
The theory of Gröbner bases and applications

by

Andrew Barnard Davies

Submitted in fulfilment of the requirements for the degree

Magister Scientiae

in the Department of Mathematics and Applied Mathematics

in the Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

July 2023

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

DECLARATION

I, the undersigned, declare that the dissertation, which I hereby submit for the degree

Magister Scientiae at the University of Pretoria, is my own independent work and has not

previously been submitted by me for a degree at this or any other tertiary institution.

Signature:

Name:

Date:

Andrew Barnard Davies

04-07-2023

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Abstract. In this dissertation we study Gröbner bases. Gröbner bases simultaneously generalise
Gauss elimination and univariate polynomial long division but for multivariate polynomials. Their
use is in solving systems of polynomial equations. We present some practical examples of their
use in graph colouring and circle packing problems. We then study, in detail, the underlying
theory and algorithms used in the computation of Gröbner bases.

Contents

Chapter 1. Introduction 3
1.1. Background 3
1.2. Simpler Cases 4
1.3. Applications 6

Chapter 2. Basics and the Hilbert Basis Theorem 12
2.1. Term Orders 12
2.2. The Hilbert Basis Theorem 14

Chapter 3. Polynomial Arithmetic 18
3.1. Division Algorithms 18

Chapter 4. Gröbner bases 23
4.1. Preliminaries 23
4.2. Buchberger’s Theorem and Buchberger’s Algorithm 26
4.3. Minimal and Reduced Gröbner bases 32

Chapter 5. Improvements to Buchberger’s Algorithm 35
5.1. The first new criterion 35
5.2. Modules and Syzygies 38
5.3. The second new criterion 44
5.4. Improving Buchberger’s Algorithm 45

Bibliography 48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1

Introduction

1.1. Background

Gröbner bases were formalised in 1965 in Buchberger’s PhD thesis [2], named for his supervi-
sor Wolfgang Gröbner. An important contribution of Buchberger, however, was his algorithm to
compute Gröbner bases, rather than the bases themselves. The idea represented in a Gröbner basis
existed prior to being described by its inventor, Bruno Buchberger. Hironaka [5] and Macaulay [6]
had done work in related topics and, in fact, Gunther [4] had even published a similar idea several
decades earlier, but it was largely overlooked by the mathematical community until its rediscov-
ery several decades later [8]. We first present a more superficial explanation of Gröbner bases for
illustrative purposes.

Consider the problem of finding a generating set for a polynomial ideal. In a single variable
polynomial ring (which we shall take to be over a field) an ideal I can be generated by a single
polynomial, the greatest common divisor of the elements of I. In multivariate polynomials, the
concept of a greatest common divisor has to be adjusted slightly. A Gröbner basis can be thought
of as an analogy for the greatest common divisor of univariate polynomials in the multivariate case.
We will develop the concept of dividing multivariate polynomials by other polynomials shortly, but
for now we interpret it as something of the form: A polynomial f divided by some polynomials
{g1, . . . , gs} equals h1g1 + . . .+ hsgs + r for some polynomials h1, . . . , hs and a remainder r.

Gröbner bases are used because systems of polynomial equations can be difficult to solve and
having a Gröbner basis for the ideal generated by the polynomials allows for easier solving of the
system. This is because in the case of a polynomial system, the ideal generated by the polynomials
in the system, and any generating set for this ideal all have the same solution set, also referred to
as a variety. For instance, the variety of x2 + y2 − 1 is the circle in the xy-place with center (0, 0)
and radius 1. When more polynomials are involved, the geometric representation of a their variety
becomes the intersection of each of their varieties. So while the original system may be difficult to
solve, a Gröbner basis is a different set of polynomials with the same variety, but containing easier
to solve polynomials, and simpler geometric representations. What is meant by an easier to solve
polynomial is that it contains fewer indeterminates, with the easiest to solve being a polynomial in
one indeterminate only.

We will expand on how we can find these easier to solve polynomials. We look at simpler,
familiar cases first and develop an analogy for these in the more complicated case. Namely, linear
systems and univariate polynomials.

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.2. SIMPLER CASES 4

1.2. Simpler Cases

1.2.1. The linear case. The well-established and familiar procedure of the Gauss-Jordan
method is used to solve linear systems. Consider, for example, the system of linear equations:

2x+ y + 3z = 1

6x+ 5y + 7z = 2

4x+ 3y + z = 3

We first represent this as an augmented matrix: 2 1 3 1
6 5 7 2
4 3 1 3

To reduce this system to row-echelon form we would perform the following sequence of elementary
row operations:

R2 ← R2 − 3R1

R3 ← R3 − 2R1

R3 ← R3 −
1

2
R2

and obtain the new, equivalent system: 2 1 3 1
0 2 −2 −1
0 0 −4 3

2

which then has solutions (x, y, z) = (32 ,

−7
8 , −3

8). Let us now think about this system in a different
way. Firstly, let R[x, y, z] be the polynomial ring in the indeterminates x, y, z with real coefficients.
Consider the polynomials

f1 = 2x+ y + 3z − 1

f2 = 6x+ 5y + 7z − 2

f3 = 4x+ 3y + z − 3

and let I be the ideal of R[x, y, z] generatedby f1, f2, f3, that is

I := {ff1 + gf2 + hf3 | f, g, h ∈ R[x, y, z]}.
The solution sets A := {(x, y, z) ∈ R3 | for all f ∈ {f1, f2, f3}, f(x, y, z) = 0} and B := {(x, y, z) ∈
R3 | for all f ∈ I, f(x, y, z) = 0} are equal: For (32 ,

−7
8 , −3

8) ∈ R3, we have f1(
3
2 ,

−7
8 , −3

8) = 0,
f2(

3
2 ,

−7
8 , −3

8) = 0 and f3(
3
2 ,

−7
8 , −3

8) = 0 and clearly for any f, g, h ∈ R[x, y, z], we also have
(ff1 + gf2 + hf3)(

3
2 ,

−7
8 , −3

8) = 0. This is the only member of A and so A ⊆ B. We cannot
have A ⊊ B: If, say, (a, b, c) ∈ B and (a, b, c) /∈ A then we would have, for some i ∈ {1, 2, 3},
fi(a, b, c) ̸= 0. But fi ∈ I and so fi(a, b, c) = 0, and thus both solution sets are equal.

We can view the row operations performed in the Gauss-Jordan procedure in a different way,
namely as a form of polynomial division. The first row operation performed gave us the new
equation 2y − 2z = −1 which we can also view as the polynomial f ′

2 := 2y − 2z + 1. We could
then write f ′

2 = f2 − 3f1, which is clearly in I. Similarly, the next two row operations gave us the
equation −4z = 3

2 . We can write f ′
3 := f3 − 2f1 and f ′′

3 := f ′
3 − 1

2f
′
2 = −4z − 3

2 . We represent this
in terms of f1 and f2: By substitution, f ′′

3 = f3 − 2f1 − 1
2 (f2 − 3f1) = f3 − 1

2f1 −
1
2f2. This is the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.2. SIMPLER CASES 5

linear version of the polynomial division concept we are developing. We will develop this concept
further with multivariate polynomial systems, which are the main problems of concern for us. The
Gauss-Jordan process is in fact a special case of the process we are developing.

1.2.2. The univariate case. In the linear case, we reframed the concept of row reduction
as a form of polynomial division. We now look at how this procedure behaves in the case of a
non-linear, univariate polynomial. Let f1 = 2x3 + 3x2 − x + 1 ∈ R[x] and f2 = 2x2 + x ∈ R[x].
Perfom long division:

x +1
2x2 +x 2x3 +3x2 −x +1

− 2x3 +x2

2x2 −x +1
− 2x2 +x

−2x +1

We then have that 2x3+3x2−x+1 = (2x2+x)(x+1)+(−2x+1). Conventionally, the term −2x+1
is called the remainder, r. Another way of expressing this, that is similar to Section 1.2.1, is to
write r = f1−xf2−f2. Writing r like this suggests a method: Note that x = 2x3

2x2 is the ratio of the
two largest (with respect to degree) terms in f1 and f2 respectively. Then, letting r1 = 2x2−x+1,
an intermediate remainder, we could write r1 = f1 − 2x3

2x2 f2. Similarly, 1 = 2x2

2x2 is the ratio of the
largest (with respect to degree) terms in r1 and f2 respectively. Then r = r1 − 1 · f2. We can see
the similarity to the Gauss-Jordan method here. We subtract a multiple of one polynomial from
another, where the multiple is in fact the ratio of the largest terms in each polynomial. In Gauss-
Jordan these are simply the coefficients of the current variable being eliminated. Here, it is the
largest products, what we will call lead products (see Definition 2.1.5), of the intermediate remainder
and divisor of the current stage of division. This is then the method: r1 = f1 − lead product f1

lead product f2
· f2

and r = r1 − lead product r1
lead product f2

· f2. This is what motivates the definitions in Definition 3.1.2 and

Definition 3.1.3, and we would write f1
f2−→ r1

f2−→ r or, more compactly, f1 −→f2
+ r, and we say

that f1 reduces to r modulo f2. This will be the main procedure involved in computing Gröbner
bases. With a univariate polynomial the lead product is simply the term with the largest exponent,
but we will have to adjust this definition for the multivariate case (see Section 2.1).

1.2.3. A first look at Gröbner bases and Buchberger’s Algorithm. Let us return to
the linear system in Section 1.2.1. We note that in solving the system in the linear case, when
we chose to eliminate the indeterminates in a particular order we implicitly selected an order of
preference for the indeterminates. We first eliminated x from the polynomials, and then y. We
were left with one polynomial in terms of only z, one in terms of only y and z, and one in terms
of all three indeterminates. Note that we could have swapped the columns around and solved
the resulting system and we would obtain the same solution. This is the equivalent of choosing
a different order of preference for our indeterminates. We will solve the same system again, this
time using Buchberger’s Algorithm (Algorithm 4.2.7). The two central ideas that are used in the
algorithm are the reduction definition in Definition 3.1.3 and something Buchberger called an “S-
polynomial” (see Definition 2.1). The S-polynomial is a function that takes two polynomials and
returns a polynomial, but the specifics are not important for the illustration here.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.3. APPLICATIONS 6

If we run Buchberger’s Algorithm (Algorithm 4.2.7) on the polynomials

f1 = 2x+ y + 3z − 1

f2 = 6x+ 5y + 7z − 2

f3 = 4x+ 3y + z − 3

with the order of importance x ≻ y ≻ z placed on the indeterminates we find that exactly the same
polynomials f ′

2 and f ′′
3 from Section 1.2.1 are generated. If we swapped columns around in the

Gauss-Jordan process this would be the same as choosing a different order on our variables in the
Gröbner basis calculation. How the algorithm works, in simple terms, is this:

We maintain two lists: A list of polynomials G, initialised as G := {f1, f2, f3}, and a list of
pairs of polynomials, initialised as G := {(f1, f2), (f1, f3), (f2, f3)}. We then pick and remove a
pair from G (the algorithm doesn’t stipulate how it should be chosen so it is a random choice), say
(f1, f2) and find the result of reducing the S-polynomial of the pair modulo the polynomials in our
system. So, in our notation (Definition 3.1.3, Definition 4.2.1), this would look as follows:

S(f1, f2)
{f1,f2,f3}−→ + f4.

In this example, the remainder f4 = 2y − 2z + 1 (which is identical to f ′
2 in Section 1.2.1) is not 0

and so we add f4 to G. Now G = {f1, f2, f3, f4}. We also generate all possible new pairs, namely:

(f1, f4), (f2, f4), (f3, f4)

and add these to G . We repeat the process with a new pair, say (f1, f3), and end up with f5 =
−4z − 3

2 (which is identical to f ′′
3 from Section 1.2.1) The new pairs

(f1, f5), (f2, f5), (f3, f5), (f4, f5)

are added to G .
The algorithm continues in this fashion until there are no more pairs left in G to operate on.

New polynomials are added to G when the remainder of division of the S-polynomial of one of the
pairs is not 0, and new pairs are generated and added to G .

There is a substantial inefficiency in the algorithm that is illustrated in the current example.
Two pairs have been divided and two new polynomials added. This is in fact already a Gröbner
basis, and all remaining pairs will have remainder 0 after division. However, there are still 8
more pairs to check and the algorithm will continue performing calculations on these pairs without
stopping to check whether a Gröbner basis has already been found. These are memory intensive
calculations and slow things down considerably. This is why Buchberger also created an improved
version of his algorithm, which we look at in Chapter 5. The improvement is that the algorithm
can throw away some of the pairs because we already know their division will have remainder 0
without having to calculate it.

In this example, the choice was in fact not random but deliberate so as to mimic exactly what
the Gauss-Jordan process did. Allowing things to proceed truly randomly would be analogous
to swapping rows around in the Gauss-Jordan process. Different polynomials or rows might be
produced but they result in an equivalent system.

1.3. Applications

Now that we have a cursory understanding of what Gröbner bases attempt to achieve, we look
at a few examples. The purpose is to illustrate the variety of situations in which polynomial systems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.3. APPLICATIONS 7

Figure 1.3.1.
Find the radius of the red circle in the unit square.

occur and how it is often the case that solving them naively is, at the very least, an inconvenient
undertaking.

1.3.1. A “simple” geometry problem. This is an easily stated problem taken from a
YouTube video [7]. Consider Figure 1.3.1. The problem is to calculate the radius of the red
circle. We have two quarter circles inscribed in a unit square at opposite corners and we are given
that the red circle is tangent to both circles as well as the square. It is easy enough to create a
system of equations for this problem: Using a Cartesian co-ordinate system, let the bottom left
corner of the square be the origin, let the radius of the red circle be r, and let the co-ordinates of
the center of the red circle be (h, k) ∈ [0, 1] × [0, 1]. It is an easy exercise to see that h, k and r
satisfy the following equations:

h2 + k2 = (1 + r)2

(h− 1)2 + (k − 1)2 = (r +
√
2− 1)2

h+ r = 1.

The first two equations are obtained from calculating the distance from (h, k) to (0, 0) and (1, 1)
respectively, and the third is trivial. Now we invite the reader to attempt to solve these equations.
It is doable, using a few algebraic tricks, but even just these three relatively simple polynomial
equations are painful to solve by hand.

If we instead compute the Gröbner basis for the system using a computer and Buchberger’s
Algorithm we will have a new system of polynomial equations. Running the basic Buchberger

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.3. APPLICATIONS 8

Figure 1.3.2.
A tesselation of the plane with 3 different circles [3].

algorithm (Algorithm 4.2.7) yields the following system of equations

h+ r − 1 = 0
49

8
r4 − 29

2
r3 +

43

4
r2 − 5

2
r +

1

8
= 0

−2401

32
r6 +

12593

96
r5 − 3815

144
r4 − 17801

432
r3 +

31871

2592
r2 − 1589

2592
r − 7

81
k +

7

162
= 0.

While these may appear to be worse at first glance this is only due to the size of the coefficients.
In actual fact we have obtained an equation in only one variable, r, the one for which we were
trying to solve. This was done by choosing r as the most important variable, similar to the
right-most column of a linear Gauss-Jordan procedure. It should be evident that deriving
equations like these by hand is not feasible.

1.3.2. Circle packing. Another field of Mathematics that is suitable for an application of a
Gröbner basis is tessellating the plane with circles. Consider Figure 1.3.2, taken from [3].

We ask the question: What are the exact1 radii of the circles in the figure, if the largest circles
have radius 1. Letting the radius of the largest circle be 1, we then have two variables: The radii of
the smaller circles, r1 and r2, with 0 < r1 < r2 < 1. It can be shown that r1 and r2 are simultaneous

1Here, by exact, we mean as a root of a single variable polynomial.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.3. APPLICATIONS 9

roots of the following two polynomials in r1 and r2:

f1 = 16r61r2 − r61 + 48r51r
2
2 + 44r51r2 − 2r51 + 48r41r

3
2 + 58r41r

2
2 + 40r41r2 − r41 + 16r31r

4
2 − 20r31r

3
2

− 28r31r
2
2 + 12r31r2 − 33r21r

4
2 − 56r21r

3
2 − 38r21r

2
2 + 14r1r

4
2 + 12r1r

3
2 − r42

f2 = 2r21r
2
2 − 5r21r2 + r21 + 4r1r

3
2 − 2r1r

2
2 − 6r1r2 + 2r42 + 3r32 + r22.

There is no clear way to approach finding the roots of the polynomials f1 and f2 by hand. We
compute a Gröbner basis for the ideal generated by f1 and f2: Just as in Gauss-Jordan elimination,
where one can rearrange the columns of the associated matrix and solve for a different variable
first, we can pick which of r1 and r2 should be solved for first, by applying a term order, ≻, to the
polynomial ring R[r1, r2]. Upon computing a Gröbner basis for {f1, f2} with r1 ≻ r2, we obtain the
following polynomial in the Gröbner basis

89r141 + 1344r131 + 4008r121 − 464r111 − 2410r101 + 176r91 + 296r81 − 96r71 + r61

as the polynomial in r1 only. We can compute the Gröbner basis again, this time with r2 ≻ r1, and
obtain

4r142 − 36r132 − 27r122 + 162r112 + 135r102 − 88r92 − 73r92 − 14r72 + r62

as another polynomial in a different Gröbner basis, this time in terms of r2 only. Both polynomials
give an exact solution, in the sense that r1 and r2 are roots of the respective polynomials. Numerical
approximations of r1 and r2 are

r1 ≈ 0.65105018588260919953270

r2 ≈ 0.83430604285301743967753

with, as described before, a third radius r3 = 1.

1.3.3. Graph Colouring. A classic problem to which we can also apply Gröbner bases is that
of graph colouring. Consider, for instance, the graph with 8 vertices in Figure 1.3.3 [1, Problem
2.7].

We wish to colour this graph with 3 colours such that no two adjacent vertices have the same
colour. We can represent the 3 colours with the 3 cube roots of unity by letting ξ = e

2πi
3 . Then

the 3 colours are 1, ξ, ξ2. We treat the vertices x1, . . . , x8 labelled in the graph as indeterminates,
the values of which will correspond to a colour. Then we can create equations using the fact that
each variable must be a cube root of unity:

x3
i − 1 = 0, 1 ≤ i ≤ 8.

Another property to use is that if two distinct vertices xi and xj are connected by an edge they
need to have a different color. We know that x3

i = x3
j and so

(xi − xj)(x
2
i + xixj + x2

j) = 0.

Since we want xi and xj to have different colors we must have

x2
i + xixj + x2

j = 0 (i, j) ∈ {(i, j) | xi and xj connected by an edge}.

The set of pairs of vertices connected by an edge in Figure 1.3.3 is

{(1, 2), (1, 5), (1, 6), (2, 3), (2, 4), (2, 8), (3, 4), (3, 8), (4, 5), (4, 7), (5, 6), (5, 7), (6, 7), (7, 8)}.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.3. APPLICATIONS 10

Figure 1.3.3.
A simple graph with 8 vertices.

This brings us to a total of 22 equations for 8 variables. We choose to order the variables (for
no particular reason other than there must be an order) as x1 ≻ x2 ≻ . . . ≻ x8. Computing the
Gröbner basis gives us the set

G =

x1 − x7,
x2 + x7 + x8,

x3 − x7,
x4 − x8,

x5 + x7 + x8,
x6 − x8,

x2
7 + x7x8 + x2

8,
x3
8 − 1

.

We can now give a colouring for the graph: We can choose any colour for x8, since x3
8 − 1 is the

only polynomial in one variable. Let us say that x8 is red. From the polynomial x2
7 + x7x8 + x2

8

we know that x7 must be a different colour from x8. This is because if they were the same colour,
whether x8 = 1, x8 = ξ or x8 = ξ2, we would have x2

7+x7x8+x2
8 ̸= 0. So we say that x7 is blue, for

instance. Now from x1−x7 = 0 and x3−x7 = 0 we know x1 and x3 must also be blue. Similarly we
must have that x4 and x6 are red. Lastly, because 1+ξ+ξ2 = 0, the two equations x2+x7+x8 = 0
and x5 + x7 + x8 = 0 indicate that x2 and x5 have the same colour, and that colour is different
from x7 and x8. So we can say that x2 and x5 are green. We see that the graph has now been
coloured (Figure 1.3.4). This is in fact the only possible colouring of the graph, up to permuting
the colours. Some other graphs may have multiple possible colourings and this is reflected in the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.3. APPLICATIONS 11

Figure 1.3.4.
A 3 colouring of the graph.

corresponding Gröbner basis: There may be polynomials with multiple solutions for instance, and
in general the Gröbner basis will look more complicated.

These three examples should give some sense of the variety of problems in which a Gröbner
basis can be used.

Having introduced the general notion of Gröbner bases and some of their applicatons, we can
now delve into the technical aspects. In Chapter 2 we define term orders, develop some theory
relating to Noetherian rings, and prove the Hilbert Basis Theorem, a crucial result necessary to
prove the correctness of the algorithms used to compute Gröbner bases (Algorithm 4.2.7 and Algo-
rithm 5.4.3).

Chapter 3 is a short chapter on developing the polynomial arithmetic necessary for all the
computations performed by the algorithms.

In Chapter 4 we come to the main results of this dissertation. We develop the theory of
Gröbner bases and present Buchberger’s Theorem (Theorem 4.2.6), Buchberger’s Algorithm (Algo-
rithm 4.2.7) and prove the algorithm’s correctness.

Lastly, in Chapter 5 we further develop the theory of Gröbner bases in the context of modules,
and we present the improved version of Buchberger’s Algorithm (Algorithm 5.4.3) and prove its
correctness.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2

Basics and the Hilbert Basis Theorem

We will be working almost exclusively with commutative rings of polynomials in n variables
over a field. The examples from Chapter 1 were for polynomials over the real numbers, but in fact
the field may be arbitrary and we denote this with k. We now define some basic notation that will
be used extensively:

• We denote N0 := N ∪ {0}.
• For an n ∈ N, if x1, . . . , xn are indeterminates then we denote the set of all polynomials

in these indeterminates, with coefficients in k, by k[x1, . . . , xn]. This set together with
the usual operations of addition and multiplication of polynomials is then a commutative
ring.
• For constants a ∈ k and β1, . . . , βn ∈ N0, we consider a polynomial to be a finite sum of

terms of the form axβ1

1 . . . xβn
n . We call xβ1

1 . . . xβn
n a power product.

• We denote with Pn the set of all power products in n variables, x1, ..., xn. Thus Pn :=

{xβ1

1 . . . xβn
n | (β1, . . . , βn) ∈ N0

n}. When the exponents are arbitrary we will simply refer
to the power product by a single capital letter, for compactness, i.e. X ∈ Pn. The set Pn

is a basis for the set k[x1, . . . , xn], interpreted as a vector space over k.
• If R is a commutative ring, s ∈ N and f1, . . . , fs ∈ R, then the ideal generated by these

elements is denoted ⟨f1, . . . , fs⟩ := {u1f1 + . . .+ usfs | u1, . . . , us ∈ R}.
• While it is conventional to for a|b to mean a divides b, in this paper we mean the opposite,

that b divides a.

2.1. Term Orders

As mentioned in Chapter 1, we require a method to order the terms in our polynomials. In
univariate polynomials the concept of degree is important. One term in a polynomial is always
divisible by another term of lower degree. When dividing we proceed from the larger powers to the
smaller ones. When dealing with multivariate polynomials, however, this order becomes ambiguous.
Consider the polynomial x2+y2+xy. All three terms have the same degree so which one is largest?
We need to be able to decide on an order so that division can proceed unambiguously. Just as
in Gauss-Jordan elimination, where indeterminates are implicitly given some order of preference,
we do the same, for instance z ≻ y ≻ x. However we need an additional property to be able to
decide which of the terms x2, y2 and xy is largest, which we will refer to as a term order. Different
term orders will in fact give rise to different Gröbner bases, but for the purposes of a Gröbner
basis’ existence, and the associated solutions, the choice of term order is not relevant. As a side
note, the choice of term order matters under some circumstances when considering the efficiency of
calculations [1, Example 2.3.3].

We begin with the usual definition of degree:

12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.1. TERM ORDERS 13

Definition 2.1.1. Let n ∈ N, (β1, . . . , βn) ∈ N0
n and let xβ1

1 xβ2

2 · · ·xβn
n = X ∈ Pn be a power

product. We define the degree of X to be deg(X) :=
∑n

i=1 βi.

We now define term orders. It should be noted that the definition is rather broad, allowing for
many different possible term orderings.

Definition 2.1.2. [1, Definition 1.4.1]. Let n ∈ N. A term order on Pn is a total order ≺
satisfying the following conditions:

(1) For all X ∈ Pn and X ̸= 1: 1 ≺ X.
(2) For all Y ∈ Pn: X ≺ Z =⇒ XY ≺ ZY .

We naturally extend the notation in Definition 2.1.2 by defining: X ⪯ Y ⇐⇒ X ≺ Y or X = Y .

Definition 2.1.3. Let n ∈ N and let X,Y ∈ Pn. We say that Y is divisible by X, written Y |X
if there exists a Z ∈ Pn such that XZ = Y .

And now a simple condition for ordering terms.

Proposition 2.1.4. [1, Proposition 1.4.5]. Let n ∈ N, let X ̸= Y ∈ Pn such that Y |X and let
≺ be a term order on k[x1, . . . , xn]. Then X ≺ Y .

Proof. Since Y |X there exists a Z ∈ Pn such that Y = XZ and Z ̸= 1. We also have 1 ≺ Z
from Definition 2.1.2(1). Then from Definition 2.1.2(2) we have X ≺ XZ = Y . □

We can now provide some more notation based on term orders that will be used extensively.

Definition 2.1.5. Let ≺ be any term order on Pn. For polynomials

f, g, f1, . . . , fs ∈ k[x1, . . . , xn]

and a finite set F := {f1, . . . , fs} we define the following:

(1) The term with the largest power product in f with respect to the term order is called the
lead term of f and will be denoted by lt(f).

(2) The power product of the lead term of f is called the lead product and will be denoted by
lp(f).

(3) The coefficient of the lead term of f is called the lead coefficient and will be denoted by
lc(f).

(4) We denote with Lt(F) the ideal generated by all lead terms of the polynomials in the set
F , i.e. Lt(F) := ⟨lt(f1), . . . , lt(fs)⟩.

(5) We define the expression (lower terms of f) to mean f − lt(f).
(6) The least common multiple of f and g, denoted lcm(f, g) is a polynomial l ∈ k[x1, . . . , xn]

such that:
(a) There exist f ′, g′ ∈ k[x1, . . . , xn] such that ff ′ = gg′ = l.
(b) If there exists an h ∈ k[x1, . . . , xn] and f ′′, g′′ ∈ k[x1, . . . , xn] such that ff ′′ = gg′′ = h

then there exists l′ ∈ k[x1, . . . , xn] such that ll′ = h.
(c) lc(l) = 1.

(7) The greatest common divisor of f and g, denoted gcd(f, g), is a polynomial d ∈ k[x1, . . . , xn]
such that:
(a) There exist f ′, g′ ∈ k[x1, . . . , xn] such that df ′ = f and dg′ = g.
(b) If there exists an h ∈ k[x1, . . . , xn] and f ′′, g′′ ∈ k[x1, . . . , xn] such that hf ′′ = f and

hg′′ = g then there exists d′ ∈ k[x1, . . . , xn] such that hd′ = d.
(c) lc(d) = 1.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.2. THE HILBERT BASIS THEOREM 14

We now give a few examples of term orders that are used in practice.

Example 2.1.6. Let n ∈ N. For α1, . . . , αn, β1, . . . , βn ∈ N0 we define the lexicographical order,
≺lex, on P as follows:

xα1
1 xα2

2 · · ·xαn
n ≺lex xβ1

1 xβ2

2 · · ·xβn
n if for the least i such that αi ̸= βi we have αi < βi.

Example 2.1.7. Let n ∈ N. For α1, . . . , αn, β1, . . . , βn ∈ N0 we define the degree lexicographical
order, ≺deglex, on P as follows:

xα1
1 xα2

2 · · ·xαn
n ≺deglex xβ1

1 xβ2

2 · · ·xβn
n if

∑n

i=1 αi <
∑n

i=1 βi or∑n
i=1 αi =

∑n
i=1 βi and

xα1
1 xα2

2 · · ·xαn
n ≺lex xβ1

1 xβ2

2 · · ·xβn
n

Example 2.1.8. For α1, . . . , αn, β1, . . . , βn ∈ N0 we define the degree reverse lexicographical
order, ≺degrevlex, on P as follows:

xα1
1 xα2

2 · · ·xαn
n ≺degrevlex xβ1

1 xβ2

2 · · ·xβn
n if

∑n

i=1 αi <
∑n

i=1 βi or∑n
i=1 αi =

∑n
i=1 βi and for the greatest i such that

αi ̸= βi we have αi < βi

2.2. The Hilbert Basis Theorem

Several results in the coming chapters rely on the fact that the term orders defined in the
previous section are, in fact, well-orderings. To prove this fact we require some theory on Noetherian
rings and the Hilbert Basis Theorem (Theorem 2.2.5).

Definition 2.2.1. A commutative ring R is Noetherian if for any sequence of ideals {Ii}i∈N in
R such that

I1 ⊆ I2 ⊆ · · ·
there exists an N ∈ N such that Ii = IN for all i ≥ N .

The following result provides us with a different but equivalent condition for a ring to be
Noetherian, namely that every ideal in the ring is finitely generated. This simply means that any
ideal has a finite generating set.

Theorem 2.2.2. [1, Theorem 1.1.2]. Let R be a commutative ring. The following conditions
are equivalent for R:

(i) For any ideal I ⊆ R there exists an s ∈ N and f1, . . . , fs ∈ R such that I = ⟨f1, . . . , fs⟩.
(ii) The ring R is Noetherian.

Proof. Assume that (i) holds and let I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · be an ascending chain of
ideals. Let I :=

⋃∞
i=1 Ii, which is then an ideal of R. By assumption there exists an s ∈ N and

f1, . . . , fs ∈ R such that I = ⟨f1, . . . , fs⟩. For each i ∈ {1, . . . , s}, we have fi ∈ I which implies
that there exists an Ni ∈ N such that fi ∈ INi

. Letting N := max1≤i≤s(Ni) we then have that,
for each i ∈ {1, . . . , s}, fi ∈ IN . This means I ⊆ IN and so I = IN and since I =

⋃∞
i=1 Ii we have

IN = IN+1 = IN+2 = · · · .
Now assume that the ring R is Noetherian and suppose that there is an ideal I ⊆ R that is

not finitely generated. Let g1 ∈ I be arbitrary. Since g1 cannot generate I there exists g2 ∈ I such
that g2 /∈ ⟨g1⟩ which implies that ⟨g1⟩ ⊊ ⟨g1, g2⟩. We repeat this process and obtain g3 ∈ I such
that ⟨g1⟩ ⊊ ⟨g1, g2⟩ ⊊ ⟨g1, g2, g3⟩. We can continue this process indefinitely and obtain a strictly

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.2. THE HILBERT BASIS THEOREM 15

increasing chain of ideals of R, which violates the assumption that the ring is Noetherian. Thus we
must have that there exists some s ∈ N and some f1, . . . , fs ∈ R such that I = ⟨f1, . . . , fs⟩. □

The next two results will allow us to show that polynomial rings are Noetherian. The fact that
polynomial rings are Noetherian, or equivalently, that all their ideals are finitely generated, is The
Hilbert Basis Theorem (Theorem 2.2.5).

Lemma 2.2.3. [1, Theorem 1.1.3]. Let R be a commutative Noetherian ring. The polynomial
ring R[x] is Noetherian.

Proof. Let I ⊂ R[x] be an ideal. We show that I is finitely generated which, by Theorem 2.2.2,
is a sufficient condition for a ring to be Noetherian. We define, for each n ∈ N0,

In := {r ∈ R | r is the leading coefficient of a polynomial in I of degree n} ∪ {0}.
Fix any n ∈ N0. We claim that In is an ideal of R. Let r ∈ R, r1 ∈ In and let f1 ∈ I be a
polynomial corresponding to r1. Then the polynomial rf1 ∈ I, has leading coefficient rr1 and has
degree n, so rr1 ∈ In. We also have, for r1, r2 ∈ In, that either r1 + r2 = 0 ∈ In or r1 + r2 ∈ In
by taking the sum of corresponding polynomials, f1 + f2, which has the same degree as f1 and f2,
and leading coefficient r1 + r2.

We now claim that In ⊆ In+1: If r ∈ In then for a corresponding polynomial f ∈ I and
x ∈ R[x], fx is in I, has degree n+ 1 and leading coefficient r, so r ∈ In+1. These {In}n∈N0

then
define an ascending chain of ideals of R. Since R is Noetherian there exists an N ∈ N0 such that
for all n ≥ N , In = IN .

By Theorem 2.2.2, for each i ∈ N0 there exist ri1, . . . , riti ∈ R that generate Ii, since R is
Noetherian. Now for each i ∈ {0, . . . , N} and j ∈ {1, . . . , ti}, let fij be a polynomial in I of degree
i with leading coefficient rij . Consider the finitely generated ideal I ′ := ⟨fij |0 ≤ i ≤ N, 1 ≤ j ≤ ti⟩.
We claim that I ′ = I.

Proof of claim: Since each fij ∈ I, we have I ′ ⊆ I. For the reverse inclusion, let f ∈ I be a
polynomial of degree m ∈ N0. We argue by induction on m that f ∈ I ′. If f = 0 or m = 0 then
f = r for some r ∈ R and hence f ∈ I0. Then f ∈ I ′.

Now let m > 0 and assume that all the members of I of degree less than m are in I ′. Let r be
the leading coefficient of f .

If m ≤ N we have r ∈ Im and so there exist s1, . . . , stm ∈ R such that r =
∑tm

j=1 sjrmj .
For each j ∈ {1, . . . , tm} the polynomial fmj has degree m and leading coefficient rmj . Thus the
polynomial g :=

∑tm
j=1 sjfmj is in I ′, has degree m and has leading coefficient r. This means the

polynomials f and g have the same leading coefficient, and so f − g has degree less than m and so
f − g ∈ I ′ by assumption and thus f = (f − g) + g ∈ I ′.

On the other hand, if m > N we have r ∈ Im = IN and so there exist s1, . . . , stN ∈ R such
that r =

∑tN
j=1 sjrNj . For each j ∈ {1, . . . , tN}, the polynomial fNj has degree N , and leading

coefficient rNj . Thus the polynomial g :=
∑tN

j=1 sjx
m−NfNj is in I ′, has degree m and has leading

coefficient r. Thus, since f and g have the same leading coefficient, f − g has degree less than m
and so f − g ∈ I ′ by assumption. Then f = (f − g) + g ∈ I ′.

Hence, by induction on m, all polynomials in I are also in I ′. Thus I ⊆ I ′ whence I = I ′. □

We need one more result before we can prove the Hilbert Basis Theorem.

Lemma 2.2.4. Let 2 ≤ n ∈ N and let k be a field. Let k[x1, . . . , xn−1][xn] denote the polynomial
ring in xn with coefficients in k[x1, . . . , xn−1]. Then k[x1, . . . , xn−1][xn] and k[x1, . . . , xn] are ring-
isomorphic.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.2. THE HILBERT BASIS THEOREM 16

Proof. For any β = (β1, . . . , βn) ∈ Nn
0 , define β̄ := (β1, . . . , βn−1) ∈ Nn−1

0 . In addition, for
β ∈ Nn

0 , define xβ := xβ1

1 · . . . · xβn
n and xβ := xβ1

1 · . . . · x
βn−1

n−1 .
Define, for r ∈ k and β = (β1, . . . , βn) ∈ Nn

0 , the map ρ : k[x1, . . . , xn]→ k[x1, . . . , xn−1][xn] as
follows:

ρ(rxβ) := rxβxβn
n .

The map ρ extends uniquely to a ring homomorphism on the whole of k[x1, . . . , xn]. For a fixed
N , i ∈ {1, . . . , N}, and βi = (βi1, . . . , βin) ∈ Nn

0 , we have
∑N

i=1 rix
βi ∈ k[x1, . . . , xn], and all

polynomials in k[x1, . . . , xn] can be expressed in this manner. Now define:

ρ

(
N∑
i=1

rix
βi

)
=

N∑
i=1

ρ
(
rix

βi
)

=
N∑
i=1

rix
βixβin

n .

Define, for p ∈ k[x1, . . . , xn−1] and d ∈ N0, the map σ : k[x1, . . . , xn−1][xn]→ k[x1, . . . , xn] as

σ(pxd
n) := pxd

n.

The map σ extends uniquely to a ring homomorphism on the whole of k[x1, . . . , xn][xn−1]. For a
fixed N , p1, . . . , pN ∈ k[x1, . . . , xn−1] and d1, . . . , dN ∈ N0 we have

∑N
i=1 pix

di
n ∈ k[x1, . . . , xn−1][xn]

and any polynomial in k[x1, . . . , xn−1][xn] can be expressed in this manner. Now define:

σ(
N∑
i=1

pix
di
n) =

N∑
i=1

(pix
di
n).

The maps ρ and σ are inverses. So we have that k[x1, . . . , xn] and k[x1, . . . , xn−1][xn] are ring-
isomorphic. □

Now we have all the pieces needed to prove the Hilbert Basis Theorem, an important result.
It is used in the proofs of Theorem 4.2.9 and Theorem 5.4.4, which, respectively, establish the
correctness of Algorithm 4.2.7 and Algorithm 5.4.3.

Theorem 2.2.5. (Hilbert Basis Theorem) [1, Theorem 1.1.1]. Let n ∈ N and let k be a field.
The polynomial ring k[x1, . . . , xn] in n indeterminates is Noetherian.

Proof. We proceed by induction on the number of indeterminates. With one indeterminate
we are in the situation in Lemma 2.2.3, and so we have that k[x1] is a Noetherian ring, since the
field k is Noetherian.1

Now fix a natural number i and assume that k[x1, . . . , xi] is a Noetherian ring. Consider

k[x1, . . . , xi][xi+1]

the polynomial ring over xi+1 with coefficients in k[x1, . . . , xi]. By Lemma 2.2.4 this ring is ring-
isomorphic to k[x1, . . . , xi+1], under an isomorphism I.

Now, since k[x1, . . . , xi] is Noetherian by the induction hypothesis, we can say that

k[x1, . . . , xi][xi+1]

1This is trivial: k and {0} are the only ideals of k.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.2. THE HILBERT BASIS THEOREM 17

is also Noetherian, using Lemma 2.2.3. Thus we have that k[x1, . . . , xi+1] is Noetherian, since
k[x1, . . . , xi][xi+1] ≃

I
k[x1, . . . , xi+1]. This completes the induction and so we have that for any

n ∈ N, k[x1, . . . , xn] is Noetherian. □

Finally we come to the crucial result that term orders are well-orderings. As previously men-
tioned, this is needed to prove that the underlying algorithms for computing Gröbner bases termi-
nate.

Proposition 2.2.6. [1, Theorem 1.4.6]. Let n ∈ N. Any term order ≺ on Pn is a well-ordering.

Proof. Suppose for a contradiction that there exists a sequence (Xi) ∈ Pn such that X1 ≻
X2 ≻ We claim that we have a chain of ideals in k[x1, . . . , xn]:

⟨X1⟩ ⊊ ⟨X1, X2⟩ ⊊ . . .

For every i ∈ N we prove the claim that ⟨X1, . . . , Xi⟩ ̸= ⟨X1, . . . , Xi+1⟩. Fix an i ∈ N and suppose
that ⟨X1, . . . , Xi⟩ = ⟨X1, . . . , Xi+1⟩. Then there exist polynomials u1, . . . , ui ∈ k[x1, . . . , xn] such
that Xi+1 =

∑i
k=1 ukXk. For any j ∈ {1, . . . , i}, uj can be written as a linear combination of

power products and we have that every term of the polynomial ujXj is a term multiplied by Xj ,
meaning each term of ujXj is divisible by Xj . Thus for each term of

∑i
k=1 ukXk there exists

some Xj ∈ {X1, . . . , Xi} that divides that term. However, we must have a term in
∑i

j=1 ujXj

whose power product is Xi+1. Thus Xi+1 is divisible by some Xj ∈ {X1, . . . , Xi} which, from
Proposition 2.1.4, implies that Xj ≺ Xi+1. However from the assumption that X1 ≻ X2 ≻ . . . and
the fact that j < i + 1, we must have Xi+1 ≻ Xj , a contradiction. So we have proved the claim
and thus have an infinite, increasing chain of ideals in k[x1, . . . , xn], violating the Hilbert Basis
Theorem. This proves that ≺ is a well-ordering. □

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3

Polynomial Arithmetic

Much of our computing power will be dedicated to polynomial arithmetic. Throughout the
various methods for computing Gröbner bases we make heavy use of some simple arithmetic algo-
rithms.

3.1. Division Algorithms

The multivariate division algorithm (Algorithm 3.1.5), if applied to a linear polynomial, is in
fact identical to the row operations performed in Gauss elimination, as illustrated in the linear case
in Section 1.2.1. We give the univariate polynomial division algorithm for the reader to compare,
but do not prove its correctness.

Algorithm 3.1.1. The division algorithm (univariate).

Input: Two polynomials f, g ∈ k[x1], g ̸= 0

Output: A quotient and remainder, q, r, such that f = gq + r
and r = 0 or deg(r) < deg(g)

Implementation:

Initialisation: q := 0, r := f

While r ̸= 0 and deg(g) ≤ deg(r):
q := q + lt(r)

lt(g)

r := r − lt(r)
lt(g)g

The following definition is the multivariate analog to polynomial long division, hereafter referred
to as polynomial reduction. This idea was mentioned previously, in Chapter 1, and we formalise it
here.

Definition 3.1.2. [1, Definition 1.5.1]. Let n ∈ N and let f, g, h ∈k[x1, . . . , xn], with g ̸= 0.
We say that f reduced to h modulo g in one step, written f −→g h, if lp(g) divides a non-zero term
cX, c ∈ k and X ∈ Pn, that appears in f and h = f − cX

lt(g)g.

Next, we extend this idea to allow us to reduce a polynomial by several polynomials.

Definition 3.1.3. [1, Definition 1.5.3]. Let s, n ∈ N, let f, h ∈ k[x1, . . . , xn] be polynomials
and let F = {f1, . . . , fs} ⊆ k[x1, . . . , xn] be a set of non-zero polynomials. We say that f reduces
to h modulo F , denoted f −→F

+ h, if there exists a sequence of indices i1, . . . , it ∈ {1, . . . , s} and a
sequence of polynomials h1, . . . , ht−1 ∈ k[x1, . . . , xn] such that

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.1. DIVISION ALGORITHMS 19

f
fi1−→ h1

fi2−→ h2

fi3−→ . . .
fit−1−→ ht−1

fit−→ h.

One can see the analogy between the univariate and multivariate division. Both are expressing a
polynomial as a combination of other polynomials. This is by design, since expressing a polynomial
this way is exactly what it means for that polynomial to be in the ideal generated by the polynomials
used in the reduction.

Definition 3.1.4. [1, Definition 1.5.5]. Let s, n ∈ N, let f ∈ k[x1, . . . , xn] and let F =
{f1, . . . , fs} ⊆ k[x1, . . . , xn] be a set of polynomials. Let f −→F

+ r for some r ∈ k[x1, . . . , xn]. If
r = 0 or not one of the power products in r is divisible by any of the leading power products of
polynomial in F we call r a remainder and say that r is reduced with respect to F . If not one of
the power products in f is divisible by any of the leading power products of polynomials in F then
we say f is irreducible modulo F .

We now present the division algorithm for multivariate polynomials. It is an extremely impor-
tant algorithm, as it is used in virtually every step of the computation of a Gröbner basis and is
responsible for most of the computing power used.

Algorithm 3.1.5. [1, Algorithm 1.5.1]. The Division Algorithm (multivariate).

Input: f, f1, . . . , fs ∈ k[x1, . . . , xn] with f1, . . . , fs all non-zero.

Output: r, the remainder when f is reduced modulo f1, . . . , fs

Implementation:

Initialisation: u1, . . . , us := 0, r := 0, h := f.

While h ̸= 0:

If there exists an i ∈ {1, . . . , s} such that lp(h)|lp(fi) then:
Choose the least such i
ui := ui +

lt(h)
lt(fi)

h := h− lt(h)
lt(fi)

fi
Else:

r := r + lt(h)‘
h := h− lt(h)

Return r

We provide a simple example illustrating Algorithm 3.1.5.

Example 3.1.6. The Division Algorithm
Let f1 = xy− y, f2 = y2−x, and f = xy2 and reduce f modulo {f1, f2} as in Algorithm 3.1.5,

using the term order ≺deglex, (Example 2.1.7), with y ≻ x. Initialising the working variables, we
have h = f and r = u1 = u2 = 0.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.1. DIVISION ALGORITHMS 20

On the first pass through the while loop, we have that xy = lp(f1) divides lp(h) = xy2. Then

u1 := u1 +
lt(h)
lt(f1)

= 0 +
xy2

xy
= y

h := h− lt(h)
lt(f1)

f1 = xy2 − y(xy − y) = y2

On the second pass through the while loop, we have that lp(f1) = xy does not divide lp(h) = y2,
but lp(f2) = y2 does. Then

u2 := u2 +
lt(h)
lt(f2)

= 0 +
y2

y2
= 1

h := h− lt(h)
lt(f2)

f2 = y2 − 1 · (y2 − x) = x

On the third pass through the while loop, we have that neither lp(f1) = xy divides lp(h) = x
nor lp(f2) = y2 divides lp(h). Then

r := r + lt(h) = x

h := h− lt(h) = 0

The while loop then stops, since h = 0, and we have that

f −→{f1,f2}
+ x

with f = yf1 + f2 + x.

Importantly, the lead product of the polynomial being reduced is either cancelled and written
as a product of the lead products of the reducors or it is the lead product of the remainder. This
fact is encapsulated in the proof of correctness for the algorithm below.

Theorem 3.1.7. [1, Theorem 1.5.9]. Let ≺ be a term order. For s, n ∈ N, given a set of non-
zero polynomials F := {f1, . . . , fs} and f ∈ k[x1, . . . , xn], Algorithm 3.1.5 produces polynomials
u1, . . . , us, r ∈ k[x1, . . . , xn] such that f = u1f1 + . . . + usfs + r. The remainder r is reduced with
respect to F and lp(f) = max(max1≤i≤s(lp(ui)lp(fi)), lp(r)).

Proof. We first show that the algorithm terminates. For each i = 1, . . . , s, let hj , uij , rj be the
values of h, ui and r respectively after the j−th iteration of the while loop in Algorithm 3.1.5. We
claim that {lp(hj)}j∈N0 is a strictly decreasing sequence with respect to ≺. At the j−th iteration,
there are two cases for the computation of hj+1. The first is that lp(hj)|lp(fi) for some i ∈ {1, . . . , s},
and so hj+1 = hj − lt(hj)

lt(fi)
fi. We can then write hj − lt(hj)

lt(fi)
fi = hj − lt(hj)

lt(fi)
(lt(fi)+ lower terms of fi)

to see that the leading term of hj is cancelled and only smaller terms are added to hj . The second
case is that lp(hj) ∤ lp(fi) for all i ∈ {1, . . . , s}, and so hj+1 = hj − lt(hj). In this case the leading
term of hj is removed. In both cases we have lp(hj+1) ≺ lp(hj). Thus {lp(hj)}j∈N0

is a a strictly
decreasing sequence of power products and since our term order is a well-ordering the sequence
must have a least element, specifically hl = 0 for some l ∈ N. Hence the algorithm terminates.

To show that r cannot be reduced modulo F , we note that r0 = 0. At every stage of iteration
j ≥ 1, if an alteration is made to rj , it is the adding of the term lt(hj). For this to happen we must
have had that lp(hj) ∤ lp(fi) for all i ∈ {1, . . . , s}. Thus no term of rj is divisible by any lp(fi)
at any stage of iteration j. Thus when the algorithm terminates we have that r will also have no
terms that are divisible by any lp(fi). Thus r cannot be reduced modulo F .

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.1. DIVISION ALGORITHMS 21

It remains to prove lp(f) = max(max1≤i≤s(lp(ui)lp(fi)), lp(r)). We do this by showing that
lp(f) = max(max1≤i≤s(lp(ui)lp(fi)), lp(r), lp(hj)) is a loop invariant1. The loop invariant lp(f) has
the correct value upon initialization: We have (for j = 0) ui0 = 0 for each i ∈ {1, . . . , s}, r0 = 0
and h0 = f so lp(f) = lp(h0) and thus lp(f) = max(max1≤i≤s(lp(ui0)lp(fi)), lp(r0), lp(h0)) is true.

Now assume the loop has iterated j ≥ 1 times and that for the values of u1j , . . . , usj ,rj ,hj

we have lp(f) = max(max1≤i≤s(lp(uij)lp(fi)), lp(rj), lp(hj)). Upon iteration there are two cases:
Either lp(hj)|lp(fk) for some k ∈ {1, . . . , s} or lp(hj) ∤ lp(fk) for all k ∈ {1, . . . , s}. Note also that,
since {lp(hj)}j∈N0 was shown to be a strictly decreasing sequence, for j ≥ 1, we have lp(hj) ≺ lp(f).

Case 1: Let lp(hj)|lp(fk) for some k ∈ {1, . . . , s}. Since lp(hj) ≺ lp(f) for j ≥ 1, we
must have one of the products in {lp(uij)lp(fi)}i∈{1,...,s} ∪ {lp(rj)} ∪ {hj} equal to lp(f). It
may be the case that there is more than one k ∈ {1, . . . , s} such that lp(hj)|lp(fk). For the
least such k we add the term lt(hj)

lt(fk)
to ukj and subtract the polynomial lt(hj)

lt(fk)
fk from hj to ob-

tain uk(j+1) and hj+1 respectively. The other values {uij}i̸=k and rj remain unchanged through
this iteration. We claim that the updated values uk(j+1) and hj+1 will preserve the equality
lp(f) = max(max1≤i≤s(lp(ui(j+1))lp(fi)), lp(rj+1), lp(hj+1)). We need only consider any new prod-
ucts that appear in {lp(ui(j+1))lp(fi)}i∈{1,...,s} ∪ {lp(rj+1)} ∪ {hj} and we show that they are
less than lp(f) with respect to the term order ≺. We already know that lp(hj+1) ≺ lp(f). For
lp(uk(j+1))lp(fk), the only difference between uk(j+1) and ukj is the term lt(hj)

lt(fk)
. For this term con-

sider lp(lt(hj)
lt(fk)

fk): We have lp(lt(hj)
lt(fk)

fk) = lp(lt(hj)
lt(fk)

)lp(fk) = lp(hj) ≺ lp(f) and so any new products

in lt(hj)
lt(fk)

fk are also less than lp(f). Since, for some k ∈ {1, . . . , s}, we had lp(hj)|lp(fk), rj is unal-
tered and rj = rj+1. Thus the equality lp(f) = max(max(lp(ui(j+1))lp(fi))i, lp(rj+1), lp(hj+1)) is
preserved.

Case 2: Let lp(hj) ∤ lp(fk) for all k ∈ {1, . . . , s}. In this case rj and hj are altered by
addition and subtraction of lt(hj) respectively and all {uij}i are unaltered. Clearly if one of lp(rj)
or lp(hj) was equal to lp(f) before alteration one of them will be afterwards as well, since the
only change is lt(hj) being subtracted from hj and added to rj . So in this case we also have
lp(f) = max(max(lp(ui(j+1))lp(fi))i, lp(rj+1), lp(hj+1))

In both cases we have lp(f) = max(max1≤i≤s(lp(ui(j+1))lp(fi)), lp(rj+1), lp(hj+1)) and since
the algorithm terminates with hl = 0 we must have lp(f) = max(max1≤i≤s(lp(uil)lp(fi)), lp(rl)).
Letting u1l, . . . , usl and rl denote the outputs of the algorithm, u1, . . . , us and r respectively, we
have the result. □

It should be noted that the remainder computed by the above algorithm need not be unique. For
example, consider f = x2y2+x+y, f1 = x2y+1, and f2 = xy2+1. If we use ≺lex, (Example 2.1.6)
with x ≻ y and run Algorithm 3.1.5, we see that u1 = y, u2 = 0, r1 = x and f = u1f1 + u2f2 + r1,
thus

f −→{f1,f2} r1

and r1 is reduced modulo {f1, f2}. Then lp(f) = max{max{lp(g1)lp(x)}, lp(y)}} = x2y2, as
promised by Theorem 3.1.7. Now, we reverse the roles of f1 and f2. We then have u1 = x,
u2 = 0, r2 = y and f = u1f1 + u2f2 + r2, and thus

f −→{f1,f2} r2

1A loop invariant is a value in the loop of an algorithm that doesn’t change from any one iteration of the loop
to the next.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.1. DIVISION ALGORITHMS 22

and r2 is reduced modulo {f1, f2}. We still have lp(f) = max{max{lp(g1)lp(y)}, lp(x)}} = x2y2,
but r1 ̸= r2.

Theorem 4.1.9 will show that a sufficient condition for a set of polynomials to be a Gröbner
basis for an ideal is that the remainder upon applying the division algorithm is always unique, for
any polynomial.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4

Gröbner bases

We now come to the main results of this dissertation. Here we formally define the Gröbner
basis and present an algorithm used in its computation. We prove the correctness of the algorithm
as well as several other important results. Corollary 4.1.5 guarantees the existence of a Gröbner
basis and Theorem 4.3.7 guarantees we can find a unique Gröbner basis.

4.1. Preliminaries

Definition 4.1.1. Let t, n ∈ N and let G := {g1, . . . , gt} ⊆ k[x1, . . . , xn] be a set of non-zero
polynomials contained in an ideal I of k[x1, . . . , xn]. The set G is called a Gröbner basis for I if,
for all non-zero f ∈ I, there exists i ∈ {1, . . . , t} such that lp(gi) divides lp(f).

The following theorem gives some equivalent conditions for when a finite subset of an ideal is
a Gröbner basis. These equivalent conditions are very useful in proving some of the other results
that follow.

Theorem 4.1.2. [1, Theorem 1.6.2]. Let n, t ∈ N, let I be a non-zero ideal of k[x1, . . . , xn] and
let G = {g1, . . . , gt} ⊆ I. The following statements are equivalent:

(i) The set G is a Gröbner basis for I.
(ii) For any f ∈ k[x1, . . . , xn], f ∈ I if and only if f −→G

+ 0.
(iii) For any f ∈ k[x1, . . . , xn], f ∈ I if and only if there exist h1, . . . , ht ∈ k[x1, . . . , xn] such

that f =
∑t

i=1 higi with lp(f) = max1≤i≤t(lp(hi)lp(gi)).
(iv) Lt(G) = Lt(I).

Proof. (i)⇒(ii): Let G be a Gröbner basis for I and let f ∈ k[x1, . . . , xn] be arbitrary.
Assume f ∈ I. By Theorem 3.1.7 there exists r ∈ k[x1, . . . , xn], reduced with respect to G, and
u1, . . . , ut ∈ k[x1, . . . , xn] such that f =

∑t
i=1 giui + r. If r = 0 we have f −→G

+ 0. If r ̸= 0 then,
since we have f, g1u1 + . . .+ gtut ∈ I, we have r = f − (g1u1 + . . .+ gtut) ∈ I. By the definition of
a Gröbner basis, there exists an i ∈ {1, . . . , t} such that lp(gi) divides lp(r). This then contradicts
the fact that r is reduced with respect to G and so we cannot have r ̸= 0. Thus r = 0 and f −→G

+ 0.
Conversely, assume that f −→G

+ 0. Then by Theorem 3.1.7 there exist u1, . . . , ut ∈ k[x1, . . . , xn]
such that f = g1u1 + . . .+ gtut and so f ∈ I.

(ii) ⇒ (iii): Let f ∈ k[x1, . . . , xn] be arbitrary and assume that f ∈ I if and only if f −→G
+

0. First assume that f ∈ I. Then by assumption we have f −→G
+ 0, so by Theorem 3.1.7

there exist h1, . . . , ht ∈ k[x1, . . . , xn] such that f =
∑t

i=1 higi and lp(f) = lp(
∑t

i=1 higi) =
max1≤i≤t(lp(hi)lp(gi)).

Conversely, assume that for some h1, . . . , ht ∈ k[x1, . . . , xn] we have f =
∑t

i=1 higi and lp(f) =
max1≤i≤t(lp(hi)lp(gi)). Clearly we have f ∈ I.

23

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.1. PRELIMINARIES 24

(iii) ⇒ (iv): Assume that for an arbitrary f ∈ k[x1, . . . , xn], f ∈ I if and only if there exist
h1, . . . , ht ∈ k[x1, . . . , xn] such that f =

∑t
i=1 higi and lp(f) = max1≤i≤t(lp(hi)lp(gi)). Since

G ⊆ I, we have Lt(G) ⊆ Lt(I). For the reverse inclusion, let f ∈ I. Then there exist h1, . . . , ht ∈
k[x1, . . . , xn] such that f =

∑t
i=1 higi. Choose an i ∈ {1, . . . , t} such that lp(f) = lp(hi)lp(gi).

Since lp(gi) ∈ Lt(G), it follows that lp(f) ∈ Lt(G). The result follows since for an arbitrary f ∈ I
we have shown that lt(f) ∈ Lt(G) and since Lt(I) is the ideal generated by all the lt(f) we have
the desired result.

(iv) ⇒ (i): Let f ∈ I be arbitrary. Then lt(f) ∈ Lt(I) = Lt(G) and hence there exist
h1, . . . , ht ∈ k[x1, . . . , xn] such that lt(f)=

∑t
i=1 hilt(gi). Each term in the right hand side of the

previous expression is divisible by some lp(gi). Thus lt(f), the only term in the left hand side, is
also divisible by some lp(gi), and so G is a Gröbner basis. □

As a corollary to the above theorem we see that, as promised in Chapter 1, the Gröbner basis
generates the ideal for which it is a basis.

Corollary 4.1.3. [1, Corollary 1.6.3]. Let n ∈ N and let I be an ideal in k[x1, . . . , xn]. If
G = {g1, . . . , gt} is a Gröbner basis for I, then I = ⟨g1, . . . , gt⟩.

Proof. Each gi is in I and so ⟨g1, . . . , gt⟩ ⊆ I. For the reverse inclusion, let f ∈ I. By
Theorem 4.1.2(ii), f −→G

+ 0 and so there exist h1, . . . , ht such that f =
∑t

i=1 higi and so f ∈
⟨g1, . . . , gn⟩. □

The next result is crucial in allowing us to show the existence of Gröbner bases, and makes use
of the Hilbert Basis Theorem (Theorem 2.2.5).

Lemma 4.1.4. [1, Lemma 1.6.4]. Let n ∈ N, and let S be a set of power products. Let I be the
ideal generated by S and let f ∈ k[x1, . . . , xn]. Then f is in I if and only if for every product X
appearing in f there exists a Yi ∈ S such that Yi divides X. Moreover, there exists a finite subset
S0 of S such that I = ⟨S0⟩.

Proof. Let f ∈ I be arbitrary. Then there exists t ∈ N, h1, . . . , ht ∈ k[x1, . . . , xn] and
X1, . . . , Xt ∈ S such that

f =

t∑
i=1

hiXi.

Each term on the right hand side of the above equation is divisible by some Xi in S, and hence
every term of the left hand side must also be divisible by some term Xi ∈ S.

For the converse, assume that for every product X appearing in f there exists an Xi ∈ S such
that Xi divides X. Each such X is in I = ⟨S⟩ because X = ZXi for some Z ∈ Pn. Hence f is in I.

For the final statement note that, by the Hilbert Basis Theorem (Theorem 2.2.5), I has a finite
generating set, say {b1, . . . , bm} = B ⊆ I. Since S generates I, for each bi ∈ B there exist ti ∈ N,
g1, . . . , gti ∈ k[x1, . . . , xn] and Xi1, . . . , Xiti ∈ S such that bi =

∑ti
j=1 giXij . We claim that the set

S0 := {Xij | i ∈ {1, . . . ,m}, j ∈ {1, . . . , ti}} is then the required set, i.e. S0 generates I.
To prove this, note that since S0 ⊆ S we have ⟨S0⟩ ⊆ ⟨S⟩ = I. For the reverse inclusion, since

B generates I, for an arbitrary f ∈ I there exist g1, . . . , gm ∈ k[x1, . . . , xn] such that f =
∑m

i=1 gibi.
Each of these bi can be written as a combination of elements from S0, as shown above. Thus
f ∈ ⟨S0⟩ and so I ⊆ ⟨S0⟩. The claim is then proved. □

Lemma 4.1.4 gives rise to the following corollary that tells us that a Gröbner basis always exists
for any non-zero ideal of k[x1, . . . , xn]:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.1. PRELIMINARIES 25

Corollary 4.1.5. [1, Corollary 1.6.5]. Let n ∈ N and let I ⊆ k[x1, . . . , xn] be a non-zero ideal.
I has a Gröbner basis.

Proof. By Lemma 4.1.4 the leading term ideal Lt(I) has a finite generating set. Without loss
of generality we can let t ∈ N and write this set as {lt(g1), . . . , lt(gt)} with g1, . . . , gt ∈ I. If we let
G = {g1, . . . , gt} then we have, by Theorem 4.1.2, that Lt(G) = Lt(I) and hence G is a Gröbner
basis for I. □

Definition 4.1.6. Let t ∈ N and let G := {g1, . . . , gt} ⊆ k[x1, . . . , xn]. We say G is a Gröbner
basis if it is a Gröbner basis for the ideal ⟨G⟩ that G generates.

The following small result is necessary to prove one of the more important results later on
(Lemma 5.1.4).

Lemma 4.1.7. [1, Exercise 1.6.13]. Let {g1, . . . , gt} ⊆ k[x1, . . . , xn] and let 0 ̸= h ∈ k[x1, . . . , xn].
{g1, . . . , gt} is a Gröbner basis if and only if {hg1, . . . , hgt} is a Gröbner basis.

Proof. Firstly, let {g1, . . . , gt} be a Gröbner basis and let f ∈ ⟨hg1, . . . , hgt⟩. Thus for some
u1, . . . , ut ∈ k[x1, . . . , xn] we can write f = u1hg1+ . . .+uthgt. If we can find an i ∈ {1, . . . , t} such
that lp(f)|lp(hgi) then {hg1, . . . , hgt} will be a Gröbner basis. Let g := u1g1 + . . .+ utgt, then we
have f = hg. Since g ∈ ⟨g1, . . . , gt⟩ and {g1, . . . , gt} is a Gröbner basis, by Definition 4.1.1 there
exists an i′ ∈ {1, . . . , t} such that lp(g)|lp(gi′) and hence lp(f) = lp(hg)|lp(hgi′) so {hg1, . . . , hgt}
is a Gröbner basis.

Now assume that {hg1, . . . , hgt} is a Gröbner basis and let f ∈ ⟨g1, . . . , gt⟩. Thus for some
u1, . . . , ut ∈ k[x1, . . . , xn] we can write f = u1g1 + . . . + utgt. Now we have hf ∈ ⟨hg1, . . . , hgt⟩
and so there exists an i ∈ {1, . . . , t} such that lp(hf)|lp(hgi). Then we immediately have that
lp(f)|lp(gi) and so {g1, . . . , gt} is a Gröbner basis. □

Before we can prove the upcoming crucial Theorem 4.1.9 we need to prove another small result:

Lemma 4.1.8. [1, Theorem 1.6.7]. Let c ∈ k\{0}, X ∈ Pn, let g ∈ k[x1, . . . , xn] and let
G = {g1, . . . , gt} ⊆ k[x1, . . . , xn] such that g −→G

+ r. Assume that the remainder of g reduced
modulo G is unique. Then we have, for each i ∈ {1, . . . , t}, g − cXgi −→G

+ r.

Proof. Fix an arbitrary i ∈ {1, . . . , t}. We are able to represent g in the following way: There
exists m ∈ N, a, c1, . . . , cm ∈ k and X1, . . . , Xm ∈ Pn with Xj ̸= Xlp(gi) for j ∈ {1, . . . , t} such
that g = (

∑m
j=1 cjXj) + aXlp(gi), with a, the coefficient of Xlp(gi), possibly being zero. We have

3 cases to consider:
Case 1: a = 0. Then the coefficient of Xlp(gi) in g − cXgi is −clc(gi). This is non-zero and so

g − cXgi −→gi g −→G
+ r, which is what we require.

Case 2: a = clc(gi). Let g − cXgi −→G
+ r1. Now, since aXlp(gi) = clc(gi)Xlp(gi), we have

g −→gi g − cXgi −→G
+ r1. But then we have that g −→G

+ r and g −→G
+ r1 and, because we have

assumed remainders are unique, r1 = r and so we have that g − cXgi −→G
+ r.

Case 3: a ̸= 0 and a ̸= clc(gi). Let h := g − a
lc(gi)

Xgi. Then the coefficient of Xlp(gi) in h is
0, so we have g −→gi h. Similarly, since a ̸= clc(gi), we have g − cXgi −→gi h. Letting h −→G

+ r2
we have g −→gi h −→G

+ r2 and again by the uniqueness of remainders we have r = r2 yielding the
final sequence g − cXgi −→gi h −→G

+ r. □

Theorem 4.1.9. [1, Theorem 1.6.7]. Let n, t ∈ N and let G := {g1, . . . , gt} ⊆ k[x1, . . . , xn].
Then G is a Gröbner basis if and only if for all f ∈ k[x1, . . . , xn], the remainder of the reduction
of f modulo G is unique.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BUCHBERGER’S THEOREM AND BUCHBERGER’S ALGORITHM 26

Proof. Let G be a Gröbner basis, let f ∈ k[x1, . . . , xn] and suppose that f −→G
+ r1 and f −→G

+

r2 with r1,r2 reduced with respect to G. Then there exist u1, . . . , ut, v1, . . . , vt ∈ k[x1, . . . , xn] such
that f−r1 =

∑t
i=1 uigi and f−r2 =

∑t
i=1 vigi. Thus f−r1, f−r2 ∈ ⟨G⟩ and so r1−r2 ∈ ⟨G⟩, and

r1 − r2 is reduced with respect to G, since each power product in r1 − r2 is a power product in r1
or r2 or both. Now, Theorem 4.1.2(ii) implies that r1 − r2 = 0, and so we have that the remainder
of the reduction of f modulo G is unique.

Now, assume that for every polynomial f ∈ k[x1, . . . , xn] the remainder of the reduction of f
modulo G is unique. Let f ∈ ⟨G⟩ and suppose that f −→G

+ r. Since f ∈ ⟨G⟩ there exist h1, . . . , ht

such that f =
∑t

i=1 higi.
First we write each hi as a particular sum of terms: Let S be a finite enumerated list of all

the products appearing in {hi}i∈{1,...,t}, hence for some k ∈ N we have S = {X1, . . . , Xk}. For
each i ∈ {1, . . . , t}, there exists a set of coefficients Ci = {ci1, . . . , cik}, not all 0, such that hi =∑k

j=1 cijXj . Then we can apply Lemma 4.1.8 to f , with c11, X1, g1 to obtain f − c11X1g1 −→G
+ r .

Apply the lemma again to f−c11X1g1, with c12, X2 and g1 to obtain f−c11X1g1−c12X2g1 −→G
+ r.

Repeating this process through all the terms cijXjgi, we can exhaust every term that appears in f
and obtain

0 −→G
+ r.

Now we can see that we must have r = 0 and so we have, for an arbitrary f ∈ ⟨G⟩, that f −→G
+ 0

which, by Theorem 4.1.2, means that G is a Gröbner basis. □

4.2. Buchberger’s Theorem and Buchberger’s Algorithm

In this section we present the algorithm that Buchberger created. We begin this section with a
definition that will form the core of any computation of a Gröbner basis, previously mentioned in
Chapter 1, the S-polynomial.

Definition 4.2.1. Let n ∈ N, let f , g ∈ k[x1, . . . , xn] be non-zero, and let ≺ be a term order.
The polynomial

S(f, g) =
lcm(lp(f), lp(g))

lt(f)
f − lcm(lp(f), lp(g))

lt(g)
g

is called the S-polynomial of f and g.

Remark 4.2.2. By construction the S-polynomial of two polynomials f, g ∈ k[x1, . . . , xn] will
cancel the leading term of both f and g. i.e. neither lt(f) nor lt(g) appear in S(f, g).

Proposition 4.2.3. For two polynomials f, g ∈ k[x1, . . . , xn] and a product X ∈ Pn, if lp(f) =
lp(g) = X then lp(S(f, g)) ≺ X.

Proof. From Definition 4.2.1 we have lcm(lp(f), lp(g)) = X. Together with the fact that
lt(f) = lc(f)lp(f) and lt(g) = lc(g)lp(g) we get

S(f, g) =
X

lc(f)X
f − X

lc(g)X
g =

1

lc(f)
f − 1

lc(g)
g.

This results in the lead terms of f and g being equal, and so they cancel. Since both f and g are
only multiplied by a constant their other products are unchanged. Since these products were smaller
than the leading product to begin with, they remain so. Therefore lp(S(f, g)) ≺ lp(f) = X. □

Lemma 4.2.4. Let t ∈ N, let f, g ∈ k[x1, . . . , xn], let F = {f1, . . . , ft} ⊆ k[x1, . . . , xn] and let
X ∈ Pn. We have the following:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BUCHBERGER’S THEOREM AND BUCHBERGER’S ALGORITHM 27

(i) If f −→F
+ g then Xf −→F

+ Xg.
(ii) If f ∈ F then fg −→F

+ 0.

Proof. (i) Since f −→F
+ g there exists a sequence of indices i1, . . . , is ⊆ {1, . . . , t}

such that f −→fi1 h1 −→fi2 h2 · · · −→fis−1 hs−1 −→fis g. From Definition 3.1.2 we
see that, for some X1, X2 ∈ Pn, h1 = f − X1fi1 and h2 = h1 − X2fi2 meaning h2 =
f −X1fi1 −X2fi2 . Continuing in this fashion we see that g = f −X1fi1 . . .−Xsfis and if
we multiply this equation on both sides by X we obtain Xg = Xf−XX1fi1−. . .−XXsfis .
By Definition 3.1.3 we immediately have Xf −→F

+ Xg as required.
(ii) If f ∈ F then fg reduces to 0 modulo F trivially in one step, since for any

g ∈ k[x1, . . . , xn], fg − fg = 0 and Definition 3.1.3 gives the result. □

Lemma 4.2.5. [1, Lemma 1.7.5]. Let n, s ∈ N, let ≺ be a term order, and let F := {f1, . . . , fs} ⊆
k[x1, . . . , xn] be a set of non-zero polynomials such that lp(f1) = lp(f2) = · · · = lp(fs) = X. Let
f =

∑s
i=1 cifi with ci ∈ k, i ∈ {1, . . . , s}. If lp(f) ≺ X, then f is a linear combination of

{S(fi, fj)}1≤i<j≤s, with coefficients in k.

Proof. For each i ∈ {1, . . . s} we write fi = aiX + (lower terms of fi), with ai ∈ k/{0}. By
the assumption that lp(f) ≺ X we must have that the coefficients corresponding to X in each fi
cancel each other out, so

∑s
i=1 ciai = 0. For any i ̸= j we have S(fi, fj) =

1
ai
fi − 1

aj
fj due to the

assumption of equal leading products and so we can write:

f =
s∑

i=1

cifi

=

s∑
i=1

ciai

(
1

ai
fi

)

= c1a1

(
1

a1
f1 −

1

a2
f2

)
+ c1a1

1

a2
f2 + c2a2

(
1

a2
f2

)
+

s∑
i=3

ciai

(
1

ai
fi

)
...

= c1a1

(
1

a1
f1 −

1

a2
f2

)
+ (c1a1 + c2a2)

(
1

a2
f2 −

1

a3
f3

)
+ (c1a1 + c2a2 + c3a3)

(
1

a3
f3 −

1

a4
f4

)
+ · · ·

+ (c1a1 + · · ·+ cs−1as−1)

(
1

as−1
fs−1 −

1

as
fs

)
+

s∑
i=1

ciai

(
1

as
fs

)

=

s−1∑
i=1

(
i∑

j=1

cjaj)(
1

ai
fi −

1

ai+1
fi+1)

+

(
s∑

i=1

ciai

)
︸ ︷︷ ︸

=0

1

as
fs

=

s−1∑
i=1

(
i∑

j=1

cjaj)S(fi, fi+1)

 .

□

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BUCHBERGER’S THEOREM AND BUCHBERGER’S ALGORITHM 28

Theorem 4.2.6. (Buchberger’s Theorem) [1, Theorem 1.7.4]. Let t, n ∈ N and let G =
{g1, . . . , gt} be a set of non-zero polynomials in k[x1, . . . , xn]. Then G is a Gröbner basis if and
only if for all i ̸= j ∈ {1, . . . , t} we have

S(gi, gj) −→G
+ 0.

Proof. Let G be a Gröbner basis for the ideal I := ⟨G⟩. We have that S(gi, gj) ∈ I for any
i ̸= j and so by Theorem 4.1.2 we have S(gi, gj) −→G

+ 0.
We now prove the converse. Assume that S(gi, gj) −→G

+ 0 for all i ̸= j. Let f ∈ I. Thus there
exist h1, . . . , ht ∈ k[x1, . . . , xn] such that f =

∑t
i=1 higi. We can write f as such a combination

of gi’s in a number of ways and since the term order is a well-ordering (Proposition 2.2.6) we can
choose a representation where X := max1≤i≤t(lp(hi)lp(gi)) is a minimum with respect to the given
term order.

We claim that X = lp(f). Firstly, since f is a sum of polynomials of the form higi and for each
of these we have lp(higi) = lp(hi)lp(gi) ⪯ X, we must have lp(f) ⪯ X. Now suppose lp(f) ≺ X. We
will find a different representation of f , say some u1, . . . , ut ∈ k[x1, . . . , xn] and f =

∑t
i=1 uigi, such

that max1≤i≤t(lp(ui)lp(gi)) ≺ X for a contradiction. Let S = {i ∈ {1, . . . , t} | lp(hi)lp(gi) = X}.
Since X is the maximum of all the lp(hi)lp(gi) there must be at least one element in S. For each
i ∈ S there exist an Xi ∈ Pn and ci ∈ k such that hi = ciXi + (lower terms of hi). Now let
g :=

∑
i∈S ciXigi. This construction enables us to write

f =
t∑

i=1

higi

=
∑
i∈S

higi +
∑
i/∈S

higi

=
∑
i∈S

(ciXi + (lower terms of hi))gi +
∑
i/∈S

higi

=
∑
i∈S

ciXigi +
∑
i∈S

(lower terms of hi)gi +
∑
i/∈S

higi

= g +
∑
i∈S

(lower terms of hi)gi +
∑
i/∈S

higi.

The terms in
∑

i∈S(lower terms of hi)gi are smaller than the terms in g, with respect to the term
order. For each i /∈ S we have lp(hi) ≺ X, and so the terms in

∑
i/∈S higi are also smaller than the

terms in g with respect to the term order. Then we have lp(g) = lp(f) ≺ X. Now, by construction,
g meets the criteria of Lemma 4.2.5: We have lp(Xigi) = X for each i ∈ S and g =

∑
i∈S ciXigi

with lp(g) ≺ X. Thus there exist dij ∈ k such that

g =
∑

i<j∈S

dijS(Xigi, Xjgj).

Recalling that, for each k ∈ S, lp(Xkgk) = lp(hk)lp(gk) = X we have, for each i < j ∈ S, that
X = lcm(lp(Xigi), lp(Xjgj)) and so from Definition 4.2.1, letting Xij := lcm(lp(gi), lp(gj)) we

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BUCHBERGER’S THEOREM AND BUCHBERGER’S ALGORITHM 29

obtain, for each i < j ∈ S

S(Xigi, Xjgj) =
X

lt(Xigi)
Xigi −

X

lt(Xjgj)
Xjgj

=
X

lt(gi)
gi −

X

lt(gj)
gj

=
X

Xij

(
Xij

lt(gi)
gi −

Xij

lt(gj)
gj

)
=

X

Xij
S(gi, gj).

By hypothesis, S(gi, gj) −→G
+ 0 and by Lemma 4.2.4, X

Xij
S(gi, gj) −→G

+
X
Xij
· 0 = 0. Therefore,

since S(Xigi, Xjgj) = X
Xij

S(gi, gj), we have S(Xigi, Xjgj) −→G
+ 0. Thus, by Theorem 3.1.7, for

each i < j ∈ S there exist hij1, . . . , hijt ∈ k[x1, . . . , xn] such that:

S(Xigi, Xjgj) =
t∑

ν=1

hijνgν

and max1≤ν≤t(lp(hijν)lp(gν)) = lp(S(Xigi, Xjgj)). Since lp(Xigi) = lp(Xjgj) = X by Proposi-
tion 4.2.3, we obtain

max
1≤ν≤t

(lp(hijν)lp(gν)) = lp(S(Xigi, Xjgj)) ≺ max1≤i<j≤t(lp(Xigi), lp(Xjgj)) = X.

Now we write

f = g +
∑
i∈S

(lower terms of hi)gi +
∑
i/∈S

higi

=
∑

i<j∈S

dijS(Xigi, Xjgj) +
∑
i∈S

(lower terms of hi)gi +
∑
i/∈S

higi

=
∑

i<j∈S

t∑
ν=1

dijhijνgν +
∑
i∈S

(lower terms of hi)gi +
∑
i/∈S

higi

=

t∑
ν=1

 ∑
i<j∈S

dijhijν

 gν +
∑
i∈S

(lower terms of hi)gi +
∑
i/∈S

higi.

Now, for 1 ≤ ν ≤ t, set

uν :=

{∑
i<j∈S dijhijν + (lower terms of hν) if ν ∈ S∑
i<j∈S dijhijν + hν if ν /∈ S

and obtain f =
∑t

ν=1 uνgν , a new representation for f . Now for ν ∈ S we have

lp(uν) ⪯ max(maxi<j∈S(lp(hijν)), lp((lower terms of hν))),

and for ν /∈ S we have
lp(uν) ⪯ max(maxi<j∈S(lp(hijν)), lp(hν)).

We have shown above that for each i < j ∈ S we have max1≤ν≤t(lp(hijν)lp(gν)) ≺ X. We also
have, for ν ∈ S, lp((lower terms of hν))lp(gν) ≺ X and, for ν /∈ S, lp(hν)lp(gν) ≺ X. Thus we

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BUCHBERGER’S THEOREM AND BUCHBERGER’S ALGORITHM 30

have max1≤ν≤t(lp(uν)lp(gν)) ≺ X. This contradicts the minimality of X with respect to ≺ in the
representation of f .

Therefore we have lp(f) = X. By Theorem 4.1.2(iii), G is a Gröbner basis. □

With this theorem we now have a powerful new condition and are in a position to describe
how we might actually compute a Gröbner basis. The strategy is this: We begin with a given list
of polynomials, F = {f1, . . . , ft} ∈ k[x1, . . . , xn] say, that generate an ideal for which we are to
compute a Gröbner basis. We form all possible pairs of polynomials in F and maintain them in a
list, G . For each pair {fi, fj} ∈ G we calculate

S(fi, fj) −→F
+ h.

From Theorem 4.2.6 we know that if h ̸= 0 then F could not have been a Gröbner basis for ⟨F ⟩.
We add h to G and add all the pairs {fi, h}i∈{1,...,t} to G . Then reducing all the S-polynomials
of pairs in G modulo F again, we update the lists with any new non-zero remainders that are
calculated and repeat. Due to an argument detailed in Theorem 4.2.9, making use of the Hilbert
Basis Theorem, we find that eventually this procedure must stop. At that point the requirement of
Theorem 4.2.6 is met and we have a Gröbner basis for ⟨F ⟩. We note that there is no indication as to
how many additional polynomials will be added to arrive at a Gröbner basis and, indeed, sometimes
so many calculations are performed that computer systems can run out of memory. However, given
infinite resources, the procedure described above will find a Gröbner basis, and this is Buchberger’s
Algorithm. The precise description is given below.

Algorithm 4.2.7. [1, Algorithm 1.7.1]. (Buchberger’s Algorithm).

Input: F = {f1, . . . , fs} a list of non-zero polys in k[x1, . . . , xn]

Output: G, a Gröbner basis for ⟨F ⟩

Initialization:
G := F
G := {(fi, fj) ⊆ G | 1 ≤ i < j ≤ s}

Implementation:

While G ̸= ∅:
Choose and remove a pair (f, g) ∈ G

Compute remainder S(f, g)
G−→+ h

If h ̸= 0:
Add new pairs
{(u, h)| for all u ∈ G} to G
Add h to G

Return G.
We provide an example to illustrate the algorithm at work. There are numerous tedious computa-
tions, and so we truncate the example.

Example 4.2.8. Buchberger’s Algorithm

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BUCHBERGER’S THEOREM AND BUCHBERGER’S ALGORITHM 31

Let f1 = y2 + xy + x2, f2 = y + x and f3 = y. We use Algorithm 4.2.7 to compute a Gröbner
basis for I = ⟨f1, f2, f3⟩, using ≺lex (Example 2.1.6) with y ≻ x. We initialise G := {f1, f2, f3} and
G := {{f1, f2}, {f1, f3}, {f2, f3}}.

On the first pass through the while loop, we remove the first pair {f1, f2} from G. Then

G := {{f1, f3}, {f2, f3}}
and

S(f1, f2) −→G
+ x2

Letting f4 := x2, we have

G := {{f1, f3}, {f2, f3}, {f1, f4}, {f2, f4}, {f3, f4}
G := {f1, f2, f3, f4}

On the second pass through the while loop, we remove the pair {f1, f3} from G. Then

G := {{f2, f3}, {f1, f4}, {f2, f4}, {f3, f4}
and

S(f1, f3) −→G
+ 0

Since the S-polynomial reduced to 0 we don’t add the result to G.
On the third pass through the while loop, we remove the pair {f2, f3} from G. Then

G := {{f1, f4}, {f2, f4}, {f3, f4}
and

S(f2, f3) −→G
+ x

Letting f5 := x, we have

G := {{f1, f4}, {f2, f4}, {f3, f4}, {f1, f5}, {f2, f5}, {f3, f5}, {f4, f5}}
G := {f1, f2, f3, f4, f5}

On the fourth pass through the while loop, we remove the pair {f1, f4} from G. Then

G := {{f2, f4}, {f3, f4}, {f1, f5}, {f2, f5}, {f3, f5}, {f4, f5}}
and

S(f1, f4) −→G
+ 0

Again, we have a 0 remainder, and so nothing is added to G.
On the subsequent passes through the while loop, all S-polynomials reduce to 0 and we exhaust

the pairs in G. The algorithm terminates when G is empty, and we have G = {f1, f2, f3, f4, f5},
which is then a Gröbner basis for {f1, f2, f3}.

As usual, we follow up the algorithm with a proof of its correctness.

Theorem 4.2.9. [1, Theorem 1.7.8]. Algorithm 4.2.7 terminates and produces a Gröbner basis
for any given list of polynomials.

Proof. Let F , G be as in the algorithm. Suppose with a view to a contradiction that the
algorithm does not terminate. Then, as the algorithm iterates, we obtain a strictly increasing
infinite sequence: Let Gi denote the value of G at the start of the i-th iteration of the while-loop
in Algorithm 4.2.7 that produces a non-zero h. Then we have the chain:

G1 ⊊ G2 ⊊ · · · .

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. MINIMAL AND REDUCED GRÖBNER BASES 32

Figure 4.2.1. A flow diagram for Algorithm 4.2.7.

At each step, a Gi is obtained from a Gi−1 by adding a non-zero remainder, h, of the reduction
of an S-polynomial of two elements of Gi−1 modulo Gi−1. By Defintion 3.1.3, h is reduced with
respect to Gi−1 and so lt(h) /∈ Lt(Gi−1) which now gives us

Lt(G1) ⊊ Lt(G2) ⊊ · · · .

Here we see we have obtained a strictly increasing chain of ideals which contradicts the Hilbert
Basis Theorem, and so the algorithm must terminate. To see that Algorithm 4.2.7 produces a
Gröbner basis, note that the first polynomial, h1 say, added to G satisfied, for some fi, fj ∈ F ,
S(fi, fj) −→F

+ h1 and so we have h1 ∈ ⟨F ⟩. Clearly, any subsequent polynomials added will also
be in ⟨F ⟩ and so we have F ⊆ G ⊆ ⟨F ⟩. Thus ⟨F ⟩ ⊆ ⟨G⟩ ⊆ ⟨F ⟩, which makes G a generating set
for the ideal ⟨F ⟩. Furthermore, for any polynomials gi, gj ∈ G we have, by virtue of how they are
constructed in the algorithm, S(gi, gj) −→G

+ 0 which, by Theorem 4.2.6, makes G a Gröbner basis
for ⟨F ⟩. □

We also include a flow diagram to help understand the workings of Algorithm 4.2.7, in Fig-
ure 4.2.

4.3. Minimal and Reduced Gröbner bases

The results from Section 4.1 and Section 4.2 tell us of the existence and computation of a
Gröbner basis. However, a Gröbner basis is not necessarily unique and depends on the order in
which polynomials are reduced as well as the term order applied. The results in this section show
that we can define a stricter condition to impose on a Gröbner basis that actually makes it unique.

Definition 4.3.1. Let t, n ∈ N. A Gröbner basis G = {g1, . . . , gt} in k[x1, . . . , xn] is called
minimal if lc(gi) = 1 for i ∈ {1, . . . , t} and lp(gj) ∤ lp(gi) for all i ̸= j.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. MINIMAL AND REDUCED GRÖBNER BASES 33

Lemma 4.3.2. [1, Lemma 1.8.2]. Let t, n ∈ N and let G = {g1, . . . , gt} be a Gröbner basis for
an ideal I ⊆ k[x1, . . . , xn]. If lp(g1)|lp(g2) then {g2, . . . , gt} is also a Gröbner basis for I.

Proof. Firstly, note that if lp(g1)|lp(g2) then for any polynomial f ∈ k[x1, . . . , xn] such that
lp(f)|lp(g1) we have lp(f)|lp(g2).

Let f ∈ I. By Definition 4.1.1 we have lp(f)|lp(gi) for some i ∈ {1, . . . , t}. If i ̸= 1 then
lp(f)|lp(gi) for some i ∈ {2, . . . , t}. If i = 1 then lp(f)|lp(g2) as noted above. In both cases we have
lp(f)|lp(gi) for some i ∈ {2, . . . , t} making {g2, . . . , gt} a Gröbner basis for I. □

Corollary 4.3.3. [1, Corollary 1.8.3]. Let t, n ∈ N and let G = {g1, . . . , gt} be a Gröbner
basis for an ideal I ⊆ k[x1, . . . , xn]. There exists an H ⊆ G which is a minimal Gröbner basis for
I.

Proof. We can renumber as necessary without loss of generality, and use Lemma 4.3.2 to
remove all gi if, for j ̸= i, there is a gj such that lp(gi)|lp(gj) and still have a Gröbner basis. Divide
the remaining gi by lc(gi) and the basis is then a minimal basis. □

Proposition 4.3.4. [1, Proposition 1.8.4]. For s, t ∈ N, if G = {g1, . . . , gt}, and F =
{f1, . . . , fs} are minimal Gröbner bases for an ideal I, then s = t and, after renumbering if neces-
sary, lt(fi) = lt(gi) for i ∈ {1, . . . , t}.

Proof. Firstly, f1 ∈ I and G is a Gröbner basis for I so there exists i such that lp(f1)|lp(gi).
Renumbering if necessary, we can assume i = 1. g1 is also in I, and so symmetrically we can obtain
j such that lp(g1)|lp(fj). Now we have that lp(g1)|lp(fj) and lp(f1)|lp(g1) and so lp(f1)|lp(fj). F
is minimal so this must mean that j = 1. Thus we have that lp(f1) = lp(g1).

The argument can be repeated for all the remaining polynomials in G and F . In general for a
fixed i ∈ {1, . . . , s}, after having shown that lp(f1) = lp(g1), lp(f2) = lp(g2),. . .,lp(fi−1) = lp(gi−1)
we consider fi ∈ I. There exists a j ∈ {1, . . . , s} such that lp(fi)|lp(gj). We must have j ∈ {i, . . . , s}
because otherwise one of lp(g1), . . . , lp(gi−1) would divide lp(fi) and so one of lp(f1), . . . , lp(fi−1)
also divides lp(fi) as they have already been shown to be equal. This contradicts the minimality
of F , and so we can renumber to obtain j = i and lp(fi) = lp(gi). This process will exhaust both
the bases, which then are necessarily the same size, i.e. s = t. □

So we see that minimal bases always exist, but there is a stricter condition we can impose.

Definition 4.3.5. Let n, t ∈ N. A Gröbner basis G = {g1, . . . , gt} ⊆ k[x1, . . . , xn] is called a
reduced Gröbner basis if, for any i ∈ {1, . . . , t}, lc(gi) = 1 and for j ̸= i and j ∈ {1, . . . , t}, no terms
in gi are divisible by any lp(gj).

The following result tells us that a reduced Gröbner basis exists for a given minimal basis, and
how it can be obtained.

Corollary 4.3.6. [1, Corollary 1.8.6]. Let G = {g1, . . . , gt} be a minimal Gröbner basis for
the ideal I. Consider the following series of reductions:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. MINIMAL AND REDUCED GRÖBNER BASES 34

g1 −→H1
+ h1 with h1 reduced with respect to H1 := {g2, . . . , gt}

g2 −→H2
+ h2 with h2 reduced with respect to H2 := {h1, g3, . . . , gt}

g3 −→H3
+ h3 with h3 reduced with respect to H3 := {h1, h2, g4, . . . , gt}

...
gt −→Ht

+ ht with ht reduced with respect to Ht := {h1, h2, . . . , ht−1}
Then H := {h1, . . . , ht} is a reduced Gröbner basis for I.

Proof. Due to G being minimal we have that, for each distinct i, j ∈ {1, . . . , t}, lp(gi) ∤ lp(gj).
Starting with i = 1 and j ∈ {2, . . . , t}, we have lp(g1) ∤ lp(gj) and so when reducing g1 with
respect to H1 we have lt(h1) = lt(g1), as the leading term of g1 cannot be cancelled. This implies
that lp(g2) ∤ lp(h1) and so we can repeat the previous argument with g2 and H2. Then we have
lt(h2) = lt(g2). We continue until we have, for each i ∈ {1, . . . , t}, lt(hi) = lt(gi). Since G
was minimal we get lc(hi) = lc(gi) = 1 and so immediately H is a minimal Gröbner basis for I.
Now, each gi is reduced using lp(h1), . . . , lp(hi−1), lp(gi+1), . . . , lp(gt) and lp(hj) = lp(gj) for all
j ∈ {1, . . . , t}. Therefore hi is reduced with respect to H/{hi} for each i ∈ {1, . . . , t}, which means
no terms in hi are divisible by any lp(hj) for j ∈ {1, . . . , t}\{i}. Thus H is a reduced Gröbner
basis. □

Theorem 4.3.7. [1, Theorem 1.8.7]. Let t, n ∈ N and let ≺ be a term order. Every non-zero
ideal I contained in k[x1, . . . , xn] has a unique reduced Gröbner basis with respect to ≺.

Proof. Any Gröbner basis has a minimal Gröbner basis, by Corollary 4.3.3, and a reduced
Gröbner basis can be obtained from a minimal Gröbner basis by Proposition 4.3.4. Therefore we
need only prove uniqueness. Let G := {g1, . . . , gt} and H := {h1, . . . , hs} be reduced Gröbner
bases for I. Proposition 4.3.4 tells us that s = t and, for each i ∈ {1, . . . , t}, lt(gi) = lt(hi).
Fix an i ∈ {1, . . . , t}. If gi ̸= hi then gi − hi ∈ I and this implies that there exists j such that
lp(gi − hi)|lp(hj). Since lt(gi) = lt(hi) we have lp(gi − hi) ≺ lp(hi). Now if i = j we would
have lp(gi − hi)|lp(hi) and lp(gi − hi) ≺ lp(hi), a contradiction, so we conclude i ̸= j. However
lp(hj) = lp(gj), so we have that a term of gi − hi is divisible by lp(hj) = lp(gj) for i ̸= j. Thus a
term of gi or hi is divisible by lp(gj) or lp(hj) for i ̸= j. This contradicts the fact that G and H
are reduced and so gi = hi. □

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5

Improvements to Buchberger’s Algorithm

As discussed previously, the simplicity of Buchberger’s Algorithm comes at the cost of possibly
having to compute prohibitively large numbers of S-polynomials and their reductions. It turns out
to be the case that many of these computations are unnecessary. This chapter details some results
(Lemma 5.1.4 and Corollary 5.3.2) and an algorithm (Algorithm 5.4.3) that allow us to predict
at least some of the S-polynomials that will can be ignored, potentially saving on computation
costs. For example, in the linear case in Section 1.2.1, we saw that a Gröbner basis had been found
after two calculations, but Buchberger’s Algorithm would continue to perform the remaining eight
calculations. Algorithm 5.4.3 will be able to recognise which of those eight calculations needn’t
have been performed.

This chapter introduces two sub-algorithms that will be used to improve Buchberger’s Algo-
rithm.

During Buchberger’s Algorithm, if we are computing a Gröbner basis for the ideal generated
by G = {f1, . . . , ft}, before we reduce one of the S-polynomials, say S(fi, fj), we can check if
Lemma 5.1.4 holds which will then tell us that S(fi, fj) −→

{fi,fj}
+ 0. Clearly then, since fi, fj ∈ G,

we also have S(fi, fj) −→G
+ 0. Thus we needn’t perform this reduction in the first place and the

algorithm can continue. This is detailed in a sub-algorithm, Algorithm 5.4.1. The improved algo-
rithm will also check if the conditions of Corollary 5.3.2 hold for 3 distinct pairs, say (fi, fj), (fj , fk)
and (fi, fk), and if it does we can safely remove one of the pairs and avoid having to reduce its
S-polynomial. This is explained in detail in Section 5.2.

We begin with some preliminary definitions and results that will form the basis of the first
sub-algorithm. Then we develop some new theory involving modules that allows us to create the
second sub-algorithm.

5.1. The first new criterion

There are three results in this section. The first two are needed to prove the third, and the third
result used in the sub-algorithm. They make use of properties of modulo reduction and relative
primeness of power products.

The first result tells us we can divide the arguments of an S-polynomial by a common divisor
and have it still reduce to 0.

Lemma 5.1.1. Let f, g, d ∈ k[x1, . . . , xn] and suppose that d divides both f and g. If

S(f, g) −→{f,g}
+ 0

then S(fd ,
g
d) −→

{ f
d , gd}

+ 0.

Proof. Firstly we show that S(fd ,
g
d) = 1

dS(f, g). Since d divides f and g, there exist poly-
nomials f ′ and g′ such that f = df ′ and g = dg′. If we define X := lcm(lt(f), lt(g)) and

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.1. THE FIRST NEW CRITERION 36

X ′ := lcm(lt(f ′), lt(g′)) then we have

S
(
f

d
,
g

d

)
=

X ′

lt(f ′)
f ′ − X ′

lt(g′)
g′

and
1

d
S(f, g) =

1

d

(
X

lt(f)
f − X

lt(g)
g

)
=

X

lt(f)
f ′ − X

lt(g)
g′.

It remains to show that X
lt(f) =

X′

lt(f ′) and X
lt(g) =

X′

lt(g′) . Now, since f = df ′ and g = dg′ we have

lt(f) = lt(df ′) = lt(d)lt(f ′)

and similarly
lt(g) = lt(d)lt(g′).

This implies that

X = lcm(lt(f), lt(g)) = lcm(lt(d)lt(f ′), lt(d)lt(g′)) = lt(d)X ′.

Now we can write X
lt(f) = lt(d)X′

lt(d)lt(f ′) = X′

lt(f ′) and simliarly we have X
lt(g) = X′

lt(g′) . Thus we have
proved that 1

dS(f, g) = S(fd ,
g
d).

Now, assume that S(f, g) −→{f,g}
+ 0. Thus there exist polynomials u, v ∈ k[x1, . . . , xn] such

that S(f, g) = uf + vg. Trivially, we then have
1

d
S(f, g) =

1

d
(uf + vg) = u

f

d
+ v

g

d

and, since 1
dS(f, g) = S(fd ,

g
d), the result is proved. □

Definition 5.1.2. We say that two power products X,Y ∈ Pn are relatively prime if gcd(X,Y) =
1 or equivalently that lcm(X,Y) = XY .

The next result is a special case of the main result of this section.

Lemma 5.1.3. [1, Lemma 3.3.1]. Let f, g ∈ k[x1, . . . , xn] and assume gcd(f, g) = 1. Then the
following statements are equivalent:

(i) S(f, g) −→{f,g}
+ 0.

(ii) lp(f) and lp(g) are relatively prime.

Proof. (i) =⇒ (ii): Assume that S(f, g) −→{f,g}
+ 0. Let D = gcd(lp(f), lp(g)). Then there

exist X,Y ∈ Pn such that lp(f) = DX and lp(g) = DY . If D = 1 then we have the result. Now
assume that D ̸= 1. We have

S(f, g) =
Y

lc(f)
f − X

lc(g)
g

and, by the initial assumption that S(f, g) −→{f,g}
+ 0 and Theorem 3.1.7, there exist u, v ∈

k[x1, . . . , xn] such that S(f, g) = uf + vg and lp(uf) ⪯ lp(S(f, g)) and lp(vg) ⪯ lp(S(f, g)). Now
we have that

uf + vg =
Y

lc(f)
f − X

lc(g)
g

and so (
X

lc(g)
+ v

)
g =

(
Y

lc(f)
− u

)
f.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.1. THE FIRST NEW CRITERION 37

Thus since gcd(f, g) = 1 we have that f divides X
lc(g) + v and g divides Y

lc(f) − u.
We have lp(uf) ⪯ lp(S(f, g)). Thus by Remark 4.2.2 we have lp(u)DX ⪯ lp(S(f, g)) ≺ Xlp(g).

But lp(S(f, g)) ≺ Xlp(g) ≺ XDY . Thus lp(u) ≺ Y and hence lp(Y
lc(f) − u) = Y . Thus, since g

divides Y
lc(f) − u, we have lp(g) divides lp(Y

lc(f) − u) which means that DY divides Y so D = 1.
Thus we have proved that lp(f) and lp(g) are relatively prime.

(ii) =⇒ (i) Assume that lp(f) and lp(g) are relatively prime. For some a, b ∈ k and X,Y ∈ Pn

we can write f = aX + (lower terms of f) and g = bY + (lower terms of g). Letting f ′ = f − aX
and g′ = g − bY we can write X = 1

a (f − f ′) and Y = 1
b (g − g′).

Case 1: g′ = f ′ = 0. Then f and g both consist of single terms and S(f, g) = 0 (see Re-
mark 4.2.2).

Case 2: f ′ = 0 and g′ ̸= 0. Since gcd(lp(f), lp(g)) = 1 and lcm(lp(f), lp(g)) = XY we have

S(f, g) =
1

a
Y f − 1

b
Xg

=
1

ab
(g − g′)f − 1

ab
fg

= − 1

ab
fg′.

Thus by Lemma 4.2.4(ii) we have that S(f, g) −→{f,g} 0.
Case 3: Symmetrical to Case 2, interchanging f and g.
Case 4: f ′ ̸= 0 and g′ ̸= 0. Again, since gcd(lp(f), lp(g)) = 1 we have

S(f, g) =
1

a
Y f − 1

b
Xg

=
1

ab
(g − g′)f − 1

ab
(f − f ′)g

=
1

ab
(f ′g − g′f).

We claim that lp(f ′g) ̸= lp(g′f). If lp(f ′g) = lp(g′f) then lp(f ′)lp(g) = lp(f)lp(g′) and since
gcd(lp(f), lp(g)) = 1 we have lp(f ′)|lp(f) and lp(g′)|lp(g). This is a contradiction, as lp(f ′) ≺ lp(f)
and lp(g′) ≺ lp(g) and so lp(f ′g) ̸= lp(g′f). Thus, without loss of generality, we assume that
lp(f ′g) ≻ lp(g′f). This means that lt(f ′g− g′f) = lt(f ′g) and so lp(f ′g− g′f) is divisible by lp(g).
Since lt(g) = bY we have lt(f ′g − g′f) = blt(f ′)Y .

Thus we can write

f ′g − g′f = f ′g − lt(f ′)g + lt(f ′)g − g′f

= ((f ′ − lt(f ′))g − g′f) + lt(f ′)g

= ((f ′ − lt(f ′))g − g′f) +
blt(f ′)Y

bY
g

= ((f ′ − lt(f ′))g − g′f) +
lt(f ′g − g′f)

lt(g)
g.

Multiplying both sides by 1
ab and rearranging, we have

1

ab
(f ′g − g′f)− 1

ab

lt(f ′g − g′f)

lt(g)
g =

1

ab
((f ′ − lt(f ′))g − g′f).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.2. MODULES AND SYZYGIES 38

Using Definition 3.1.2 we then have:

S(f, g) =
1

ab
(f ′g − g′f) −→g 1

ab
((f ′ − lt(f ′))g − g′f).

The polynomial 1
ab ((f

′−lt(f ′))g−fg′) can be treated the same way: Using the fact that gcd(lp(f), lp(g)) =
1, we must have lp((f ′ − lt(f ′))g) ̸= lp(g′f), and so lp((f ′ − lt(f ′))g − fg′) is divisible by either
lp(g) or lp(f). Thus 1

ab ((f
′ − lt(f ′))g − g′f) can be reduced modulo {f, g} and another term from

either (f ′ − lt(f ′))g or fg′ is cancelled. We can continue in this fashion until all terms have been
removed and obtain:

S(f, g) −→{f,g}
+ 0

and so by Lemma 4.2.6, {f, g} is a Gröbner basis. □

Now we come to the main result of the section.

Lemma 5.1.4. [1, Lemma 3.3.1]. Let f, g ∈ k[x1, . . . , xn], non-zero, and let d := gcd(f, g). The
following statements are equivalent:

(i) S(f, g)
{f,g}−→+ 0.

(ii) lp(fd) and lp(gd) are relatively prime.

Proof. (i)=⇒(ii). Assume that S(f, g)
{f,g}−→+ 0. By Lemma 5.1.1 we have that S(fd ,

g
d) −→

{ f
d , gd}

+

0. Since gcd(fd ,
g
d) = 1, Lemma 5.1.3 immediately gives the result.

(ii)=⇒(i). Assume that lp(fd) and lp(gd) are relatively prime. Thus gcd(fd ,
g
d) = 1 and so we

can use Lemma 5.1.3. Thus { fd ,
g
d} is a Gröbner basis by Theorem 4.2.6 and by Lemma 4.1.7 {f, g}

is also a Gröbner basis. Theorem 4.2.6 immediately gives that S(f, g) −→{f,g}
+ 0. □

The above result gives us a relatively easy to check criterion for determining when an S-
polynomial is going to reduce to zero. During Buchberger’s Algorithm, if we are computing a
Gröbner basis for a set G = {f1, . . . , ft}, before we reduce one of the S-polynomials, say S(fi, fj),
we can check if Lemma 5.1.4 holds which will then tell us that S(fi, fj) −→

{fi,fj}
+ 0. Clearly then,

since fi, fj ∈ G, we also have S(fi, fj) −→G
+ 0. This is implemented into Algorithm 5.4.3 as a

sub-algorithm (Algorithm 5.4.1).

5.2. Modules and Syzygies

This section reframes our algebraic definitions in the form of modules, with some results (like
Theorem 4.2.6) being proved again in this new form.

Definition 5.2.1. Let s ∈ N. For a commutative ring R we interpret Rs as a R-bimodule.

We also define some new notation that will be used extensively in this section.

Definition 5.2.2. Let s ∈ N and let f1, . . . , fs ∈ k[x1, . . . , xn]. Note that the second and third
definitions below depend on the polynomials f1, . . . , fs.

• We denote with e1, . . . , es the standard basis for the k[x1, . . . , xn]-bimodule k[x1, . . . , xn]
s.

• We define, for distinct i, j, k ∈ {1, . . . , s}:
X(fi) = lp(fi)

and
X(fi, fj) := lcm(lp(fi), lp(fj))

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.2. MODULES AND SYZYGIES 39

and
X(fi, fj , fk) := lcm(lp(fi), lp(fj), lp(fk)).

When the polynomial arguments are clear from context, we omit them and simply write
Xi, Xij and Xijk.
• We define, for distinct i, j ∈ {1, . . . , s}, τ(fi, fj) := Xij

ciXi
ei− Xij

cjXj
ej ∈ k[x1, . . . , xn]

s, where
ciXi = lt(fi) and ciXi = lt(fi). Again, when the context is clear, we omit the polynomial
arguments and write τij .

Remark 5.2.3. The τij defined above is the module equivalent of the S-polynomial from Chap-
ter 4. Indeed, we can see that for (f1, . . . , fs) ∈ k[x1, . . . , xn]

s we have τij · (f1, . . . , fs) = S(fi, fj).

We now define a map, the kernel of which is an essential part of the theory used to develop the
second criterion.

Definition 5.2.4. Let s ∈ N, f1, . . . , fs ∈ k[x1, . . . , xn] and let ⟨f1, . . . , fs⟩ = I ⊆ k[x1, . . . , xn]
be the ideal generated by f1, . . . , fs. Consider the k[x1, . . . , xn]-bimodule homomorphism ϕI :
k[x1, . . . , xn]

s → I defined by:

(h1, . . . , hs) 7→
s∑

i=1

hifi (h1, . . . , hs) ∈ k[x1, . . . , xn]
s.

We call ker(ϕI) the syzygy module of the 1× s matrix [f1 · · · fs], denoted Syz(f1, . . . , fs). An
element (h1, . . . , hs) of Syz(f1, . . . , fs) is called a syzygy.

The following lemma seems arbitrary but is particularly useful in the result that follows. We
are working towards being able to express syzygies in terms of the τij elements defined in Defini-
tion 5.2.2.

Lemma 5.2.5. Let n ∈ N, let c1, . . . , cs ∈ k\{0} and let X1, . . . , Xs ∈ Pn be power products in
k[x1, . . . , xn]. Let X ∈ Pn be arbitrary. Define AX := {(d1Y1, . . . , dsYs) ∈ k[x1, . . . , xn]

s | (YiXi =
X and di = ci) or di = 0 and Yi ∈ Pn for each i ∈ {1, . . . , s}}. Then any element (h1, . . . , hs) ∈
k[x1, . . . , xn]

s can be written as a sum of elements in
⋃

X∈Pn
AX .

Proof. Let (h1, . . . , hs) ∈ k[x1, . . . , xn]
s, not all zero, be arbitrary. Consider the polynomials

c1X1h1, . . . , csXshs.

Only finitely many unique power products can appear with non-zero coefficients in these polyno-
mials. We denote them as Z1, . . . , Zt. Thus for each i ∈ {1, . . . , s} and j ∈ {1, . . . , t} there exist
aij ∈ k not all zero such that cihiXi =

∑t
j=1 aijZj . Define Si := {j ∈ {1, . . . , t}|aij ̸= 0} and define

Yij :=

{
Zj

Xi
if j ∈ Si

0 if j /∈ Si.

Yij is well defined: Since each Zj for which aij ̸= 0 is equal to some product from hi multiplied by
Xi, we always have Zj |Xi for j ∈ Si. Thus we can write

ciXihi =
∑
j∈Si

aijZj

and hence

hi =

t∑
j=1

aij
ci

Yij

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.2. MODULES AND SYZYGIES 40

and thus

(h1, . . . , hs) =

 t∑
j=1

a1j
c1

Y1j , . . . ,
t∑

j=1

asj
cs

Ysj

 =
t∑

j=1

(
a1j
c1

Y1j , . . . ,
asj
cs

Ysj

)
.

We can see that for each j ∈ {1, . . . , t} we have that (a1j

c1
Y1j , . . . ,

asj

cs
Ysj) has the required property:

Either aij = 0 or YijXi = Zj for each i ∈ {1, . . . , s}. □

Definition 5.2.6. Let s, n ∈ N, let X1, . . . , Xs ∈ Pn and let c1, . . . , cs ∈ k\{0}. Then, for a
product X ∈ Pn we call a syzygy (h1, . . . , hs) ∈ Syz(c1X1, . . . , csXs) homogeneous of degree X if,
for each i ∈ {1, . . . , s} there exist ai ∈ k and Yi ∈ Pn such that hi = aiYi and XiYi = X. If, for a
power product X ∈ Pn, a syzygy (h1, . . . , hs) ∈ Syz(c1X1, . . . , csXs) is homogeneous of degree X
then we say (h1, . . . , hs) is homogeneous.

The next result allows us to precisely describe a generating set for a syzygy module of terms.

Proposition 5.2.7. [1, Proposition 3.2.3]. Let n, s ∈ N, and let f1, . . . , fs ∈ k[x1, . . . , xn].
Then, using the notation of Defintion 5.2.2, Syz(lt(f1), . . . , lt(fs)) is generated, as a k[x1, . . . , xn]-
bimodule, by

{τij ∈ k[x1, . . . , xn]
s | 1 ≤ i < j ≤ s}

and the syzygies in this set are homogeneous.

Proof. There exist c1, . . . , cs ∈ k\{0} and X1, . . . , Xs ∈ Pn such that lt(fi) = ciXi for each
i ∈ {1, . . . , s}. Then Syz(lt(f1), . . . , lt(fs)) = Syz(c1X1, . . . , csXs). Note that for distinct i, j ∈
{1, . . . , s} we have

(c1X1, . . . , csXs) ·
(

Xij

ciXi
ei −

Xij

cjXj
ej

)
= (c1X1, . . . , csXs) ·

0, . . . ,
Xij

ciXi
ithco-ord

, 0, . . . , 0,− Xij

cjXj
jthco-ord

, 0, . . . , 0

= ciXi

(
Xij

ciXi

)
− cjXj

(
Xij

cjXj

)
= Xij −Xij

= 0

(this precisely reflects Remark 4.2.2) and so

τij ∈ Syz(c1X1, . . . , csXs).

We denote the submodule of Syz(c1X1, . . . , csXs) generated by the set {τij | 1 ≤ i < j ≤ s} as

⟨τij |1 ≤ i < j ≤ s⟩ .

We have thus shown that

⟨τij | 1 ≤ i < j ≤ s⟩ ⊆ Syz(c1X1, . . . , csXs).

For the reverse inclusion, we let (h1, . . . , hs) ∈ Syz(c1X1, . . . , csXs). From Lemma 5.2.5 we can
write (h1, . . . hs) as a sum of elements of

⋃
X∈Pn

AX , where AX is defined as in Lemma 5.2.5.
Hence (h1, . . . , hs) =

∑
X∈Pn

(d
(X)
1 Y

(X)
1 , . . . , d

(X)
s Y

(X)
s). This sum is well defined, since, as shown in

Lemma 5.2.5, the d(X)
i correspond to one of the finitely many products that appear in (X1h1, . . . , Xshs)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.2. MODULES AND SYZYGIES 41

and so only finitely many of the (d(X)
1 , . . . , d

(X)
s) are non-zero. Since (h1, . . . , hs) ∈ Syz(c1X1, . . . , csXs)

we have

0 = (h1, . . . , hs) · (c1X1, . . . , csXs)

=
∑

X∈Pn

(d
(X)
1 Y

(X)
1 , . . . , d(X)

s Y (X)
s) · (c1X1, . . . , csXs)

=
∑

X∈Pn

s∑
j=1

d
(X)
j cj(Y

(X)
j Xj)

=
∑

X∈Pn

 s∑
j=1

d
(X)
j cj

X (because Y
(X)
j Xj = X as per Lemma 5.2.5).

Thus for every X ∈ Pn we have
s∑

j=1

d
(X)
j cj = 0

and, recalling again that Y
(X)
i Xi = X,

(d
(X)
1 Y

(X)
1 , . . . , d

(X)
s Y

(X)
s) = d

(X)
1 Y

(X)
1 e1 + . . .+ d

(X)
s Y

(X)
s es

= d
(X)
1 c1

X
c1X1

e1 + . . .+ d
(X)
s cs

X
csXs

es

= d
(X)
1 c1

X
X12

(
X12

c1X1
e1 − X12

c2X2
e2

)
+(d

(X)
1 c1 + d

(X)
2 c2)

X
X23

(
X23

c2X2
e2 − X23

c3X3
e3

)
+ . . .

+(d
(X)
1 c1 + . . .+ d

(X)
s−1cs−1)

X
X(s−1)s

(
X(s−1)s

cs−1Xs−1
es−1 −

X(s−1)s

csXs
es

)
+(d

(X)
1 c1 + . . .+ d(X)

s cs)︸ ︷︷ ︸ X(s−1)s

csXs

=0

es

=
∑s

j=2

[∑j−1
i=1 d

(X)
i ci

] [
X

X(j−1)j

]
τ(j−1)j

=
∑s

j=2 gjτ(j−1)j where gj =
∑j−1

i=1 d
(X)
i ci

[
X

X(j−1)j

]
Thus for each X ∈ Pn, we can write (d

(X)
1 Y

(X)
1 , . . . , d

(X)
s Y

(X)
s) as a linear combination of ele-

ments of {τij |1 ≤ i < j ≤ s} and hence, as (h1, . . . , hs) =
∑

X∈Pn
(d

(X)
1 Y

(X)
1 , . . . , d

(X)
s Y

(X)
s) we have

that (h1, . . . , hs) is also a linear combination of elements of {τij | 1 ≤ i < j ≤ s}, i.e (h1, . . . , hs) ∈
⟨τij |1 ≤ i < j ≤ s⟩ and we are done. □

The following theorem is the most important result of this section. It is effectively the module
equivalent of Buchberger’s Theorem (Theorem 4.2.6). We know how to find a generating set for a
syzygy module of terms and when these terms are the leading terms of a set of polynomials, the
theorem below gives us a property that the syzygies in the generating set must have in order for
the set of polynomials to be a Gröbner basis.

Theorem 5.2.8. [1, Theorem 3.2.5]. Let s ∈ N and let G = {g1, . . . , gs} be a set of non-zero
polynomials in k[x1, . . . , xn]. Let B ⊆ k[x1, . . . , xn]

s be a finite set of homogeneous syzygies that
generate Syz(lt(g1), . . . , lt(gs)). Then G is a Gröbner basis for the ideal ⟨g1, . . . , gs⟩ if and only if
for each (b1, . . . , bs) ∈ B we have

b1g1 + · · ·+ bsgs
G−→+ 0.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.2. MODULES AND SYZYGIES 42

Proof. Assume that G is a Gröbner basis. From Theorem 4.1.2 and the fact that for any
(b1, . . . , bs) ∈ B we have b1g1 + · · ·+ bsgs ∈ ⟨g1, . . . , gs⟩, we get b1g1 + · · ·+ bsgs

G−→+ 0.
Conversely, assume that, for each (b1, . . . , bs) ∈ B, we have b1g1 + · · · + bsgs

G−→+ 0. Let
g ∈ ⟨g1, . . . , gs⟩ be arbitrary. We aim to use Theorem 4.1.2 (iii), and so for some u1, . . . , us ∈
k[x1, . . . , xn] we let g = u1g1 + . . .+ usgs be a representation of g such that

X = max1≤i≤s(lp(ui)lp(gi))

is a minimum with respect to ≺. With a view to a contradiction, suppose that lp(g) ≺ X. Let
S := {i ∈ {1, . . . , s}|lp(ui)lp(gi) = X}. Since the leading product of g is less than X it must be the
case that the coefficient of X in g is zero. We thus have:

∑
i∈S

lt(ui)lt(gi) = 0.

We define hS :=
∑

i∈S lt(ui)ei. We immediately have that hS ∈ Syz(lt(g1), . . . , lt(gs)) and hS is
homogeneous of degree X. We label the elements of B as {(b11, . . . , bs1), . . . , (b1l, . . . , bsl)}. Since
B generates Syz(lt(g1), . . . , lt(gt)) we have, for some a1, . . . , al ∈ k[x1, . . . , xn]:

hS =
l∑

i=1

ai(b1i, . . . , bsi).

Because hS is a homogeneous syzygy, we can assume that each a1, . . . , al is a term such that, for
each i ∈ {1, . . . , l} and each j ∈ {1, . . . , s}, lp(ai)lp(bji)lp(gj) = X whenever aibji ̸= 0. Fix an
i ∈ {1, . . . , l}. By assumption we have:

s∑
j=1

bjigj −→G
+ 0.

Thus by Theorem 3.1.7 there exist u1i, . . . , usi ∈ k[x1, . . . , xn] such that:

s∑
j=1

bjigj =
s∑

j=1

ujigj

and lp(
∑s

j=1 bjigj) = max1≤j≤slp(uji)lp(gj). However, since (b1i, . . . , bsi) ∈ Syz(lt(g1), . . . , lt(gs))
we have

∑s
j=1 bjilt(gj) = 0 so the lead term of

∑s
j=1 bjigj is cancelled, thus:

max1≤j≤slp(uji)lp(gj) = lp(
s∑

j=1

bjigj) ≺ max1≤j≤s(lp(bji)lp(gj)).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.2. MODULES AND SYZYGIES 43

Thus we write

g =
s∑

i=1

uigi

=
∑
i∈S

uigi +
∑
i/∈S

uigi

=
∑
i∈S

lt(ui)gi +
∑
i∈S

(lower terms of ui)gi +
∑
i/∈S

uigi︸ ︷︷ ︸
products lower than X

= hS · (g1, . . . , gs) +
∑
i∈S

(lower terms of ui)gi +
∑
i/∈S

uigi

=
l∑

i=1

s∑
j=1

aibjigj +
∑
i∈S

(lower terms of ui)gi +
∑
i/∈S

uigi

=
l∑

i=1

s∑
j=1

aiujigj +
∑
i∈S

(lower terms of ui)gi +
∑
i/∈S

uigi.

We now have that all terms in last line have maximum lead product less than X, because

maxi,j lp(ai)lp(uji)lp(gj) ≺ maxi,j lp(ai)lp(bji)lp(gj) = X,

and so we have a representation for g as a linear combination of g1, . . . , gs that contradicts the
minimality of X. Therefore the assumption that lp(g) ≺ X was false and so lp(g) = X. Since g
was chosen arbitrarily we have, by Theorem 4.1.2(iii), that {g1, . . . , gs} is a Gröbner basis. □

To sum up, this result tells us that a set G := {g1, . . . , gs} ⊆ k[x1, . . . , xn] is a Gröbner
basis when Syz(lt(g1), . . . , lt(gs)) has a generating set B which has the property that for any
b ∈ B we have b · (g1, . . . , gs)

G−→+ 0. Proposition 5.2.7 tells us that one of these generating
sets is {τij | 1 ≤ i < j ≤ s}, and by Remark 5.2.3 we can now see that for τij ∈ B for some
i < j ∈ {1, . . . , s} we have τij · (g1 . . . , gs) = S(gi, gj) −→G

+ 0. As a corollary we have recovered
Buchberger’s Theorem (Theorem 4.2.6), this time in terms of modules.

Corollary 5.2.9. (Buchberger’s Theorem for modules) [1, Corollary 3.2.6]. Let G = {g1, . . . , gt}
be a set of non-zero polynomials in k[x1, . . . , xn]. Then G is a Gröbner basis if and only if for all
i ̸= j ∈ {1, . . . , t} we have that S(gi, gj)

G−→+ 0.

Proof. Assume that G is a Gröbner basis. We have S(gi, gj) ∈ ⟨g1, . . . , gt⟩ and so by Theo-
rem 4.1.2, S(gi, gj)

G−→+ 0.
Conversely, assume that for each i ̸= j ∈ {1, . . . , t} we have S(gi, gj)

G−→+ 0. Using Proposi-
tion 5.2.7 we have that

B = {τij | 1 ≤ i < j ≤ t} ⊆ k[x1, . . . , xn]
t

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.3. THE SECOND NEW CRITERION 44

is a homogeneous generating set for Syz(lt(g1), . . . , lt(gt)). Each element of B gives rise to an
S-polynomial:

τij · (g1, . . . , gt) =
(
0, . . . ,

Xij

lt(gi)
, 0, . . . ,− Xij

lt(gj)
, . . . , 0

)
· (g1, . . . , gt)

=
Xij

lt(gi)
gi −

Xij

lt(gj)
gj

=S(gi, gj)

and we have assumed these reduce to zero modulo G. Thus, by Theorem 5.2.8, G is a Gröbner
basis □

5.3. The second new criterion

In the previous section we developed a new equivalent condition for a Gröbner basis in terms
of syzygies. This is what will form the basis of our second new criterion.

Lemma 5.3.1. [1, Lemma 3.3.2]. Let n, s ∈ N, let X1, . . . , Xs ∈ Pn and let c1, . . . , cs ∈ k\{0}.
Using the notation of Definition 5.2.2, for polynomials fi = ciXi and each distinct i, j, l ∈ {1, . . . , s}
we have

Xijl

Xij
τij +

Xijl

Xjl
τjl +

Xijl

Xli
τli = 0.

Furthermore, if Xl divides Xij, then τij is in the submodule of k[x1, . . . , xn]
s generated by τjl

and τli.

Proof. We have
Xijl

Xij
τij +

Xijl

Xjl
τjl +

Xijl

Xli
τli =

Xijl

Xij
(
Xij

ciXi
ei −

Xij

cjXj
ej) +

Xijl

Xjl
(
Xjl

cjXj
ej −

Xjl

clXl
el)

+
Xijl

Xli
(
Xli

clXl
el −

Xli

ciXi
ei)

=
Xijl

ciXi
ei −

Xijl

cjXj
ej +

Xijl

cjXj
ej −

Xijl

clXl
el +

Xijl

clXl
el −

Xijl

ciXi
ei

= 0.

Now, if Xij |Xl then Xijl = Xij and so

τij +
Xijl

Xjl
τjl +

Xijl

Xli
τli = 0

meaning that τij is in the submodule of k[x1, . . . , xn]
s generated by τjl and τli. □

Corollary 5.3.2. [1, Corollary 3.3.3] Using the notation of Definition 5.2.2. Let n, s ∈ N,
let c1, . . . , cs ∈ k and let X1, . . . , Xs ∈ Pn. Let B ⊆ {τij |1 ≤ i < j ≤ s} be a generating set for
Syz(c1X1, . . . , csXs). With fi = ciXi for each i ∈ {1, . . . , s}, suppose we have three distinct indices
i, j, l such that τij , τjl, τil ∈ B, and such that Xl divides Xij. Then B\{τij} is also a generating
set for Syz(c1X1, . . . , csXs).

What we have here in Corollary 5.3.2 is a condition that lets us make a generating set for a
syzygy module smaller, while still keeping it a generating set for that syzygy module. This is the
second criterion we use to improve Algorithm 4.2.7.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.4. IMPROVING BUCHBERGER’S ALGORITHM 45

5.4. Improving Buchberger’s Algorithm

Lemma 5.3.1 and Corollary 5.3.2 give us two criteria that let us avoid having to compute and
reduce redundant S-polynomials, as we know they will reduce to zero. We now detail how they will
be used to improve Buchberger’s Algorithm.

The first criterion, referred to as crit1 (Algorithm 5.4.1) below, is easy to implement. During
Buchberger’s Algorithm, before we reduce an S-polynomial, we first check whether the lead products
of the two polynomial arguments are disjoint and, if they are, we needn’t reduce their S-polynomial,
saving us from performing a lengthy calculation.

The second criterion, crit2 (Algorithm 5.4.2), is a little bit trickier to implement. We keep track
of all pairs of polynomials for which we have not yet computed the associated S-polynomial in a
list N C . We would like to, during Buchberger’s Algorithm, remove as many pairs of polynomials
from N C as we can before computing and reducing their S-polynomials. From one iteration of
the while loop in Buchberger’s Algorithm (Algorithm 4.2.7) to the next, a new polynomial might
be added to the basis and all the corresponding pairs are also added to N C . Before we iterate
through the loop again, we use Corollary 5.3.2 to remove all the pairs from N C we can. We can do
this because Corollary 5.3.2 tells us that we will still have a generating set for the syzygy module of
lead terms of our polynomials if we remove the pairs that meet the condition of Corollary 5.3.2. So
the S-polynomials of the pairs that are removed are never reduced and we are saved from, possibly,
a very large amount of costly reduction computations.

These two criteria together save us a lot of computation time because it is quicker to check
these various divisibility and disjointness conditions than it is to reduce polynomials modulo other
polynomials. We now give the improved version of Buchberger’s Algorithm, and crit1 and crit2.

Algorithm 5.4.1. [1, p. 128]. crit1.

Input: Two polynomials f, g ∈ k[x1, . . . , xn]

Output: True or False

Implementation:

If gcd(lp(f), lp(g)) = 1:
Return True

Else:
Return False

Algorithm 5.4.2. [1, Algorithm 3.3.2]. crit2.
(Using the notation of Definition 5.2.2)

Input: N C and C from Algorithm 5.4.3

Output: N C with some elements removed

Implementation:

For all distinct indices i < j < k that appear in N C ∪ C :
If lcm(Xi, Xj)|Xk and (fi, fj) ∈ N C :

N C = N C \{(fi, fj)}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.4. IMPROVING BUCHBERGER’S ALGORITHM 46

If lcm(Xi, Xk)|Xj and (fi, fk) ∈ N C :
N C = N C \{(fi, fk)}

If lcm(Xj , Xk)|Xi and (fj , fk) ∈ N C :
N C = N C \{(fj , fk)}

Return N C

Algorithm 5.4.3. [1, Algorithm 3.3.1] Improved Buchberger Algorithm
(Using the notation of Definition 5.2.2)

Input: F = {f1, . . . , fs} a list of non-zero polynomials in k[x1, . . . , xn]

Output: G, a Gröbner basis for ⟨F ⟩.

Initialisation:

G := F
N C := {τij | 1 ≤ i < j ≤ s}
C := ∅
t := s

Implementation:

N C := crit2(N C ,C)

While N C ̸= ∅:
Choose a pair (fi, fj) ∈ N C
N C := N C \{(fi, fj)}
C := C ∪ {(fi, fj)}

If crit1(fi, fj) = False:

Compute remainder S(fi, fj)
G−→+ h

If h ̸= 0:
Add new pairs {(u, h)| for all u ∈
G} to N C
Add h to G
N C := crit2(N C ,C)

Return G

Proposition 5.4.4. [1, Proposition 3.3.4]. Given a set of non-zero polynomials F = {f1, . . . , fs},
Algorithm 5.4.3 terminates and produces a Gröbner basis for the ideal I = ⟨f1, . . . , fs⟩.

Proof. Let G = {f1, . . . , ft} (t ≥ s) be the output of the algorithm. We note that upon
termination all the S-polynomials of the pairs of polynomials in C will necessarily reduce to 0
modulo G. This is because the remainder of each S-polynomial modulo G is computed and if it
is not 0 that remainder is added to G. The S-polynomial then trivially reduces to 0 modulo this
updated G. Also note that C ⊊ {(fi, fj) | 1 ≤ i < j ≤ t} because the crit2 algorithm removes
some of these pairs from N C before they have a chance to be chosen, reduced and added to C .

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.4. IMPROVING BUCHBERGER’S ALGORITHM 47

Figure 5.4.1. A flow diagram for Algorithm 5.4.3

Thus, if we show that the set {τij | (fi, fj) ∈ C } is a generating set for Syz(lt(f1), . . . , lt(ft)) then
we will have that G is a Gröbner basis for I. For this, it suffices to show that at any stage of the
algorithm, {τij | (fi, fj) ∈ N C ∪C } is a generating set for the syzygy module of the lead terms of
the polynomials in the current value of G.

Upon initialisation, we have {τij | (fi, fj) ∈ N C ∪ C } = N C = {τij | 1 ≤ i < j ≤ s}
and G = {f1, . . . , fs} so by Proposition 5.2.7 we have that {τij | (fi, fj) ∈ N C ∪ C } generates
Syz(lt(f1), . . . , lt(fs)). Before the while loop begins, N C is made smaller using crit2 and, by
Corollary 5.3.2, {τij | (fi, fj) ∈ N C ∪ C } remains a generating set for Syz(lt(f1), . . . , lt(fs)).

Now assume that the algorithm has iterated l ≥ 1 times, let Gl,N C l,Cl denote the values of
G,N C ,C respectively during the l + 1-th iteration and assume that {τij | (fi, fj) ∈ N C l ∪ Cl}
generates Syz(lt(f) | f ∈ Gl}. A pair (fm, fn) is chosen from N C l and moved to Cl, renaming Cl

to Cl+1. The pair (fm, fn) is checked with crit1 and if it fails this check then we are not assured that
S(fm, fn) −→Gl

+ 0. So we calculate S(fm, fn) −→Gl
+ h. If h ̸= 0 then we add h to Gl to form Gl+1

and we update N C with {(f, h) | f ∈ Gl}. Thus all of the pairs in {τij | (fi, fj) ∈ N C l+1∪Cl+1}
generate Syz(lt(f1), . . . , lt(fs), lt(h)). crit2 is applied again to N C l+1, possibly making N C l+1

smaller, and N C l+1 ∪ Cl+1 still forms a generating set for Syz(lt(f1), . . . , lt(fs), lt(h)). So when
the algorithm terminates, N C = ∅ and C forms a generating set for Syz(lt(f1), . . . , lt(ft)), making
G a Gröbner basis.

That the algorithm terminates follows the same way as in the proof of Theorem 4.2.9. □

Again, we also include a flow diagram to help understand the workings of Algorithm 5.4.3.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

1. W. Adams and P. Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3,
American Mathematical Society, Providence, RI, 1994. MR 1287608

2. B. Buchberger, An algorithm for finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal, J. Symbolic Comput. 41 (2006), no. 3-4, 475–511, Translated from the 1965 German original by
Michael P. Abramson. MR 2202562

3. T. Fernique, Compact packings of space with two sizes of spheres, Discrete Comput. Geom. 65 (2021), no. 4,
1287–1295. MR 4249904

4. N. Gunther, Sur les modules des formes algébriques, Trav. Inst. Math. Tbilissi [Trudy Tbiliss. Mat. Inst.] 9 (1941),
97–206. MR 0007553

5. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of
Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184

6. F. S. MacAulay, Some Properties of Enumeration in the Theory of Modular Systems, Proc. London Math. Soc.
(2) 26 (1927), 531–555. MR 1576950

7. M. Penn, A tricky geometry problem!, https://www.youtube.com/watch?v=xgEhkM6m-7o.
8. B. Renschuch, H. Roloff, and G. G. Rasputin, Beiträge zur konstruktiven Theorie der Polynomideale. XXIII.

Vergessene Arbeiten des Leningrader Mathematikers N. M. Gjunter zur Theorie der Polynomideale, Wiss. Z.
Pädagog. Hochsch. “Karl Liebknecht” Potsdam 31 (1987), no. 1, 111–126. MR 928797

48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

