
Supplementary Material for A Study of

Ant-Based Pheromone Spaces for Generation

Constructive Hyper-Heuristics

Emilio Singh and Nelishia Pillay

April 21, 2022

1 Introduction

The purpose of this document is to provide supplementary material for the paper
A Study of Ant-Based Pheromone Spaces for Generation Constructive Hyper-
Heuristics. This document details several concepts that are needed to gain a
full understanding of the material. Please refer to this document in conjunction
with the paper.

2 Pheromone Mechanism

To understand why exploring alternative formulations of the pheromone space
is important to this paper, it is first necessary to understand how pheromone
spaces affect the functioning of an ant colony optimisation (ACO) algorithm.

The basic mechanism of an ACO method is the pheromone space. Tradition-
ally, one of the limitations of an ACO method is that it requires the problem it is
being applied to, to be representable via a graph-based representation. The rea-
son for this is to use that graph-based representation as a means of constructing
the pheromone space into a pheromone map to hold pheromone values produced
by the ants during their search. As the ants in the ACO method perform their
operation they will deposit pheromone, according to a particular scheme, on
parts of the map to correspond to links in the ant’s search path. Consider a
simple TSP problem as presented in Figure 1.

1



Figure 1: A Simple TSP Graph

This graph has four nodes, A to D, and represents the solution space for a
simple routing problem. A corresponding pheromone map for this problem, in
the solution space, would look like Figure 2.

Figure 2: 2D Pheromone Map

At this level, the ACO algorithm is operating in the solution space of the
TSP problem. Traversing this space represents the ACO building a solution
to the TSP (such as A, B, C, D, A) and consequently, an ant in the ACO
will deposit pheromone on the cell intersections that represent the links in the
solution space that construct the solution. In a solution-space-based pheromone
map, there is semantic meaning to choosing to deposit pheromone at link (A,B)
because of the direct corresponding relationship to the solution. That is, moving
from vertex A to B carries an important distinction that is represented in the
solution (in this case by the cost to move from A to B). Generally, links in the
solution are unique and will not repeat as per the requirements of the problem.

Now, consider the same problem but from the perspective of a generation
constructive hyper-heuristic. Instead of dealing directly in the solution space
now the problem is in a heuristic space where the goal is to combine low-level
components into a heuristic that can be used to solve the same simple TSP
problem. These components (+,-, A, B) represent a combination of different
operators or domain attributes that are combined into a heuristic. This is
represented by Figure 3.

2



Figure 3: A Simple Component Graph

Even though the heuristic space is the same base size as the solution space
and has the same kind of pheromone map, this space has very different prop-
erties. Components can be combined in many more ways than the original
vertices in the solution space. Additionally, repetition of the components is
more prominent. An example of a heuristic is:

<+,A,-,A,+,A,B>

In this heuristic, the link (+, A) is repeated twice but at very different positions
with different meanings. This cannot be replicated on a 2D pheromone map as
in Figure 2. It can only double reinforce the pheromone on the (+, A) link. The
same map in the heuristic space no longer possesses the ability to capture that
same level of information is captured in the solution space.

The problem with 2D representation is that, while it can determine which
links (between components) are important, it cannot account for where those
links might be in the actual path being constructed. The same link can be
found at different points in the path and not necessarily have the same effect
for example.

3 Path Construction

As ants traverse through the component space they will gradually add nodes
into their path. This path has to be converted into a format that can then be
interpreted as a heuristic. This process happens recursively with Algorithm 1
describing the process for each ant.

The process in Algorithm 1 is the skeleton of the process used to convert
a set of nodes representing a path into a structured heuristic that represents a
control function.

3



Algorithm 1: Path Construction Process

Input: a ant, p evaporation rate
Result: S a heuristic, P a path of nodes

1 r = U(0, 1);
2 P = ∅;
3 S = ;
4 a.currF = 0;
5 if r > p or S == ∅ then
6 P+ = random operator from the operator set;

7 else
8 P+ = first node of the best path PB ;

9 a.currF+ = 1;
10 S = [+P [0]+;;
11 art = getArity(P [0]);
12 for i < art do
13 c=choose a node;
14 P+ = c;
15 comp = compute(ant, c, P, a.currF );
16 S+ = comp;

17 Remove the last character from S;
18 S+ =];

4 Move Acceptance

The moveAccept function is used to determine whether to update the list and
thus whether or not the “new move”, that is a new list, is accepted in the search.
It is given by Algorithm 2. The algorithm also makes use of a measure, Lines
14–15, which enables the storage of a newly created list. This functions as a
tabu list to prevent the generation of previously created lists in future iterations
of the meta-optimisation algorithm. Without this, there would be an increased
likelihood of repeated lists being used in the meta-optimisation algorithm which
would hamper the exploration of the meta-optimisation space.

4



Algorithm 2: Move Acceptance

Input: tmpP the prior list,tmpS the current list,fit the current
fitness,priorF it the prior fitness,bestF it the best
fitness,bestList the best list,mp the rate of perturbation

Result: The current list and fitness are updated or not
1 if fit < bestF it then
2 bestF it = fit;
3 bestList = tmpS;
4 tmpS = tmpP ;
5 priorF it = fit;

6 else if fit < priorF it then
7 priorF it = fit;
8 tmpS = tmpP ;

9 else
10 r ∼ U(0, 1);
11 if r < mp then
12 tmpS = tmpP ;
13 priorF it = fit;

14 if memory.contains(tmpP ) == false then
15 memory.add(tmpP );

5 Iterated Local Search Algorithm

The iterated local search optimisation strategy is given by Algorithm 3.

Algorithm 3: Iterated Local Search

Input: h the hybrid ant system,max the max iterations,mp the rate of
perturbation

Result: bestList the best list for the hybrid ant system
1 init(tmpS);
2 memory = ∅;
3 bestF it = inf;
4 bestList = ∅;
5 fit = h.eval(tmpS);
6 priorF it = fit;
7 moveAccept(tmpS, tmpP, fit, priorF it, bestF it, bestList,mp);
8 it = 0;
9 while it < max do

10 tmpP =perturb(tmpS,memory, bestList);
11 fit = h.eval(tmpS);
12 moveAccept(tmpS, tmpP, fit, priorF it, bestF it, bestList,mp);
13 it+ = 1;

5



6 Perturbative Function

The moveAccept function is used to modify the existing list according to a
perturbation rule that was created for this application.

Algorithm 4: Perturbation Function

Input: tmpS the current list,memory the list of known lists,bestList
the best list

Result: tmpP a new unique list
1 tmp = tmpS;
2 while memory.contains(tmp) do
3 tmp =pOperator(tmpS, bestList);

4 tmpP = tmp

6.1 Perturbative Operator

The perturbative operator, the mechanism by which a list is actually modified,
Line 3 of Algorithm 4, is given by Algorithm 5.
The perturbation operator is a simple one. It will randomly create a new list the

Algorithm 5: Perturbation Operator

Input: tmp the current list,bestList the best list
Result: tmp a new unique list

1 newList = ∅;
2 foreach index ∈ tmp do
3 r = U(0, 1);
4 if r < 0.5 then
5 newList[index] = 2;

6 else
7 newList[index] = 3;

8 shuffle(newList);

same size as the old list, with each type of iteration having an equal probability
of selection. An iteration in this context refers to a single iteration of either the
2D or 3D HACO. Afterwards, the list is randomly shuffled and returned. The
reason for this is that there will be relatively few iterations in the overall meta-
optimisation process as that process is computationally intensive. Furthermore,
the potential for precise and minute changes in the list to lead to massive im-
provements overall is relatively minimal, given that each index of the list only
represents a single iteration. Therefore a random walk through the local search
space will have the best chance of exploring the local list space to find a good
list with the least amount of additional computational effort required.

6



7 Solution Construction Process

Typically a generation constructive hyper-heuristic will evolve a control function
representing a heuristic that guides a construction process as it constructs a
solution for a given problem. This control function calculates a desirability
score used to determine which parts of the solution to add during construction.
For different problems, the desirability score represents different aspects of the
problem, like the desirability to add a given vertex into a current path for
example.

Each of the algorithms presented below make use of the evolved heuristics
as their control functions which indicate which parts of the solution should be
added during their respective solution construction process.

7.1 1D Bin Packing Problem

Algorithm 6: 1DBPP Construction Method

Input: S a heuristic, items a set of items to pack
Result: sol a constructed solution

1 sol+ =new empty bin;
2 scores = [];
3 while items ̸= ∅ do
4 scores=[items.size()];
5 for i < items.size() do
6 scores[i]=evaluateHeuristic(S,items[i]);

7 choice = max(scores);
8 if sol.currBin is full then
9 sol+ =new empty bin;

10 else
11 sol.currBin+=items.remove(choice);

The process described in Algorithm 6 describes the process by which a so-
lution is created for a given 1DBPP. Starting with a given heuristic and a set
of items to pack, the process starts with a single bin. The current bin being
packed is referred to as currBin. All of the remaining items are evaluated based
on the heuristic with the highest scoring item, Line 7, chosen to be added into
the current bin.

The scores variable, Line 2, is an array that holds the desirability score
determined by each heuristic S that is calculated by the evaluateHeuristic
function. The other solution construction processes will make use of the scores
variable in the same way.

The score represents the desirability of choosing a given item to add into the
bin based on its current state and of the problem overall.

If the item cannot fit, a new bin is opened and the process is repeated until all
items are packed. Rather than making assumptions about the number of bins,
this process will arrive at several bins through the packing process. The value

7



of the heuristic determines how much space is wasted in each bin with better
heuristics minimising wasted space and thus using fewer bins. This approach
does have some basis from existing heuristics that make select items rather than
bins.

The reasoning behind this approach is to arrive at the number of bins for
the solution organically. As all of the bins are of the same capacity, the task
of packing an arbitrary number of items into all of the bins could be reduced
down to packing them across a single bin. Therefore by having the heuristic
be applied to choosing items, the focus is shifted towards developing a function
that minimises wasted space in a bin with the final number of bins reflecting
the degree to which this function was successful. A more optimal function will
need several bins closer to the actual optimal number of bins without having to
specify the number of bins beforehand or apply additional repair methods to a
constructed solution.

7.2 Travelling Salesperson Problem

Algorithm 7: TSP Construction Method

Input: S a heuristic, v a set of vertices to visit
Result: sol a constructed solution

1 init=a randomly chosen vertex from v;
2 sol+ = init;
3 scores = [];
4 while v ̸= ∅ do
5 scores=[v.size()];
6 for i < v.size() do
7 scores[i]=evaluateHeuristic(S,v[i]);

8 choice = min(scores);
9 sol+=v.remove(choice);

10 sol+ = init;

The TSP construction process depicted in Algorithm 7 is similar to that of
Algorithm 6 with some differences. Firstly, the process starts by choosing an
initial vertex to be the origin of the route. This initial vertex, init, is added at
the end of the route closing the tour. Otherwise, vertices are chosen based on
their evaluated score as determined by the heuristic. The score itself represents
the desirability of each vertex in terms of adding it into the current solution.

The lowest score, Line 8, is chosen here because of the nature of the domain
attributes but once chosen the vertex is removed from the list of vertices and
the algorithm continues until all are chosen.

8 Assessment Methods

This section provides additional details for the assessment metrics used in the
research.

8



8.1 Ratio Formula

InstanceAverage =

∑I
i=1 ri
I

InstanceRatio =
InstanceAverage

z

Ratio =

∑m
i=1 InstanceRatioi

m

(1)

The InstanceAverage is the mean value of the algorithm’s performance over I
runs. This is then divided by the optimal solution for that instance, z. Finally,
the average of all of these InstanceRatios is averaged over all of the instances
in the benchmark set, m.

9 Domain Attributes

This section provides a description of the domain attributes used in the research.

9.1 1DBPP

9.2 TSP

A brief description of the functioning of these domain attributes is provided
below:

• Nn: number of nodes in the graph.

• Nrn: Number of remaining noes to visit.

• Dcn: Distance from the current node.

• Din: Distance from the initial node.

• Dc: Distance from the centroid of the nodes.

• Pd: Predicted distance from the initial node.

• Dle: Distance left estimation.

10 Pheromone Maps

In presenting this study of the two ways in which pheromone spaces can be
applied to hyper-heuristics, the actual pheromone maps should be discussed
as well. The maps presented here were produced as part of the experimental
process. Specifically, the maps were taken from the algorithm execution of a

9



specific instance, u500 10, in the 1DBPP domain. The instance u500 010 repre-
sents a medium-sized problem instance and thus can be roughly representative
of the dataset as a whole. The 1DBPP domain was singled out for presenta-
tion because the differences in algorithm performance were most pronounced
in that domain. Presenting the entirety of the pheromone maps would be a
difficult challenge given the scope of the experiments, and the fact that the 3D
pheromone maps are multi-layered and thus significantly more complex than
their 2D counterparts. To that end, only the first few layers of the appropriate
3D pheromone map are presented.

The pheromone maps are presented as heatmaps where the pheromone con-
centration is given by the colour intensity of the given cell intersection between
the components. In the heatmap, each VX, where X represents a number, rep-
resents a component from the 1DBPP component set. The scheme is as follows:

• V1:F

• V2:C

• V3:S

• V4:+

• V5:-

• V6:*

• V7:/

• V8:A

Figure 4: HACO Figure 5: HACOH

Figure 6: 1DBPP 2D Pheromone Maps

Figure 6 shows two 2D pheromone maps that were produced by a 2D HACO
and HACOH algorithm respectively. Both maps were produced as a result
of their respective algorithm’s execution and represent the final state of the
pheromone concentration after the search process. In particular, Figure 4
demonstrates the expected behaviour of a 2D pheromone. More specifically that
after the algorithm’s successful execution the pheromone landscape has been
reduced to a handful of cells that represent the remainder of the pheromone
execution. It is from these components that ants would have to construct
their solutions in the 2D HACO. In contrast, Figure 5, demonstrates the ef-
fect of the hybridisation on the 2D pheromone space. Rather than being a less

10



sparsely populated landscape, there are significantly more regions, although still
in weaker concentration, in the 2D landscape owing to the influence of the 3D
pheromone map’s information being transferred over during the search process.
The most concentrated effects are still contained in a single region though.

Figure 7: Layer 0 Figure 8: Layer 1 Figure 9: Layer 2

Figure 10: 1DBPP 3D HACO Pheromone Map Layers

The first three layers of the 3D HACO are given by Figure 10. In sharp
contrast to Figure 6, the pheromone concentration levels across the levels are
practically minimal except for a few regions in each layer of the map. This effect
continues throughout all of the layers of the map and demonstrates the differ-
ences in how the 3D pheromone space operates. As a 3D HACO algorithm is
capable of representing heuristic information in the third dimension, the search
process has resulted in a few regions per layer that are focused on, to the ex-
clusion of the rest of the region of the layer. In isolation this is meaningless but
considered with the other layers, the regions of pheromone concentration can
be interpreted as a trajectory through the 3D pheromone space that specifically
produces an ordering that defines the generated heuristics, or at least more
narrowly limits the potential range of heuristics that could be generated.

Figure 11: Layer 0 Figure 12: Layer 1 Figure 13: Layer 2

Figure 14: 1DBPP 3D HACOH Pheromone Map Layers

In Figure 14, the first three pheromone layers for the HACOH algorithm are
given. Contrasting the pheromone concentrations to the prior 3D pheromone

11



map layers in Figure 10, there is a significant difference in how widely pheromone
is dispersed throughout the layers. Here is another demonstration of the effect
of hybridisation as the areas of pheromone that receive some pheromone corre-
spond to the areas in the corresponding 2D HACOH pheromone map in Figure
5. The transmission of pheromone information moves in both directions with
pheromone information being shared between the two different spaces. For
the 2D pheromone space, the introduction of 3D pheromone space information
is meant to provide structured information and for the 3D pheromone space,
the introduction of 2D pheromone space is meant to introduce diversity to the
pheromone landscape. To a significant degree, this does depend on the overall
structure of the HACOH algorithm but its effects are very visible here.

11 TSP Instances

Table 6: TSPLIB Benchmark Instances

Instance Number of Nodes Best Solution
ts225 225 126643
rat99 99 1211
rl1889 1889 316536
u1817 1817 57201
d1655 1655 62128
bier127 127 118282
lin318 318 42029
eil51 51 426
d493 493 35002

kroB100 100 22141
kroC100 100 20749
ch130 130 6110
pr299 299 48191
fl417 417 11861
d657 657 48912

kroA150 150 26524
fl1577 1577 22249
u724 724 41910
pr264 264 49135
pr226 226 80369
pr439 439 107217

These instances together provide a large sample of different TSP problems are
varying scales, from smaller problems with a few hundred nodes to larger ones
with almost two thousand nodes. The cost of every solution is the cost of all of
the edges in the solution, starting and ending at an initial node.

In presenting this study of the two ways in which pheromone spaces can

12



be applied to hyper-heuristics, the actual pheromone maps should be discussed
as well. The maps presented here were produced as part of the experimental
process. Specifically, the maps were taken from the algorithm execution of a
specific instance, u500 10, in the 1DBPP domain. The instance u500 010 repre-
sents a medium-sized problem instance and thus can be roughly representative
of the dataset as a whole. The 1DBPP domain was singled out for presenta-
tion because the differences in algorithm performance were most pronounced
in that domain. Presenting the entirety of the pheromone maps would be a
difficult challenge given the scope of the experiments, and the fact that the 3D
pheromone maps are multi-layered and thus significantly more complex than
their 2D counterparts. To that end, only the first few layers of the appropriate
3D pheromone map are presented.

12 Results and Discussion

This section presents the results of the experiments. These results are divided
into different categories that present and discuss results around a singular idea.
Discussion and interpretation of the results will be provided alongside the results
as well.

12.1 TSP Results

In Tables 7 and 8 the results of the HACO and HACOH experiments are given.
The comparison methods are provided for brevity in the table as well. The best
result is indicated in bold.

13



Table 7: TSP Results I

Instance Best 2D HACO 3D HACO HACOH GP Nearest Neighbour
bier127 118282.0 128104.1 128402.1 129569.9 136781.2 145784.9
ch130 6110.0 6778.9 6777.5 6875.2 7012.6 7677.6
d493 35002.0 40717.7 40605.1 40579.4 40453.7 43403.9
d657 48912.0 58546.7 58821.9 59339.1 56882.9 63456.3
d1655 62128.0 72292.1 72389.2 72461.3 73740.5 76950.7
eil51 426.0 452.3 446.7 451.4 469.5 562.2
fl417 11861.0 13537.4 13489.1 13527.5 14555.8 15706.2
fl1577 22249.0 25308.5 25241.3 25497.2 26163.8 27813.3

kroA150 26524.0 30428.4 30599.0 30827.8 30660.1 33440.4
kroB100 22141.0 24394.5 24318.3 24756.6 25254.5 27955.3
kroC100 20749.0 22618.7 22739.1 22991.2 24114.0 26094.2
lin318 42029.0 48190.9 47727.2 47979.3 48039.8 52865.6
pr226 80369.0 89027.9 89690.6 90003.2 92837.8 100178.3
pr264 49135.0 54425.3 54368.0 54473.3 60908.0 57915.6
pr299 48191.0 55738.3 55832.1 56066.8 56980.6 63334.8
pr439 107217.0 126402.7 126717.2 127181.1 130114.3 136546.5
rat99 1211.0 1344.5 1347.6 1359.7 1381.7 1474.9
rl1889 316536.0 375383.2 374963.9 376037.9 383303.7 391697.0
ts225 126643.0 131820.1 132339.1 133763.6 136412.4 147941.8
u724 41910.0 48465.3 48801.3 49296.7 48423.3 53834.7
u1817 57201.0 66247.1 66146.4 66404.1 69334.7 69901.2

Average 67629.7 67703.0 68068.7 69705.9 73549.3
Std Dev 80900.8 80873.8 81149.9 82940.9 85172.4

14



Table 8: TSP Results II

Instance Best Nearest Insertion Greedy Christofides
bier127 118282.0 145544.1 141351.1 133690.6
ch130 6110.0 7284.0 7844.9 6726.2
d493 35002.0 42140.5 40838.8 38333.7
d657 48912.0 60081.6 56620.4 54004.1
d1655 62128.0 75390.6 72263.0 69989.4
eil51 426.0 494.8 481.5 490.7
fl417 11861.0 14887.6 13360.7 13707.6
fl1577 22249.0 27625.8 25719.5 24216.5

kroA150 26524.0 31588.4 31891.9 30089.8
kroB100 22141.0 26908.6 25815.2 24316.1
kroC100 20749.0 25780.6 23432.9 22632.5
lin318 42029.0 52299.1 49910.5 47830.9
pr226 80369.0 102887.2 97599.7 91753.5
pr264 49135.0 65978.2 54974.8 54675.1
pr299 48191.0 60263.9 63334.7 53600.5
pr439 107217.0 133663.8 128749.3 119181.3
rat99 1211.0 1465.9 1481.1 1325.2
rl1889 316536.0 393573.5 378068.0 340583.0
ts225 126643.0 151884.6 133459.7 133823.6
u724 41910.0 52629.5 49119.8 46955.1
u1817 57201.0 70970.1 68517.1 65293.9

Average 73492.5 69754.0 65391.4
Std Dev 85791.2 82010.7 74611.7

12.2 Comparison of HACO and HACOH Algorithms for
1DBPP Domain

Table 9: Friedman Test Results for 1DBPP Domain

Friedman Test Value
χ2 125.0667
df 2

P Value 0.00001
Outcome Significant

12.3 Comparison of HACO and HACOH Algorithms for
TSP Domain

Tables 11 and 12 provide the results of the statistical testing for the comparison
between the 2D HACO, 3D HACO and the HACOH.

15



Table 10: Mann-Whitney U Test Results for 1DBPP Domain

Mann-Whitney U-Tests 2D–3D HACOH–2D HACOH–3D
U Value 7268.5 1584.5 5908.5
P Value 1 0.00000001 1
Z Score 9.2096 -7.0523 5.3186

Standardised Effect Size 0.69 0.53 0.4
Outcome Do not reject H0 Reject H0 Do not reject H0

Table 11: Friedman Test Results for TSP Domain

Friedman Test Value
χ2 18.381
df 2

P Value 0.0001
Outcome Significant

The results of the Friedman Test for the HACO and HACOH comparison
is given in Table 11. The outcome of the testing indicates that the differences
between the three groups (2D HACO, 3D HACO, and HACOH) are significant
enough to be statistically meaningful.

Table 12: Mann-Whitney U Test Results for TSP Domain

Mann-Whitney U-Tests 2D–3D HACOH–2D HACOH–3D
U Value 217.5 250 251
P Value 0.4749 0.7748 0.7823
Z Score -0.06289 0.7547 0.7798

Standardised Effect Size 0.0097 0.12 0.12
Outcome Do not reject H0 Do not reject H0 Do not reject H0

12.4 Runtimes

The time reported in Tables 13 and 14 is the time taken to complete a single
run of the algorithm in the given instance. This value is aggregated over the
entire sample of runs to give an average indication of how long a single execution
of the algorithm is expected to take in minutes. Due to the large number of
instances, the runtimes are shown as an average for the instances of the same
size.

16



Table 13: HACO and HACOH Runtimes for 1DBPP Domain

Instance 2D HACO 3D HACO HACOH
u120 0.1737 0.2799 0.3006
u250 0.7605 1.2319 1.0264
u500 3.1115 4.6902 2.8378
u1000 10.8843 16.3148 11.1842
Hard 0.3682 0.5960 0.5392

Table 14: HACO and HACOH Runtimes for TSP Domain

Instance 2D HACO 3D HACO HACOH
bier127 0.26 0.26 0.29
ch130 0.26 0.26 0.28
d493 4.42 4.36 5.03
d657 8.96 8.77 8.22
d1655 104.47 100.83 63.81
eil51 0.05 0.05 0.04
fl417 3.23 3.34 1.97
fl1577 86.54 87.53 52.85

kroA150 0.37 0.38 0.24
kroB100 0.16 0.17 0.12
kroC100 0.16 0.16 0.12
lin318 1.70 1.75 1.10
pr226 0.85 0.87 0.53
pr264 1.17 1.16 0.73
pr299 1.50 1.50 0.96
pr439 3.50 3.42 2.19
rat99 0.17 0.16 0.11
rl1889 131.89 131.97 86.85
ts225 0.78 0.81 0.54
u724 9.73 10.09 6.87
u1817 108.02 109.45 97.95

17


