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Abstract

It is well-known that no group has either exactly 1 or exactly 2 nonpower subgroups.
In this paper, we obtain a classification of groups containing exactly 3 nonpower sub-
groups. Moreover, we show that there is a unique finite group with exactly 4 nonpower
subgroups. Finally, we show that given any integer k greater than 4, there are infinitely
many groups with exactly k nonpower subgroups.

1 Introduction

A subgroup H of a group G is called a power subgroup of G if there exists a non-negative
integer m such that H = ⟨gm : g ∈ G⟩. Any subgroup of G which is not a power subgroup is
called a nonpower subgroup of G. Zhou et al.[3] proved that cyclic groups have no nonpower
subgroups, and infinite noncyclic groups have an infinite number of nonpower subgroups. They
showed further that no group has either exactly 1 or exactly 2 nonpower subgroups, and then
asked: for each integer k greater than 2, does there exist at least one group possessing exactly
k nonpower subgroups? This question was recently answered positively in [1], where it was
also proved that for any integer k greater than 4 and composite, there are infinitely many
groups with exactly k nonpower subgroups.

Let p be an odd prime. For each positive integer n, we define the group Gn,p as follows:

Gn,p := ⟨x, y : x2n = 1 = yp, yx = xy−1⟩.

We note that G1,p is the dihedral group of order 2p, and G2,p is the generalized quaternion
group of order 4p (we obtain its usual presentation ⟨a, b : a2p = 1, b2 = ap, ba = a−1b⟩ by
setting a = x2y and b = x). More generally, for any positive integer n, Gn,p is the semidirect
product Cp ⋊ C2n , and has order 2np. We may now state our first result.

Theorem 1. There are infinitely many groups with an odd prime number of nonpower sub-
groups. In particular, for any odd prime p and each positive integer n, the group Gn,p has
exactly p nonpower subgroups.
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2 Groups with a given number of nonpower subgroups

Theorem 1, combined with the fact that for composite k greater than 4 there are infinitely
many groups with k nonpower subgroups [1, Theorem 5], gives the following immediate corol-
lary.

Corollary 2. Let k be an integer greater than 4. Then there are infinitely many groups with
exactly k nonpower subgroups.

The only unresolved cases are therefore k = 3 and k = 4. Our second main result deals
with these cases.

Theorem 3. (a) A group G contains exactly three nonpower subgroups if and only if G is
isomorphic to one of C2 × C2, Q8 or Gn,3 for n ∈ Z+.

(b) Up to isomorphism, C3 × C3 is the only group containing exactly four nonpower sub-
groups.

For the rest of this section, we recall some preliminaries. We note that each power subgroup
is characteristic and hence normal in G. Following [1], we write s(G) for the number of
subgroups in a group G, ps(G) for the number of power subgroups of G and nps(G) for the
number of nonpower subgroups of G.

Lemma 4. [1, Lemma 3] If A and B are finite groups such that |A| and |B| are coprime,
then

nps(A×B) = nps(A)s(B) + ps(A)nps(B).

We denote by Φ(G) the Frattini subgroup of G, that is, the intersection of the maximal
subgroups of G. It is a characteristic subgroup of G.

Theorem 5 (Burnside’s Basis Theorem). Let G be a p-group and suppose [G : Φ(G)] = pd.

(a) G/Φ(G) is elementary abelian of order pd. Moreover, if N ⊴G and G/N is elementary
abelian, then Φ(G) ≤ N .

(b) Every minimal system of generators of G contains exactly d elements.

(c) Φ(G) = GpG′. In particular, if p = 2, then Φ(G) = G2.

Lemma 6 ([2] Theorem 1.10(a)). Let G be a non-cyclic p-group, where p > 2. Then the
number of subgroups of order p in G is congruent to 1 + p modulo p2.

Remark. It is well-known that the only 2-groups with a unique involution are cyclic or gen-
eralised quaternion.

2 Proof of main results

We begin with a proof of Theorem 1.

Proof of Theorem 1. Let p be an odd prime. Our goal is to show that for any positive integer
n, and any odd prime p, the group Gn,p = ⟨x, y : x2n = 1 = yp, yx = xy−1⟩ contains exactly
p nonpower subgroups. We have that |Gn,p| = 2np. We first obtain a count on the number of
subgroups in Gn,p. Since the Sylow 2-subgroup ⟨x⟩ is not a normal subgroup, the number of
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Sylow 2-subgroups of Gn,p must be p. On the other hand, since yx = y−1, there is a unique
normal Sylow p-subgroup, namely the cyclic subgroup ⟨y⟩ of order p. Since x2 is central in
Gn,p and each Sylow 2-subgroup of Gn,p is cyclic, there is a unique subgroup of order 2k

(
for

each k ∈ {0, . . . , n− 1}
)
and a unique subgroup of order 2kp

(
for each k ∈ {1, . . . , n}

)
. Along

with the p subgroups of order 2n, we see that s(Gn,p) = 2n + p + 1. As the subgroups of
order 2n are not normal, we know immediately that they are nonpower subgroups. Hence
nps(Gn,p) ≥ p. We now show that any subgroup of Gn,p that is not a Sylow 2-subgroup of
Gn,p is a power subgroup of Gn,p. First, the unique subgroup of order p is G2n

n,p. Secondly, for

each k ∈ {0, . . . , n− 1}, the subgroup of order 2k is G2n−kp
n,p . Finally, for each k ∈ {1, . . . , n},

the subgroup of order 2kp is G2n−k

n,p . Therefore, ps(Gn,p) = 2n+ 1; whence nps(Gn,p) = p.

We now move onto the proof of Theorem 3. Let G be a finite noncyclic group. Then G falls
into one of the following three categories: (i) a noncyclic p-group; (ii) a noncyclic nilpotent
group that is not a p-group; (iii) a non-nilpotent group. For each of these cases above, we
classify all the finite groups with exactly 3 or 4 nonpower subgroups.

Proposition 7. Let G be a finite noncyclic p-group. Then nps(G) = 3 if and only if G is
C2 × C2 or Q8, and nps(G) = 4 if and only if G is C3 × C3.

Proof. Let G be noncyclic of order pn. It was shown in [3] that if N ⊴ G and A/N is a
nonpower subgroup of G/N , then A is a nonpower subgroup of G. Suppose G has exactly k
nonpower subgroups, where k ∈ {3, 4}. Now, G/Φ(G) ∼= Cp × · · · × Cp (d-times), and d ≥ 2

as G is not cyclic. The pd−1
p−1

cyclic subgroups of order p in Cd
p are nonpower subgroups. Thus

G/Φ(G), and hence G, has at least 1 + p + · · · + pd−1 nonpower subgroups. Hence, d = 2,
either p = 2 or p = 3, and G has p+ 1 maximal subgroups that are nonpower subgroups.

The power subgroups of G are G1 = G, Gp, Gp2 , . . . , Gpm , where pm is the exponent of
G. There are thus at most m+ 1 distinct power subgroups. Since G is not cyclic, this means
m < n; so ps(G) ≤ n.

What about s(G)? There is at least one subgroup of order pi for 0 ≤ i ≤ n (just take
any composition series). This gives at least n + 1 subgroups. But there are p + 1 maximal
subgroups (of order pn−1) arising from the p+1 nontrivial proper subgroups of G/Φ(G). Thus
s(G) ≥ n+ p+ 1.

Suppose p = 2. If G is not generalised quaternion (and by assumption G is not cyclic),
then G has at least 3 involutions, and hence at least 3 subgroups of order 2. So, if n > 2,
then s(G) ≥ n + 5, meaning that nps(G) ≥ 5, a contradiction. Thus, either G is generalised
quaternion or n = 2, which means G ∼= C2×C2, and in this case nps(G) = 3. If G is generalised
quaternion, then G has 2n−1 + 2 elements of order 4, resulting in 2n−2 + 1 subgroups of order
4. If n > 3, we get that s(G) ≥ n + 1 + 2n−2 ≥ n + 5. Again, this means that nps(G) ≥ 5.
Thus, n = 3, and then G ∼= Q8. Again, nps(Q8) = 3.

The remaining case is p = 3. By Lemma 6, there are at least four subgroups of order
3 in G. If n > 2, then these are distinct from the four maximal subgroups, and so we get
s(G) ≥ n+ 7. This forces nps(G) ≥ 7, a contradiction. The only possibility is that n = 2. A
quick check shows that nps(C3 × C3) = 4.

Thus, nps(G) = 3 if and only if G is C2 × C2 or Q8, and nps(G) = 4 if and only if G is
C3 × C3.

Lemma 8. Let G be a finite noncyclic nilpotent group. If G is not a p-group, then nps(G) ≥ 6.
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Proof. Recall that a finite group is nilpotent if and only if it is the direct product of its
Sylow subgroups, each of which is normal. Since G is noncyclic, at least one of these Sylow
subgroups is noncyclic. Let p1, . . . , pr be the primes dividing |G|, and let P1, . . . , Pr be the
respective Sylow subgroups. Assume, without loss of generality, that P1 is noncyclic. Write
Q = P2 × · · · × Pr; so G ∼= P1 × Q. Since G is not a p-group, we have that Q ̸= {1}. By
Lemma 4 therefore,

nps(G) = nps(P1)s(Q) + ps(P1)nps(Q) ≥ nps(P1)s(Q).

As Q ̸= {1}, we have that s(Q) ≥ 2. As P1 is not cyclic, nps(P1) ≥ 3. Hence nps(G) ≥ 6.

Lemma 9. If G is a finite non-nilpotent group such that nps(G) ∈ {3, 4}, then nps(G) = 3
and G ∼= Gn,3 = ⟨x, y : x2n = 1 = y3, yx = xy−1⟩, for some positive integer n.

Proof. Suppose G is finite, non-nilpotent and nps(G) = k ∈ {3, 4}. If G had a unique Sylow
p-subgroup for each p dividing |G|, then G would be nilpotent. So there is at least one such p
for which G has more than one Sylow p-subgroup. For any such p, the number, np, of Sylow
p-subgroups is congruent to 1 mod p. So np ≥ p + 1. These groups are not normal, so are
not power subgroups. Therefore, as nps(G) ∈ {3, 4}, we have that either p = 2 and n2 = 3,
or p = 3 and n3 = 4. For all other primes q dividing |G|, there must be a unique Sylow
q-subgroup. If any subgroup of G, other than the Sylow p-subgroups, were non-normal, then
it and its conjugates could not be power subgroups. Thus there would be at least two further
nonpower subgroups, forcing nps(G) ≥ 5, a contradiction. Therefore, every subgroup of G,
other than the Sylow p-subgroups, is normal.

Let P be one of the Sylow p-subgroups. Let q1, . . . , qr be the primes other than p dividing
|G|. Let Q1, . . . , Qr be the corresponding normal Sylow subgroups. Each Qi is normal and the
Qi intersect trivially. Therefore, definingH = Q1Q2 · · ·Qr, we have thatH ∼= Q1×Q2×· · ·×Qr

is a normal subgroup of G, with G = PH. Now, P ⊴ NG(P ), and setting K = H ∩ NG(P ),
we have that K ⊴ G (because certainly K is not a Sylow p-subgroup). But P is normal in
NG(P ) = PK; so NG(P ) ∼= P ×K. Let h ∈ H − NG(P ). Then (PK)h = P hK ̸= PK. This
means that PK is not normal in G; a contradiction unless K = {1}. Therefore, K = {1},
and P = NG(P ). In particular, np = |G : P | = |H|.

Suppose first that p = 3. Then |H| = 4. If H ∼= C2 ×C2, then each of its cyclic subgroups
would be normal, and hence the involutions they contain would be central. But that would
imply that P is normal in G, a contradiction. Therefore H ∼= C4. Let z be a generator of H.
We have H ≤ CG(z) ≤ G. Thus, |zG| = 3i for some i with 0 ≤ i ≤ n. But zG ⊆ {z, z−1}. The
only possibility is that zG = {z}, and z is central in G. Again, this implies that P is normal
in G, a contradiction. Therefore, p ̸= 3.

The remaining case is when p = 2. In this case, H ∼= C3. Let A1, A2, and A3 be the three
Sylow 2-subgroups. Every proper subgroup of P is not one of A1, A2 and A3, so is normal in G
and hence contained in all of A1, A2 and A3. If P were not cyclic, then each of its generators
would generate a proper cyclic subgroup, and would hence be contained in A1, A2 and A3.
This implies P ≤ A1 ∩ A2 ∩ A3; a contradiction. Therefore, P is cyclic of order 2n. Write
P = ⟨x⟩ and H = ⟨y⟩. Certainly, yx ̸= y; so the only possibility is that yx = y−1. Therefore,

G = ⟨x, y : x2n = 1, y3 = 1, yx = xy−1⟩

for some integer n ≥ 1. That is, G ∼= Gn,3. By Theorem 1, we have nps(G) = 3.

Theorem 3 follows immediately from Proposition 7, Lemma 8 and Lemma 9.
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