
A Study of Ant-Based Pheromone Spaces for
Generation Constructive Hyper-Heuristics

Emilio Singh

cnr Lynnwood Road and Roper Street, Pretoria

Nelishia Pillay

cnr Lynnwood Road and Roper Street, Pretoria

Abstract

Research into the applicability of ant-based optimisation techniques for hyper-

heuristics is largely limited. This paper expands upon the existing body of re-

search by presenting a novel ant-based generation constructive hyper-heuristic

and then investigates how different pheromone maps affect its performance.

Previous work has focused on applying ant-based optimisation techniques that

work in the solution space directly to the heuristic space and we hypothesise

that this may be problematic for the hyper-heuristic’s efficacy. The focus of

this analysis is primarily on how the pheromone map, 2D and 3D, of ant-based

methods, can be used for this hyper-heuristic task. 2D pheromone maps are

the predominant pheromone map type used by ant-based algorithms. Thus the

comparison here is between the existing 2D pheromone map and the newly in-

troduced 3D pheromone map. The analysis consists of multiple experiments

with algorithms in the TSP and 1DBPP domain which are assessed in terms of

optimality and generality. The results of the experiment demonstrate key dif-

ferences in performance between the two different pheromone spaces. The 3D

pheromone map showed better generality and optimality in the 1DBPP domain

whereas the 2D pheromone map showed better generality and only marginally

better optimality for the TSP domain. The analysis indicated that the different

1University of Pretoria,Corresponding Author u14006512@tuks.co.za
2University of Pretoria,npillay@cs.up.ac.za

Preprint submitted to Journal of Swarm and Evolutionary Computation July 10, 2023



pheromone maps work most optimally for different types of optimisation prob-

lems. The hybrid method showed some improvements in generality but showed

little improvements in optimality overall.

Keywords: Generation constructive hyper-heuristics, Ant algorithms, Discrete

combinatorial optimization

1. Introduction

Hyper-heuristics as a field concerns itself with providing more general so-

lutions to combinatorial problems. It achieves this through operating in the

heuristic space of problems rather than the solution space [1]. Solutions to

problems are constructed by using heuristics which then solve the underlying

problem. In particular, hyper-heuristics gave rise to generation constructive

hyper-heuristics which is the use of a hyper-heuristic to generate new heuristics

that can create solutions for a given problem [2]. In this way, the task of creat-

ing new heuristics, especially for problems that do not have them, is automated

and may even give rise to heuristics that human creators would never consider.

Until now, generation constructive hyper-heuristics primarily make use of

genetic programming (GP) as the primary search method [3] and when ant-

based methods have been applied, they have been typically applied to selection

hyper-heuristics [4]. In particular, the focus of the use of ant-based methods

has been to use the ant-based technique on the heuristic space in the same way

as the ant-based technique is used in the 2D solution space. The focus of this

research is therefore to more thoroughly investigate the use of the pheromone

space for hyper-heuristics, specifically generation constructive hyper-heuristics,

and how these spaces affect the ability of a hyper-heuristic to perform.

This is achieved through a study of a native 2D pheromone map against a 3D

projected pheromone map alongside an algorithm that hybridises the two spaces

into a single hyper-heuristic as a culmination of the work. This study focuses

on these two types of pheromone spaces because the 2D implementation is the

common representation for ant-based methods with the 3D projection offering

2



a different representation that may provide benefits for the task at hand. The

proposed ant-based hyper-heuristic is therefore called hyper-heuristic ant colony

optimisation (HACO).

Therefore the paper has several major aims concerning its research. These

are:

1. An investigation into using 2D pheromone maps in generation construction

hyper-heuristics for discrete optimisation.

2. An investigation into using 3D pheromone maps in generation construction

hyper-heuristics for discrete optimisation.

3. An investigation into using hybrid pheromone maps, using both 2D and

3D maps, in generation construction hyper-heuristics for discrete optimi-

sation.

Principally, this research aims to examine the effect that different types of

pheromone maps will have on the performance of an ant-based hyper-heuristic

that uses them in its operation and to test the effect of the hybridisation of

pheromone maps as well.

The rest of the paper is structured as follows. Section 2 provides a back-

ground to concepts pertinent to this research. In section 3 the use and expan-

sion of pheromone spaces are explained. In section 4 the functioning of the

HACO method is presented and explained in detail. The hybridisation of the

two pheromone spaces is discussed in section 5. The experimental methodology

used in this paper is presented in section 6. The results of the research with

relevant discussion are presented in section 7. Finally, the research is concluded

in section 8 along with some suggestions for future work.

2. Background

The purpose of this section is to provide background information on the core

topics relevant to the research that is presented here.

3



2.1. Generation Constructive Hyper-Heuristics

Broadly speaking generation constructive hyper-heuristics concern them-

selves with finding ways to organise problem attributes into a heuristic capable of

solving a given problem I or problems similar to I [2]. In terms of these induced

heuristics, these can either be disposable (generated on the fly for a problem and

discarded as needed) or reusable (generated and used on other problems). The

attributes that make up the space searched by the hyper-heuristic should be as

simple as possible [5]. These attributes form the core of the representation of

any potential generated heuristic and should represent the essential character-

istics of the underlying problem that is being solved. Often they will be derived

from existing heuristics. An arithmetic representation where attributes might

be represented as mathematical operators is one method[6], although rule-based

representations are also possible [7].

Generation constructive hyper-heuristics are a powerful tool in the hyper-

heuristic arsenal for providing general solutions to combinatorial problems. Ex-

isting work has primarily focused on the use of GP for this task but the potential

remains for an ant-based application.

2.2. Ant Colony Optimisation

Ant algorithms are a broad class of algorithms that draw inspiration from

behaviours of real-life ants [8]. Since its inception, ant-based algorithms have

been successfully applied to a variety of problems, most notably combinatorial

and search problems [9].

The heart of most ant algorithms is a cooperative interaction between all

ants in the colony. This is facilitated through an indirect sharing of information

about constructed solutions through a search space common to all ants [9]. As

the colony continues to search the space there is a tendency towards the increase

of pheromone in good areas of the search space which gradually produces better

solutions. As this is a stochastic process, there are no guarantees that the found

solution will be the best, especially in high dimensionality problems. An ant-

4



based algorithm will eventually converge although the speed of convergence is

problem-dependent [10].

Ant algorithms have been applied to several different problem domains like

the travelling salesman problem (TSP) [9], but their application has focused on

directly applying the ant algorithm in the solution space of the problem. The

focus of this research, by contrast, is on the application of ant-algorithms to

search the heuristic space. This develops the field further as the exploration

of the heuristic space by ant algorithms is not well researched, especially for

generation constructive hyper-heuristics.

In terms of hyper-heuristics ant algorithms have been utilised in hyper-

heuristics although their application has focused solely on selection hyper-heuristics

[4]. An early example of the application of ant colonies to hyper-heuristics is

the work of [11]. The authors describe a process by which an ant colony can be

used to make choices about which heuristics to use to construct a solution for a

2D bin packing problem. This early example of a selective constructive hyper-

heuristic demonstrated that ant-based methods can be used for hyper-heuristics

but this has not been sufficiently investigated.

This leaves the potential, then, for applying ant-based techniques to genera-

tion constructive hyper-heuristics, where ant methods can be used to drive the

creation of heuristics that can then be applied to problems in the underlying

solution space.

In particular, existing work within hyper-heuristics has only focused on the

pure application of an ant-based method to a given hyper-heuristic task. A

comparative study of how the pheromone space, the central mechanism of an

ant-based technique, is applied to hyper-heuristic tasks remains to be investi-

gated.

3. Pheromone Spaces

A full explanation of pheromone spaces is provided in the supplementary

material [13]. This section is therefore dedicated to explaining the necessary

5



modifications to the pheromone space that apply in the context of this research

as well as their implications.

3.1. Pheromone Space Projection

As described in the supplementary material [13], moving the ant algorithm

to the heuristic space necessitates (with a 2D pheromone map) a loss of in-

formation. The solution to the loss of information problem is to add another

dimension to this matrix, essentially projecting it into the third dimension. This

is depicted in Figure 1.

Figure 1: 3D Pheromone Map

In this new projection, the third dimension represents points in the heuristic

path being created by the ant and is divided into layers. Each layer represents

a connection between components in the path at that point in the path. So the

first layer represents the first link and so on. In this way, both the connection

between components and their position in the actual path is accounted for as

the ants can differentiate between links taken at different points in the search.

The limit of this third dimension is dependent on the maximum size of the

path. In GP, a maximum tree depth is used to limit the size of the tree. With

HACO, the limit is the number of operators allowed in a single path. Since

the operators grow the path (by necessitating inputs of other components), the

limit to a given path is the number of operators. From this, the size of the third

dimension, sized, is therefore calculated as:

sized = flimit ∗maxArity(f) (1)

where flimit represents the maximum number of operators allowed in a single

path which is an algorithm parameter and maxArity(f) returns the largest arity

value of any of the operators. Arity in this context refers to the number of input

6



arguments to a given operator. For example, the addition operator has an arity

of 2 as it requires two inputs.

3.2. Effect on Searching

An ant algorithm operating with a 2D pheromone map in the heuristic space

should be at a disadvantage in terms of its ability to produce good heuristics.

However, in terms of the search process, this is not so theoretically clear cut.

Specifically, a path generated from a 2D pheromone map can still be used to

deposit pheromone on that same map. The issue is that the map cannot mean-

ingfully differentiate between where a link in the path is and where it should be

deposited on the map. For example, if the link (A,B) appears in a path several

times, a 2D pheromone map cannot differentiate wherein the path this link oc-

curred and thus will accumulate all of the pheromones on a single location on

the 2D map.

Gradually over time, the behaviour that would be expected is for the links in

the better paths to accumulate pheromone in greater quantities over other links

from weaker paths, resulting in a 2D pheromone map that contains information

about the best components, but not how those components should be ordered

to produce a heuristic.

To clarify this situation, consider the case of an ant that has to construct a

path on an example 2D pheromone map after some pheromone has been already

deposited.

Figure 2: 2D Pheromone Map

The pheromone map in Figure 2 is represented with the pheromone concen-

trations given by a colour gradient.

In Figure 2, the ant has no idea what order it should visit the links repre-

sented by the pheromone deposited on the map. As ACO-based methods are

7



probabilistic, the ant has a probabilistic chance to visit these links in a variety

of orders, none of which may end up being the original order that produced the

underlying heuristic that was used to deposit the pheromone. If this case is ex-

panded to consider many ants, those ants will perform something approximating

a local search of these best components. The ants will probabilistically combine

these components in such a way that they end up searching these components

for combinations that, ideally improve upon past work. Since the ants cannot

meaningfully record the structure of their search in the 2D map, their behaviour

will always revert to this local searching around the best components.

The 3D pheromone map solves this issue by representing the position of the

link in the ant’s path in the layer of the 3D pheromone map. Each layer relates

to a particular point in the heuristic search for when that amount of pheromone

was applicable and in this way, enables a more precise refinement to occur. The

reason for this, of course, is that the ants have been transplanted from working

in the solution space, for which a 2D map is sufficient, to working in a heuristic

space, where those normal conditions no longer apply. This is not to say that

the 2D map would be theoretically always inferior to the 3D map.

Theoretically, for small enough problems or problems where the degree of

precise heuristic refinement is unnecessary, a 2D pheromone map would enable

the ants to continue to do their local searching until they have found a good

heuristic. If a given problem has complicated feasibility conditions for its solu-

tions, the 2D pheromone map should be at a disadvantage as it can only find

the best heuristic within those feasibility conditions through an extensive search

over time, rather than being able to precisely refine the components as would

be the case for a 3D pheromone map. In that sense, having a 3D pheromone

map allows an ant’s path through the 3D space as a trajectory to represent the

original kind of information as if the ant would have been searching a solution

space instead of a heuristic space.

Despite this, the 3D pheromone map comes with drawbacks of its own.

Adding a dimension will increase the search effort required to find good solutions

because the space of potential searching has been magnified. This has the

8



potential of increasing the overall cost of using the algorithm as compared to

the 2D pheromone map. As is the case with the no free lunch theorem, it would

be the case that each type of pheromone map would have different uses for

hyper-heuristic tasks.

4. Heuristic Ant-Colony Optimisation

This section introduces the HACO algorithm and explains how an ant-based

method is used as the search technique for a generation constructive hyper-

heuristic.

4.1. High-Level Overview

The high-level algorithm of the HACO method is presented in Algorithm 1.

This algorithm is a broad overview of functioning from iteration to iteration.

Individual components and their functioning are detailed in their appropriate

sections.

The logic of Algorithm 1 is essentially the same as a standard ant algorithm.

A population of ants is initially created (with empty paths) between lines 2 and

3 and then over several iterations, they will construct paths, line 9. These paths

are evaluated (with some fitness function (line 11)) and that information is used

to update the shared pheromone map accordingly (lines 16 and 17). At the end

of the algorithm’s execution, the best solution found as well as the best path is

returned. The pheromone map is initialised randomly with small random values

in the range of [0,1] for the 2D and 3D HACO.

The design of the algorithm is primarily determined by considerations of

the interaction between its ant algorithm basis and the adaptations needed to

use the ant algorithm in the heuristic space. Ant algorithms are not typically

employed in the heuristic space and as such, modifications are needed to enable

the algorithm to operate in this new way. Specifically, adaptations are needed in

the path construction and interpretation aspect of the ant algorithm as the path

consists of low-level components in the heuristic space and not in the solution

9



Algorithm 1: High Level Algorithm

Input: nk ant colony, it the max number of iterations, ph a pheromone

map, p the evaporation rate, α the pheromone desirability,

sized the path limit

Result: SB the best solution, PB the best path

1 initialise ph with small random values;

2 foreach a ∈ nk do

3 initialise a

4 i=0;

5 best = inf;

6 for i < it do

7 foreach a ∈ nk do

8 Ant a constructs a path

9 foreach ant a in nk do

10 fitness[a]=evaluate(a);

11 if fitness[a] < best then

12 best = fitness[a];

13 SB=a.getSolution();

14 PB=a.getPath();

15 evaporate ph using Equation 2;

16 update ph using Equation 3;

17 update p using Equation 4 and update α using Equation 5;

18 i = i+ 1;

space. These adaptations also have to take into account the projection of a

2D pheromone map into a third dimension as well and how that affects ant

navigation.

This high-level overview also represents the most basic methodology of the

operation of an ant algorithm in terms of detailing broadly how the ant algo-

10



rithm will function within the context of the adaptation for use by a generation

constructive hyper-heuristic.

4.2. Pheromone Updates and Evaporation

Once the ants have constructed their path, two updates need to occur in

Algorithm 1, lines 16 and 17. Specifically applying the evaporation effect to the

pheromone map and then updating the pheromone map with the new values

based on the outcome of the fitness evaluations.

The evaporation is based on the following equation:

phxyz = (1− p) ∗ (phxyz) (2)

where x, y refers to the components x and y on layer z. The evaporation process

for a 2D pheromone map is identical save for the omission of the z layer.

The update process is the same as the standard Ant System (AS) [12]. The

only modification is to the specific pheromone update value, ∆τkxyz. This is

given by:

∆τkxyz =

 1
f(xk)∗len(xk)

if link (x,y,z) ∈ path xk

0 if link (x,y,z) ̸∈ path xk

 (3)

The update procedure for a 2D pheromone map is the same except that the z

layer is omitted.

This modification takes the length of the path into account alongside the

fitness associated with that path. This gives weight to both parts of the solution,

with the incentive being to minimise both the solution quality and the size of

the path associated with that fitness.

4.3. Decay Function

There are two control variables (p and α) used in Algorithm 1. The former

variable is used to control the rate of evaporation during the execution of the

algorithm. The latter is used to weigh the desirability of the pheromone value

when choosing nodes. During the execution of the algorithm, these variables

11



will be modified through the use of a linear change equation that updates these

values after every iteration t. These are as follows:

pt = (pinit − pfinal) ∗
it− t

it
+ pfinal (4)

where pinit and pfinal refer to the initial and final value of p respectively and t

refers to the current iteration and it refers to the maximum number of iterations.

αt = (αinit − αfinal) ∗
it− t

it
+ αfinal (5)

where αinit and αfinal refer to the initial and final value of α respectively.

4.4. Path Construction

As ants traverse through the component space they will gradually add nodes

to their path. This path has to be converted into a format that can then be

interpreted as a heuristic. This process is detailed in the provided supplementary

material [13].

In generation constructive hyper-heuristics the typical usage of the con-

structed heuristic is as a control function. Specifically, the heuristic is used

to determine some desirability score for parts of a solution during the solution

construction process and the solution is built around those calculated scores.

The process starts with a blank path and heuristic, P and S respectively,

and starts by adding an operator node to the path, either from the best path

or randomly chosen from the operator set. This choice enables the path con-

struction process to initially make use of the randomly chosen nodes that will

help facilitate exploration before gradually moving over to making use of the

best path’s initial node to guide the search and rely more on the exploitation of

prior information.

From that point, it will increase currF , the current number of operators for

a given path. The process for path construction will terminate when currF is

equal to the limit, pl. The path limit, pl principally is based on the number of

operators allowed in a heuristic. As only operators add additional complexity,

12



by needing inputs to their functions, this is the most important thing that

determines how large a heuristic can grow.

The nature of the algorithm is such that the heuristic returned represents

a complete control function and no repair operation will be needed to remedy

structural errors. The algorithm then adds components based on the arity of the

first operator. This process will then defer to the compute function to convert

a given node into a heuristic component that builds the solution over time.

Finally, the last character is removed from the completed heuristic as this last

character will be a terminating character like the semicolon.

4.4.1. Heuristic Conversion Process

The underlying ant system traverses through the component space by build-

ing a path. However, the path itself requires structuring to be interpreted as

a heuristic. This is facilitated by Algorithm 2. This algorithm is a recursive

process whose initial function is set up by the path construction process.

The function revolves around the expression that is passed to it. If the

expression is in the domain attribute set, it is returned, lines 1–2, with a comma

to separate it in the heuristic. Otherwise, the expression represents a function

that necessitates choosing more nodes based on the arity of the function.

This conversion process happens as nodes are added to the ant’s path. So

as the path is added to, its corresponding heuristic is assembled and structured

to be interpretable as a control function. Importantly, domain attribute ex-

pressions are delimited with commas whereas operator expressions, which can

include operators and domain attributes, are delimited with the vertical bars.

The heuristic itself is represented as a string expression that represents the com-

bination of domain attributes and operators put into a structured format. Some

examples of these expressions are presented below.

The compute function, Algorithm 2, does the conversion of the path node

into the string heuristic representation. The process is largely the same as the

path construction process but with the addition of the return statement, line

12, which returns either the domain attribute, which does not enable additional

13



A,

-:A,B

+:{-:A,C}|{-:A,B}

Figure 3: Examples of Expressions

Algorithm 2: Compute Recursive Function

Input: a ant, exp a expression representing a component, v a set of

variables about the problem state, currF the current number of

operators in the path

Result: res a heuristic component

1 if exp ∈ domainAttSet then

2 return exp+,;

3 else

4 res = {+exp+ :;

5 art = getArity(exp);

6 for i < art do

7 new node=choose a node using Algorithm 3;

8 P+ = newnode;

9 res+ = compute(ant, new node, P, a.currF );

10 remove the last character from res;

11 res+ =}|;

12 return res;

additions to the path, or an operator. An operator requires inputs based on its

arity value and these inputs necessitate adding new components to the path.

Consider a path represented below:

+ -> A -> * -> A -> B

which would then be converted into the following heuristic:

[+:A,{*:A,B}]

14



which would then be interpreted as the equation:

A+(A*B)

This construction process follows a depth-wise process, with a node being fully

expanded (in terms of the recursive process) before adding the next choice in

the function inputs.

4.5. Node Selection

Algorithm 3 describes the process of choosing nodes. This process is applied

whenever an ant needs to decide which node to add to its path through the path

construction process. The primary mechanism of node selection is based on the

roulette wheel selection via a stochastic acceptance process [14, 15]. In terms of

the calculation, there are two factors in choosing a node: heuristic desirability,

h, and pheromone concentration, ph.

The process calculates the amount of pheromone based on the node i moving

to node j on the current layer l. This will take place from lines 11–13. Once the

values are calculated for choosing the next node, the process of selection will take

place, lines 16—24. The node with the highest desirability has a proportionally

higher chance of selection. For a 2D pheromone map, the process is identical

except that line 12 would omit the layer index dimension.

The desirability heuristic, h, is simply:

h(x, path) =
1

count(x, path)
(6)

where x is the node being considered to add to the path and path is the existing

path of the ant. The count function returns the number of instances of x in the

current path. Hence this desirability heuristic is one of novelty; it will always

bias toward the least represented nodes in the path being constructed.

4.6. Path Interpretation

In terms of path interpretation, the process functions in reverse to the con-

struction process. The heuristic will be interpreted recursively from the outer-

most operator element to the innermost nested element. The interpretation of

15



Algorithm 3: Node Selection Process

Input: a ant

Result: choice the selected node to add into the current path for ant a

1 set = ∅;

2 if a.currF < limit then

3 set = domainAttSet+ operatorSet;

4 else

5 set = domainAttSet;

6 nind=indexOf(curr node of a.path);

7 lind=a.path.size()-1;

8 tmp[] = [set.size()];

9 phs[] = [set.size()];

10 sumprob = 0;

11 for j < set.size() do

12 tmp[i] = α ∗ ph[nind][j][lind] + (1− α) ∗ h(nodej , a.path);

13 sumprob+ = tmp[j];

14 for i < set.size() do

15 pks[i] = tmp[i]
sumprob

;

16 ind = 0;

17 sum = pks[0];

18 r = U(0, 1);

19 while sum < r do

20 ind = ind+ 1;

21 sum = sum+ pks[ind];

22 choice = set[ind];

23 if choice ∈ operatorSet then

24 a.currF+ = 1;

16



the heuristic function converts the heuristic into an equation where the domain

attributes are replaced with their corresponding values where required and then

processed as their inputs to the operator inputs which then returns the final

value to be used in the solution construction process.

5. Hybridising the Pheromone Spaces

With the assumption that the different types of pheromone maps will have

different advantages and disadvantages, it then follows that a hyper-heuristic

technique that hybridises the use of two types of pheromone maps will result in

an improved algorithm that would be more broadly applicable than individual

algorithms with either pheromone map.

In some sense, the task of hybridisation is similar to the effect of an ensemble

strategy [16]. In particular, an ensemble relies on multiple algorithms to facil-

itate a collective learning process. In this case, the different pheromone maps

share information but do not run concurrently. Rather they simply share the

information without using a consensus strategy.

Hence the development of a hybrid technique called heuristic ant-colony

optimisation hybrid (HACOH). As the hybrid make use of both 2D and 3D

pheromone maps, there is no need to specify the type of pheromone map when

referring to the algorithm.

5.1. Hybridisation

The hybridisation is achieved through the use of two separate ants, with 2D

and 3D pheromone maps respectively. A list is used to decide, during a run,

when to execute an iteration with which type of ant (and therefore using which

type of pheromone map). The size of the list is equal to the number of iterations

allowed in a run, where each item is either a 2 or 3, indicating whether to do

an iteration with the 2D pheromone map or the 3D pheromone map.

An example of a small list, for five iterations, is given below:

<2,2,2,3,3>

17



In the example, the first three iterations of the run are performed with the 2D

pheromone map, and the remaining two are done with the 3D iteration map.

After every iteration, regardless of the pheromone type, the best path found

by the ant which finished its iteration is used to deposit pheromone values in

the corresponding pheromone map of the other ant. In this way, the two ants

share information about the results of their searches in their respective spaces

with each type of ant contributing to an overall search of the entire space. The

size of the structure is given as the number of iterations allowed for a given run

of the hybrid algorithm. This would be equivalent to the number of iterations

for the non-hybrid algorithms.

5.2. List Optimisation

Given that the list can be arranged in many combinations, some kind of

optimisation is needed to determine the optimal configuration of 2D and 3D

iterations to produce the best list for a given problem. To that end, an iterated

local search (ILS) algorithm is employed on top of the heuristic optimisation.

In this way, there is a meta-optimisation process whose output is a solver (rep-

resented by the list) for generating constructive heuristics for a given problem.

This methodology is given in Figure 4.

Figure 4: Model of Hybridisation

In the model, the fitness information from the problem is passed upwards to

every precursor layer, enabling optimisations that drive further improvements

in the fitness. The development of the appropriate list for hybridising the use of

18



two pheromone spaces is therefore a meta-optimisation task, to the underlying

hyper-heuristic task.

5.3. Optimisation Strategy

The algorithm for the ILS optimisation strategy is provided in the supple-

mentary material [13]. In the algorithm, a list is initialised through random

generation, line 1. It is then evaluated by the hybrid ant system. This evalua-

tion consists of using the specified list in a run of the hybrid ant system. The

fitness at the end of the run is taken as the fitness of the list. The moveAccept

function is used to update the prior fitness value, priorF it and the prior list,

tmpP , before starting the iteration process at line 6. The algorithm will perform

several specified iterations, returning the best list as the solver. A memory of

the generated lists is used to prevent reusing previously generated lists.

5.3.1. Perturbative Function

The moveAccept function is used to modify the existing list according to

a perturbation rule that was created for this application. The algorithm is

provided in the supplementary material [13].

The function returns a unique list not seen in the memory thus far. If the

size of the list is under ten, all of the unique lists could be determined relatively

quickly as the number of possibilities is relatively small (210). In this case,

an additional condition can be applied to end the loop if all possible lists have

already been generated where the new list is chosen randomly from the memory.

The perturbative operator is also provided in the supplementary material [13].

5.3.2. Move Acceptance

A moveAccept function is used to determine whether to update the list and

thus whether or not the “new move”, that is a new list, is accepted in the search.

The full description of this process is detailed in the provided supplementary

material [13].

19



5.4. List Approximation

One of the core issues regarding applying a meta-optimisation layer to an

existing hyper-heuristic algorithm is the high cost of evaluating a given list. The

cost of this evaluation scales with either larger lists. This would take the form

of larger lists that take longer to evaluate.

A solution to this is to develop a smaller list at less computational cost and

then expand that list as needed for larger iterations of the hyper-heuristic. This

is referred to as list approximation. More specifically, a smaller list is generated

by the ILS algorithm and then that list is expanded into a new, larger size that

can be used by the HACOH algorithm without incurring the larger costs of

development.

The approximation technique is one of circular addition. Once the initial

list is generated, elements from it are repeatedly added to the end of the initial

list, starting from the beginning again if the end is reached, until the list of the

right size is created.

For example, consider a list of size five < 2, 2, 3, 3, 2 > that is being expanded

to size thirteen. That new list would look like < 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3 >.

The initial list is repeatedly added to itself, element by element, until the correct

size is reached.

This is not a perfect solution, as the larger the list being approximated, the

less representative the approximation will be of a good list, but this method

does enable large lists to be created within more reasonable boundaries.

6. Experimental Methodology

In this section, the experimental methodology used in this paper is presented.

This will consist of the specific details of the problems, datasets and experiments.

6.1. Problem Domains

There are two problems considered in this paper. A description of the prob-

lem will be presented alongside descriptions of the benchmark data considered

20



for each domain. The purpose of the experiments is to evaluate the HACO

and HACOH algorithms for two different domains. This is not, necessarily, to

improve on the optimal solutions for these domains, especially in the case of the

TSP where several non-heuristic solutions do exist.

6.1.1. 1D Bin Packing Problem

The 1D bin packing problem (1DBPP) concerns itself with the task of pack-

ing n number of items into x number of bins with all bins typically of the same

capacity. There are two benchmark sets used in this paper described in Table

1.

Table 1: Benchmark Datasets for 1DBPP

Benchmark Set Number of Instances Source

Uniform 80 [17]

Hard 10 [18]

All datasets (and instances) considered here are chosen specifically to make

comparisons with the literature [19]. The fitness function is based on the one

presented by [20]. This is presented in Equation 7.

Fitness = 1−

(∑n
i=1(

∑m
j=1 vjxij

C )2

n

)
(7)

where n = number of bins, m =number of items, vj = size of the item j, xij = 1

if piece j is in bin i and 0 otherwise. Finally C = bin capacity.

This function prioritises minimising the wasted space in each bin, favouring

bins that are nearly full or full, and avoiding plateau issues that might arise if

just the number of bins was used as the fitness value. This is an improvement

as any two solutions could use the same number of bins but have differing levels

of fullness with the one minimising wasted space being preferable. Equation 7

provides a convenient way of calculating this.

21



6.1.2. Travelling Salesperson Problem

The TSP is an NP-hard optimisation problem. The problem consists of find-

ing the lowest cost closed tour (cycle) in a graph that starts and ends at a given

node and visits all other cities only once [21]. Twenty-one TSP instances are

taken from the TSPLIB [22]. The instances are described in the supplementary

material [13].

6.2. Problem Components

This section describes the low-level components for each of the different

domains. These are namely operators and domain attributes. The operators

will be described separately as both domains largely share the same operators.

The domain attributes are described in their sections below but for greater

detail, the referenced literature should be referred to.

6.2.1. Operators

The 1DBPP and TSP domains have the +, -, * and / operators in common.

The 1DBPP domain makes use of the absolute value (A) operator in addition

while the TSP domain makes use of the modulus operator (%). All functions

are protected. All of the operators except for (A) have an arity of 2. Arity

refers to the number of inputs required for that function.

6.2.2. Domain Attributes

In terms of the 1DBPP, the domain attributes are taken from [23]. In their

work, they provided three domain attributes which are described below:

� F: returns the sum of the pieces already in the bin.

� C: returns the bin capacity.

� S: returns the size of the current piece.

These are simple domain attributes that reflect the state of the packing process.

The domain attributes for the TSP are taken from [21] and were partially

derived from existing TSP heuristics. They are described in the supplementary

material due to their quantity [13].

22



6.3. Solution Construction Process

Typically a generation constructive hyper-heuristic will evolve a control func-

tion representing a heuristic that guides a construction process as it constructs

a solution for a given problem. This control function calculates a desirability

score used to determine which parts of the solution to add during construction.

For different problems, the desirability score represents different aspects of the

problem, like the desirability to add a given vertex into a current path for ex-

ample. The full details of each of the solution construction methods are detailed

in the provided supplementary material [13].

6.4. Ant Algorithm Parameters

In terms of operational parameters that are used directly in the algorithm,

there are two: α and p. The former determines the pheromone desirability used

in Algorithm 3 and the latter indicates the rate of evaporation used in Equation

2. The scale of the experimental trials means that performing exact parameter

tuning for each domain or benchmark is computationally infeasible. Instead,

both parameters make use of a schedule to modify their values throughout the

execution of the algorithm. The term schedule in this context refers to a formula

that determines a range of possible values for the given parameter based on the

progress of the algorithm’s execution during the run.

The initial value of p is 0.1 and it will be linearly increased to the value of 0.9

using Equation 4. The reason for this is that this achieves an evaporation rate

that promotes the trend of exploration to exploitation the most. Specifically,

when the rate of evaporation is low, the pheromone map will be saturated

with pheromone. As time goes on and the rate of evaporation increases, this

will have a filter effect on the pheromone map, eliminating all but the best

concentrations of pheromone. Thus initially the algorithm will explore the space

before gradually moving towards exploiting it.

The value α runs on a similar schedule using Equation 5. It starts from

0.1 before gradually moving to 0.9. Pheromone desirability is used to weigh the

influence that the novelty heuristic has in the node selection process as compared

23



to pheromone. The desirability of pheromone is α and the desirability of the

heuristic is (1−α). Thus initially the heuristic will be favoured before a gradual

shift to the value of the pheromone.

This is important because the novelty heuristic will bias towards solutions

that are as diverse as possible, leading to greater exploration of the heuristic

search space. As the weight associated with the heuristic declines, the influence

of the pheromone increases. This corresponds to the increased evaporation

rate, meaning increasingly only the better paths are surviving more evaporation,

enabling better exploitation. Thus these two schedules work in concert to deliver

a reasonable parameter set for the algorithm during its execution across all

problem domains.

The schedules employed for these parameters have been chosen because they

facilitate general behavioural trends with regard to the algorithms. The point

of this research is to do comparisons of ant algorithms with different pheromone

maps as they drive hyper-heuristics. Therefore generalised parameter schedules

that work for all the problems are preferable to specific parameter choices that

might yield optimal values for some cases and not others. This configuration

will be used for 2D and 3D HACO algorithms and reflects a parameter tuning

strategy.

6.4.1. Generating New Lists

The parameters listed below will be used for the creation of the initial

lists. As stated, an initial smaller list has to be generated first before it can

be expanded into the approximation of the larger list for other experimenta-

tion. Hence the use of the reduced parameters here. These parameters are nk,

the number of ants, the number of runs, the number of iterations per run, and

the path limit, pl. The value of nk is 10, the number of runs is 30, the number

of iterations (ILS) is 10, the number of iterations (AS) is 30 and the path length

pl is 10.

The number of iterations (ILS) refers to the maximum number of iterations

allowed for the ILS to operate with. Given that operating the hybrid algorithm

24



is significantly more computationally expensive to run than the non-hybrid ver-

sions, a lower number of iterations is required to ensure the algorithm still

executes within a reasonable time, with the given computational resources. The

number of iterations (AS) refers to the number of iterations allowed for the

hybrid algorithm to operate in the heuristic space.

In addition to the reduced parameters, the process here only focuses on a

subset of the full benchmark sets for each problem. For the 1DBPP domain,

fifteen instances were randomly selected, 3 from each instance type (based on

the problem size), to make a subset of the data. For the TSP domain, seven

instances were chosen based on their size. These are bier127, d493, d657, eil51,

fl1577, kroA150, and u724. This gives a moderately sized set of data of various

problem sizes to generate lists from.

The generated lists will then be expanded for each instance in the full bench-

mark set for both problem domains. To introduce additional robustness, each

evaluation of a list will take the average fitness of several runs (three in this

case) to minimise the effect of randomness on the results. That is, each list’s

fitness will be the average of three runs of that list instead of the normal single

run.

6.4.2. Iterated Local Search Parameters

The ILS algorithm has a parameter specific to it: mp. This parameter is the

rate of perturbation and it decides to what degree the perturbation operator can

modify a list from one iteration to the next. For these experiments, the value

of mp will have an initial value of 0.9 with a final value of 0.1. The parameter

will be modified using a decay function like those of Equations 5 and 4.

The reason for this choice is to facilitate a strategy in the ILS that initially

favours producing diverse solutions before transitioning towards intensifying the

search around a single solution. More specifically, with these parameters, the

search process will initially favour generating widely unique lists but over linear

time, it will transition towards favouring making slight modifications to the best

solution found thus far. Hence, the search behaviour should be general enough

25



to provide a good solution for all problems without requiring specific parameter

tuning for each one.

6.5. Experiments

In terms of this paper, there are two principle experiments to be conducted.

The first is to perform experiments with the HACO algorithm. These are exe-

cutions of the HACO algorithm using 2D and 3D pheromone maps respectively

on the TSP and 1DBPP domains. The second experiment involves the same

domains but with the HACOH algorithm instead.

These experiments are conducted to determine the differences between the

different kinds of pheromone maps (2D vs 3D) and to determine if the hybrid

algorithm provides any benefits. The experimental parameters and conditions

are specified in their sections below.

6.5.1. Experimental Parameter Tuning

In terms of the important parameters for Experiment 1, the number of ants

nk and the number of iterations are the most important. The number of runs is

fixed at 30 to provide a large sample of data for statistical testing. To determine

good values for the other two parameters a grid search procedure was used to

test the performance of the 2D HACO algorithm under different configurations

of nk and the number of iterations.

As the purpose of this research is the comparison between HACO algorithms

using different pheromone maps, the HACO algorithms must be tested with the

same experimental conditions for the comparison to be fair. Hence the 2D

HACO algorithm is used for parameter tuning and the chosen parameters will

also be applied to the 3D HACO during the experiments.

More specifically, a 2D HACO algorithm was executed 30 times with different

values for nk and the number of iterations to assess how well the algorithm

performed with these values. As computing resources are not unlimited, the

range of values chosen for both variables is

� nk: [5,10,20,50,100]

26



� Number of iterations: [50,100,200,500,1000]

These values provide a large enough coverage of different experimental con-

figurations without requiring excessive computing resources. As the purpose

of this parameter tuning is to establish good values for the comparison of al-

gorithms, and not merely to produce good values, these ranges are more than

sufficient for this research.

In terms of the important parameters for Experiment 1, the number of ants

nk and the number of iterations are most important. The number of runs is

fixed at 30 to provide a large sample of data for statistical testing. To determine

good values for the other two parameters, a grid search procedure was used to

test the performance of the HACO algorithm under different configurations of

nk and the number of iterations. The path limit variable pl is fixed at 10 as

this value results in heuristics that are not large enough to be unreadable by a

person whilst being large enough to facilitate some degree of complexity.

With these values, a matrix of the different combinations was set up and

the HACO algorithm was run under each different configuration. The average

of the best fitness values over the number of runs was taken to assess each con-

figuration. This tuning was done with the u120 and berlin52 instances from the

1DBPP and TSP benchmark sets respectively. These parameters were chosen

based on their complexity. They represent small enough problems to extensively

parameter tune with whilst being large enough to not be entirely trivial to solve.

This research is not aiming to produce the best possible values for the given

problem domains and as such, it is unnecessary to tune the algorithm for each

different instance. Rather, the point of this testing is to establish a baseline

understanding of how the algorithm performs under different configurations in

the respective domains. These smaller scale tests are meant to provide rough

approximations of the algorithm performance so that larger and more compre-

hensive tests can be performed.

27



6.5.2. Experiment 1: 2D vs 3D Pheromone Map Comparison

Figures 5 and 6 present the result of the parameter tuning process as de-

scribed in Section 6.5.1. Pearson’s Correlation Coefficient [24] is also calculated

for the relationship between fitness and nk and the number of iterations respec-

tively.

Figure 5: Fitness Results of 1DBPP Parameter Tuning Process

Figure 6: Fitness Results of TSP Parameter Tuning Process

Table 2: Correlation Coefficients between Fitness, nk and Number of Iterations

Correlation Coefficient 1DBPP TSP

nk-Fitness -0.279 -0.573

Iterations-Fitness -0.770 -0.595

In terms of the results, Figures 5 and 6 both show strong trends with re-

gards to better fitness values being assessed as the number of iterations and

nk increase. In terms of the correlations, Table 2, there are negative correla-

tions in all comparisons and domains. This indicates that as the experimental

parameters increase, there is a tendency in the fitness to go down.

28



However, for the 1DBPP domain, the correlation between the number of

ants, nk is a weak negative correlation at only -0.27. Whereas the correlation

for the number of iterations is much stronger at -0.76. This would suggest that

more iterations are more important in determining the quality of the fitness

than simply adding more ants. For the TSP domain, the correlations are both

negative but much closer together at around -0.58. This would suggest that

the number of ants and number of iterations are equally important. That these

trends hold for both domains would indicate that there is validity to the nature

of the algorithm’s performance concerning its experimental parameters.

From the results presented above, the parameters listed below will be used for

the experimental comparison between HACO algorithms using the 2D pheromone

and 3D pheromone maps respectively. These parameters are nk, the number of

ants, the number of runs, the number of iterations per run, and the path limit,

pl. The parameters for the first experiment are:

� Number of Runs: 30

� pl: 10

� Number of Iterations: 300

� nk: 10

The first two parameters were chosen for reasons discussed in Section 6.5.1.

The next two parameters’ values were chosen based on a compromise between

computational effort and algorithm performance. Specifically, after the 200 it-

eration mark, the degree of improvement as the number of iterations starts to

increase, decreases rapidly. The choice of 300 iterations is a good compromise

as it still enables better performance than prior values, but is far less computa-

tionally expensive than the larger options.

For the choice of nk, there are some instructive insights from the results.

Firstly, the number of ants is not as important for the 1DBPP domain as the

number of iterations so choosing fewer ants but at a higher number of iterations

would not degrade the performance too much. Secondly, in the TSP domain,

29



the performance of 10 ants is reasonably close to the larger ant values. Hence,

the choice of 10 for nk. This will result in meaningful performance without an

excessive computational burden.

6.5.3. Experiment 2: Hybrid vs Non-Hybrid Comparison

The parameters listed below will be used for the experimental comparison

between HACO and the HACOH algorithm. These parameters are nk, the

number of ants, the number of runs, the number of iterations per run, and the

path limit, pl. The parameters for the first experiment are:

� nk: 10

� Number of Runs: 30

� Number of Iterations: 300

� pl: 10

The parameter values listed here were chosen based on the experimental testing

procedures that were employed in Section 6.5.1. Mirroring the parameter values

in the second test also ensures a fair comparison can be made between the

HACO algorithms used by the HACOH and the HACO algorithms on their

own, allowing for the isolation of the effect of the HACOH algorithm to the

overall hyper-heuristic process.

Using the list approximation method described in section 5.4, the HACOH

algorithm is run under the same conditions as the HACO variants. The lists

are generated based on the process described in section 5.4. The purpose of

this experiment is to therefore test the performance of the hybridisation under

similar conditions to the non-hybrid forms. While not perfect, the approximated

list should be closer in form whilst still allowing the experiments to complete

within a reasonable time.

6.6. Assessment Metrics

In terms of assessment metrics, each problem will be assessed according to

the practices typical of that problem.

30



6.6.1. 1DBPP

The 1DBPP will require a different approach due to the number of instances

involved in the benchmark sets. In particular, the calculation of a statistic called

the Ratio [19]. This formula is provided in the supplementary material[13].

6.6.2. TSP

The TSP assessment will consist of presenting the average performance over

all of the runs. This is formalised by the following equation:

∑nr

i=1 Fr

nr
(8)

In Equation 8, Fr is the fitness after a run of the algorithm and nr is the

number of runs of the algorithm.

6.6.3. SDD

To assess the various algorithms in terms of their generality, a generality

metric, standard deviation of distances or SDD, is employed [25]. It is formu-

lated as:

SDD(H) =

√∑N
i=1(xi − x̄)2

N − 1
(9)

SDD is designed to assess the performance of a hyper-heuristic over several

problem instances N . The lower the value the better the score. This metric

will be useful in understanding the degree to which different pheromone maps

(2D, 3D or hybrid) will be able to generalise across problems and domains. This

is particularly important for the hybrid as a primary function of the hybridi-

sation is to improve the algorithm’s generality by incorporating both kinds of

pheromone maps.

6.6.4. Comparison with Existing Methods

The primary focus of this work is to assess the effect that different pheromone

maps have when used in ant-based hyper-heuristics. To that end, the primary

axis of the analysis will be centred on the comparison of the 2D HACO, 3D

HACO, and HACOH in the respective problem domains. However, it is still

31



important to contextualise the results that are produced within the wider field

of the problem domain.

To that end, existing construction heuristics from within the TSP and 1DBPP

domain will be presented alongside the HACO and HACOH results to contex-

tualise the performance of the algorithms in terms of how well the generated

heuristics can compete against existing good heuristics in the field. Addition-

ally, a comparison GP algorithm from the TSP and 1DBPP domain will be

provided as well to demonstrate the capacity of the HACO and HACOH algo-

rithms against a hyper-heuristic. The goal of this comparison is to contextualise

the performance of the algorithms in their field, and not to do a pure compari-

son.

For the 1DBPP domain, the following heuristics will be used for compari-

son: First Fit (FF), Best Fit (BF), Next Fit (NF), Worst Fit (WF), First Fit

Decreasing (FFD), Best Fit Decreasing (BFD) and Next Fit Decreasing (NFD).

These heuristics were chosen as they are widely used [2]. The comparison GP

for the 1DBPP domain was taken from [23]. Except for the GP (whose results

are taken from literature), the heuristics were implemented for the experiments.

For the TSP part of the experiment, the following heuristics will be used for

comparison: Nearest Neighbour, Nearest Insertion Greedy and Christofides. A

TSP GP is compared as well.

These were taken specifically for comparison from existing recent literature

[26]. It also bears noting that the TSP problem, in particular, has had significant

development [27] as a problem domain and that there are exact methods that

exist that are capable of optimally solving TSP instances. An example of this

would be the Concorde Solver which is a proven and effective exact TSP solver

[28]. As this is the case, the optimal values found by these exact techniques

for each instance will be compared with the results of the HACO and HACOH

algorithms to contextualise the results of the ant-based hyper-heuristics.

32



6.6.5. Statistical Testing

To properly assess the validity of the comparisons between the different ant-

based hyper-heuristic methods, a statistical testing procedure is applied. Firstly

the three algorithms (2D HACO, 3D HACO, and HACOH) will be assessed

using Friedman’s Test [29] to assess if there are meaningful statistical differences

between the different algorithms. Then afterwards a post-hoc analysis will be

conducted using the Mann-Whitney U Test [30]. The tests will be one-tailed

tests conducted at a 0.05 level of significance.

� The Null Hypothesis (H0): µ1 ≥ µ2

� Alternative Hypothesis (H1): µ1 < µ2

In this case, µ1 and µ2 represent the mean values of a sample of output results

from different techniques 1 and 2 respectively. These tests compare the means of

these sets of samples to establish which of the means (and therefore techniques)

has the lower mean and thus the better performance on average.

The standardised effect size will be included alongside the results of the

statistical tests. This metric quantifies the magnitude of the difference between

two techniques’ results in terms of a value in the range of [0,1]. The larger the

effect size, the larger the magnitude of difference between the two techniques.

6.7. Technical Specifications

For this research, a computing cluster provided by the University of Pretoria

was used. The technical specifications of this cluster are 377GB RAM, 56 cores

at 2.40GhX (Intel Xeon CPU E6-2680 v4), and 1TB of Ceph Storage.

7. Results and Discussion

This section presents the results of the experiments. Discussion and interpre-

tation of the results will be provided alongside the results as well. Information

about the fitness values can be found in Section 6.1.

33



7.1. 1DBPP Results

In Table 3 the results of the HACO and HACOH experiments are given.

The comparison methods are also provided for brevity in the table. The best

result is indicated in bold. The heuristics used in this comparison are detailed

in Section 6.6.4.

Table 3: 1DBPP Results by Benchmark

Method
Uniform Hard

Ratio Std Dev Ratio Std Dev

2D HACO 1.0558 0.0180 1.0792 0.0063

3D HACO 1.0253 0.0077 1.0624 0.0088

HACOH 1.0352 0.0104 1.0679 0.0117

First Fit 1.0586 0.0113 1.0606 0.0099

Best Fit 1.0545 0.0108 1.0606 0.0099

Next Fit 1.3117 0.0175 1.1566 0.0117

Worst Fit 1.1477 0.0200 1.0606 0.0099

First Fit Decreasing 1.0129 0.0062 1.0606 0.0099

Best Fit Decreasing 1.0129 0.0062 1.0606 0.0099

Next Fit Decreasing 1.4012 0.0195 1.1566 0.0117

GP [23] 1.0000 0.0003 1.0004 0.0070

Table 3 breaks down the results by the benchmark set for the 1DBPP do-

main. In addition to the ratio value, a standard deviation is given as well to

indicate the degree of variance of each method. In terms of the outcomes, the

best performing method overall is the GP-based method with the best perform-

ing ant-based hyper-heuristic being the 3D HACO for both benchmarks.

7.1.1. Comparison of HACO and HACOH Algorithms

The tables for the statistical testing for the comparison between the 2D

HACO, 3D HACO and the HACOH have been provided in the supplementary

material [13].

34



In terms of the results of the Friedman test, the test finds a statistically sig-

nificant difference between the three algorithms with a small p value and large

χ2 value. This suggests that the different pheromone maps played a signifi-

cant role in affecting the performance of the different ant-based hyper-heuristic

algorithms.

The results of the post-hoc analysis compared the 2D HACO against the

3D HACO and the HACOH against the 2D and 3D HACO respectively. In

terms of the results, the first test results in not rejecting H0. Based on the

large standardised effect size, which quantifies the degree of difference between

the two groups, the 3D HACO is significantly better than the 2D HACO in the

1DBPP domain.

The remaining two tests assess the differences between the HACOH and the

non-hybrid algorithms. H0 is rejected in the comparison with the 2D HACO

and not rejected in the comparison with the 3D HACO. From this, it is apparent

that the HACOH algorithm is better than the 2D HACO for the 1DBPP but

not better than the 3D HACO. The standardised effect sizes are also smaller

than in the first comparison, at 0.53 and 0.4 respectively. The outcome of this

assessment is a clear indication that the 3D HACO is superior to the HACOH

and 2D HACO for this problem domain.

7.1.2. Contextualisation with Existing Methods and Construction Heuristics

While not the primary focus of this work, the comparisons with other existing

methods (construction heuristics and GP) have yielded some interesting insights.

Firstly, the best performing method overall is the GP and this reflects the

prevalence of GP for generation constructive hyper-heuristics, so it having the

best results should not be a surprise.

However, the 3D HACO has admirable results in comparison to the re-

maining construction heuristics. It outperforms five of the seven construction

heuristics in the uniform benchmark by a relatively wide margin (FF, BF, NF,

WF, and NFD). In terms of quantifying the differences between the FFD and

BFD, the standardised effect size is about 0.32 between the 3D HACO and the

35



best performing construction heuristics. This is a magnitude of medium to low

size indicating that the differences do exist in a meaningful sense but that they

are not entirely separated in terms of performance.

7.2. TSP Results

Due to their size, the TSP results tables are provided in the supplemen-

tary material[13]. Tables 7 and 8, in the supplementary material, provide the

results of the HACO and HACOH experiments for the TSP domain with the

comparison results. The average for all of the instances and the corresponding

standard deviation are provided as well. The comparison includes the construc-

tion heuristics as well as a TSP GP method. In terms of these results, the

Christofides heuristic does the best in the most number of instances with the

second-best being the 2D HACO.

7.2.1. Comparison of HACO and HACOH Algorithms

The tables for the statistical testing for the comparison between the 2D

HACO, 3D HACO and the HACOH have been provided in the supplementary

material [13]. The results of the Friedman Test indicate that the differences

between the three groups (2D HACO, 3D HACO, and HACOH) are significant

enough to be statistically meaningful.

The results of the post-hoc analysis compared the 2D HACO against the 3D

HACO and the HACOH against the 2D and 3D HACO respectively. In terms

of the results, the comparison between the 2D and 3D HACO resulted in not

rejecting H0. Given that the standardised effect size was very small, 0.0097,

this indicates that the two groups (2D and 3D HACO) are very close together

in performance and more likely to be equal.

The implication of not rejecting H0 for the comparisons between the 2D

HACO, 3D HACO, and HACOH are different, however. Given their larger stan-

dardised effect sizes, 0.12, not rejecting H0 indicates that the HACOH algorithm

produced worse fitness outcomes than the 2D and 3D HACO respectively. This

can be further corroborated by the average values over all the instances in the

36



TSP domain. The HACOH algorithm performed worse in this domain than the

other two with the differences between the 2D HACO and 3D HACO being very

marginal.

7.2.2. Contextualisation with Existing Methods and Construction Heuristics

Although it is not the primary aim of this work, contextualising the HACO

and HACOH algorithm performance against existing construction heuristics and

recent methods in the TSP domain can yield some valuable insights. Of course,

exact solutions for the TSP exist, such as Concorde, and therefore the best

values for the TSP instances are included in Tables 7 and 8.

The comparison showed that in general, the Christofides construction heuris-

tic outperformed most of the other methods across the benchmark set. There

were some cases where the 2D HACO and 3D HACO performed best, however.

These were bier127, kroC100, pr226, ts225 for the 2D HACO, and eil51, lin318,

and pr264. In terms of the performance, the 2D and 3D HACO algorithms out-

performed all of the other construction heuristics and even the TSP GP in this

domain. It is unusual given the dominance of the GP in the 1DBPP domain

but this may be indicative of the different nature of the problem domain. The

TSP is a domain that is far closer to the domains that ant algorithms are used

in as opposed to the 1DBPP.

In terms of the degree of difference between the best performing HACO,

the 2D HACO, and the best performing method, the Christofides heuristic, the

standardised effect size is only 0.031. As the standardised effect size indicates

the magnitude of difference between the two methods, a value of 0.031 is a very

small difference between them. This indicates that the HACO algorithm can

deliver comparable performance to the best performing methods in this domain.

7.3. Generality

The SDD score is an important measure of assessing the generality of a given

hyper-heuristic. The SDD score is a metric taken from existing literature [25].

It is used to assess the generality of a given hyper-heuristic.

37



In hyper-heuristics, generality is an especially important metric because it

enables hyper-heuristics to be widely applicable across different domains or

benchmark sets within a domain. The most successful solution in terms of

its raw results is often not one that can be broadly applied, hence why hyper-

heuristics are considered; they can generalize better by performing well on dif-

ferent problem instances instead of producing good results for some problem

instances and poor results for others. Therefore looking at the generality of

these hyper-heuristics is important to be able to assess their value.

Table 4: Summary of SDD Scores for 1DBPP and TSP Domains

SDD Score 2D HACO 3D HACO HACOH

1DBPP 1.752 1.351 1.408

TSP 3.676 3.765 3.555

Average 2.714 2.558 2.482

In Table 4 the SDD scores for all of the hyper-heuristics are presented for

each domain. This level of generality is presented for the problem domains

specifically as this is most important to the analysis.

The results show that in terms of the non-hybrid hyper-heuristics, the 3D

HACO is better than the 2D HACO in terms of generality for the 1DBPP

domain with the situation reversed for the TSP domain. The HACOH algorithm

has the lowest SDD score for the TSP domain and a score for the 1DBPP domain

that is only slightly higher, 0.057 higher, than the 3D HACO. When the average

of the SDD score is calculated, the HACOH algorithm emerges with the best

generality score across both domains with the 3D HACO in second place.

7.3.1. Interpretation

The SDD score highlights the comparison between the different hyper-heuristic

algorithms. Based on these results it is the case that the HACOH algorithm

generalises the best across both domains. On average, its SDD score is the

lowest whereas, inside a single domain, a non-hybrid HACO algorithm might

38



do better, no algorithm does as well as the HACOH across both domains.

Using a single HACO algorithm for a given domain could theoretically result

in a better performance for the hybrid, but the hybrid can perform across many

domains where the non-hybrids might be insufficient. The list generation process

itself is a computationally expensive operation and so this has to be compared

against the cost of selecting the best pheromone map for the given problem.

7.4. Pheromone Maps

The pheromone maps and their analysis are presented in the supplementary

material as this analysis is of secondary importance to the overall research [13].

7.5. Runtimes

Part of the process of comparing the different algorithms will be to assess the

runtimes of the algorithms in the different domains. This is not a wholly objec-

tive measurement as different hardware and operating environments can affect

the final runtimes of the algorithms, but it is added for the study’s complete-

ness. The tables showing the runtimes have been provided in supplementary

material [13].

In general, the 3D HACO takes the longest time over the different instances

to execute a single run, except in the case of instances from u120, where HACOH

takes the longest. As the scale of the problem increases, the time taken for

a single run also increases. The increased time of the 3D HACO should be

contrasted against the far better results that it produces in the 1DBPP domain.

There are two observations to be made with regards to TSP runtimes. The

first is that the HACOH algorithm has faster times on the larger problems such

as rl1889 and u1817 with the margins between the algorithms closing on the

smaller problems like eil51 and ch130. The second observation is that the times

of the 2D HACO and 3D HACO are incredibly close together.

While the HACOH does have better runtimes than either the 2D or 3D

HACO, it has worse performance and so that has to be considered with regard

to the runtimes. The more interesting observation is that the runtimes of the 2D

39



and 3D HACO do not differ significantly. The standardised effect size between

them is 0.0058 which indicates a very narrow margin of difference. This is in

sharp contrast to the difference between the 2D HACO and 3D HACO in the

1DBPP where the 3D HACO took longer on average with its runtimes.

7.6. Discussion

This section provides a discussion of the results in their totality, with analysis

and insight provided as well. The aim is to contextualise the results in the wider

context of the research and its aims.

7.6.1. 2D vs 3D HACO

The primary aim of this research is to examine the effect that using different

(2D and 3D) pheromone maps will have when used in an ant-based generation

constructive hyper-heuristic. The hypothesis that underlies this research is that

different pheromone maps will have different effects on the ant-based hyper-

heuristics that make use of them. The results of the experiments described in

Section 6 are presented in this section. In their totality, the results demonstrate

some important things regarding the use of 2D and 3D pheromone maps in the

ant-based hyper-heuristic described here.

Firstly, the type of pheromone map is extremely important for the 1DBPP

domain. There is clear statistical evidence presented in Section 7.1 that the 3D

HACO outperformed the 2D HACO in the 1DBPP domain. It did so by a wide

margin, albeit at an increased runtime cost. This highlights an important insight

into how pheromone maps should be considered for this problem. Namely, 3D

pheromone maps offer improved performance but will require more runtime to

succeed.

However, as the results of Section 7.2 demonstrate, it is not a universal fact of

the application of the 3D pheromone map. The results of the TSP comparison

show that the 2D and 3D HACO algorithms have very similar performance

metrics in both optimality and runtime. The implication, of course, is that

40



there is no appreciable difference in using a 2D or 3D pheromone map for an

ant-based hyper-heuristic in the TSP domain.

There are many reasons why this may be. The TSP domain does not have

as many constraints as the 1DBPP and the heuristic landscape may be simple

enough to traverse effectively with both a 2D and 3D pheromone map. The

telling indication is that despite being more complicated in structure and size,

the 3D HACO has a similar runtime to the 2D HACO in the TSP benchmark.

The more complicated boundaries found in the 1DBPP heuristic space are better

navigated by the 3D pheromone map which can represent more information than

the 2D pheromone map. However, when the landscape is less constrained, like,

in the TSP domain, the difference is less meaningful.

The other factor to consider is the generality of the 2D and 3D HACO. The

SDD scores of the 2D and 3D HACO indicate that for the TSP domain, the

2D HACO provides better generality, 3.676, as opposed to the 3D HACO at

3.765. Whereas in the 1DBPP, the situation is reversed with the 2D HACO

having an SDD score of 1.752, and the 3D HACO having an SDD score of 1.351

which is better. Generality and optimality are not necessarily the same and

these two factors can be at odds with one another. An algorithm that is more

generalisable, may have issues with producing more optimal outcomes. With

this method of assessment, the 2D HACO is preferable for the TSP domain as

it provides better generality and the 3D HACO is better for the 1DBPP domain

as it provides better generality.

The TSP and 1DBPP are very different but common discrete combinatorial

problems and their inclusion in this research is used to provide wide coverage of

types of combinatorial problems for the HACO algorithm to execute. The nature

of the differences between the two types of pheromone maps largely relates to the

core objectives of any hyper-heuristic: optimality and generality. In this regard,

the 2D pheromone map is capable of providing better generality for the TSP

domain and the 3D pheromone map is capable of providing better optimality

for the 1DBPP domain. Both types of maps have strengths and weaknesses

and this demonstrates that different pheromone maps can be significant to the

41



performance of ant-based hyper-heuristics but not that there is a universally

preferable pheromone map for all types of problems or hyper-heuristic needs.

That is, this research has demonstrated the no-free lunch theorem for the use

of different pheromone maps for ant-based hyper-heuristics.

7.6.2. Hybridisation

The other aim of this research is to examine the effect that hybridising the

pheromone maps has on the performance of ant-based generation constructive

hyper-heuristics. In this regard, the amount of information gleaned from the

results of the experiments is more than sufficient to provide insights into the

effectiveness of the HACOH.

Firstly, the hope of the hybridisation was that the combination of pheromone

maps would outperform the non-hybrid versions of the HACO algorithm. In this

regard, the available evidence strongly disproves this claim. In the 1DBPP do-

main, the HACOH was only marginally better than the 2D HACO and far below

the performance of the 3D HACO. In the TSP domain, the HACOH underper-

formed against both the 2D and 3D HACOH in all instances. Therefore, from

the available evidence, the HACOH pheromone map hybridisation algorithm

does not result in meaningful improvements over non-hybrid HACO algorithms

in terms of optimality of results in the examined domains.

With regards to generality, the other main aspect of a hyper-heuristic, the

HACOH algorithm achieved the best SDD score, 2.4815, on average over all the

domains. However, this is contrasted against the score of the 3D HACO which

differs by 0.0765, a small amount. The generality to be gained by using the

hybrid HACOH algorithm is not enough to offset the loss in optimality incurred

by using it.

In terms of factors that explain why the hybridisation of pheromone maps

failed to achieve success, the most immediate answer lies in the hybridisation

method itself. The hybridisation algorithm generates the list that determines

how the different algorithms using 2D and 3D pheromones will be interleaved in

terms of their search efforts. However, this interleaving is a static process that

42



is determined before executing the algorithm on the totality of the dataset, via

a generation process. During each iteration, a different algorithm is executed

and the results of its search are shared with the other algorithm.

The issue is that the search process is made more dynamic by the inclusion

of multiple different pheromone maps and gains an additional dimensionality

that it did not have before. Furthermore, while some information is shared

amongst the different pheromone maps, this is only a partial reflection of all of

the pheromone map information contained in the separate algorithms which can

obscure vital information that the ant algorithms may need for their searches.

It may also be the case that the different dimensions of the different pheromone

maps cannot incorporate information from other types of pheromone maps with-

out losing the meaning contained within.

The hybridisation method failed to achieve its desired outcomes but this

does not mean that the goal of utilising different pheromone maps is a lost one.

Rather an alternative to the hybridisation method used here would be to sepa-

rate the use of pheromone maps further and rely on something like an ensemble

protocol to determine how multiple ant algorithms with their pheromone maps

should search the heuristic space.

8. Conclusion

At the core of this paper is a question about how ACO could be improved for

the task of hyper-heuristics. More specifically, this question was investigated in

terms of 2D and 3D pheromone maps in use for generation constructive hyper-

heuristics. The investigation presented a novel ant-based hyper-heuristic, the

HACO algorithm, and studied the effect of the 2D and 3D pheromone map (2D

HACO and 3D HACO) on this hyper-heuristic for two separate combinatorial

optimisation domains, the TSP and 1DBPP.

The results of the various experiments have demonstrated that there are

meaningful differences between the ways that different types of pheromone maps

can be utilised for hyper-heuristics. In particular that the 3D HACO showed

43



better performance results than the 2D HACO for the 1DBPP domain. In the

TSP domain, the results were much closer with a slight advantage going towards

the 2D HACO. These results extended to the generality assessment where the

3D HACO showed better generality performance than the 2D HACO on the

1DBPP domain but vice versa on the TSP domain.

An important part of this investigation included examining how the two

different pheromone maps could be hybridised in an algorithm (HACOH) and

what that hybridisation would mean for the performance and generality. In

this regard, the experiments showed that the HACOH achieved either middling

performance results on average whilst also having the best generality on average,

in terms of both domains.

These indications when taken together demonstrate that there is a utility to

considering different kinds of pheromone maps for different problems but that

the attempts to combine these pheromone maps into a single algorithm that

improves on both performance and generality still requires further research.

Previously ACO was limited in how it could be applied to problems as it re-

quired specific solution representations. This paper demonstrates that through

the utilisation of heuristic spaces, ACO-based techniques can be applied to any

problem through a hyper-heuristic with little modification of the underlying

operation of the ACO technique.

Future work, therefore, includes extending the HACO algorithm to other

kinds of hyper-heuristics, like generation perturbative, and exploring and ex-

panding the hybridisation approach with other techniques or exploring algo-

rithm selection methods for deciding when to use which type of pheromone map.

Additionally, a comprehensive study of the space and computational complexity

of the HACO algorithm remains open for future research as further study into

the algorithm progresses past this initial point.

Furthermore, there remains potential for the exploration of an ensemble

technique (or several ensemble techniques) as an alternative to the hybridisation

process described here, specifically an ensemble of different ant colonies with

different pheromone maps. This need not be limited to purely the ant-based

44



hyper-heuristic put forward in this research. Rather an ensemble technique

could combine the efforts of the ant-based hyper-heuristic with other hyper-

heuristics for a hyper-heuristic ensemble.

References

[1] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg, Hyper-

Heuristics: An Emerging Direction in Modern Search Technology, Springer

US, Boston, MA, 2003. doi:10.1007/0-306-48056-5_16.

[2] N. Pillay, R. Qu, Hyper-Heuristics: Theory and Applications, Springer,

2018.

[3] E. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu,

Hyper-heuristics: A survey of the state of the art, Journal of the Opera-

tional Research Society 64 (2013) 1695–1724.

[4] J. Drake, A. Kheiri, E. Özcan, E. Burke, Recent advances in selection

hyper-heuristics, European Journal of Operational Research.

[5] J. Branke, S. Nguyen, C. Pickardt, M. Zhang, Automated design of produc-

tion scheduling heuristics: A review, IEEE Transactions on Evolutionary

Computation 20.

[6] E. Burke, M. Hyde, G. Kendall, J. Woodward, Automatic heuristic genera-

tion with genetic programming: Evolving a jack-of-all-trades or a master of

one, Proceedings of GECCO 2007: Genetic and Evolutionary Computation

Conference (2007) 1559–1565.

[7] M. Bader-El-Den, R. Poli, S. Fatima, Evolving timetabling heuristics

using a grammar-based genetic programming hyper-heuristic framework,

Memetic Computing 1 (2009) 205–219.

[8] M. Dorigo, G. Di Caro, Ant colony optimization: A new meta-heuristic,

IEEE. 2 (1999) 1477 Vol. 2.

45

http://dx.doi.org/10.1007/0-306-48056-5_16


[9] L. M. Gambardella, M. Dorigo, Solving symmetric and asymmetric tsps by

ant colonies, in: Proceedings of IEEE International Conference on Evolu-

tionary Computation, 1996, pp. 622–627.

[10] M. Zlochin, M. Birattari, N. Meuleau, M. Dorigo, Model-based search for

combinatorial optimization: A critical survey, Annals of Operations Re-

search 131 (2004) 373–.

[11] A. Cuesta-Cañada, L. Garrido, H. Terashima-Maŕın, Building hyper-

heuristics through ant colony optimization for the 2d bin packing prob-

lem, in: Proceedings of the 9th International Conference on Knowledge-

Based Intelligent Information and Engineering Systems - Volume Part

IV, KES’05, Springer-Verlag, Berlin, Heidelberg, 2005, p. 654–660. doi:

10.1007/11554028_91.

[12] M. Dorigo, Optimization, learning and natural algorithms, Ph.D. thesis,

Politecnico di Milano (1992).

[13] E. Singh, N. Pillay, A study of ant-based pheromone spaces for generation

constructive hyper-heuristics supplement material (2022).

URL https://drive.google.com/file/d/

19piVUxhPozdSskkugc5qetwg0a15Lk4M/view?usp=sharing

[14] A. Lipowski, D. Lipowska, Roulette-wfheel selection via stochastic accep-

tance, Physica A: Statistical Mechanics and its Applications 391 (6) (2012)

2193–2196.

[15] J. H. Holland, Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence,

MIT Press, 2010.

[16] G. Wu, R. Mallipeddi, P. N. Suganthan, Ensemble strategies for population-

based optimization algorithms – a survey, Swarm and Evolutionary Com-

putation 44 (2019) 695–711. doi:10.1016/j.swevo.2018.08.015.

46

http://dx.doi.org/10.1007/11554028_91
http://dx.doi.org/10.1007/11554028_91
https://drive.google.com/file/d/19piVUxhPozdSskkugc5qetwg0a15Lk4M/view?usp=sharing
https://drive.google.com/file/d/19piVUxhPozdSskkugc5qetwg0a15Lk4M/view?usp=sharing
https://drive.google.com/file/d/19piVUxhPozdSskkugc5qetwg0a15Lk4M/view?usp=sharing
https://drive.google.com/file/d/19piVUxhPozdSskkugc5qetwg0a15Lk4M/view?usp=sharing
http://dx.doi.org/10.1016/j.swevo.2018.08.015


[17] E. Falkenauer, A hybrid grouping genetic algorithm for bin packing, Journal

of Heuristics 2 (1) (1996) 5–30. doi:10.1007/bf00226291.

[18] A. Scholl, R. Klein, C. Jürgens, Bison: A fast hybrid procedure for exactly

solving the one-dimensional bin packing problem, Computers & Operations

Research 24 (7) (1997) 627–645. doi:10.1016/s0305-0548(96)00082-2.

[19] E. Burke, M. Hyde, G. Kendall, J. Woodward, Automating the packing

heuristic design process with genetic programming, Evolutionary compu-

tation 20 (2011) 63–89. doi:10.1162/EVCO_a_00044.

[20] E. Falkenauer, A. Delchambre, A genetic algorithm for bin packing and line

balancing, Proceedings 1992 IEEE International Conference on Robotics

and Automationdoi:10.1109/robot.1992.220088.

[21] G. Duflo, E. Kieffer, M. R. Brust, G. Danoy, P. Bouvry, A gp

hyper-heuristic approach for generating tsp heuristics, 2019 IEEE In-

ternational Parallel and Distributed Processing Symposium Workshops

(IPDPSW)doi:10.1109/ipdpsw.2019.00094.

[22] G. Reinelt, Tsplib—a traveling salesman problem library, ORSA Journal

on Computing 3 (4) (1991) 376–384. doi:10.1287/ijoc.3.4.376.

[23] E. Burke, M. Hyde, G. Kendall, Evolving bin packing heuristics with ge-

netic programming, in: Parallel Problem Solving from Nature - PPSN IX,

2006, pp. 860–869.

[24] K. Pearson, Note on Regression and Inheritance in the Case of Two Parents,

Proceedings of the Royal Society of London Series I 58 (1895) 240–242.

[25] N. Pillay, R. Qu, Assessing hyper-heuristic performance, Journal of the

Operational Research Society.

[26] G. Duflo, E. Kieffer, M. R. Brust, G. Danoy, P. Bouvry, A gp hyper-

heuristic approach for generating tsp heuristics, in: 2019 IEEE In-

ternational Parallel and Distributed Processing Symposium Workshops

(IPDPSW), 2019, pp. 521–529. doi:10.1109/IPDPSW.2019.00094.

47

http://dx.doi.org/10.1007/bf00226291
http://dx.doi.org/10.1016/s0305-0548(96)00082-2
http://dx.doi.org/10.1162/EVCO_a_00044
http://dx.doi.org/10.1109/robot.1992.220088
http://dx.doi.org/10.1109/ipdpsw.2019.00094
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1109/IPDPSW.2019.00094


[27] D. L. Applegate, The traveling salesman problem: a computational story,

Princeton Univ. Press, 2007.

[28] D. Applegate, W. Cook, S. Dash, A. Rohe, Solution of a min-max vehicle

routing problem, INFORMS Journal on Computing 14 (2) (2002) 132–143.

doi:10.1287/ijoc.14.2.132.118.

[29] M. Friedman, The use of ranks to avoid the assumption of normality im-

plicit in the analysis of variance, Journal of the American Statistical Asso-

ciation 32 (200) (1937) 675–701. doi:10.1080/01621459.1937.10503522.

[30] H. B. Mann, D. R. Whitney, On a test of whether one of two random

variables is stochastically larger than the other, Ann. Math. Statist. 18 (1)

(1947) 50–60.

48

http://dx.doi.org/10.1287/ijoc.14.2.132.118
http://dx.doi.org/10.1080/01621459.1937.10503522

	Introduction
	Background
	Generation Constructive Hyper-Heuristics
	Ant Colony Optimisation

	Pheromone Spaces
	Pheromone Space Projection
	Effect on Searching

	Heuristic Ant-Colony Optimisation
	High-Level Overview
	Pheromone Updates and Evaporation
	Decay Function
	Path Construction
	Heuristic Conversion Process

	Node Selection
	Path Interpretation

	Hybridising the Pheromone Spaces
	Hybridisation
	List Optimisation
	Optimisation Strategy
	Perturbative Function
	Move Acceptance

	List Approximation

	Experimental Methodology
	Problem Domains
	1D Bin Packing Problem
	Travelling Salesperson Problem

	Problem Components
	Operators
	Domain Attributes

	Solution Construction Process
	Ant Algorithm Parameters
	Generating New Lists
	Iterated Local Search Parameters

	Experiments
	Experimental Parameter Tuning
	Experiment 1: 2D vs 3D Pheromone Map Comparison
	Experiment 2: Hybrid vs Non-Hybrid Comparison

	Assessment Metrics
	1DBPP
	TSP
	SDD
	Comparison with Existing Methods
	Statistical Testing

	Technical Specifications

	Results and Discussion
	1DBPP Results
	Comparison of HACO and HACOH Algorithms
	Contextualisation with Existing Methods and Construction Heuristics

	TSP Results
	Comparison of HACO and HACOH Algorithms
	Contextualisation with Existing Methods and Construction Heuristics

	Generality
	Interpretation

	Pheromone Maps
	Runtimes
	Discussion
	2D vs 3D HACO
	Hybridisation


	Conclusion

