Spec(R), and let ϕ : E ndOX (E )

∼→ E ndOX (F ). Then, there exist an
invertible OX-module L and an isomorphism ρ : E⊗L

∼→ ϕF of E ndOX (E )-
modules such that, for every open set U in X, ϕUU(s) = ρU(s̃⊗ 1)ρ−1

U , for all
s ∈ E ndOX (E )(U), and where s̃⊗ 1 stands for the section of E ndOX (E ⊗L )
over U , corresponding to s⊗ 1 through sheafification.

Before we succinctly go through different types of involutions on sheaves
of Azumaya algebras, let us first recall the concept of Azumaya OX-algebra
with involution on an affine scheme X = Spec(R).

Definition 4.7. An Azumaya OX-algebra (A , σ) with involution of the first
kind is a sheaf of Azumaya R-algebras on a scheme X = Spec(R) with an
OX-linear involution σ.

Remark 4.8. If (M,σ) is anR-module with involution of the first kind σ, it is
easy to see that σ̃ is an OX-linear involution on the corresponding sheaf of R-

modules M̃. In fact, for any f ∈ R, m ∈M , and p ∈ N, σ̃D(f)

(
m

fp

)
=
σ(m)

fp
.

Let A be an Azumaya R-algebra of constant rank n2 and with involution
σ of the first kind. By [For17, p. 395, Corollary 10.3.10], there exists a
commutative faithfully flat étale R-algebra S such that A⊗R S is isomorphic
to Mn(S). Let ϕ be an isomorphism A ⊗R S

∼→ Mn(S) that makes S into a
faithfully flat splitting R-algebra of A, it induces an involution κ = ϕ ◦ (σ ⊗
1) ◦ ϕ−1 on Mn(S). On considering the sheaves associated with A⊗R S and
Mn(S), respectively, on X = Spec(R), we have Ã⊗OX S̃ ≡ Ã⊗R̃ S̃

∼→ M̃n(S).

By virtue of [Har77, p. 110, Proposition 5.2], κ̃ = ϕ̃◦ (σ̃⊗1)◦ ϕ̃−1 = ϕ̃◦ (σ̃⊗
1)◦(ϕ̃)−1 is the induced involution on M̃n(S). The map Γ : M̃n(S)→ M̃n(S),

given by ΓU(s) = κ̃U(st), where s ∈ M̃n(S)(U) and st means the transpose of
s, is clearly an automorphism of M̃n(S) and corresponds to the automorphism
x 7→ κ(xt) of Mn(S). By choosing S such that κ(x) = vxtv−1, for any x ∈
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Mn(S) and for some v ∈ GLn(S), for any open U inX, κU(s) = ustu−1, where
s ∈ M̃n(S)(U) and u ∈ G̃Ln(S)(U). In [Knu91, p. 170], there is ε ∈ µ2(S)
(µ2(S) = {x ∈ S| x2 = 1}) such that vt = εv. Next, let us show that the
corresponding

U 7→ µ2(S̃(U)) (4.1)

yields a complete presheaf (of groups). That the correspondence given by
(4.1) is a presheaf is clear. In order to show the completeness of this presheaf,
let U be an open subset of X, and U = (Uα)α∈I an open covering of U ;
moreover, let s, t ∈ µ2(S̃(U)) such that

ρUUα(s) ≡ s|Uα ≡ sα = tα ≡ t|Uα ≡ ρUUα(t), α ∈ I,

where the (ρUUα)α∈I are the restriction maps of the sheaf S̃. Since µ2(S̃(U)) ⊆
S̃(U) and S̃ is the OX-module attached to the R-algebra S, s = t.

On the other hand, consider any sequence

(sα) ∈
∏
α∈I

µ2(S̃(Uα)) ⊆
∏
α∈I

S̃(Uα)

such that
sα|Uα∩Uβ = sα|Uα∩Uβ ,

for any α, β ∈ I, with Uα ∩ Uβ 6= ∅. There is an element s ∈ S̃(U) such that

s|Uα = sα, α ∈ I.

Thus,
(s2)|Uα = ρUUα(s2) = ρUUα(s)ρUUα(s) = 1|Uα , α ∈ I.

One infers that s2 = 1 ∈ S̃(U), so that s ∈ µ2(S̃(U)). Hence, the presheaf is
complete, and the proof is finished.

Going back to the involution κ̃, it follows that, given any open U in
X, the equation κU(s) = ustu−1, where u ∈ G̃Ln(S)(U), entails, for some
ε ∈ µ2(S̃(U)), ut = εu. As in the classical case, an involution s 7→ ustu−1 of
the OX-module M̃n(S), where ut = εu, s ∈ M̃n(S)(U), u ∈ G̃Ln(S)(U), and
ε ∈ µ2(S̃(U)) is said to be of type ε on the open subset U , and κU is denoted
κu.
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Lemma 4.9. Let E be a sheaf of modules over a scheme X, and σ an OX-
endomorphism of E . Then, σ is an involution if and only if , for every x ∈ X,
σx : Ex → Ex is an involution.

Proof. It is known that σ is bijective if and only if σx is bijective for all x ∈ X.
(See, for instance, [Bos13, p. 233, Proposition 3].) Therefore, we need only
show that σ is an anti-isomorphism if and only if σx is an anti-isomorphism,
for all x ∈ X. The only-if part is easily seen from the characterization of
stalks. To settle the if part, observe that, if U is an open neighborhood of
x, and U (x) denotes the set of all open sets containing x, and f , g ∈ E (U),

lim−→
V ∈U (x)

σV (f · g) = σx(fx · gx) = σx(gx)σx(fx) = lim−→
V ∈U (x)

σV (g) · lim−→
V ∈U (x)

σV (f)

= lim−→
V ∈U (x)

σV (g)σV (f),

which entails that, for some open neigbourhood V x of x in U , σV x(f |V x ·
g|V x) = σV x(g|V x)σV x(f |V x). By Sheaf Axiom (S1), σU(f · g) = σU(g)σU(f).
For the last displayed equality, see [Bou68, p. 211, (35)].

Definition 4.10. Let X be a scheme. An Azumaya OX-algebra E with
involution of the first kind is a sheaf of Azumaya algebras with involution
of the first kind on X, i.e., an involution that leaves the center elementwise
invariant.

It is clear that, given an open set U in X and sections f , g of an OX-
algebra E over U , if fx · gx = gx · fx, for all x ∈ U , f · g = g · f. It follows
that an involution σ of E fixes the center of E elementwise if and only if ,
for every x ∈ X, σx keeps fixed the center of Ex elementwise. Hence, σ is
an involution of the first kind on E if and only if, for every x ∈ X, σx is an
involution of Ex of the first kind.

Lemma 4.11. Let E be a locally finitely presented OX-module on an affine
scheme X = Spec(R), and let σ be an involution of the first kind on E ndOX (E ).
Then, there exist an invertible OX-module L , a sheaf isomorphism ϕ of
E ⊗OX L onto E ∗, and an OX-isomorphism Φ : E ndOX (E ) → E ndOX (E ∗)
such that, on every open U in X where L |U ' OX |U ,

σ ⊗ Id = Φ ◦m, (4.2)
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where m is the natural isomorphism E ndOX (E ⊗ L ) ' E ndOX (E ) ⊗OX

E ndOX (L ) ' E ndOX (EX)⊗OX OX ' E ndOX (E ) on U , and , for any open V
in U , and any section s of E ndOXE over V , Φ(s) ≡ ΦV V (s) = ϕ−1

V s∗ϕV ≡
ϕ−1s∗ϕ, and s∗ is the image of s through the natural morphism E ndOXE →
E ndOXE ∗.

Proof. As in the proof of Lemma 4.5, by letting Φ = τσ, where τ is the anti-
automorphism E ndOX (E )→ E ndOX (E ∗), and by virtue of Morita theory, the
OX-algebra L = H omEndOX

(E , ΦE ∗) is invertible. It is clear that Φ locally
satisfies Equation (4.2).

In order to proceed further, let us recall the corresponding (sheaf-theoretic)
notion of a center of a group. Precisely, let (X,OX) be a ringed space, and
E a vector sheaf on X of constant rank n. The OX-module E ndOX (E ) is also
clearly locally free and of constant rank n2 (see [Mal98, p. 138, Equation
(6.26)]). On considering the correspondence

U 7→ Z(E ndOX (E )(U)) ' Z(OX
n2|U) ' Z((OX |U)n

2

)

(where Z(E ndOX (E )(U)) consists of all ϑ ∈ E ndOX (E )(U) such that ϑ ◦ϕ =
ϕ ◦ ϑ, for all ϕ ∈ E ndOX (E )(U)) together with the obvious restriction maps
yields a complete presheaf, called the (pre)sheaf of centers of groups. On any
local gauge U of the vector sheaf E , one has

H omOX (E ,E )|U ' OX
n2|U ' Mn(OX)|U ;

therefore,
Z(E ndOX (E )(U)) ' Z(Mn(OX(U))).

Lemma 4.12. Let (X,OX) be a ringed space and E a locally finitely presented
OX-module with involution of the first kind σ on E ndOX (E ). Then, for any
local gauge U ,

(ϕ∗η ⊗ 1)ϕ−1 ∈ Z(E ndOX (E ∗)(U)),

where η is the canonical OX-isomorphism E → E ∗∗, and ϕ is the OX-
isomorphism E ⊗OX L

∼→ E ∗ of Lemma 4.11. Furthermore, for some
ε ∈ µ2(OX(U)),

εϕ∗η ⊗ 1 = ϕ. (4.3)

(N.B. For any open open V in X, η(s)(u) ≡ s∗∗(u) := u(s), where s ∈ E (V ),
and u ∈ E ∗(V ) = H omOX (E ,E )(V ) = HomOX |V (E |V ,E |V ).)
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Proof. From Equation (4.2),

σ(s)⊗ 1 = ϕ−1s∗ϕ,

for all s ∈ E ndOX (E )(U), where U is a local gauge of L . Since σ2 = 1, it
follows that

s⊗ 1 = ϕ−1σ(s)∗ϕ. (4.4)

On transposing (4.4), we obtain

s∗ ⊗ 1 = ϕ∗σ(s)∗∗(ϕ−1)∗.

But then
σ∗∗(s∗∗) = σ(s)∗∗ = ησ(s)η−1,

so
(ϕ∗η)−1 ◦ (s∗ ⊗ 1) ◦ (ϕ∗η) = σ(s). (4.5)

Tensoring (4.5) with 1 yields, under the assumption L ∗ ⊗L ' OX , which
allows one to identify s∗ ⊗ 1⊗ 1 with s∗,

(ϕ∗η ⊗ 1)−1 ◦ s∗ ◦ (ϕ∗η ⊗ 1) = σ(s)⊗ 1 = ϕ−1s∗ϕ.

Hence,
(ϕ∗η ⊗ 1)ϕ−1 ∈ Z(E ndOX (E )(U)).

By virtue of (4.2), and since Z(Mn(OX(U))) ' OX(U),

(ϕ∗η ⊗ 1)ϕ−1 = ε

for some ε ∈ OX(U). It is clear that ε must be invertible, that is, ε ∈
OX(U)• = O•X(U), with OX(U)• the group of units of the unital ring OX(U).
(O•X is the sheaf on X generated by the presheaf defined by the correspon-
dence

U 7→ O•X ' OX(U)•,

where U varies over the Zariski topology of X. (See [Mal98, p. 282, Lemma
1.1]).)

Corollary 4.13. The section ε ∈ OX(U) satisfies the condition: ε2 = 1.
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Proof. First, note that the following diagram commutes:

E (U)⊗L (U)

ε

ϕU//

ηU⊗1L (U)

��

E ∗(U)⊗ OX(U) ' E ∗(U)

E ∗∗(U)⊗L (U)
ϕ∗U⊗1L (U)

// E ∗(U)⊗L ∗(U)⊗L (U)

1E∗(U)⊗µU

OO
,

where µ is the canonical isomorphism L ∗ ⊗L
∼→ OX , and ε, in the center

of the diagram, means that the diagram commutes up to a factor ε.
Note that, on U , E ∗(U) = E (U)∗, E ∗∗(U) = E (U)∗∗, and L ∗(U) =

L (U)∗. On transposing the diagram above, one obtains:

E (U)∗∗

ε

ϕ∗U //

1E (U)∗∗⊗µ∗U
��

E (U)∗ ⊗L (U)∗

E (U)∗∗ ⊗L (U)∗∗ ⊗L (U)∗
ϕ∗∗U ⊗1L (U)∗

// E (U)∗∗∗ ⊗L (U)∗.

η∗U⊗1L (U)∗

OO

Tensoring with L (U) and taking into account the isomorphism L (U)∗ ⊗
L (U) ' OX(U) yields:

E (U)∗∗ ⊗L (U)

ε

ϕ∗U⊗1L (U) //

1E (U)∗∗⊗µ∗U⊗1L (U)

��

E (U)∗

E (U)∗∗ ⊗L (U)∗∗ ⊗L (U)∗ ⊗L (U)
ϕ∗∗U

// E (U)∗∗∗.

η∗U

OO

Superposing the first diagram with the last one, one obtains

E (U)⊗L (U)

ε

ϕU //

ηU⊗1L (U)

��

E ∗(U)⊗ OX(U) ' E ∗(U)

E ∗∗(U)⊗L (U)
ϕ∗U⊗1L (U)

//

1E (U)∗∗⊗µ∗U⊗1L (U)

��

E ∗(U)⊗L ∗(U)⊗L (U)

1
E (U)∗

OO

E (U)∗∗ ⊗L (U)∗∗ ⊗L (U)∗ ⊗L (U)
ϕ∗∗U

// E (U)∗∗∗

η∗U

OO

.

From the outer contour, one has: η∗Uϕ∗∗U ηU = ε2ϕU or, equivalently, ϕ∗∗U ηU =
ε2ηUϕU . But then, ϕ∗∗U ηU = ηUϕU , hence, ε2 = 1.
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Theorem 4.14. Let (X,OX) be a locally ringed space, E a locally finitely pre-
sented OX-module, and σ : E ndOX (E )→ E ndOX (E ) an involution of the first
kind. Moreover, let L be an invertible OX-module and ϕ an isomorphism
E ⊗ L

∼→ E ∗ such that σ ⊗ Id = Φ ◦ m, where Φ = τσ with τ the anti-
OX-automorphism E ndOX (E ) → E ndOX (E ∗), and m : E ndOX (E ⊗L )|U

∼→
E ndOX (E )|U , with U a local gauge of L . Then, for any x ∈ X, there is
u ∈ Lx such that

σx(f) = u−1 ◦ f ∗ ◦ u,

for any f ∈ EndOX,x(Ex), i.e., σx = σx,u−1 . Furthermore, for any local gauge
V of L at x, there is a unit ε ∈ OX(V ) such that

εxu(q)(p) = u(p)(q),

for all p, q ∈ Ex.

Proof. For all x ∈ X, observe that Ex is a finitely presented OX,x-module
(see [Mal98, p. 101, (1.54) and (1.55)]); since Lx is invertible over a lo-
cal ring OX,x, it is necessarily free. Therefore, Lx ' uOX,x ' OX,x for
some u ∈ Lx. By Lemma 4.11, L = H omEndOX

(E )(E , ΦE ∗), where Φ =
τσ. Since E is locally finitely presented, Lx = H omEndOX

(E )(E , ΦE ∗)x '
HomEndOX,x(Ex)

(Ex, Φx(Ex)
∗). Since σ(s) ⊗ 1 = ϕ−1s∗ϕ, for any section s of

E ndOX (E ), or equivalently, ϕ ◦ (σ(s)⊗ 1) = s∗ ◦ϕ. Stalk-wise, we have that,
for any x ∈ X, ϕx ◦ (σx(sx) ⊗ 1) = s∗x ◦ ϕx ∈ HomEndOX,x

(Ex)
(Ex ⊗Lx,E ∗x ),

where ϕx(p⊗u) = u(p), for all p ∈ Ex; hence, (s∗x ◦ϕx)(p⊗u) = (s∗x ◦u)(p) ∈
E ∗x . On the other hand, (ϕx ◦ (σx(sx) ⊗ 1))(p ⊗ u) = u(σx(sx)(p)). Thus,
s∗x ◦ u = u ◦ σx(sx) and σx(sx) = u−1 ◦ s∗x ◦ u. If E ndOX (E ) is represented by
the matrix sheaf Mn(OX) ' On2

X (rankE = n), then E ndOX,x(Ex) ' On2

X,x, we
have σx = σx,u−1 .

Now, ϕ∗xηx ⊗ 1 : Ex ⊗ Lx → (Ex ⊗ Lx)
∗ ⊗ Lx ' E ∗x maps p ⊗ u onto

ϕ∗x(ηx(p))⊗u. Since Lx is free of rank 1, we may use u to identify Ex⊗Lx with
Ex; then ϕ∗xηx : Ex → E ∗x maps p onto ϕ∗x(ηx(p)) ∈ E ∗x , which is the mapping
q 7→ ηx(p)(u(q)) = u(q)(p). On the other hand, since Ex ⊗Lx

∼→ Ex, we may
assume ϕx to be an isomorphism Ex → E ∗x ; therefore, ϕx(p)(q) = u(p)(q). It
follows that

εxu(q)(p) = u(p)(q),

for all p, q ∈ Ex.
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Note that one arrives at a similar result section-wise when one considers
any vector sheaf E of finite rank on a locally ringed space (X,OX).

Theorem 4.15. Let (X,OX) be a locally ringed space, E a vector sheaf of
finite rank n on X, and σ an involution of the first kind on E ndOX (E ). More-
over, let L be an invertible OX-module and ϕ ≡ (ϕV )X⊇V, open an isomor-
phism E ⊗L

∼→ E ∗ such that σ(s)⊗ 1 = ϕ−1s∗ϕ, for any s ∈ E ndOX (E )(U)
and any ϕU : (E ⊗L )(U)

∼→ E ∗(U) or ϕU : E (U)
∼→ E ∗(U), where the open

subset U of X is chosen such that both L |U ' OX |U and E |U ' On
X |U are

satisfied. Then, there is u ∈ L (U) such that

σ(f) = u−1 ◦ f ∗ ◦ u,

for any f ∈ E ndOX (E )(U) = EndOX |U (E |U). Furthermore, there is a unit
ε ∈ OX(U) such that

εu(t)(r) = u(r)(t), (4.6)

for all r, t ∈ E (U).

Proof. Let x ∈ X, V an open neighborhood of x such that E |V ' On
X |V ,

and W a local gauge of L at x, i.e., L |W ' OX |W . Define: U = V ∩W.
Since OX(U) is a local ring and L (U) is invertible over OX(U), L (U) is
free. Therefore, L (U) ' uOX(U) ' OX(U), for some u ∈ L (U). For any
section s ∈ E (U), ϕ ◦ (σ(s)⊗ 1) = s∗ ◦ ϕ ∈H omEndOX

(E )(E ⊗L ,E ∗)(U) =
HomEndOX

(E )|U ((E ⊗ L )|U ,E ∗|U) = HomEndOX |U (E |U )(E |U ⊗ L |U ,E ∗|U) =

HomEndOX |U (E |U )(E |U ,E ∗|U). For any r ∈ E (U), ϕ(r ⊗ u) = u(r); therefore,
(s∗◦ϕ)(r⊗u) = (s∗◦u)(r) ∈ E ∗(U). On another side, (ϕ◦(σ(s)⊗1))(r⊗u) =
ϕ(σ(s)(r)⊗ u) = u(σ(s)(r)). Thus, s∗ ◦ u = u ◦ σ(s) or σ(s) = u−1 ◦ s∗ ◦ u.

Since L ∗ ⊗OX L ' OX , one has

ϕ∗η ⊗ 1 : E ⊗OX L
∼→ E ∗ ⊗OX L ∗ ⊗OX L ' E ∗;

therefore, for any open U in X with L |U ' OX |U and E |U ' OX
n|U , any

section r ⊗ u of the OX-module E ⊗OX L maps onto ϕ∗(η(r)) ⊗ u. Since
L |U is free of rank 1, we may use a suitably chosen u, namely any nowhere-
zero section, as an isomorphism (E ⊗ L )|U

∼→ E |U ; then ϕ∗η|U : E |U →
E ∗|U ' (E |U)∗ maps r onto ϕ∗(η(r)) ∈ E ∗(U) = E (U)∗, which in turn maps
a section t in E ∗(U) onto η(r)(u(t)) = u(t)(r). On the other hand, since
E |U⊗OX |U L |U

∼→ E |U , we may assume ϕ to be an isomorphism E |U → E ∗|U ;
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therefore, ϕ(r)(t) = u(r)(t). From Equation (4.3), it follows that, for some
ε ∈ OX(U)•,

εu(t)(r) = u(r)(t),

for all r, t ∈ E (U).

Corollary 4.16. Let R be a commutative ring such that the induced ringed
space (X,OX) is a locally ringed space; let E be a vector sheaf of finite rank n
on X, σ an involution of the first kind on the vector sheaf E ndOX (E ), and L
an invertible OX-module such that E ⊗L

∼→ E ∗ is an isomorphism ϕ with
σ(s)⊗1 = ϕ−1s∗ϕ, for any s ∈ E ndOX (E )(U), where U is any open subset of
X such that L |U ' OX |U and E |U ' OX

n|U . Then, on identifying E |U with
(E |U)∗ = E ∗|U with the help of some section u of L , where σ(f) = u−1◦f ∗◦u,
for any f ∈ E ndOX (E )(U), and identifying E ⊗ E ∗ with E ndOX (E ),

σ(r ⊗ s) = εu−1(s)⊗ u(r),

for ε ∈ O•X , r ∈ E (U) and s ∈ E ∗(U).

Proof. For the sake of containedness, we recall that, given any OX-modules
E , F , and G with E or G being locally finitely free, the functorial homo-
morphism

H omOX (E ,F )⊗OX G →H omOX (E ,F ⊗OX G ) (4.7)

is an isomorphism, (see [GW10, p. 177, Proposition 7.7]). In particular, for
any vector sheaf E of finite rank on X,

E ∗ ⊗OX E
∼→H omOX (E ,E ) = E ndOX (E ).

It follows that since, for some section u of L , one has: u : E |U
∼→ E ∗|U , and

σ(r⊗ s) = u−1 ◦ (r⊗ s)∗ ◦ u, where r⊗ s ∈ E (U)⊗ E ∗(U) = (E ⊗ E ∗)(U) '
E ndOX (E )(U) = EndOX |U (E |U). The transpose (r ⊗ s)∗ : E ∗|U → E ∗|U is
such that (r ⊗ s)∗(u(t)) = u(t) ◦ (r ⊗ s), for any section t of E on U . It is
clear that, for any z ∈ E (U),

(u(t) ◦ (r ⊗ s))(z) = u(t)(s(z)r) = u(t)(r)s(z),

viz.
u(t) ◦ (r ⊗ s) = u(t)(r)s.
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Consequently, on using (4.6), one has

σ(r ⊗ s) = u(t)(r)u−1(s) = εu(r)(t)u−1(s).

Thus,
σ(r ⊗ s) = εu−1(s)⊗ u(r),

for r ∈ E (U) and s ∈ E ∗(U).
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