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communities of the Grassland Biome of South Africa, for monitoring under climate change
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Highlights

e Palustrine wetlands are highly separable from terrestrial grasslands (>91%). This
means that changes in the areal extent of palustrine wetlands can be reported in the
next cycle; for the Sustainable Development Goal (SDG) to sub-indicator 6.6.1a.

e Several wetland vegetation communities could be mapped, suggesting improved
biodiversity reporting to SDG 15 and monitoring for threatened species.

e The red-edge and shortwave infrared bands played an important role in improved
separability of vegetation classes in these study areas. This study tested the
contribution of the Sentinel-2 SWIR bands in vegetation mapping which has not been
explored for this particular sensor.

Abstract

Monitoring changes in the areal extent and geographic distribution of wetland vegetation
has become more critical considering the impact of anthropogenic and climate changes. We
compared the capabilities of the optical space-borne sensors Sentinel-2 and WorldView-3
(WV3) to distinguish between wetland and terrestrial vegetation for improved reporting to
the Sustainable Development Goal (SDG) sub-indicator 6.6.1a, and also map different
wetland vegetation communities for two catchments in the Grassland Biome of South
Africa. Ground truthing of vegetation communities was conducted between 2016 and 2018.
A Random Forest classification algorithm was used with a 100-fold cross-validation to assess
mean accuracies using all combinations of bands, a digital elevation model generated from
fine-scale contours, spectral vegetation indices (VIs) and above-ground biomass (AGB). Five
and eight wetland vegetation classes were mapped for Hogsback and Tevredenpan,
respectively, of a total of 13 classes for each of the sites. Wetland and terrestrial vegetation
were found to be highly separable, with overall accuracies (OAs) attaining 91-99% and



individual user's accuracies 88—99% for both sensors and study areas. Even though the
wetland vegetation communities consisted of a mosaic of smaller communities,
monodominant species and plant functional type classes, they were found to be highly
separable across sensors and study areas. The highest average OA of 83% for Hogsback's
wetland vegetation communities was achieved using WV3 bands with elevation, AGB and
the Vls, while the Sentinel-2 bands, elevation, AGB and VIs attained an average OA of 78%.
For Tevredenpan, the use of the Sentinel-2 bands and elevation achieved the highest mean
OA of 79% for the classification of wetland vegetation communities, while the WV3 (in this
case the short-wave infrared bands were not available owing to shortage of funding)
maximized at 74%. The inclusion of elevation data and spectral indices in the classification
scenarios of wetland vegetation communities increased the OA by 4-17%. Omitting the red-
edge and shortwave infrared bands for classification of vegetation classes resulted in a
varied response across sensors and study areas, but decreased the OA by 4.8-7.3% when
using the Sentinel-2 sensors. These results show promise for improved reporting and
monitoring of the extent and types of palustrine wetlands in the Grassland Biome of South
Africa using freely-available Sentinel-2 data.

Keywords: Freshwater ecosystems; Palustrine wetlands; Random forest; Sustainable
development goals (SDGs) 6 and 15

1. Introduction

Monitoring changes in the areal extents and geographic distribution of wetlands, a highly
threatened realm, are critical to tracking changes in their biodiversity and ecosystems
(IPBES, 2019). In 2020, the first changes in the extent of wetlands were reported to the
United Nations as part of SDG 6.6, which stated: ‘By (2020), protect and restore water-
related ecosystems, including mountains, forests, wetlands, rivers, aquifers and lakes’ (UN,
2017). For the sub-indicator 6.6.1a, the areal extent of lacustrine (open water) and
palustrine (vegetated) wetlands was reported (UN, 2017). These are the two biomes
identified under the wetland realm in the latest global ecosystem types (Keith et al., 2020),
serving as coarse-scale surrogates of wetland biodiversity. Only lacustrine biome wetlands
were reported to the UN by 2020 as part of SDG 6.6.1a, and many countries depended on
the Global Surface Water products, derived from 30-m spatial resolution Landsat series and
Sentinel-2 images (Pekel et al., 2016). Information on changes in the areal extent of
palustrine wetlands was lacking globally. At the same time, comparison with wetlands on a
country-wide scale also showed an extensive underrepresentation of lacustrine wetlands
(Van Deventer, 2021), and very likely a global trend, though evidence lacking elsewhere.

The impact of global changes on the areal extent and geographic distribution of palustrine
wetlands remains a knowledge gap. Changes in the extent, composition, physiology, and
phenology of plant species, resulting from anthropogenic and climate changes, have been
observed since the 1970s (Campoy et al., 2011; Sardans and Pefiuelas, 2012; Richardson et
al., 2013). Fewer studies have assessed the separability of wetland from terrestrial
vegetation for SDG 6.6.1a reporting, or mapping of the areal extent and geographic
distribution of wetland vegetation communities, particularly in the Grassland Biomes where
vegetation height does not always differ across a wetland-terrestrial gradient. This biome
covers approximately 40% of the earth's surface area (excluding the Greenland and



Antarctica continents), showing high degrees of land conversion to agriculture and urban
areas and/or degradation (WRI, 2000). In South Africa, the Grassland Biome constitutes 26%
of the extent of South Africa's land surface and shows the second-highest rate of loss of all
biomes in the country (Skowno et al., 2019). The impacts of climate change are expected to
shift the aridity gradient in South Africa further eastwards towards the Highveld Region
(Mofutsanyana, 2017; Mofutsanyana et al., 2020), while bush encroachment from the
Savannah Biome into the grasslands is also a concern (Bond and Midgley, 2012; Stevens et
al., 2016). The invasion of robust clonal species, including indigenous Phragmites australis
and Typha capensis or invasives, is expected to invade vulnerable wetland types, for
example, those dominated by sedges (Mulhouse et al., 2005) with a decline in rhizomatous
graminoids (Mofutsanyana, 2017; Mofutsanyana et al., 2020). Therefore, the detection and
monitoring of changes in the extent and climatic ranges of species are critical. Remote
sensing can supplement point-based assessments should vegetation communities be
spectrally separable.

Several studies have evaluated the separability of wetland vegetation types or communities
in the Grassland Biome at landscape level using optical, space-borne multispectral images
(Drovnova et al., 2012; Bochenek et al., 2013; Dubeau et al., 2017; Rapinel et al., 2019;
Bhatnagar et al., 2020) and at finer scales using methods such as unmanned aerial vehicles
(UAVs) (Knoth et al., 2013; Beyer et al., 2019). Accuracies reported for these studies ranged
from 71 to 94% for space-borne sensors and 84-95% for the UAV studies, with both studies
undertaken in palustrine wetlands with grasses and sedges and other vegetation types
(Drovnova et al., 2012; Bochenek et al., 2013; Knoth et al., 2013; Crichton et al., 2015;
Dubeau et al.,, 2017; Beyer et al., 2019; Rapinel et al., 2019; Bhatnagar et al., 2020). Several
studies have assessed broad habitat types of wetland vegetation in the coastal regions of
South Africa using Landsat 1, WorldView-2, RapidEye and SPOT-6 (Jarman, 1981; Liick-Vogel
et al., 2016; Van Deventer et al., 2017, 2019). Overall accuracies (OAs) ranged between
64.3% and 86% and included some terrestrial classes, and palustrine wetland habitats in
estuarine environments. Inclusion of ancillary data, such as elevation or indices, has been
tested in other applications, with some authors reporting improvement in the predictive
capabilities of remote sensing models for vegetation studies (Crichton et al., 2015;
Zoungrana et al., 2015; Liu et al., 2017; Rajah et al., 2019; Niculescu et al., 2020), while other
studies reported no improvement from including ancillary data (Ferreira et al., 2016).
Despite these advances on detection and characterization of different palustrine wetland
types, there is still a lack of reporting the extent of this biome to SDG 6. Further work is
required on mapping inland palustrine wetlands, particularly for the Grassland Biome, to
assess how separable these palustrine wetlands are from terrestrial vegetation, and
whether the vegetation communities can be monitored and reported to SDG 6.

The availability of more recently-launched, space-borne sensors, such as Sentinel-2,
WorldView and RapidEye, provides new opportunities for assessing the capabilities of these
sensors to map the extent of palustrine wetlands and their plant species composition. These
sensors have added bands in the red-edge and shortwave-infrared (SWIR) region of the
electromagnetic spectrum (EMS), which have proved to be advantageous in separating plant
species from one another in various climatic regions and habitats. Several authors have
demonstrated the importance of the new bands, such as the red-edge and SWIR bands,
using WorldView-2 (WV2), WV3 or RapidEye images for mapping vegetation types, with an



increase in OA of up to 14% (Immitzer et al., 2012; Pu and Landry, 2012; Omer et al., 2015;
Ferreira et al., 2019; Van Deventer et al., 2019). However, the potential influence of the
SWIR bands of Sentinel-2 on the classification accuracy of wetland vegetation mapping
communities has not yet been assessed. Furthermore, the Sentinel-2 twin sensors, Sentinel-
2A (S2A) and Sentinel-2B (S2B), launched in 2015 and 2017, respectively, by the European
Space Agency (ESA), are freely available for public use, enabling regional monitoring around
the world. The sensor has ten bands across the visible, near infrared (NIR), red-edge and
SWIR bands at a spatial resolution of 10 and 20 m, with three additional bands at 60-m
spatial resolution used for atmospheric correction (European Space Agency, 2019b). The
WorldView-3 (WV3) sensor, a proprietary sensor launched on August 13, 2014 (Digital Globe
Pty Ltd), provides eight multispectral bands at 1.24 m spatial resolution and eight SWIR
bands at 3.7 m spatial resolution with a swath width of 13.1 km (Digital Globe Pty Ltd,
2014). WV?2, for example, showed superior performance in the classification of 17 wetland
vegetation species in the United States of America, outperforming traditional four-band
sensors such as QuickBird, IKONOS and OrbView-3 by > 5% in OA (Carle et al., 2014).
However, it remains to be assessed whether Sentinel-2 has comparable performance to
WorldView sensors, since WorldView data are costly to use for monitoring, and whether the
red-edge and SWIR bands of these sensors improves separability of vegetation types or
communities.

The aim of this study was to compare the capability of the freely available Sentinel-2 and
WorldView-3 images to map palustrine wetlands in the Grassland Biome of South Africa.
The objectives of the study were:

(i) Compare the capabilities of the Sentinel-2 and WV3 optical sensors to map the areal
extent of palustrine wetlands for SDG 6.6.1a reporting;

(ii) Compare the accuracies of mapping wetland vegetation communities using the Sentinel-
2 and WV3;

(iii) Ascertain whether ancillary data, such as elevation models and spectral indices, would
improve the classification accuracies when using Sentinel-2 and WV3 images;

(iv) Determine the contribution of the red-edge and SWIR bands to mapping vegetation
communities with the Sentinel-2 and WV3 optical sensors.

Two study areas from the Grassland Biome were used to test the sensors’ capabilities, near
Hogsback in the Eastern Cape Province and Tevredenpan in the Mpumalanga Province. We
intend for the results to inform the choices of sensors to monitor potential changes in the
distribution of wetland vegetation resulting from the impacts of climate change.

2. Materials and methods
2.1. Study areas
Owing to the threat of high levels of transformation of the Grassland Biome in South Africa

(Fourie et al., 2014; Skowno et al., 2019), two study areas have been chosen in this biome
(Fig. 1A) for two reasons: (a) areas with palustrine wetlands were considered



underrepresented on the South African National Wetland Maps (NWMs; Van Deventer et
al., 2020b); and (b) the challenge of separating sedges and grasses in palustrine wetlands
from terrestrial grasses, because they can be spectrally and structurally similar. While
hyperspectral and super-spectral data can very likely separate these communities (e.g.,
Schmidt and Skidmore, 2003; Gianinetto and Lechi, 2004), the challenge remains to assess
the capabilities of freely available images from Sentinel-2.

(i) Hogsback ‘Die Vlei’ wetlands, Eastern Cape Province
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Fig. 1. Location of the study areas (A) relative to the provinces of South Africa with the two study areas being
1 = Hogsback and 2 = Tevredenpan relative to the extent of the Grassland Biome; (B) representation of
wetlands in National Wetland Map version 4 (NWM4; Van Deventer et al., 2016) for the Hogsback study area,
relative to those in the quaternary catchment; (C) the land cover data of 2013/4 of Hogsback (GTI, 2015); (D)
the extent of wetlands in the updated NWMS5 (Van Deventer et al., 2020b) for Hogsback after the output of
specialist mapping (Van Deventer et al., 2020a) and relative to those of the quaternary catchment; (E) the
extent of wetlands of NWM4 for Tevredenpan relative to those of the quaternary catchment; (F) land cover
data of Tevredenpan; and (G) the extent of wetlands as updated in NWMS5 for the Tevredenpan study area
relative to those in the quaternary catchment.

The Hogsback study area (32.55°S, 26.97°E; total areal extent 8363 ha) is located north-east
of the town of Hogsback in the Eastern Cape Province (Fig. 1B) in the quaternary catchment
S32D (which totals 30 724 ha in areal extent). The Great Winter-Amathole Mountains is
situated to the south of the study area, where vegetation consists primarily of Amathole



Montane and Mistbelt Grassland vegetation types with narrow patches of Southern
Mistbelt Forests and poorly protected Eastern Temperate Freshwater Wetlands associated
with the Klipplaats River (Mucina and Rutherford, 2006). The Mean Annual Precipitation
(MAP) ranges from 600 to 700 mm, while the mean annual evapotranspiration is between
1600 and 1700 mm (Water Resources Atlas of 2012 [WR 2012]; Bailey and Pitman, 2016).
The geology consists primarily of the Karoo Supergroup (Adelaide and Tarka subgroups),
interrupted by dolerites (South African Council for Geoscience geology map 1:250 000, 3226
King William's Town, dated 1976). Wetlands occur on steep to low gradient slopes as well as
the valley bottom, giving rise to the Klipplaats River. Criss-crossing dolerite dikes impede
flow, resulting in constriction and backing up of the river, forming a large wetland on either
side of the river in the valley. The interflow from hillslope seeps drains through valley-
bottoms towards the main floodplain system, with all wetlands predominantly palustrine.
The elevation of the Hogsback study area ranges from 1190 to 1960 m above mean sea level
(calculated from 5-m interval contours [DRDLR:NGI, 2016]) with deep incised valleys
stretching north from the mountaneous watershed division.

Approximately 2% (680 ha) of the surface area of quaternary catchment S32D (29 860 ha)
was mapped in NWM4 (Van Deventer et al., 2016) as inland wetlands (Fig. 1B), although
omissions were apparent from Google Earth Pro images (GEP, 2022) prior to the beginning
of the project. The wetlands are largely vegetated with little open water, except for the
Klipplaats River channel that flows northward. The National Land Cover layer (GTI, 2015)
indicates that most of the wetlands are ‘grasslands’, while the large valley-bottom wetland
on either side of the Klipplaats River is shown as ‘Thicket/Dense bush’.

(ii) Tevredenpan study area, Mpumalanga Province

The Tevredenpan study area (26.2°S, 30.2°E; +8000 ha) is in the northern part of the
Mpumalanga Lake District (MLD) of South Africa (Fig. 1C). It is located within a larger
quaternary catchment W55A (with a total extent of 68 870 ha) of which 8181.8 ha of
wetlands (12% of W55A's extent) were mapped in NWM4 (Van Deventer et al., 2016),
hosting a large number, 416, of freshwater depressions (Van Deventer et al., 2022). In the
Tevredenpan study area, 952.8 ha of wetlands (also 12% of the extent of the study area)
were mapped in NWMA4. The vegetation type in the catchment is described as the ‘Eastern
Highveld Grassland Biome’ and is considered ‘hardly protected’ (Mucina and Rutherford,
2006). The Tevredenpan study area is in the western section of the sub-quaternary
catchment SQ4#1375, mapped as predominantly grassland, and hosting large valley-bottom
systems, seeps, and some depressions. The largest of the depressions within the study area
is Tevredenpan (Fig. 1). The area receives between 600 and 700 mm of MAP, while the
mean annual evapotranspiration range is between 1700 and 1800 mm per annum (WR
2012; Bailey and Pitman, 2016).

The elevation of the study area ranges from 1700 to 1820 m above mean sea level
(calculated from 5-m interval contours [DRDLR:NGI, 2016]), reflecting gradually undulating
slopes of the plateau, with valleys draining to the east. The geology in the study area is
primarily Vryheid formation (Pv), where the coal mining takes place with intermittent
dolerites (Jd) to the east and surface alluvium deposits (Q) (Council for Geoscience



Table 1. Image acquisition dates for the Sentinel-2 and WorldView-3 (WV3) sensors for the Hogsback and Tevredenpan study areas. GMT - Greenwich Meridian Time,
MIR = mid-infrared region of the EMS, SWIR - shortwave infrared, VIS = visible range of the electromagnetic spectrum (EMS).

Sensor Sentinel-24 wv3a
Hogsback 2016,/12/03 at 07:53 GMT, 13 bands Mhultizpectral data for two dates:

#2016,/10/18 VIS-MIE

»2016,12,/25 VIS, MIR, and SWIE taken at 8h4] Greemwich Mean Time [(GMT)
Tevredenpan 2017/01/19 at 07:42 GMT, 13 bands 2017/02/2] at 08:27:00 GMT including VIS-MIR




1:250 000 geology map 2630 Mbabane printed in 1986). The Vryheid formation is relatively
flat, with slow mudstone eroding into depressional systems (McCarthy et al., 2007).

2.2. Image acquisition and pre-processing

The S2A and WV3 images were acquired for the summer of 2016-7 (Table 1) to coincide
with the field campaign dates. Images for Hogsback were acquired in the 35S Universal
Transverse Mercator (UTM) projection, whereas the S2A images for Tevredenpan were
acquired in UTM36S, and the WV3 images in a geographic coordinate system. The 10- and
20-m bands of the S2A images were used (European Space Agency, 2019b; Supplementary
material |; Table I.1). WV3 has eight bands in the visible to NIR regions of the EMS at 1.24 m,
with an additional eight bands in the SWIR at 3.7 m (Supplementary material |; Table I.2).
For the Hogsback area, multispectral WV3 data were obtained at the full extent of the study
area, while only the western and central portion (6 263.5 ha or 75%) of the study area had a
set of WV3 SWIR bands, which was then used for the WV3 analysis. For Tevredenpan, only
multispectral WV3 images were afforded.

S2A and WV3 images that had less than 10% clouds were selected from the middle to end of
the peak of the hydroperiod in the Grassland Biome (i.e., summer to late summer). Sentinel-
2 images were acquired at the 1C processing level which included orthorectification. The
Sen2Cor algorithm, available through the ESA's SeNtinel APplication Platform (SNAP; ESA,
2019a), was used to atmospherically correct multispectral S2A images. The algorithm
parameter was chosen based on the location and type of environment of each study site in
conjunction with the values recommended in the Sen2Cor configuration and user manual
(Mueller-Wilm, 2017). The WV3 images were corrected using Atmospheric and Topographic
Correction (ATCOR) to calibrate them to top-of-canopy reflectance using sensor and solar
inclination and azimuth angles (Richter and Schldpfer, 2015). Canopy spectra for water,
vegetation, and soil were used as input parameters and were related to reference spectra in
ATCOR for the WV3 images.

2.3. Field campaigns and the identification of representative wetland vegetation groups

Each study area was visited at least twice when the vegetation was in full vigor and at peak
productivity. Hogsback was initially visited from November 6 to 7, 2016, with subsequent
fieldwork trips undertaken 13—17 February 2017 and again 19-23 February 2018.
Tevredenpan was visited February 27 to March 2, 2017 and again 5-9 March 2018. At least
a third of the patches sampled during the 2017 field campaign was revisited during the 2018
field campaign to assess the level of changes and species turn-over since the previous
growth season. The extent of patches, structure and species composition were compared to
the notes of the 2017 campaign. In all instances we concurred that patches showed no
species turn-over nor changes in extent, structure and species composition, and therefore
continued to use the patches identified in the 2016 (for Hogsback) and 2017 (both study
area) campaigns.

Dominant vegetation communities were identified in the field, taking the communities
defined through cluster analysis in the National Wetland Vegetation Database (Sieben et al.,
2014) into account. This database identified 11 floristic wetland vegetation community



types (grouped to 10 floristic communities and three larger groups) from the cluster analysis
for Hogsback and 19 for Tevredenpan (grouped to 13 floristic communities and six larger

groups) (Supplementary material Ill, Table 111.1).
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Fig. 2. Location of field floristic samples (relevés, red squares and red labels) and sample points (yellow and

green circles) collected over two field campaigns, against the Sentinel-2 image false-color image using bands 2,

3 and 4 as blue, green and red bands, respectively of (A) Hogsback (dated to 2016/12/03); and (B)
Tevredenpan (dated to 2017/01/19) study areas. The extent of wetland polygons shown here were mapped by

wetland experts through heads-up digitizing.



Table 2. Comparison of wetland vegetation communities for remote sensing classification of the Hogsback and Tevredenpan study areas against those of the South African
National Wetland Vegetation Database (NWVD) Sieben et al. (2014) 2.

Study area Tvpe Wetland Vegetation Commumity Relationship to vegetation commumnities from the 2016 2017 2018  Total
NWD
Hogsback Aguatic Phragrmites australi=" [Points wers not collected in the feld; difficult to ] o Iv] 0
access].
Aquatic Carex acutiformis Carex acutforms (CG6.2). 1 10 34 45
Aquatic Mixed grass commumnity Elements of the following communities (Le., these 1 10 12 23

species at least) were all present: Aristida
Junetformas and Tristachya lencothriv (CG5.15),
Merxuellera macowanit (CG5.1)), Festura capring
(0G5.14), and Haplocarpha nervosa (CG33.11).
Aquatic Mixed sedge community Elements of the following communities (Le., these 0 ] 40 55
species at least) were all present: Fingerfuthia
zesleriiformms (CG5.4), zolepis angelica (CG5.2) and
Jumens flexus (CG5.9)
Aquatic Firinia nodosa Not assessed in the same way as Sicben ot al. ] 3 12 22
(2014 whereby thiz species would be included ina
Braun Blanguette plot and incorporated into the
commumnity, not singled out as an mndividual
Aquatic Imperata cylindrica Not assessed in the same way as Sicben ot al. ] ] ] 12
(2014 whereby thiz species would be included ina
Braun Blanguette plot and incorporated into the
commumnity, not singled out as an mndividual
Aquatic Some patches were observed in Junews effusus (CG5.9) ] o ] 5
disturbed sites, not considered
sufficient in aresl extent for spectral
zignature assessment
SUBTOTAL NE. OF GPS PNTS FOR. HOGSBACK 2 33 123 163



Tevredenpan — Terrestrial®  Erasrostis plang and Themeda triandra 60% Eragrostiz plang and Themeda sriandra ] 15 12 27
Aquatic® Aristids spp. (=50%4) =350% Arishda =pp. 0 13 3 16
Aquatic® Anmdinella nepalensiz [ =50%) Arumdinella nepalensiz {=50%) o 20 3 16
Agquatic Carex spp. [=70%) Carex zpp. [=70%) ] 3 Iv] 3
Aquatic® Grass-zedge communities Artztida jumeiformis (+10%); Arumdirella nepalerisis o 7 14 1
(+20%4); Calamagrostis epigefos (+2094); Conmneling
africarsa {1.25%); Cyperus denudatnes (1]09%46) and
Paspalin dilatation (+596).
Agquatic Jumeus effusus (=309%) =30% Jurecws effusus (OG6.4) ] 5 3 5
Aguatic” Phragmites australis” Q0% Phrogrmtes mustraliz i) i) v] ]
Aquatic® Sedge dominant (= 20%6) +80% Eliochariz dregreana (CG6.1); +16% Leerzia 0 g 3 26
hexardra (CG6.1) and <6% open water
Aquatic® Wet-grass communitizs +70% Cymbopogon validus with < 109 of Gyperus ] 5 36 41
haematocephalus; Cyperus denudatus; Fylinga erecta;
Leersia heooandra (CG6.1) and Pennizetum turbergt
SUBTOTAL NE. OF GFS PNTS FOR. TEVREDENFAN i} o2 T2 164
TOTAL NR OF GPS PNTS FOR BOTH STUDY AREAS 2 127 200 3209

2Although the National Wetland Vegetation Database also indicated the Arundinella nepalensis community, only a sparse number of patches were observed on the
floodplain fringe, and found to be insufficient in cover to be considered as a community that can be detected by the selected sensors of this study.

bDominant in the landscape.

‘Emergent vegetation was not always accessible on foot, and therefore canopy spectra were extracted at a desktop level.



Six to eight classes of wetland vegetation communities were initially selected for the remote
sensing classification of the Hogsback study area (Table 2). Although additional patches
were identified, they were considered too small or not representative in the study area for
mapping with remote sensing images (Table 2). Approximately 165 locations were visited
within the maximum eight days of fieldwork over a period of two summer seasons (Table 2;
Fig. 2A). For some patches, the edges were also marked with a Garmin 62s GPS (spatial
horizontal accuracy <5m); however, these edge points were not included in the points listed
in Table 2. A total of 66 species were compiled following the addition to the list of species
compiled by Janks (2014).

For the Tevredenpan study area, a total of 164 locations were visited within the maximum
eight field days of fieldwork over a period of two summer seasons (Table 2; Fig. 2B). The
2017 and 2018 survey added 43 species to the list of the National Wetland Vegetation
Database that was originally compiled by Linstrom (2014, 2015) and Mr. Hannes Marais of
the Mpumalanga Tourism and Parks Agency (MTPA) in their previous surveys, totaling 192
species to date. From the groupings of the species, nine wetland vegetation communities
for this remote sensing classification study were identified during the field surveys, one
terrestrial and eight aquatic (Table 2). Seven of the wetland vegetation communities for the
remote sensing classification were found to be prevalent and dominant in the landscape,
while fewer locations of Phr. and Carex spp. were observed (Table 2). Dominant species
were assumed to have a major influence on the reflectance within the pixel. Some
monodominant species were easy to visually separate, for example, the wetlands
dominated by grass or sedges, from Juncus spp. and Phr. australis (see Supplementary
material Ill, Fig. Ill.1 as example).

2.4. Identifying regions of interest on the Sentinel-2 and WorldView-3 images and input
layers

The center and edge GPS points collected during the field campaigns were used to inform
the selection of Regions of Interest (ROls), defined as a single extracted pure pixel of the
target class, from the images. Care was taken to ensure that the pixels selected from the
images, coincided with the center points of patches, and where relevant, were within the
edge points collected. For Hogsback, a total of 13 ROI classes were captured, including one
terrestrial, five palustrine, one lacustrine, two other natural and four modified
(Supplementary material IV; Table IV.1). A minimum of 30 ROIs for each class was identified
for Hogsback on both the S2A and WV3 images, except for the bare soil and woody invasive
Rubus spp. classes, where only 20 and 14 ROIs could be captured, respectively. For
Tevredenpan, 13 ROI classes were also captured, including one terrestrial, eight palustrine,
one lacustrine, one other natural and two modified classes, with a minimum of 25 ROls
mapped for both S2A and WV3 images (Supplementary material IV; Table IV.2). The canopy
spectra (see Supplementary material V) were exported to a comma separated value file
(*.csv) file using the Environment for Visualizing Images (ENVI) 5.2 64-bit software (Exelis
Visual Information Solutions Pty Digital Globe Pty Ltd, 2014).

Sample points of vegetation classes in Hogsback, which appeared distinct in the field, were
also scrutinized visually on the WV3 images. Samples were considered unsuitable for
mapping at image level if either fewer than five patches were recorded in the field in the



study area, or the diameter was <10 m, which would risk interference by reflectance from
adjacent patches that are not similar. Consequently, several samples were excluded, namely
Imperata cylindrica, T. capensis, Schoenoplectrus brachyceras, as well as other terrestrial
and invasive species such as Bracken fern (Pteridium aquilinum), Leucosidea sericea, and
Poplar trees (Populus spp.). Isolepis cernue dominated the canopy for one patch observed in
the field, whereas in most of the other patches it was not dominant and was therefore
included in the sedge class.

2.5. Comparison of classification scenarios

Five classification scenarios were compared to evaluate the optimization of separability of
wetland and terrestrial vegetation, or wetland vegetation communities:

¢ Bands;

* Bands and elevation data: using a DEM;

¢ Bands and spectral indices;

¢ Bands and Above-Ground Biomass (AGB); and
¢ Bands, elevation, spectral indices, and AGB.

Elevation data were also considered in the classification scenarios because some wetland
vegetation communities may be associated with higher-lying seeps compared to lower-lying
valley-bottom wetlands. Therefore, a Digital Elevation Model (DEM) was built using the
ArcGlIS 10.3 Topo-to-raster tool (ESRI, 1999-2016), using the 5-m interval contours and

1:10 000 spot height data from the Department of Rural Development and Land Reform:
National Geolnformation (DRDLR:NGI, 2016) as input data sets. The DEM was built to match
the 10-m spatial resolution of the Sentinel-2A image pixels, and no hydrological correction
was made to the DEM. For the WV3 classifications, the DEM was resampled to 3.7 m for
Hogsback, according to the spatial resolution of the SWIR bands’ spatial resolution, and
1.24 m for Tevredenpan, according to the spatial resolution of the multispectral bands.
Where only one pixel was used for an ROI, the center-point of the pixel was used in
shapefile format to extract the elevation value from the DEM. For ROls consisting of more
than one pixel of the image, a zonal mean value was extracted using the polygon extent of
the ROl in ArcGIS 10.3.

Four vegetation indices and one leaf water content index were used to enhance the
discrimination of biochemical and biophysical plant properties in the classification (Table 3).
The inclusion of the four vegetation indices has previously shown some improvement in the
OA of wetland tree species in a subtropical-temperate region of South Africa (Van Deventer
et al., 2019), but it remains to be assessed for the Grassland Biome. These indices were
applicable to the spectral bands of both S2A and WV3.

Where the Green, Red, Red Edge and near infrared (NIR) bands used in the indices
correspond to bands 3, 4, 6 and 8 of the Sentinel-2 images, with the narrow-band NIR



Table 3. Spectral indices used to evaluate the change in the overall and average user's accuracies of all seasonal classification models.

Spectral Index Equation FPlant property highlighted
Green Normahzed Dnfference Vegetabion Index (gNDVI) (Gitelzon =t 2l 1996) —_— [MIR — Green) Chlorophyll

DV = [NIR + Green)
MERIS terrestrial chlorophyll mdex (MTCL}; (Dash and Curran, 2004) [MTR — Red Edge) Chlorophyll

{Red Edge — Red)
Mormalized Difference Vegetstion Index (NDVI}; _ (NIR — Red) Chlorophyil
(Rouze et al., 1973; Tucker, 1979) T (NIR | Red)

Nermalized Difference Water Index (NDWI) (Gac, 1996) [EMIR — RSWIK] Leaf water content

NDWT = (RNIR + RSWIR)
Red Edge Normalized Differencs Vegetation Index (NDVIre); (Gitelzon and Merzlyak, — NDVIe

1904)

(NIR  Red Edge)
[NIR + Red Fige)

Chlorophyll, l=af ar=a /biomass and
nitrogen




(band 8A) and SWIR1 bands used for NDWI; for the WorldView-3 images, bands NIR2 were
used as well as SWIR1 for NDWI.

Lastly, AGB was considered an important variable with wetland and terrestrial vegetation
communities showing a variety of vegetation height and density (visual observations in the
field). AGB for the two study areas were calculated by Naidoo et al. (2019). This study
incorporated field-based Leaf Area Index measurements together with Sentinel-1
backscatter (Vertical-Horizontal and Vertical-Vertical), Sentinel-2 optical reflectance bands,
spectral vegetation indices, and band ratios, within a bootstrapped Random Forest
modelling environment (with variable important selection), to estimate AGB.

2.6. Analysis of the separability between classes for SDG 6.6.1a reporting, and at
vegetation community level using canopy spectra and images

The separability of wetland vegetation was done at three levels for the first three objectives
(Fig. 3). First, we assessed the capabilities of the classification scenarios to distinguish
wetland vegetation from terrestrial vegetation. This would contribute to improved reporting
to SDG 6.6.1a, where the extent of the lacustrine and palustrine biomes of wetlands are
required from countries. For this purpose, only the respective canopy spectra (Table 4, Table
5) were grouped into two classes as either palustrine or terrestrial vegetation, and then
analyzed in the Waikato Environment for Knowledge Analysis (Weka) software version 3.8
(Franke et al., 2016). A 100-fold cross-validation approach was used to test possible errors
and determine the overall, producer's and individual user's accuracies that could be
achieved from the ROls. For this purpose, the ROI classes were subsequently classified with
the Random Forest algorithm (Breiman, 2001) using the various options of bands, elevation,
spectral indices, and AGB input variables. Random Forest is a non-parametric classifier often
used for species separability (Naidoo et al., 2012; Dubeau et al., 2017; Van Deventer et al.,
2017; Beyer et al., 2019; Van Deventer et al., 2019a).

Second, we evaluated the separability between different wetland and terrestrial vegetation
communities for purposes of monitoring (Fig. 3). For this level of analysis, the canopy
spectra of all classes were evaluated in a cross validation approach, using the five
classification scenarios with respective input layers. The variances in errors were calculated
based on the best-practice guidelines of Olofsson et al. (2013, 2014). Each of the models
was predicted in R Studio (R Core Team, 2009-2021) using the ModelMap package
(Freeman and Frescino, 2009). Subsequently, the images were converted to polygons (no
smoothing) in ArcMap version 10.3 (ESRI, 1999—-2016) and the areal extent calculated in
hectares (ha) using the Albers Equal Area Conical projected coordinate system of South
Africa. This coordinate system least distorts the surface area of polygons (Waywell, 2009),
and uses the World Geodetic System of 1984 (WGS84) with the 25°E central meridian and
24°S and 33°S as standard parallels. The total areal extent of each class was then used to
update the accuracies as per Olofsson et al. (2013, 2014).



In both the Weka and ModelMap assessments, the software defaults of ntree (=500) and
the mtry variable (i.e., square root of the number of input variables) were retained. The
mtry variable varied according to the number of variables in the classification scenarios and
according to the optimizations of splits at the nodes in the trees. The optimal classification
scenario for each study area and the sensor for separating at the coarser level between
lacustrine wetlands, palustrine and terrestrial vegetation was identified using where the
average OA was maximized and where the lowest user's accuracy for an individual class
reached a maximum. For the classification at vegetation community level, the optimal
classification scenario was selected where the adjusted OA reached a maximum, and the
lowest adjusted user's accuracy of an individual class was maximized. We also considered
the number of instances where comparable pairs were confused by >10% and aimed to
minimize class confusion. Subsequent to the analysis, the optimal results were used to
calculate the areal extent of each class, and also group these for SDG 6.6.1a reporting as the
extent of lacustrine and palustrine wetlands, respectively. For the third objective the overall,
producer and user's accuracies (Story and Congalton, 1986) attained from the various
classification scenarios were compared to assess whether the use of ancillary data improved
the classification accuracies (Fig. 3).

2.7. Evaluation of the contribution of the red edge and SWIR bands in separating
vegetation classes

Lastly, for the fourth objective, we used a subset of the ROIs, consisting only of the
vegetation classes of each study area (omitting bare soil and open water), to evaluate the
importance of the red-edge and SWIR bands for enhancing separability between them (Fig.
3). Accuracies were calculated using the Random Forest algorithm in Weka with a 100-fold
cross validation approach, first using all the spectral bands of each sensor, and subsequently
after removing first the SWIR bands, and thereafter the red edge band(s) as well. Changes in
the average OA and lowest average UA were used to compare the impact of removing the
spectral bands on the classification accuracies. Removing the SWIR bands from the WV3
image of Hogsback, makes this classification comparable to that of WV2, giving a glimpse on
the improved capabilities of WV3 with the SWIR bands.

3. Results

3.1. Wetland and terrestrial vegetation are highly separable in the Hogsback and
Tevredenpan study areas

Wetland and terrestrial vegetation were found to be highly separable, with the average OAs
91-99% and the individual user's accuracies 88—99% for both sensors and study areas (Table
4). The S2A classification scenarios showed a 0—4.7% difference in the average OAs reported
for Hogsback and 0—0.8% difference for Tevredenpan, while the average OA achieved by
WV3 for the two study areas was 0-7.1% and 0-1.4%, respectively. For the Sentinel-2 and
WV3 sensors, the lowest average user's accuracies between the comparable classification
scenarios differed by < 4.7% and <7.4% for Hogsback, respectively, and <4.6% and <7.7% for
Tevredenpan, respectively.



Objective Mo, of RDIs Software Mo. of Analysis Reporting level
(and classes) scenarios
(i) T T Separability of s
g s T ol LL-E b o I
terrestrial vegetation
: ﬁp:rﬂlltfﬁi watl.mdm
vegetation classes from Wetland

i) —1 other terrestrial and vegetation

i land cover classes communities
i R Studie ModelMap

Hogsback n=384 (13) }» using RF (100cv) —-Iinrﬂ that can be

| Fewredenpan a=520 (13] | || g sdjust for stant | — Assess changes in ERE—
using Olofsson et al. accuracy when ancillary future
fii) (2013, 2014) gubdelines data is used monitoring
Changes in accuracy of
palustrine and

{iv) | termrestrialvegetation Value of the
| Hogsback n=334 (11} | | -I Weka (RF 100cv) |- "o Five L— | classes when excluding " Le red-edge and
Tevredenpan n=465 [11) the red-edge and SWIR SWIR bands

bands

Fig. 3. Flow diagram showing the relationship between the four objectives of the study, the number of regions of interest (ROIs), the number of classes, the software and
classification scenarios used for the analysis, the type of analysis and the intended level of reporting. cv = cross validation; RF = random forest algorithm; SDG = Sustainable
Development Goal; SWIR = shortwave infrared. Objectives and related processes are color coded according to their associated reporting level. The five classification
scenarios include (a) bands; (b) bands and elevation data; (c) bands and spectral indices; (d) bands and above-ground biomass (AGB); and (e) bands with elevation, spectral
indices and AGB data.



Table 4. Variances in the average overall and lowest user's accuracies (OA, UA) of the classification scenarios that distinguish between wetland and terrestrial vegetation
for the Tevredenpan and Hogsback study areas. Figures in bold indicate the optimal modelling scenario where the average OA and lowest UA were maximized for a sensor
and study area. Classification scenario abbreviations: AGB - Above-ground biomass. Band ranges: from the VNIR (visible to near infrared) to the SWIR (shortwave infrared).

Hogzhack Tevredenpan
524 (VNIR-SWIR) WV3 (VNIB-SWIR) 524 (VNIE-SWIR) WV3 (VNIR)
Number of samples: Palustrinen ~ 150; Palustrinen  150; Palustinen 310; Terrestrialn 55 Palustrinen - 310; Terrestrialn - 55

Terrestrial n — 607, Terrestrial n — 60°.
Orverall accuracy (34)

Bands= 9l1.0 91.9 o3.7 Q5.6
Bands & elevation Q3.3 93.3 o4.5 939
Bands & indices Q3.8 Q8.6 3.7 939
Bands & AGB o1 Q4.8 3.7 933
Bandz, elevation & indices 93.7 20.0 o4.0 96.7
Bands, elevation, AGE & indices Q3.2 Q8.6 4.0 964
Lowest user's accuracy (34)

Bands Q0.2 91.3 881 552
Bands & elevation Q2.5 Q2.0 o027 90.0
Bandz & indices 93.1 93.0 20.0 91.7
Bands & AGB Q0.7 Q3.7 881 B5.0
Bandz, elevation & indices 04.0 03.7 o0.2 93.7
Bands, elevation, AGE & indices Q4.3 Q8.0 0.2 Q3.7

2Includes the Eragrostis-Themeda-Andropogon spp. or ‘ET’ class and the Mountain Slopes class.



Including ancillary data (elevation, spectral indices, and AGB) increased the average OA by
up to 5% for S2A and 7% for WV3 in the Hogsback study area. For Tevredenpan, however,
the inclusion of these ancillary datasets improved the OA by 1% for S2A and 1.4% for WV3.
The lowest average user's accuracies showed increases similar to those of the average OA
for Hogsback when ancillary data were included in the classification scenarios (5% and 7%
for S2A and WV3, respectively), while increases of 5% for S2A and 8% for WV3 were
observed for Tevredenpan.

3.2. Separability of wetland vegetation communities for Hogsback and Tevredenpan and
contribution of ancillary data to classification

In general, the spectra of the vegetation classes, consisting of a mixture of vegetation
communities, monodominant species, and plant functional types, proved to be highly
separable (Table 5). For both sensors, the average OA was between 64% and 69% for both
study areas. For WV3, the average OA improved by 2% compared to S2A for the bands-only
classification scenario for Hogsback, however, showed a 10% decrease in average OA
compared to the band-only classification result of S2A for Tevredenpan, owing to the lack of
SWIR bands for this area.

When considering the use of ancillary data (elevation, spectral indices, and AGB), the
average OA improved by 11% for S2A and 15% for WV3 in the Hogsback study area and by
4% for S2A and 10% for WV3 in Tevredenpan when all ancillary data were included in the
classification scenarios (Table 5). The lowest average individual user's accuracy also
improved for all sensors and study areas when ancillary data was used in addition to the
bands in the classification scenarios, with an improvement of up to 16.6% for S2A and 7.1%
for WV3 in Hogsback, and up to 4% for S2A and 8% for WV3 in Tevredenpan. The optimal
classification scenario for all sensors and study areas was where the bands and all ancillary
data were used, except for Tevredenpan in the S2A classification, where the use of the
bands-and-elevation and bands-with-all-ancillary-data scenarios both attained an average
adjusted OA of 78.6%, but the lowest average UA was maximized at 56% in the bands-and-
elevation scenario, compared to UA = 52% in the bands-with-all-ancillary-data scenario
(bold figures, Table 5). Using all ancillary data with the spectral bands also reduced the
number of classes with >10% of class confusion, compared to using the spectral bands only
(Table 5; Supplementary material VI).

In Hogsback, the vegetation classes predicted from S2A that showed the highest percentage
of overlap were Ficinia spp. (FS), Merxmuellera macowanii (MM), sedge-dominant class (SE)
and terrestrial vegetation community classes (Supplementary material VI; Table VI.1), while
Carex spp. (CA) showed an overlap with crops (CR). The sedge-dominant class showed the
lowest average adjusted UA and PA of 53.3%. The percentage of overlap and number of
spectrally confused classes are slightly reduced when using the WV3 optimal classification
scenario (Supplementary material VI; Table VI.2). The lowest average adjusted UA was for
the Rubus spp. (RS), attaining 50%, while the lowest average adjusted PA was 61% for Ficinia
spp. For Tevredenpan in the S2A optical classification scenario, a spectral overlap of >10%
was observed for the Arundinella nepalensis (AR), Aristida spp. (AS), grass-sedge (GS),
sedge-dominant (SE) and wet-grass (WG) communities, with the sedge-dominant class
attaining the lowest average adjusted UA of 56% and PA of 42% (Supplementary material VI;



Table 5. Variances in the adjusted average overall and lowest user's accuracies (OA, UA) of the test data sets from the Hogsback and Tevredenpan study areas using
Sentinel-2A (S2A) and WorldView-3 (WV3) images for detailed vegetation community classes and other cover classes. The average accuracy was achieved using a 100-fold
cross-validation approach, with values adjusted for surface area predicted, as per the best practice guideline of Olofsson et al. (2013, 2014). Values in bold indicate the
optimal classification scenario where both the adjusted average OA and lowest UA are both maximized. Classification scenario abbreviations: AGB - Above-ground biomass.
Band ranges: VNIR - visible to near infrared, SWIR - shortwave infrared. Abbreviations for individual classes under the UAs are: BA = Bare soil; AN = Arundinella nepalensis;
CA = Carex spp.; FS = Ficinia spp.; GS = Grass-sedge communities, MM Merxmuellera macowanii; PA = Phragmites australis; RS = Invasive tree species (woody); and

SE = sedge-dominant communities (see Supplementary material IV, Tables IV.1 and IV.2 for the full list of communities used.

Study area: Hogzback Tevredenpan

Sensor: 524 (VNIR-SWIER) WV3 (VNIR-SWIR) 524 (VNIR-SWIE) WWV3 (VNIR)

Number of samples (and Palustrine n -~ 150 [5); Palustrine n - 150 (5) Palustrine n -~ 310 (8); Palustrine n -~ 310 (8);
claszes) per broad Lecustrine n = 30 (1); Other Lacustrine n = 30 (1]; Other Lecustrine n = 30 (1); Other Lacustrine n = 30 (1]; Other
categories: n =144 (3); =144 (3); n =125 (3); n=125 (3);

Terrestrial n — 60 (2) Terrestrial n — 60 (2) Terrestrial m — 55 (1) Terrestrial n — 55 (1)

Owerall accuraey (%4)

Bands 61.0 G55 742 64.1

Bands & clevation 74.0 76.0 78.6 71.5

Bands & indices 703 7581 627 63.2

Band= & AGB 63.6 76.0 73.8 GE.0

Bandz, elevation & indiees 775 0.3 772 719

Bands, elevation, AGB & 78.2 83.3 754 73.8
indices

Individual user's aceuracy in %

Bands 36.7 (SE) 42.9 (RS) 52.0 (AN) 40.0 (GS)

Bands & clevation 46.7 (SE) 46.7 (ES) 56.0 (AN) 48.0 (AN)

Bands & indices 36.7 (F5) 46.7 (FS) 36.0 (AN) 36.0 (AN}

Bands & AGB 30.0 (SE) 35.7 (RS) 36.0 (AN) 46.0 (GS)

Bands, elevation & indicez  53.3 (FS, 5E) 43.3 (F5) 56.0 (AN) 44.0 (AN}

Bands, elevation, AGB & 53.3 (SE) 50.0 (RS) 52.0 (AN) 48.0 (AN)
indices

Individual producer’s aceuracy in %

Bands 32.1 (FS) 45.2 (MM) 45.8 (AN) 30.4 (AR)

Bands & clevation 35.4 (F5) 50.5 (BS) 41.9 (SE) 45.1 (AR)

Bands & indices 33.1 (PA) 52.2 (MM) 20.3 (SE) 24.4 (CA)

Bands & AGB 33.0 (SE) 55.6 (F5) 37.8 (BA) 28.6 (AR)

Bands, elevation & indices  45.4 (SE) 58.0 (FS) 24.4 (SE) 30.7 (AR)

Bands, elevation, AGB & 47.7 (F5) 61.2 (FS) 20.2 (SE) 50.4 (SE)
indices

Number of comparable pairs showing confusion > 10% of the total number of reference ROIs

Bands 14 13 6 19

Bands & elevation =] g 6 11

Bandz & indices 11 7 16 18

Bands & AGB 10 G G 13

Bandz, elevation & indiees 7 5 5 =]

Bands, zlevation, AGB & 6 5 6 10

indices




Table VI.3). The number of spectral classes, showing an overlap of >10%, increased from the
S2A optimal classification compared to the WV3 optimal classification, which can be
attributed to the limited number of spectral bands available (Supplementary material VI;
Table VI.4). The wet-grass (WG) class showed the highest number of overlaps with other
classes, although the A. nepalensis (AR) class attained the lowest average adjusted UA of
48% while the sedge-dominated class (SE) had the lowest PA of 50%.

The resultant maps for Hogsback are shown in Fig. 4 and for Tevredenpan in Fig. 5. For the
Hogsback study area, the extensive reed bed along the Klipplaatsriver (Phr. australis or PA)
is now clearly visible and an improvement in the land cover classes (Fig. 4 compared to Fig.
2A). The S2A map for Hogsback shows a more extensive cover and possibly an
overestimation of Ficinia spp. and sedge-dominant classes in seeps and valley-bottom
wetlands in the south, resulting from low accuracies (Fig. 4A). The areal extent of these
classes is reduced in the WV3 map for Hogsback (Fig. 4B). Similar to the Hogsback study
area, the areal extent of Phr. australis (PA) are clearly discernible in the large depressional
wetland called ‘Tevredenpan’ in the west of the study area, and Kleinpan in the south-east
of it, and an improvement in the land cover map for the area (Fig. 5 compared to Fig. 1F). It
was interesting to observe how extensive wet grasses are in the study area, dominating the
east-west valley-bottom wetland in the northern part of the study area, while the valley-
bottom wetland running eastward in the southern part, is dominated by Carex spp. These
classes appear to be more extensive on the S2A map (Fig. 5A) compared to the WV3 map
(Fig. 5B). The WV3 map also shows a large amount of salt-and-pepper effect, resulting from
the pixel-based approach with a 1.24-m spatial resolution.

3.3. Contribution of the red-edge and SWIR bands to the separability of vegetation classes

Excluding the SWIR bands in the classification of vegetation, result in a decrease of 0-2.6%
in the OA for the Sentinel-2A sensor for the two study areas (Table 6). Omitting the SWIR
bands from the WV3 classification in Hogsback, decreased the OA by 4.5%. When both the
SWIR and red-edge bands are omitted from the S2A classification of both study areas, the
OAs decrease by 4.8-7.3%, while for the WV3 classification of Hogsback, the decrease in OA
was 1.5%. When the red-edge band is omitted from the WV3 VNIR classification in
Tevredenpan, the OA increases by 5.3%. Interestingly, the lowest average UAs for Hogsback
was attained when the SWIR and/or red-edge bands were omitted from S2A and WV3, while
the use of all spectral bands of S2A maximized the lowest average UA to 60% for the S2A
sensor.
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Fig. 4. The predicted extent of wetland vegetation communities and other classes for the Hogsback study area was derived from (A) the Sentinel-2 bands and ancillary data;
and (B) the WorldView-3 bands-and-all-ancillary data. BA = Bare soil; CA = Carex spp.; CR = cropland; ET = Eragrostis spp. and Themeda spp.; FS = Ficinia spp.; MM =

Merxmuellera macowanii; MS = mountain slope; OW = open water; PA = Phragmites australis; PL = plantations; PLF = plantations felled; RS = Rubus spp.; SE = Sedge
dominant.
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Fig. 5. The predicted extent of wetland vegetation communities and other classes for the Tevredenpan study area derived from (A) the Sentinel-2 bands and elevation data;
and (B) the WorldView-3 bands and ancillary data. Abbreviations: AN = Arundinella nepalensis; AR = Aristida spp.; BA = bare soil; CA = Carex spp.; CR = cropland;

ET = Eragrostis spp. and Themeda spp.; GS = grass-sedge communities; IS = invasive species; JE = Juncus effusus; OW = open water; PA = Phragmites australis; SE = Sedge
dominant; WG = Wet-grass.



Table 6. Average accuracies resulting from using all spectral bands of the sensors in the 100-fold cross-validation of vegetation classes (no bare soil or open water) for the
Hogsback and Tevredenpan study areas. Abbreviations: S2A = Sentinel-2A; WV3 = WorldView-3.

Study area:

Hogsback

Tevredenpan

Senzor:

524, (VNIR-SWIR)

WV3 (VNIR-SWIR)

524 (VNIR-SWIR)

W3 (VNIE)

MNumber of samplez (and claszes)
per broad categories:

All zpectral bandz

Excluding the SWIR bands
Excluding SWIR and red-edge bands
Individual user's accuracy (34)
All zpectral bandz

Excluding the SWIR bands
Excluding SWIR and red-edge bands

Palustrine n — 150 (3);
Other r - 124 (4];
Tearrestrial n = 60 (2)

65.3
63.3
6035

286
35.7
33.3

Palustrine n — 150 (3];
Othern - 124 (4);
Tetrestrial n = 60 (2)

70.7
66.2
69.2

50.0
44.0
50.0

Palustrine n — 310 (8]);
Other n -~ 100 (2);
Terrestrial n = 55 (1)

73.5
719
58.2

60.0
526
43.8

Palustrine n — 310 (8);
Othern - 100 (2);
Terrestrial n = 35 (1)

MAS
60.9
66.2

MAS
40.4
36.0

2Not afforded for this project.



4. Discussion

4.1. SDG 6.6.1a reporting: palustrine wetlands are highly separable using S2A and WV3 for
two study areas in the grassland biome of South Africa

The wetland vegetation spectra extracted from the S2 images for the two +8000 ha-extent
study areas in the Grassland Biome of South Africa were highly separable (maximum

OA > 95% accuracy for the two sensors and study areas) from terrestrial vegetation.
Comparable results in the separability of palustrine wetlands and terrestrial were achieved
(OA > 82%) in the grasslands of Ethiopia, using Landsat and radar (ALOS PALSAR L-band
backscatter) data, in single and multiple seasons (Dubeau et al., 2017). Palustrine wetlands
are therefore highly separable from terrestrial grassland, and a number of sensors (Sentinel-
2 and WV3 in our study, or Landsat) can be used to map and reporting to the areal extent,
and potentially changes in the areal extent of palustrine wetlands to SDG 6.6.1a.

At the level of separation of palustrine wetlands from terrestrial grasslands, the WV3
classifications showed a marginal improvement compared to the S2 classification for both
study areas by 2.2-3.3% in the average OA, while the accuracies of individual classes with
the lowest average UA increased by 3—3.8%. Inclusion of ancillary data improved the
average OA by 0.8-7.1% for both sensors and study areas, while the accuracies of individual
classes with the lowest average UA increased by 4.6—7.5%. Improvements in the separability
of wetland and terrestrial vegetation were also observed through the inclusion of elevation
and spectral indices as ancillary data for the Ethiopian study (Dubeau et al., 2017).

4.2. Palustrine wetland subtypes could be mapped with both S2A and WV3

Both the S2A and WV3 classifications showed capabilities in separating vegetation classes
from each other and from other land cover classes, with the average adjusted OAs of the
various classification scenarios ranging from 61% to 83%. In Hogsback we managed to
separate five palustrine wetland classes from terrestrial and other land cover classes
(totaling 13 classes), while in Tevredenpan eight palustrine wetland classes were mapped.
When the sensor results are compared, WV3 with the VNIR to SWIR bands available for
Hogsback had an average adjusted OA of 83.3% for the optimal classification, which is 5.1%
higher than the OA achieved through the S2A optimal classification (OA = 78.2%). In
contrast, for Tevredenpan, the optimal S2A classification was 78.6%, nearly 5% higher than
the optimal classification achieved with WV3's VNIR bands. When the individual user's
accuracies are considered between the sensors across the two study areas, the optimal
Sentinel-2 classifications resulted in higher UAs for individual classes with the lowest
average adjusted UA, by 3—8%. Classes that are generally grass and sedge-dominant,
showed the highest degree of overlap in all classification scenarios, sensors, and study
areas. Our results suggest that wetland vegetation communities are site specific and differ
between catchments of the Grassland Biome of South Africa. Reporting changes in the
species composition as an essential biodiversity variable for freshwater ecosystems (Turak
et al., 2017) would require fine-scale monitoring. These initial classes proposed for our study
areas, should be further assessed in a multi-temporal analysis change detection to
determine suitability of reporting to targets for the post-2020 Global Biodiversity
Framework (CBD, 2021).



Several other studies showed a high level of overlap or confusion between graminoid and
sedge wetland vegetation, or otherwise also called ‘marshland’. In Poland, the individual
producer's and user's accuracies were 76-100% and 57—-100% respectively, using WV2
images in a decision-tree classification of eight vegetation categories of which five were
palustrine wetlands (Bochenek et al., 2013). In Ethiopia, grass and sedge wetland categories
were found to be poorly separable, even when multiple seasons and additional indices were
used to improve Landsat and the ALOS PALSAR L-band sensor classifications (Dubeau et al.,
2017). The Ethiopian study used Landsat in the classification of 12 classes, and the lowest
individual user's accuracies ranged from 72 to 95%, with the grass-marsh class achieving the
lowest and highest percentage of UA under different classification models (Dubeau et al.,
2017). A study in France also found spectral confusion between wetland vegetation
communities, attributed to the presence of species in multiple communities (Rapinel et al.,
2019). Another study in the Dube Delta, assessed the separability of 13 macrophyte classes
using Sentinel-1, -2 and Pleiades data in combination with several indices. The models using
only Sentinel-2 attained an OA > 75%, though a reduction on the OA when indices were
included. A study in the grasslands of Germany, using a UAV, reported individual user's
accuracies ranging from 40% to 65%, with the Calamagrostis, Festuca, Glyceria, and Juncus
species classes showing the lowest accuracies (Beyer et al., 2019). The separability of 18
wetland vegetation communities or ecotypes across 13 predominantly palustrine wetlands
in Ireland attained high OAs (84-87%), yet also showed spectral overlap between some
classes, with individual user's accuracies<50% (Bhatnagar et al., 2020).

Monodominant classes such as the papyrus swamp forest and forested wetlands for the
Ethiopian study, and the open water, Phragmites, Carex, and Typha spp. classes in the Great
Lakes, Danube Delta and German study areas, showed high percentages of individual
producer's and user's accuracies, compared to classes dominated by sedges and grasses
(Bourgeau-Chavez et al., 2015; Dubeau et al., 2017; Beyer et al., 2019; Niculescu et al.,
2020). Mapping and monitoring the increase in clonal and more resilient species such as
Phr. australis and Carex spp. may therefore compare to other narrowly distributed
wetlands, or marsh-like species. These large macrophyte classes would therefore be easy to
map across various palustrine wetlands globally, serving as a third structural category under
the TF1 Palustrine wetlands biome, of the International Union for Conservation of Nature's
(IUCN's) global ecosystem types, supplementing the existing forested and marsh wetlands
proposed (Keith et al., 2020, 2022).

The use of elevation and spectral indices as ancillary data with the spectral bands improved
the OA and the lowest individual accuracies for both sites and sensors by OA = 4.4-17.2%
and UA of 4-16.6%, while also minimizing the percentage confusion between comparable
pairs. The use of ancillary data in the Ethiopian grasslands study also showed an increase in
the OA of 1-4% and 2—8% when multi-seasonal information was used, and an increase of
approximately 2% in the OA when a combination of optical and L-band backscatter images
was used (Dubeau et al., 2017). For the Danube Delta, the inclusion of eight indices from
Sentinel-2 resulted in a reduction of the OA by between 7 and 11%, in comparison to the
Sentinel-2 bands only classification (Niculescu et al., 2020). In the German study, the value
of adding elevation was measured as the most important variable to reduce error, whereas
the inclusion of the blue, green, and red and thermal bands appeared to be less important,



although the effect of removing these variables on accuracies was not assessed (Beyer et al.,
2019).

4.3. Value of the red-edge and SWIR bands for mapping palustrine wetland types

Our study assessed the impact of SWIR bands from Sentinel-2 images on the classification
accuracy of wetland vegetation communities. Omitting the SWIR bands from the
classification of vegetation classes, showed a decrease of 0—2.6% in the average OA for all
study areas, but particularly for the Sentinel-2 classifications. When both the red-edge and
SWIR bands were omitted in the Sentinel-2 classifications, a decrease in the average OA of
4.8-7.3% was observed, while it was only 1.5% lower in the classification of Hogsback using
WV3. A study on the use of the red-edge band of RapidEye images in the classification of
wetland tree species in a subtropical region of South Africa showed that this band increases
the average OA by 2—6% (Van Deventer et al., 2019b). The incorporation of RE and SWIR
bands in current and future sensors will help to continue to discriminate between distinct
vegetation functional types from surrounding environmental elements.

5. Conclusions

This study showed that freely available Sentinel-2 images can effectively be used to separate
wetland and terrestrial vegetation from each other in the Grassland Biome of South Africa,
with an adjusted OAs of >91% in two study areas with Sentinel-2 and WorldView-2 images.
This means that freely available Sentinel-2 images can potentially be used for improved
mapping and reporting of changes in the geographic extent of palustrine wetlands in
grassland biomes for SDG 6.

Furthermore, using both Sentinel-2 and WorldView-3 images, we were able to map between
five and eight wetland vegetation communities or palustrine wetland subtypes. When using
all the spectral bands with ancillary data, WV3 attained the highest average overall and
user's accuracies, while Sentinel-2 with ancillary data were 5% lower in OA compared to the
WV3 optimal classification. Grass and sedge communities remain spectrally confused, and
class accuracies may be improved through grouping of classes to a combined “marshland”
class. Further work is required using multi-temporal images to assess changes in the extent
and possible degradation of these communities over time. The suitable classes for
monitoring, the appropriate scale of monitoring, temporal interval, and reference dates
remains to be assessed across various scales of sensors and the hydrological cycle.

The omission of the red-edge and SWIR bands, in general, resulted in a decrease in the
average overall and user's accuracies, even though these bands were not always identified
as the top priority bands in the variable importance ranks.
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