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ABSTRACT Ngari virus (NRIV) is a mosquito-borne reassortant orthobunyavirus that causes
severe febrile illness and hemorrhagic fever in humans and small ruminants. Due to limited
diagnostics and surveillance, NRIV has only been detected sporadically during Rift Valley
fever virus outbreaks. Little is known on its interepidemic maintenance and geographic
distribution. In this study, sera from cattle, goats, and sheep were collected through a cross-
sectional survey after the rainy seasons between 2020 and 2021 in two pastoralist-domi-
nated semiarid ecosystems, Baringo and Kajiado counties in Kenya. NRIV was detected in
11 apparently healthy animals (11/2,039, 0.54%) by RT-PCR and isolated in cell culture from
seven individuals. Growth analyses displayed efficient replication in cells from sheep and
humans in contrast to weak replication in goat cells. NRIV infection of a wide variety of
different vector cells showed only rapid replication in Aedes albopictus cells but not in
cells derived from other mosquito species or sandflies. Phylogenetic analyses of complete-
coding sequences of L, M, and S segments of four viruses showed that the Kenyan sequen-
ces established a monophyletic clade most closely related to a NRIV sequence from a small
ruminant from Mauritania. NRIV neutralizing reactivity in cattle, goats, and sheep were
41.6% (95% CI = 30 to 54.3), 52.4% (95% CI = 37.7 to 66.6), and 19% (95% CI = 9.7 to
33.6), respectively. This is the first detection of NRIV in livestock in Kenya. Our results
demonstrate active and undetected circulation of NRIV in the three most common live-
stock species highlighting the need for an active one-health surveillance of host networks,
including humans, livestock, and vectors.

IMPORTANCE Surveillance of vectors and hosts for infection with zoonotic arthropod-borne
viruses is important for early detection and intervention measures to prevent outbreaks.
Here, we report the undetected circulation of Ngari virus (NRIV) in apparently healthy cattle,
sheep, and goats in Kenya. NRIV is associated with outbreaks of hemorrhagic fever in
humans and small ruminants. We demonstrate the isolation of infectious virus from
several animals as well as presence of neutralizing antibodies in 38% of the tested animals.
Our data indicate active virus circulation and endemicity likely having important implications
for human and animal health.
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Ngari virus (NRIV) belongs to the Bunyamwera orthobunyavirus species (genus
Orthobunyavirus, family Peribunyaviridae, order Bunyavirales) and is the only known

naturally occurring reassortant in the Bunyamwera serogroup (1). The Bunyamwera orthobu-
nyavirus species comprises 10 viruses: for example, Bunyamwera virus (BUNV), Germiston virus
(GERV), and Shokwe virus (SHOV) (1–4). The tripartite genome of orthobunyaviruses contains
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linear, single-stranded, negative-sense RNA. The three segments are named small (S), me-
dium (M), and large (L) according to their length. The S segment encodes the nucleocapsid
(N) protein and the NSs nonstructural protein, the M segment encodes the two glycopro-
teins Gn and Gc and a nonstructural protein NSm, and the L segment, the RNA-dependent
RNA-polymerase (5–8).

NRIV is a reassortant of BUNV (Bunyamwera orthobunyavirus species) and Batai virus (BATV,
Batai orthobunyavirus species) (1, 6, 7) containing the L and S segments from BUNV and the M
segment from BATV (6, 7, 9). Genetic reassortment among orthobunyaviruses has occasionally
been reported and is considered the main evolutionary force leading to the emergence of
new strains and species (3, 4, 10–13). Whereas BATV and BUNV cause mild symptoms, such as
fever, joint pain, and rash in humans, NRIV is more virulent and can induce severe and fatal
hemorrhagic fever (3, 5, 14–16). However, BATV can cause a more severe form of disease in
livestock resulting in genetic defects and abortions (3, 17).

NRIV was first isolated from Aedes simpsoni mosquitoes in 1979 in South Eastern
Senegal (5, 11, 18). It was later recovered from Aedes spp., Culex spp., and Anopheles spp.
in Senegal, Burkina Faso, Central African Republic, and Madagascar (19). NRIV has also
been detected in engorged ixodid ticks (Amblyomma variegatum, Rhipicephalus geigyi, and
Rh. [Boophilus] spp.) collected from cattle in Guinea; however, there is no evidence that
ticks can transmit the virus (20). The virus was first associated with human disease follow-
ing isolation from two patients in Senegal in 1973 (5, 18), and subsequently implicated as
a cause of hemorrhagic fever during a large hemorrhagic fever outbreak in North Eastern
Kenya and southern Somalia in 1997 to 1998 (6, 7, 9). In a later study conducted between
2009 and 2012 in North Eastern Kenya, presence of NRIV-neutralizing antibodies was
reported among febrile patients (21), indicating circulation of an understudied virus. With
regard to animal infections, NRIV has only been isolated from small ruminants in Mauritania
during the 2010 and 2015 Rift Valley Fever (RVF) outbreaks (14, 16, 22), both confirming cocir-
culation with rift valley fever virus (RVFV) and other orthobunyaviruses, BATV and BUNV.

BUNV and NRIV have mainly been identified in Africa. BUNV is considered endemic in
certain African countries, including Rwanda, Kenya, Nigeria, Senegal, Uganda, Tanzania,
Mozambique, Guinea, South Africa, DRC, and Madagascar (3, 14–16). BUNV has also been
reported in Mexico and Argentina in birds and mosquitoes, and more recently as a cause
of neurological disease and abortion in horses (20, 21, 23). BATV is distributed worldwide
though commonly found in Asia and Europe (5, 20, 21, 23). Although the geographic range of
these viruses suggests a restricted distribution, there is potential for spread due to globaliza-
tion, human and animal movement, and environmental changes due to global warming.

NRIV has been found to circulate concurrently with RVFV during outbreaks and has been
clinically misdiagnosed as RVF as the case during the 1997/1998 RVF outbreak in Kenya and
Somalia and as malaria in Sudan (6, 18). The misdiagnosis was partly due to similarities in
symptom presentation. Thus, its distribution and associated health impact could be grossly
underestimated due to paucity of active surveillance, poor disease reporting systems, and
lack of appropriate diagnosis.

In Kenya, since its initial isolation in humans, several studies have isolated or
detected NRIV in different mosquito species, like Anopheles funestus (Tana Delta), Aedes
mcintoshi (Garissa), and different tick species, like Amblyomma gemma (Garissa) and
Rhipicephalus pulchellus (Isiolo) (8, 19, 24–26). Diverse tick and mosquito species have
been found to be competent vectors for the virus in laboratory experiments (27, 28).
However, there have not been any reports of NRIV circulation in any livestock species
outside Mauritania.

Against the backdrop of poor surveillance, this study was initiated to improve our under-
standing of the circulation of NRIV in selected predominantly pastoral ecosystems in Kenya. We
aimed to detect and characterize NRIV in serum samples collected from a network of livestock
hosts, such as goat, sheep, and cattle in dryland ecosystems in Kenya. Findings of the study
have implications for the sources of NRIV outbreaks in humans and for surveillance and control
of NRIV.
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RESULTS
Ngari virus infects sheep, goat, and cattle in Kenya. A total of 2,039 sera from

apparently healthy cattle (n = 715), goats (n = 680), and sheep (n = 644) aged 1 to 3 years
were sampled from selected sites inhabited by pastoral communities of Baringo and Kajiado
counties in Kenya’s Rift Valley (Fig. 1). In total, 1,239 samples (60.8%) originated from Baringo
county (cattle, n = 415 samples, goats, n = 420 samples, and sheep, n = 404 samples) and 800
samples (39.2%) originated from Kajiado county (cattle, n = 300 samples, goats, n = 260 sam-
ples, and sheep, n = 240 samples). NRIV was detected in 11 individual samples 11/2,039,
0.54% (95% CI = 0.29 to 0.98): three sera from cattle (3/715, 0.42%), three sera from goats (3/
680, 0.44%), and four sera from sheep (4/644, 0.62/%) by RT-PCR of which two goat sera were
from Kajiado county and the other nine from Baringo county (Table 1). None of the 11 NRIV
positive samples were tested positive for any other arbovirus, including RVFV and BUNV.

NRIV tropism appears restrictive to Aedes cells while vertebrate cells are broadly
susceptible.We next attempted to isolate the virus from the 11 PCR-positive serum samples
in cell culture. Seven samples from Baringo county consistently displayed similar cytopathic
effects (CPE) 2 to 4 days postinoculation (dpi). Sequence analysis of extracted RNA from the
supernatant of the isolates (goat: KE-C166, KE-C177; sheep: KE-O93 and KE-O288; cattle: KE-
B02, KE-B29, and KE-B35) confirmed the isolation of NRIV in cell culture.

Although NRIV has been detected in various mosquito species from different genera, in
vitro growth analyses showed that NRIV replicated only in cell lines derived from Aedes albo-
pictus (C6/36 and U4.4) but not in cells derived from Anopheles or Culex mosquitoes nor
Phlebotomus sandflies (Fig. 2A) suggesting that Aedes derived cell lines are more susceptible

FIG 1 A map of Kenya showing the study sites in Baringo and Kajiado counties, respectively, shaded in gray. The red spots represent the selected locations within
the counties where sampling was conducted. The maps were created in the open source GIS software, QGIS 3.22 using GPS coordinates and shape files derived
from Natural Earth (http://www.naturalearthdata.com/, a free GIS data source) and Africa Open data (https://africaopendata.org/dataset/kenya-counties-shapefile,
license Creative Commons) (43).
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for NRIV infection. In contrast, vertebrate cells were broadly susceptible for NRIV infection
with peak genome copy numbers in cells derived from human, sheep, and nonhuman
primates, and 1,000- to 10,000-fold lower replication rates in goat cells (Fig. 2B). Production
of infectious virus particles correlated well with viral genome copy numbers in cell culture
supernatants (Fig. 2C and D).

The Kenyan NRIV isolates are most closely related to NRIV isolates fromMauritania.
Entire NRIV genomes were sequenced from four virus isolates derived from sheep (KE-093),
goat (KE-C166), and cattle (KE-B02 and KE-B35). All four genomes showed similar length for
the three segments of L = 6,717 nucleotides (nt), M = 4,305 nt, and S = 702 nt and were
closely related with nucleotide identities of 99.7% to 100%. Phylogenetic analyses based on
nucleotide sequences of entire RdRp, glycoprotein and nucleoprotein ORFs showed that the
four Kenyan strains shared an MRCA with NRIV Adrar strain isolated from a goat in Mauritania
in 2010 (16) (Fig. 3). All NRIV sequences formed a monophyletic clade in sister relationship to
BUNV sequences based on L and S segment derived phylogenies and the NRIV M segment
sequences were placed as a sister clade to BATV sequences as observed in previous studies.

TABLE 1 Origin of NRIV positive livestock samples

Sample-
ID

Livestock
species

Age
(yrs) Sex

Place of origin
(county/location)

Dates of sample
collection

KE-O52 Sheep 2 Female Baringo (Sotwa) 9/22/2020
KE-O56 Sheep 2 Female Baringo (Sotwa) 9/22/2020
KE-O93 Sheep 2 Male Baringo (Loropilli) 9/23/2020
KE-O288 Sheep 2 Female Baringo (Elketeiyo Sintaan) 5/19/2021
KE-C166 Goat 2 Male Baringo (Lokuru) 9/26/2020
KE-C177 Goat 2 Male Baringo (Lokuru) 9/27/2020
KE-C106 Goat 1 Female Kajiado (Oldorko) 10/13/2020
KE-C174 Goat 2 Male Kajiado (Entasopia) 10/15/2020
KE-B02 Cattle 1 Male Baringo (Ilngarua) 9/16/2020
KE-B29 Cattle 2 Male Baringo (Perkerra) 9/17/2020
KE-B35 Cattle 2 Male Baringo (Perkerra) 9/17/2020

FIG 2 In vitro growth kinetics of NRIV in different cell lines. (A and C) Insect cell lines (U4.4, AS, CxT, Aag-2, C6/36,
mosquito; and PP-9, sand fly) were infected with NRIV in duplicates with a multiplicity of infection (MOI) of 0.1. (B and D)
Vertebrate cell lines (HEK293-T, human; Llu-L, sheep; VeroE6, primate; ZN-R, goat) were infected with NRIV in duplicates
with a MOI of 0.01. Infectious cell culture supernatants were collected at the indicated time points for RNA extraction and
virus titration. Virus concentrations are given in viral genome copies/mL (A and B) and PFU/mL (C and D).
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FIG 3 Phylogenetic analysis of the isolated NRIV in livestock from Baringo County based on the cds
nucleotide sequences of the: (A) L segment (6,717 nt), (B) M segment (4,305 nt), and (C) S segment
(702 nt) compared with other orthobunyaviruses. The samples in this study are highlighted in red.
The sequences were aligned using MAFFT with E-insi and 100PAM. The ML tree was calculated using
IQtree via CIPRES (Geneious plug-in at www.phylo.org) and nonparametric bootstrapping was used.
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Undetected circulation of NRIV in livestock in Kenya. To assess the proportion of
animals that have been exposed to NRIV, sera from both study sites were tested for presence
of antibodies against NRIV. Analyses of 144 sera by indirect immunofluorescence assay (IIFA)
identified 60 reactive samples (41.6%; 95% CI = 0.34 to 0.5) of which 55 (38.2%; 95% CI = 30.2
to 46.8) were confirmed by Plaque Reduction Neutralization Test (PRNT) with titers ranging
from 1:40 to 1:320 (Fig. 4). NRIV seroprevalence rates in cattle, goats, and sheep were 41.6%
(25/60; 95% CI = 30 to 54.3), 52.4% (22/42; 95% CI = 37.7 to 66.6), and 19% (8/42; 95% CI = 9.7
to 33.6), respectively. The proportion was higher in goats and lowest in sheep at both sites
(Table 2). NRIV antibody prevalence did not significantly differ between Baringo (33.3%, 24/72)
and Kajiado counties (43.1%, 31/72; Fisher exact test odds ratio [OR] 1.4, 95% CI = 0.83 to 2.66;
P = 0.18).

DISCUSSION

We report the circulation of NRIV in livestock (cattle, goats, and sheep) from two selected
pastoralist ecologies of Kenya. This is the first report of the isolation, detection, and characteri-
zation of the virus in livestock hosts in Kenya. Thus far, the virus has been detected sporadi-
cally during RVF outbreaks associated with hemorrhagic fever, and this is the first detection
apart from an outbreak situation. The virus was first reported in the country during the RVF
outbreak in East Africa in 1997 and 1998 in hemorrhagic fever patients from North Eastern
Kenya (3, 6, 7, 9, 16). Since then, there has been only one study that reported the presence of
NRIV antibodies in febrile patients from different health centers in North Eastern Kenya

FIG 4 Number of livestock samples positive for NRIV neutralizing antibodies per species (a) and at various PRNT dilutions (b). The n
on y axis represents the number of individuals per species that were tested positive. The perpendicular line within the graph represents
the mean of individuals that were tested positive. The graph was constructed using GraphPad Prism 9.3.1.

TABLE 2 Summary of NRIV-neutralizing serum samples from cattle, sheep, and goats

Sites Speciesa Sexa Age (yrs)a

Location
Total
sample

Total
No.
Pos Cattle Goats Sheep Female Male 3 2 1

Prevalence
per location
(%) 95% CI

Baringo Ilngarua 31 10 5 (21) 5 (10) 0 (0) 7 (19) 3 (12) 2 (2) 6 (10) 2 (19) 32.3 18.6 to 49.9
Perkerra 4 3 3 (4) 0 (0) 0 (0) 3 (4) 0 (1) 1 (1) 2 (3) 0 (0) 75 30.1 to 95.4
Ngarie 6 3 0 (0) 3 (6) 0 (0) 2 (4) 1 (2) 1 (2) 2 (3) 0 (1) 50 18.8 to 81.2
Lokuru 5 2 0 (0) 2 (5) 0 (0) 2 (4) 0 (1) 0 (0) 1 (3) 1 (2) 40 11.8 to 76.9
Sotwa 5 3 3 (5) 0 (0) 0 (0) 2 (4) 1 (1) 0 (0) 2 (4) 1 (1) 60 23.1 to 88.2
Sintaan 10 0 0 (10) 0 (0) 0 (0) 0 (9) 0 (1) 0 (0) 0 (10) 0 (0) 0 0 to 27.7
Loropilli 11 3 0 (0) 0 (0) 3 (11) 2 (6) 1 (5) 1 (2) 2 (6) 0 (3) 27.3 9.8 to 56.7

Kajiado Olesinyai 39 15 14 (30) 0 (0) 1 (9) 14 (33) 1 (6) 3 (8) 9 (23) 3 (8) 38.5 24.9 to 54.1
Oldorko 16 8 0 (0) 8 (10) 0 (6) 7 (9) 1 (1) 3 (6) 5 (9) 0 (1) 50 28 to 72
Entasopia 11 4 0 (0) 4 (11) 0 (0) 2 (9) 2 (2) 0 (0) 4 (6) 0 (5) 36.7 15.2 to 64.6
Birika 6 4 0 (0) 0 (0) 4 (6) 3 (4) 1 (2) 3 (3) 0 (1) 1 (2) 66.7 30 to 90.3

Total 144 55 25 (60) 22 (42) 8 (42) 43 (108) 12 (36) 13 (23) 30 (79) 12 (42) 33.8
a(), total in different categories.
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between 2009 and 2012 (29), but no further report of NRIV infection in humans or livestock
has been made, most likely due to lack of specific screening and active surveillance of the vi-
rus. However, NRIV has been detected in mosquitoes and ticks from different parts of the
country and several vectors were shown to be able to transmit the virus in laboratory experi-
ments (8, 19, 24–28). Thus, depending on the distribution and feeding habits of these vectors,
NRIV could be more abundant than available data would suggest. Herein, we found high sero-
prevalence rates in the three most common livestock species and detected several viremic ani-
mals which did not show any obvious signs of disease, a clear indication that the virus is
endemic in the country and actively circulating. Importantly, our data indicate the undetected
circulation of a zoonotic virus in the three most common livestock species.

There have been few studies carried out testing livestock for NRIV infections, and
consequently the epidemiology of NRIV in Kenya as well as in entire Africa remains
unclear. As far as to our knowledge, there are only two reports available where NRIV
was detected in small ruminants (goats and sheep) during RVF outbreaks in Mauritania
in 2010 and 2015 to 2016 (14, 16). Seroprevalence rates below 9% with antibody titers
of up to 1:2,560 were detected in small ruminants of varied ages (1 to 10 years) during
the Mauritanian RVF outbreak in 2015 to 2016 (14, 16). In contrast, we observed an
overall NRIV seroprevalence rate of 38.2%, in small and large ruminants (cattle 41.7%,
goats 52%, and sheep 19%) at the age of 1 or 2 years with lower titers of up to 1:320
confirming high exposure of the three livestock species to the virus. The seroprevalence
was high in goats in both sites and less in sheep; however, whether this difference is
attributed to animal species-specific susceptibility cannot be ascertained due to the
small sample size screened and lack of wider geographic scope. There was no significant
difference in the seroprevalence rates between the two sites, Baringo county (33.3%)
and Kajiado county (43.1%) (Table 2). Of note, none of the NRIV seropositive samples
contained antibodies against RVFV or BUNV, which both are endemic in the country. We
did not specifically test for the presence of antibodies against BATV, as it is not known to
occur in Kenya. Our inference nonetheless is based on a small number of samples,
requiring validation of our results through extended surveys employing larger data sets.

We document active circulation of the virus in three presumably healthy livestock spe-
cies: cattle, goats, and sheep. This pattern is inconsistent with previous detections of NRIV
during RVF outbreaks (14, 16). Our detection of NRIV in apparently asymptomatic animals
in different areas in Kenya is indicative of a wider geographic circulation that has so far
gone unnoticed. The presence of a zoonotic virus in livestock that can easily circulate
unnoticed due to mostly asymptomatic or mild infections needs specific monitoring as it
can cause disease in humans with severe outcomes. Whether the virus contributes to the
disease burden of the livestock population can thus far not be ascertained. Hence, further
studies including experimental challenges may be required to understand the potential
impact of NRIV on livestock health, as well as to investigate the role of livestock in the epi-
demiology of NRIV and its possible impact on the associated human population.

Phylogenetic analyses revealed that the NRIV strains detected in this study were ge-
netically most closely related to strains found in small ruminants in Mauritania in 2010
and 2015 (14, 16). Although there is a large geographic distance between the two coun-
tries and a relatively long period between the detections in Mauritania in 2010 and 2015
and here in 2020 to 2021, the close relationship could be explained by limited sequence
data available for NRIV. This observation could suggest either a low genetic diversity of
NRIV, which is supported by the low phylogenetic diversification of the entire NRIV clade,
and an expansive geographic circulation in Africa or alternatively a possible exchange of
infected animals (or vectors) between the two countries. Interestingly, the available NRIV
strains did not cluster according to geographic origin or associated host.

Although NRIV has been isolated from various mosquito species of different genera and a
large vector range is suggested, our in vitro growth kinetics rather suggest that Aedesmosqui-
toes are more susceptible for an infection with NRIV than mosquitoes of other genera (Fig. 2).
However, these cell-culture-based findings need to be further tested using in vivo vector
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competence studies. Several studies detected NRIV in Aedesmosquitoes, including the first iso-
lation of NRIV from Aedes simpsonimosquitoes in 1979 in South Eastern Senegal (5, 11, 18).

NRIV has been reported to cocirculate with RVFV in Kenya and with RVF, BATV, and BUNV
in Mauritania (6, 7, 14, 16). Factors contributing to the cocirculation are not well understood.
However, these viruses infect similar vectors and hosts facilitating simultaneous transmission
of multiple viruses between vectors and hosts. The common isolation of BUNV and NRIV from
pools of flood water Aedesmosquitoes in northern Kenya supports the hypothesis of simulta-
neous transmission of multiple viruses by mosquitoes (26). The implementation of differential
diagnosis for NRIV, RVFV, BATV, and BUNV would be important whenever symptoms of dis-
ease compatible with infections with these viruses occur in endemic areas (6, 9, 16, 30). The
most recent RVFV outbreak in Kenya was reported in Mandera, Isiolo, Garissa, and Murang’a
counties in 2021 (31). It affected animals and humans with a reported case fatality rate of 34%
and 55% in humans and livestock, respectively. Surprisingly, only a subset, (20/120) of the
samples collected from suspected animal cases was tested positive for RVFV (Central
Veterinary Laboratories [CVL] Kabete Lab Report; 31, 32) suggesting the potential contribu-
tion of pathogens of unknown etiologies to the outbreak. Moreover, considering the
frequent RVFV outbreaks experienced in these areas despite RVFV vaccination campaigns
carried out, it would be important to test for the potential contribution of other pathogenic
arboviruses known to circulate in the region, such as NRIV, and BUNV, through targeted spe-
cific laboratory screening.

Conclusion. Until now, NRIV had not been detected aside from RVFV outbreaks. Here,
we show NRIV to be actively circulating in apparently asymptomatic cattle, sheep, and goats
in two pastoralist-dominated areas in Kenya. Furthermore, animals showed high seropreva-
lence rates of up to 52.4 suggesting unnoticed virus circulation. There is an urgent need to
establish diagnostic tools to investigate the potential health impact of NRIV on livestock and
human populations.

MATERIALS ANDMETHODS
Study design and sites. The study, as part of a bigger project meant to improve understanding of

arbovirus transmission networks in Kenya, was conducted as a cross-sectional field- and laboratory-based survey.
Sampling was performed twice a year in May/June and September/October between 2020 and 2021 immedi-
ately at the end of the rainy seasons (March to May, and August to September) in selected sites of Baringo and
Kajiado counties on Kenya’s Rift Valley (Fig. 1). The two ecologies are semiarid inhabited by pastoral communities
providing high interactions of humans, livestock, and wildlife. Several arboviruses are endemic to Baringo county,
like yellow fever virus (33), RVFV, and the recently discovered phleboviruses Ntepes virus, Perkerra virus,
Embossos virus, Bogoria virus, and Kiborgoch virus (34, 35).

Livestock sampling. A total of 2,039 apparently healthy/asymptomatic cattle (n = 715), goats (n = 680),
and sheep (n = 644) aged 1 to 3 years were sampled from the two study sites by a team, including a registered
veterinarian and/or animal health technician. Sampling was done twice a year after the rainy seasons when the
vector and arboviral activity were presumably high. Approximately 5 mL whole blood was collected aseptically
from the jugular vein of each animal into 10 mL BD Vacutainer blood collection with EDTA. Blood for serum
was collected into 10-mL BD Vacutainer blood collection plain vacutainers precoated with serum activator. The
samples were processed, aliquoted into cryovials, and appropriately labeled. All samples were transported on
dry ice from the field to the Martin Lüscher Emerging Infectious Diseases (ML-EID) Laboratory at icipe for im-
mediate testing and/or storage at280°C until further screening.

PCR screening. Five to seven individual livestock serum samples were pooled depending on the
species and site, (100 mL per sample) for RNA extraction. Viral RNA was extracted from 140 mL pooled serum
using the QIAamp Viral RNA minikit (Qiagen, Hilden Germany) according to the manufacturer’s protocol. A vol-
ume of 50 mL of RNA was obtained and used as a template for cDNA synthesis by Invitrogen SuperScript III
Reverse Transcriptase. A 20-mL reaction cDNA was prepared by adding 10 mL extracted RNA to 1 mL Random
Hexamers (50 mM), 1.5 mL of Invitrogen RT-PCR Grade water and 0.5 mL Thermo Fisher Scientific dNTP Mix
(25 mM) to make a total volume of 13mL reaction (Mixture 1) and incubated at 65°C for 5 min, then placed on
ice for 1 min. Mixture 1 was then added to 7 mL mixture 2, containing 1 mL Invitrogen SuperScript III Reverse
Transcriptase, 1 mL Invitrogen RNaseOUT Recombinant RNase Inhibitor, 1 mL Thermo Fisher Scientific USB
Dithiothreitol (DTT) and 4 mL 5� RT First Strand buffer, incubated at 15°C for 20 min, 50°C for 60 min, then
85°C for 5 min. The cDNA was stored at280°C until further use.

Samples were screened by a generic PCR assay using established pan-orthobunyavirus primers tar-
geting the L segment (36). The reaction volume (25 mL) comprised 15.65 mL PCR water, 2.50 mL10�-buffer,
1.25mL Mg (50 mM), 0.50mL dNTPs (10 mM), 1.5mL of 10mM forward and reverse primers, 0.10mL Platinum-
Taq polymerase, and 2.0 mL template (cDNA). Subsequent nested PCR was performed using the PCR product
of the first round PCR as template. The PCR conditions were 95°C for 3 min, touch down of 0.5°C per cycle for
10 cycles of 95°C for 15 s, 55°C for 20 s, and 72°C for 40 s, followed by 35 cycles of 95°C for 15 s, 50°C for 20 s,
72°C for 40 s, and a further extension of 72°C for 10 min. The PCR products were electrophoresed in 2%
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agarose gel stained with ethidium bromide and positive samples purified using ExoSAP-IT PCR product Clean-
up Reagent (Applied Biosystems) according to the manufacturer’s instructions, then sequenced in both direc-
tions. The sequencing services were outsourced from Macrogen, Europe B.V. Further, RNA was extracted from
positive individual serum samples and screened as described.

Viral isolation. A confluent monolayer of Vero cells (ATCC CCL-81) grown in 24-well tissue culture
plates (Nunc, Roskilde, Denmark) in growth media (GM) containing Gibco Dulbecco’s modified Eagle’s medium
(DMEM) enriched with 10% Gibco Fetal Bovine Sera (FBS), 2% Gibco Antibiotic-Antimycotic (100�), and 2%
Gibco L-glutamine (200 mM) was used for initial inoculations. Fifty microliters of individual serum samples from
NRIV PCR positive pools were inoculated into each well of the confluent monolayer and incubated in a 5% CO2

incubator (New Brunswick Galaxy 170 R CO2 Incubator Series, Eppendorf, USA) at 37°C for 1 h, rocking after ev-
ery 15 min. After adsorption, maintenance media (MM) containing 100 mL DMEM supplemented with 5%
Gibco fetal bovine sera (FBS), 2% Gibco Antibiotic-Antimycotic (100�), and 2% Gibco L-glutamine (200 mM)
was added to each well and incubated at 37°C in a 5% CO2 incubator for up to 14 days, observing the cells
daily for cytopathic effects (CPE) using Leica DMi1 LED Cell inverted microscope. The positive samples were
passaged in a T-25 flask containing confluent Vero cells up to the second passage. The virus was harvested by
freeze-thawing the infected cells then centrifuging at 3,000 rpm for 10 min. The supernatant was used for RNA
extraction and downstream RT-PCR, next-generation sequencing (NGS), and stored at280°C until further use.

In vitro viral growth kinetics. To understand the growth characteristics of the NRIV isolates, in vitro
growth kinetics were performed in vertebrates cell lines: human, HEK293-T (human embryonic kidney cells);
sheep, Llu-L; goat, ZnR (zinc sensing receptor cells); primate, VeroE6 (African green monkey, kidney cells); as well
as insects cell lines: U4.4 (Aedes albopictus), CxT (Culex tarsalis), Aag2 (Aedes aegypti), AS (Anopheles stephensi),
and C6/36 (Aedes albopictus larvae); sand fly, PP-9 (Phlebotomus papatasi). Insect and vertebrate cells were
infected with NRIV in duplicates at a multiplicity of infection (MOI) of 0.1 and 0.01, respectively, for RNA extrac-
tion and virus titration. Aliquots of infectious cell culture supernatants of vertebrate and insect cells were har-
vested every 24 h for a period of 6 and 3 days, respectively. Amount of viral genome copy numbers were quanti-
fied by real-time RT-PCR using plasmid-based quantification standards. Supernatants were titrated in duplicates
on confluent Vero cells in a 24-well plate. The supernatants were diluted in DMEM medium without supple-
ments, cells were washed with 2� PBS, and 200mL of each dilution was applied on cells. After 1 h of incubation
at 37°C and 5% CO2, the supernatant was removed, cells were covered with 2.5% Avicel/2� MEM supplemented
with 5% FCS and incubated for 3 days at 37°C and 5% CO2. Cells were fixed with 6% paraformaldehyde, and the
cell layer was stained with crystal violet.

Genome sequencing and analysis. The clarified supernatant of isolates from sheep, KE_O93, goat
KE_C166 and cattle KE_B02 and KE_B35 were filtered using 0.22-mm filters to concentrate the viral particles
and remove any host “contaminants” and bacteria. RNA was extracted from the isolates and libraries prepared
using the KAPA HyperPlus kit (Roche, Penzberg, Germany), sequenced using the Illumina MiSeq HTS platform
with a designated yield of;25 million paired-end reads (35, 37, 38).

Raw NGS reads were trimmed, assembled, and analyzed in Biomatters’s Geneious Prime (http://www
.geneious.com). The reference-assisted assembly was done using default parameters to obtain a full-
length genome sequence of the isolates. The obtained contigs were reconfirmed using BLASTn in the
NCBI database (37, 39). Confirmed sequences were translated, and CDS predictions were performed in
Geneious Prime. Phylogenetic analysis was performed based on the nucleotide sequences of the L, M,
and S segments. Related sequences were downloaded from the GenBank-NCBI database and multiple
sequence alignment performed by MAFFT (40). Phylogenetic analysis was performed in Geneious Prime
(http://www.geneious.com) with PhyML (41), and a GTR substitution model applying 1,000 bootstrap
replicates. To understand the virus evolutionary relationships, the isolated viruses’ closest homologs
based on each of the three segments were downloaded from GenBank and used as references in
sequence analysis. The inferred phylogenies were visualized in Figtree v1.4.4.

Indirect immunofluorescence assay. One-hundred and 44 randomly selected serum samples from
cattle (n = 60), sheep (n = 42), and goats (n = 42) were screened for anti-NRIV IgG antibodies using a in house
NRIV indirect immunofluorescence assay (IIFA). The slides contained a mixture of KE_O93 NRIV isolate and
noninfected Vero E6 cells in a 1:1 ratio fixed on each well except the negative-control well contained nonin-
fected Vero E6 cells. The serum samples were diluted in a ratio of 1:10 with sampling buffer, and 25mL of the
diluted samples applied to the biochip and incubated for 30 min at room temperature. After incubation, the
slides were washed twice, 5 min each in wash buffer containing phosphate-buffered saline (PBS), pH 7.2 and
0.2% Tween 20. Twenty-five microliters of Alexa 488 labeled donkey anti-sheep IgG antibodies, donkey anti-
goat IgG antibodies, and goat anti-bovine IgG antibodies (Dianova, Hamburg, Germany) for sheep, goat, and
cattle, respectively, diluted 1:200 in PBS were applied to each well according to the sample type. The slides
were incubated at room temperature in the dark for 30 min, washed twice with wash buffer for 5 min each
and then rinsed in distilled water for 2 min. A drop of Prolong Gold Antifade Reagent with DAPI was added,
covered with a coverslip, and allowed to dry. Finally, the slides were examined on a fluorescence microscope
(Zeiss Fluorescence Microscope).

Plaque reduction neutralization test. All NRIV IIFA positive samples were confirmed using plaque
reduction neutralization test (PRNT). Vero cells grown in GM were seeded in 24-well plates at a concen-
tration of 1 � 106 cells per well at a volume of 1 mL per well and incubated overnight at 37°C with 5% CO2.
The cells were observed under the microscope after a day to ensure 70% to 90% confluence and even cell dis-
tribution before inoculation. The IIFA positive sera samples were then aliquoted and heat-activated at 56°C in a
water bath before serial dilution in maintenance media (MM). Two-fold serial dilutions 1:10 to 1:320 of IFA posi-
tive serum samples were prepared in a microtiter plate; then, 30mL of each serially diluted sera mixed with an
equal amount of NRIV KE_O93 isolate diluted to a plaque assay standard concentration that produced 20 to 50
plaques. The mixtures were incubated at 37°C in the presence of 5% CO2 for 1 h.
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A coincubated mixture of antibody and NRIV virus was used to infect seeded 24-well culture plates
containing confluent monolayers of Vero cells after pouring off the growth media and incubated at 37°C
for 60 to 90 min in a 5% CO2 incubator. After incubation, 2 mL of 2.5% H7509 Sigma-Aldrich methylcellu-
lose (viscosity 4,000 cP) was added to each well and incubated at 37°C in a 5% CO2 incubator for 7 days.
The plates were then fixed by 3.7% (vol/vol) F8775 Sigma-Aldrich formaldehyde solution prepared in
Gibco Dulbecco's PBS pH 7 by pipetting 2 mL per well for a minimum of 2 h and then stained with 0.5%
(wt/vol) C0775 Sigma-Aldrich crystal violet prepared in absolute ethanol at 2 mL per well overnight,
washed, dried, and were plaques counted manually. PRNT90 positive samples were determined as the
reciprocal of the serum dilution giving $90% reduction in plaque counts (42).

Statistical analysis. The seroprevalence data were analyzed using R version 4.2.0. Comparison of
NRIV seroprevalence between the two study sites and different species was done using Fisher exact test.
The 95% confidence intervals (CIs) were estimated using the Agresti-Coull method. All tests were per-
formed at a 5% significance level.

Ethical consideration. The study was approved by the Kenya Medical Research Institute’s Scientific
and Ethics Review Unit (SERU), (SERU No.3312) after gaining approval by the animal care and use com-
mittee. Additional approval for the study was accorded by the University of Pretoria, Faculty of Health
Science’s Research Ethics Committee (Ethics Reference No. 568/2020).

Sampling of livestock (cattle, goats, and sheep) was conducted by a team, including a Kenya
Veterinary Board (KVB) registered veterinarian or/and animal health technician after obtaining written
consent from the respective county governments and verbal consent from local farmers.

Data availability. The four isolates (KE_C166, KE_O93, KE_B02, and KE_B35) L, M, and S segments
sequences were deposited in GenBank under the accession numbers ON755192 to ON755203.
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