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The introduction of alien predatory fish such as rainbow trout (Oncorhynchus

mykiss) can have a significant effect on indigenous fish communities such as

altering the structure and dynamics of food webs. Quantifying the trophic niche

utilised by the alien fish species is therefore important to aid our understanding

of how their feeding strategies might aid establishment, define their functional

role and inform on potential impacts. This study assessed food web interactions

between fish communities in river reaches that are invaded by O. mykiss and

sections that are free of invasions in the upper Blyde River catchment, South

Africa. It specifically evaluated the hypothesis that O. mykiss invasion is likely to

lead to a decrease in the trophic functional diversity through predation and that

indigenous fish will shift their trophic niche to either minimise competition with,

or avoid predation, by O. mykiss. Gut content and stable isotope analyses were

used to determine trophic interactions. Fish communities in uninvaded areas

utilised fewer and similar food sources and occupied lower trophic levels, than

fish communities in invaded areas. Oncorhynchus mykiss fed mainly on

invertebrates and at trophic levels similar to and or lower than indigenous

fishes. This suggests that their current impact on indigenous fish communities is

mainly through competition for resources. We posit that O. mykiss invasions

reduced the abundance of indigenous fishes and thereby reduced predation

pressure on aquatic invertebrates, with a knock-on effect on the trophic

interrelationships among fish assemblages. Our findings are consistent with

other studies in South Africa that have shown that the impacts of O. mykiss

invasion can lead to a decline and fragmentation of indigenous species

populations and niche shifts.
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Introduction

Predatory freshwater fish species have been introduced

worldwide to enhance angling and inland fisheries (Cambray,

2003; Arlinghaus and Cooke, 2009). Rainbow trout

(Oncorhynchus mykiss) is one of the most widely distributed

fish species for angling (Crawford and Muir, 2008). It is native to

the western seaboard of the United States, Canada, and northern

Mexico (Page and Burr, 2011). In its introduced range, O. mykiss

has been implicated in causing major impacts on indigenous

fauna and ecosystemsmainly through competition and predation

(Drenner and Hambright, 2002; Simon and Townsend, 2003;

McDowall, 2006; Fausch, 2007), modifying aquatic-terrestrial

linkages (e.g., Epanchin et al., 2010; Jackson et al., 2016),

altering food-web structure (Flecker and Townsend, 1994),

and disrupting nutrient cycles (Schindler et al., 2001; Eby

et al., 2006).

Oncorhynchus mykiss was introduced into South Africa in

1897, mainly for angling and aquaculture (Cambray, 2003;

Ellender et al., 2014). Currently, O. mykiss has established

populations in the mountain streams and upland reservoirs in

over 80% of the major drainage basins in the country (Weyl et al.,

2020). There is, however, limited information on the impacts of

O. mykiss invasions in South Africa (Zengeya et al., 2020; Van

Wilgen et al., 2022). The few available studies have, however,

shown that O. mykiss can cause a decline, and in some cases local

extirpation of indigenous invertebrates, frogs, and fishes

(Karssing et al., 2012; Rivers-Moore et al., 2013; Shelton et al.,

2015a; Jackson et al., 2016; Weyl et al., 2020). For example, O.

mykiss invasions in the uKhahlamba Drakensberg Park in Kwa-

Zulu Natal have been implicated in the reduction of

macroinvertebrate communities and the abundance of

amphibians probably likely through predation (Karssing et al.,

2012; Rivers-Moore et al., 2013). Similarly, O. mykiss invasions

have also been implicated in the decline in the abundance of

populations of amphibians in the upper Krom River in the

Western Cape (Avidon et al., 2018). Oncorhynchus mykiss

invasions have also led to a decline in the abundance of river

minnows such as the Breede River redfin (Pseudobarbus

burchelli), the Cape kurper (Sandelia capensis), and the Cape

galaxies (Galaxias zebratus) in the Breede River system, Western

Cape (Shelton et al., 2015a). Also, in the Breede River, O. mykiss

invasions were shown to induce a trophic cascade by releasing

some herbivorous invertebrates from predation, leading to an

increase in grazing pressure and lower algal biomass at invaded

sites (Shelton et al., 2015b). Oncorhynchus mykiss invasions in

several river systems such as the Keiskamma River (Eastern

Cape), the Thukela and the Umgeni River systems (KwaZulu

Natal) have been shown to modify aquatic-terrestrial food-web

linkages by competing for and reducing the trophic subsidies

available for riparian consumers such as spiders (Jackson et al.,

2016).

In this study, we examined the trophic structure of fish

communities in the upper Blyde River catchment in

Mpumalanga Province where O. mykiss was introduced into

several headwater streams of the catchment in the early 1900s for

sport fishing (Engelbrecht and Roux, 1998). The subsequent

establishment of naturalised populations of O. mykiss poses a

risk to endangered indigenous fish species through predation and

competition for habitat and food resources as a result of resource

overlaps with O. mykiss. For example, the Treur River barb

(Enteromius treurensis) is endemic to the upper reaches of the

Blyde River (Kleynhans, 1987). It was extirpated from several

sections of the Blyde River system invaded by O. mykiss, brown

trout (Salmo trutta), and smallmouth bass (Micropterus

dolomieu) (Gaigher, 1969; Kleynhans, 1987; Engelbrecht and

Roux, 1998). The remnant populations of the Treur River

barb are fragmented but largely intact, restricted to the upper

river sections of the catchment because a series of waterfalls have

prevented upstream migrations of invasive predatory fishes from

lower river sections where introductions occurred. A recent study

in the upper Blyde River catchment demonstrated that O. mykiss

invasions have caused a decline in the abundance of populations

of indigenous fish species such as E. treurensis (Maimela et al.,

2021). However, the mechanism(s) through which these impacts

have manifested remains unknown. Trophic niche analysis has

been used to assess the ecological opportunities available to alien

species in terms of food resources and how factors that affect

access to, and utilisation of, food resources facilitate the

successful establishment and adverse impacts in a recipient

ecosystem (e.g., Tonella et al., 2018). This study, therefore,

investigated the trophic interrelationship between O. mykiss

and the indigenous fish species in the upper Blyde River

catchment, by assessing whether O. mykiss invasion altered

community structure and function, such as trophic functional

diversity and trophic niche size of indigenous fish species. It is

likely, as demonstrated elsewhere, that O. mykiss invasions could

lead to niche shifts and a decline in indigenous fish populations

through either predation or competitive exclusion from food

resources (e.g., McDowall, 2006; Kadye et al., 2013; Shelton et al.,

2015a; Weyl et al., 2020). This study, therefore, tested the

hypotheses that the O. mykiss invasion in the upper Blyde

River catchment has decreased the trophic functional diversity

of indigenous fish species through predation and that indigenous

species have shifted their niche width (i.e., the variety of food

items utilised by a species) and position (i.e., type of food

resources utilised) to minimise competition with, or avoid

predation, by O. mykiss.
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Materials and methods

Study area and sampling

The study area included the headwaters of the Blyde and

Treur rivers in the northern part of the Great Drakensburg

escarpment, Mpumalanga Province, South Africa (Figure 1).

The study sites were located on the upper slopes of the

escarpment (1,200–1,500 m above sea level (a.s.l.)) that are

characterised by grassland vegetation that is interspaced by

Afromontane forests. The climate is cool to moderate

(10–18°C), moderate to high annual rainfall (800–1,200 mm),

and mean annual precipitation of more than 1,000 mm (WRC,

2001).

Fish were sampled between September 2017 and October

2018 from 7 sampling sites (Figure 1; Table 1) and each site was

FIGURE 1
Amap showing the location of sites sampled. Sites invaded by rainbow trout (Oncorhynchusmykiss) (•) and sites free of invasion (o) in the Blyde
and Treur rivers in Mpumalanga Province, South Africa.

TABLE 1 Sampling sites on the Blyde and Treur rivers in Mpumalanga Province, South Africa and their associated rainbow trout (Oncorhynchus
mykiss) invasion status, geographic coordinates, and elevation.

River Site Location Invasion status Geographic
coordinates

Elevation (m)

Blyde River 1 5 km above the first Christmas Pools waterfall Uninvaded 25°00’14.2"S 30°43’06.3"E 1,432

2 Christmas Pools below the first waterfall Uninvaded 24°58’51.0"S 30°43’50.4"E 1,372

3 Christmas Pools below the second waterfall Invaded 24°58’45.6"S 30°44’01.9"E 1,362

4 3 km downstream of the second waterfall Invaded 24°58’15.9"S 30°44’09.5"E 1,341

Treur River 5 Pools below Treur River waterfall, 2.5 km upstream of Potluck Boskombuis Uninvaded 24°43’52.2"S 30°51’18.5"E 1,293

6 Pools next to Potluck Boskombuis restaurant Uninvaded 24°43’15.0"S 30°50’45.0"E 1,272

7 Pools downstream of the bridge to Potluck Boskombuis restaurant Uninvaded 24°43’09.4"S 30°50’14.5"E 1,246
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sampled once every three months on five different occasions. To

assess the impact of O. mykiss invasion on trophic niche utilised

by indigenous fishes, sites were grouped based on their invasion

status. A site was categorised as invaded if O. mykiss was present

at the site or at upstream sites where downstream dispersal is

possible. Four sampling sites were selected from the upper Blyde

River, two in uninvaded sites (sites 1 and 2) and two in invaded

river sections (sites 2–4) (Table 1). Three additional sites (sites

5–7) were located in the upper sections of the Treur River that are

free of alien fish. All the sites were sampled using a

SAMUS725MP electrofisher (Samus Special Electronics,

Warsaw, Poland), while fyke nets were used at all sites on the

Blyde River but not in the Treur River because of low water levels.

A river stretch of ~50 m was blocked off to prevent fish escapes,

and electrofishing was conducted for ~30 min, with the

electrofisher being operated in an upstream direction with a

1 m deep x 2 m wide, 5 mm mesh mobile block net behind to

catch stunned fish missed by the operator (Kimberg et al., 2014).

Fyke nets were set in the evening and retrieved the following

morning. Fish were sorted according to species, weighed (g), and

total length (TL, mm) recorded, and then preserved in ethanol

for further analysis.

Determination of diet and trophic
interactions

Gut content and stable isotope analyses were used to

determine diet and trophic interactions between O. mykiss

and indigenous fish species. The simultaneous use of gut

content analysis and stable isotope analysis (SIA) allows for a

better estimate of the overall fish diet and better insights into the

trophic levels of fish communities that reflect different spatial

and temporal scales (see Hyslop, 1980; Fry, 2006; Finlay and

Kendall, 2007; Marshall et al., 2007; Zengeya et al., 2011; Kadye

and Booth, 2012). Gut content analysis was used to identify

possible food sources, and this was achieved by sampling fish

from both invaded and uninvaded sites to obtain an overall diet

spectrum for each sampled species, SIA was then used to

differentiate food niches among fish species concerning

trophic space, width, and the degree of overlap.

Fish gut contents were examined using a microscope and

identified to the lowest possible taxonomic level. The diet of each

fish species was determined using the frequency of occurrence (%

F) (Hyslop, 1980). The approach provides estimates of the

number of stomachs containing a specific prey item as a

percentage of all analysed stomachs. It has been shown to

provide a more robust and interpretable measure of diet

composition than other quantitative approaches (Baker et al.,

2014; Buckland et al., 2017; Amundsen and Sánchez-Hernández,

2019). The observed food items included algae, plant material

and insects (Supplementary Table S1). The food items identified

in the gut content analysis were then collected from the

environment to delineate the food web structure in the river

system. Algae and plant material were collected by hand, while

aquatic invertebrates were collected using kick-net sampling

(mesh size = 1 mm) on all available substrates at each site

following the SASS protocol (Dickens and Graham, 2002).

The aquatic invertebrates were identified up to family level

using a photographic identification manual developed for

South African river systems (Gerber and Gabriel, 2002). The

differences in community structure of fish and invertebrates

among the sites were tested using multivariate PERMANOVA

based on a Bray–Curtis similarity matrix of fourth root

transformed abundance data with 9,999 permutations. The

PERMANOVA was based on algorithms in PAST v3

(Hammer et al., 2001).

Stable isotope analysis

Muscle tissue was excised from all fish samples while insects

were analysed whole following similar studies done in the region

(e.g., Lübcker et al., 2016; Taylor et al., 2017; Lombard et al., 2018;

Bokhutlo et al., 2021). Insects were combined so that they included

representatives from the following seven orders: Coleoptera,

Diptera, Ephemeroptera, Hemiptera, Lepidoptera, Odonata and

Trichoptera. Algae, plant material, insect samples and muscle

tissue were oven-dried at 70°C for 24 h. SIA was undertaken on

a Flash EA 1112 Series coupled to a Delta V Plus stable light

isotope ratio mass spectrometer via a ConFlo IV system (all

equipment supplied by Thermo Fischer, Bremen, Germany),

housed at the Stable Isotope Laboratory, Mammal Research

Institute (MRI), University of Pretoria, Pretoria, South Africa.

A laboratory running standard (Merck Gel: δ13C = - 20.57%;

δ15N = 6.8%; C% = 43.83; N% = 14.64) and blank sample were

run after every 12 samples. The standards were Vienna Pee

Dee Belemnite limestone for δ13C (Craig, 1957) and

atmospheric nitrogen for δ15N (Ehleringer and Rundell,

1989). Results were expressed in delta notation using a

parts per thousand scale following the standard equation by

Craig (1961) (Eq. 1):

δX(‰) � [(Rsample − Rstandard)/Rstandard] × 1000 (1)

Where X = 15N or 13C and R = 15N/14N or 13C/12C, respectively.

Analytical precision was <0.05‰ for δ13C and <0.09‰ for δ15N.

Isotope baseline corrections

Stable isotope values for basal resources can vary

considerably along spatial and temporal gradients, and to

correct for these differences, nitrogen values (δ15N) were

converted to the trophic position of each consumer (TP), and

carbon values (δ13C) were corrected to the carbon of each

consumer (Ccorr) following Olsson et al. (2009); (Eqs 2, 3)
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TP � (δ15Nconsumer – δ15Nbaseline

3.4
) + 2 (2)

where δ15Nconsumer = the isotopic ratio of each consumer, and

δ15Nbaseline = the isotopic ratio and trophic position of a

primary consumer. The trophic enrichment factor was set

3.4 following the meta-analysis of Post (2002).

δ13Ccorr � (δ13Cconsumer – δ13Cmeaninv

CRinv
) (3)

where δ13Cconsumer = the isotopic ratio of each consumer,

δ13Cmeaninv = the mean invertebrate isotope ratio, and

CRinv = the invertebrate carbon range (δ13Cmax - δ13Cmin).

Ideally, the δ15Nbaseline is estimated using the isotopic

signature of a long-lived filter-feeding primary consumer (e.g.,

bivalves; Vander Zanden and Rasmussen, 1999; Post, 2002), but

the absence of long-lived filter-feeding primary consumers at the

study sites necessitated the use of mean nitrogen values of aquatic

insects as recommended by Jackson and Britton (2014). These

include several families of dragonflies (Odonata), damselflies

(Odonata), mayflies (Ephemeroptera), crane flies (Diptera),

giant water bug (Hemiptera), and whirligig beetles (Coleoptera).

The insect families that occurred at all sampling sites were

dragonflies, mayflies, crane flies, and whirligig beetles. The

isotopic signatures of mayfly insects showed no significant

differences for δ15N (Welch: F = 1.12, df = 12.92, p > 0.05) and

δ13C values (Welch: F = 0.02, df = 13.62, p > 0.05) between

sampling sites, and were used to determine nitrogen baseline

(δ15Nbaseline), mean carbon invertebrate ratio (δ13Cmeaninv),

and the invertebrate carbon range (CRinv). The isotopic

baseline correction for nitrogen (δ15N) and carbon values (δ13C)
to trophic position (TP) and carbon corrected values (Ccorr)

allowed for comparisons of trophic interactions among fish

communities across a stream where sampling sites were

grouped into qualitative categories based on their invasion

status (i.e., free of, or invaded byO.mykiss) and location (Figure 1).

Stable isotope mixing models to quantify
consumer diets

A Bayesian mixing model (simmr, Parnell et al., 2010; R Core

Team 2021) was used to estimate the relative proportion of basal

food resources that were assimilated byO. mykiss and indigenous

fish species. The mixing model was calibrated using food sources

that were identified from the gut content analysis. Food items

were grouped into broad taxonomic categories: algae, plant

material, and insects were grouped into orders (Coleoptera,

Diptera, Ephemeroptera, Hemiptera, and Odonata). Models

were constructed using uncorrected stable isotope data. The

trophic enrichment factors were set at 3.37 ± 1.30% for

nitrogen and 0.54 ± 0.53% for carbon following Taylor et al.

(2017) and Bokhutlo et al. (2021). Model performance and fit

were checked using the convergence diagnostic tool and by

visually checking the posterior probability distributions.

Trophic niche position and dispersion

Shifts in trophic niche position for each fish species were

determined using measures of central tendency (i.e., the

difference in centroid position between species) following the

approach by Turner et al. (2010). Several metrics, trophic

position range (TP range), corrected carbon (Ccorr range),

mean distance to the centroid (CD) and mean nearest

neighbour distance (NND) were used to calculate niche

dispersion (see Layman et al., 2007). TP range provides an

estimate of the trophic length of the community, the Ccorr

range provides an estimate of the diversity of food resources,

the CD represents the mean of Euclidean distance of each species

to the sample bi-plot centroid, where the mean of TP values and

Ccorr of all species in the food web represent the sample centroid.

NND represents the mean of Euclidean distances to each species’

nearest neighbour in a TP and Ccorr - bi-plot. A lower dispersion

in the two dispersion metrics of trophic diversity of a system

indicates trophic redundancy. The significance of the test

statistics for the niche position and dispersion metrics were

then evaluated using null distributions generated from nested

linear models and a residual permutation procedure (Turner

et al., 2010). Post-hoc analysis of significant differences was done

using one-way analysis of variance (ANOVA) posthoc test.

A residual permutation procedure was used to assess if

changes in the trophic niche position of a species were due to

the invasion status of the sampling site (see Turner et al., 2010).

This was done by comparing the magnitude (path length) and

direction of change (path direction) in centroid positions for each

species sampled in the invaded and uninvaded sites. Path length

was taken as the Euclidean distance between a pair of centroid

positions sampled from different sites, and path direction was

defined as the angle (θ) between the first principal component

(PC1) vectors (see Collyer and Adams, 2007; Adams and Collyer,

2009).

Niche size and overlap

The niche space utilised by the fish species was delineated

using sample size-corrected standard ellipse area (SEAc) that

were derived using the R package Stable Isotope Ellipses (SIBER)

(Jackson et al., 2011). The SEAc were constructed using variance

and covariance of the isotope biplot that contained only 40% of

the data, which represents the core isotopic and typical resources

utilised by a species. A Markov Chain Monte Carlo (MCMC)

simulation with 104 iterations that provides 95% confidence

limits of the isotopic niche size for each species sampled was

used for a Bayesian estimate of SEAc and its area (Jackson et al.,
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2011). A maximum likelihood-fitted SEAc was used to quantify

the magnitude of niche size overlap between species and was

expressed as the proportional area that overlapped between a pair

of SEAc divided by the total area of both ellipses (Jackson et al.,

2011). Extent of overlap was classified as low (<40%),

intermediate (40–60%) and high (>60%) (Langton, 1982).

Results

Species composition and abundance

There were no significant differences in composition

(PERMANOVA: p > 0.05) and abundance (PERMANOVA:

p > 0.05) among the invertebrate assemblages based on the

invasion status of the site (Table 2). The most abundant taxa

across all sampling sites were Odonata (64% of the total) and

Diptera (11%) which collectively made up 76% of the total

number of invertebrates collected (Table 2). There were

however, significant differences in species composition,

(PERMANOVA: p < 0.05) and abundance (PERMANOVA:

p < 0.05) among fish assemblages based on invasion status

and site location (Blyde or Treur River) (Table 2). In the

Blyde River, sites (1 and 2) were uninvaded by O. mykiss and

only two species were collected from these sites, E. treurensis and

the stargazer mountain catfish (Amphilius uranoscopus), of

which E. treurensis was highly abundant. In contrast, O.

mykiss was abundant at sites 3 and 4 but A. uranoscopus and

E. treurensis were sparse. Sites 5-7 were located on the Treur

River and were uninvaded by O. mykiss. The sites had a higher

species diversity because of three additional species chubbyhead

barb (E. anoplus), E. lineomaculatus (line spotted barb) and

banded tilapia (Tilapia sparrmanii) that were caught from

these sites but not on the Blyde River (Table 2).

Niche position and size

Fish communities in the uninvaded river sections of the

Blyde River comprised only two species, E. treurensis and A.

uranoscopus, that both primarily fed on Diptera and

Ephemeroptera (Table 3). The two species, however occupied

significantly different centroid positions (p < 0.05), because of

differences in Ccorr values (ANOVA: F2, 56 = 29.8; p < 0.05) but

the TP values were similar (ANOVA: F 2, 56 = 3.3; p > 0.05)

(Figure 2A).

Fish communities in the invaded river reach of the Blyde

River comprised three species that fed mainly on insects but also

consumed algae, and macrophytes (Supplementary Table S4).

The three species occupied significantly different centroid

positions (p < 0.05) because of differences in TP values

(ANOVA: F2, 37 = 9.29; p < 0.05) but Ccorr values were

similar (ANOVA: F5, 120 = 3.9; p > 0.05) (Figure 2B).

Enteromius treurensis (SEAc = 0.05) and O. mykiss (SEAc =

0.03) utilised similar-sized isotopic niche spaces (p > 0.05) that

were significantly larger than the isotopic niche space utilised by

A. uranoscopus (SEAc = 0.01) (Figure 2E). The extent of overlap

between A. uranoscopus - E. treurensis (0.11), andA. uranoscopus

TABLE 2 The composition and abundance (by numbers) of invertebrate and fish taxa sampled from sites invaded by rainbow trout (Oncorhynchus
mykiss) on the Blyde River and sites free of invasion both the Blyde River and Treur rivers. The numbers of fish outside parentheses indicate the
total number of individuals collected using electrofishing and those in parentheses using fyke nets.

Taxa Blyde river
(uninvaded)

Blyde (invaded) Treur (uninvaded)

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7

Aquatic invertebrates Coleoptera 1

Diptera 3 13 6

Ephemeroptera 3 3 5 1

Hemiptera 2 1 2 2 1

Odonata 16 19 13 23 7 27 15

Opisthopora 5

Trichoptera 4

Fishes Amphilius uranoscopus 1 (1) 3 (1) 15 9

Enteromius anoplus 15 4

Enteromius lineomaculatus 13 4 3

Enteromius treurensis 50 (22) 40 (47) 1 (1) 4 3 6 14

Oncorhynchus mykiss 10 (5) 2 (13)

Tilapia sparrmanii 4 17 14
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- O. mykiss (0.11) was low but the was an intermediate overlap

between E. treurensis and O. mykiss (0.55) (Figure 2E).

The fish species from the uninvaded Treur River could be

separated into two groups. Four insectivores, A. uranoscopus, E.

anoplus, E. treurensis, and E. lineomaculatus, fed mainly on

insects while T. sparrmanii was an omnivore and fed on algae

and insects (Table 3). Amphilius uranoscopus had the highest TP

values (TP = 2.72 ± 0.14, Ccorr = 0.53 ± 0.09) that was

significantly different from E. lineomaculatus (TP = 2.35 ±

0.12, Ccorr = 0.57 ± 0.11) and E. treurensis (TP = 2.51 ±

0.11, Ccorr = 0.63 ± 0.10), while T. sparrmanii (TP = 2.15 ±

0.27, Ccorr = 0.58 ± 0.12) had the lowest TP values that were

significantly different from all the other species (ANOVA:

F5,120 = 18.24; p < 0.05) (Figure 2C, Supplementary Table S2).

There were no significant differences in Ccorr values (range =

0.41–0.63) among the five species (ANOVA: F5, 120 = 3.9; p >
0.05). Tilapia sparrmanii utilised the largest isotopic niche

(SEAc = 0.11 ± 0.1) while the rest of the species utilised

smaller but similar-sized isotopic niches (A. uranoscopus =

0.03 ± 0.03, E. anoplus = 0.03 ± 0.02, E. lineomaculatus =

0.04 ± 0.04, and E. treurensis = 0.04 ± 0.03) (SIBER p < 0.05)

(Figure 2F, Supplementary Table S2). The extent of overlap was

low for most species except for intermediate overlap between E.

lineomaculatus and E. treurensis (45%) and high overlap between

E. anoplus and E. treurensis (62%) (Supplementary Table S4).

Spatial differences in food web structure

The isotopic foodweb varied in structure across the invaded and

uninvaded sites from the Blyde and Treur rivers. The fish

communities from the invaded section of the Blyde River had

smaller niche metrics [total area of the convex hull (TA), trophic

range (TP range), and Ccorr range] than fish communities in the

uninvaded sections in the Blyde and Treur rivers (Supplementary

Table S5). In addition, there were significant differences (p < 0.05) in

the mean community centroid positions across sites in the

uninvaded (Ccorr = 0.19, TP = 2.55) and invaded (Ccorr = 0.38,

TP = 2.88) sections of the Blyde River and invasion free Treur River

(Ccorr = 0.58, TP = 2.37). The mean distance to the centroid of fish

communities in uninvaded sections of the Blyde (CD = 0.22) and

Treur River (CD = 0.24) was higher and significantly different (p <
0.05) from fish communities in the invaded section of the Blyde

River (0.15). In contrast, the nearest-neighbour distance (NND) was

not significantly different (p > 0.05) (Supplementary Table S5).

Only two species (A. uranoscopus and E. treurensis) were

sampled across invaded and uninvaded sites in the Blyde and

Treur rivers. The two species occupied significantly different

centroid positions from each other across the uninvaded and

invaded sites (Figure 3). The centroid position of A. uranoscopus

from uninvaded sections of the Blyde River was characterised by

depleted TP (2.37 ± 0.06) and Ccorr values (0.16 ± 0.01) relative

TABLE 3 Proportion (% of isotopic value) of food sources utilised by rainbow trout (Oncorhynchus mykiss) and indigenous fish species in the
catchments of the Blyde and Treur rivers, Mpumalanga Province, South Africa. ± denotes standard deviation.

Site
and invasion
status

Species Algae Macrophytes Coleoptera Diptera Ephemeroptera Hemiptera Odonata

Blyde River, sites 1–2
(uninvaded)

A. uranoscopus 0.05 ±
0.05

0.04 ± 0.03 0.23 ± 0.24 0.61 ± 0.27 0.07 ± 0.06

E. treurensis 0.07 ±
0.03

0.03 ± 0.02 0.11 ± 0.08 0.75 ± 0.06 0.05 ± 0.03

Blyde River, sites 3–4
(invaded)

A.uranoscopus 0.21 ±
0.13

0.09 ± 0.06 0.16 ± 0.13 0.15 ± 0.11 0.21 ± 0.16 0.17 ± 0.14

E. treurensis 0.25 ±
0.11

0.06 ± 0.04 0.15 ± 0.11 0.15 ± 0.09 0.23 ± 0.16 0.16 ± 0.12

O. mykiss 0.25 ±
0.08

0.03 ± 0.02 0.11 ± 0.07 0.23 ± 0.09 0.28 ± 0.14 0.11 ± 0.07

Treur River, sites 5–7
(uninvaded)

A. uranoscopus 0.04 ±
0.03

0.04 ± 0.03 0.18 ± 0.13 0.10 ± 0.10 0.24 ± 0.13 0.40 ± 0.23

E. anoplus 0.04 ±
0.03

0.05 ± 0.03 0.13 ± 0.08 0.10 ± 0.09 0.49 ± 0.11 0.18 ± 0.14

E.
lineomaculatus

0.06 ±
0.03

0.06 ± 0.04 0.15 ± 0.08 0.17 ± 0.11 0.43 ± 0.09 0.14 ± 0.08

E. treurensis 0.04 ±
0.02

0.04 ± 0.03 0.12 ± 0.07 0.10 ± 0.08 0.57 ± 0.09 0.14 ± 0.10

T. sparrmanii 0.14 ±
0.06

0.08 ± 0.05 0.05 ± 0.03 0.12 ± 0.10 0.53 ± 0.08 0.08 ± 0.06
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to invaded sections (TP = 3.15 ± 0.09 and Ccorr values = 0.33 ±

0.03) and invasion free Treur River (TP = 2.72 ± 0.14 and Ccorr =

0.53 ± 0.09). A similar trend was also observed for E. treurensis

were the centroid position in invaded section of the Blyde river

had enriched TP and Ccorr values (TP = 2.91 ± 0.11 and Ccorr =

0.39 ± 0.15) relative to invasion free sections of both the Blyde

(TP = 2.56 ± 0.17, Ccorr = 0.22 ± 0.11) and Treur rivers (TP =

2.51 ± 0.11 and Ccorr values = 0.63 ± 0.1). There were no

significant differences (p > 0.05) in path length, direction and

shape between the centroid positions of the two species among

invaded and uninvaded sites across the two rivers (Figure 3).

Discussion

This study assessed food web interactions between fish

communities in river sections invaded by O. mykiss and sections

that are still free of invasion in the upper reaches of the Blyde River

catchment. Oncorhynchus mykiss was an insectivore and fed at a

similar trophic level to that of indigenous fish species. Similar results

have been reported elsewhere in the uKhahlamba Drakensberg Park

and Cape Floristic Region of South Africa where introduced trout (S.

trutta and O. mykiss) have been observed to feed at similar and or

lower trophic levels to indigenous fishes (e.g., Rivers-Moore, et al.,

2013; Jackson et al., 2016; Weyl et al., 2020). Oncorhynchus mykiss is

known to impact indigenous fish fauna through various mechanisms

such as competition for resources (food and space), predation,

alteration of food web structures and changes in habitat coupling,

FIGURE 3
The magnitude and direction of change in centroid positions
of Enteromius treurensis and Amphilius uranoscopus across
invaded and uninvaded sites on the Blyde and Treur rivers in
Mpumalanga Province, South Africa.

FIGURE 2
Centroid positions, and estimates of niche size and overlap using sample size-corrected standard ellipse areas (SEAc) of fish species sampled
from sites invaded by rainbow trout (Oncorhynchus mykiss) on the Blyde River (B,E) and sites free of invasion both the Blyde (A,D) and Treur
rivers (C,F).
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as well as overall ecosystem-level effects (e.g., Eby et al., 2006;

McDowall, 2006; Karssing et al., 2012; Ellender, 2013; Shelton

et al., 2015a). Isolating the relative individual contribution of each

of thesemechanisms to the overall impact on the food web is difficult

(e.g., see Crowl et al., 1992; Townsend, 2003). The fact thatO. mykiss

and indigenous fish communities were feeding at the same trophic

level suggests that their present impact on indigenous fish

communities in the upper Blyde River Catchment is more likely

through competition for resources.

Competition for food and space between Oncorhynchus mykiss

and indigenous species can lead to adverse impacts on community

structure and function (e.g. Eby et al., 2006). Such impacts include a

decline and fragmentation of indigenous species populations and

niche shifts (e.g., Kadye et al., 2013; Shelton et al., 2015a).

Oncorhynchus mykiss and E. treurensis utilised a similar-sized

isotopic niche that had intermediate overlap (55%).

Oncorhynchus mykiss is a general predator but it has been shown

to feed primarily on terrestrial invertebrates, while E. treurensis

utilises a wider variety of invertebrate prey (Kleynhans, 1987). This is

consistent with observations from gut contents in this study where

O. mykiss fed mainly on aquatic invertebrates but the E. treurensis

had a broader diet spectrum that included algae and aquatic

invertebrates. The high proportion of aquatic invertebrates in the

diets of O. mykiss and E. treurensis likely lead to the observed high

niche overlap between the two species. This indicates that O. mykiss

is not using a vacant trophic niche in this system, but is instead using

similar food resources to E. treurensis, potentially competitively

displacing it. This notion is supported by the fact that river sections

with highO.mykiss densities were characterised by a low abundance

of E. treurensis (96% lower) relative to uninvaded areas.

In addition, competition often leads to niche shifts by theweaker

competitor to minimise competition (Kramer and Drake, 2014).

However, the effects of interspecific competition on the niche widths

of consumers are often context-specific (Araújo et al., 2011). For

example, competing species can utilise smaller niche spaces to

reduce competition by minimising overlap in resource use (e.g.,

Bolnick et al., 2010; Jackson et al., 2016) or increase their niche width

in order to maintain access to limited resources (e.g., Svanbäck and

Bolnick, 2007). In this study,A. uranoscopus and E. treurensis shifted

their niche and fed at a higher trophic level in invaded areas than in

uninvaded areas. The increase in trophic level was likely associated

with an increase in the variety of food items utilised by a species in

invaded sections relative to uninvaded areas. Both species fed

predominately on Ephemeroptera larvae in uninvaded sections of

the Blyde River and on Hemiptera and Odonata in the uninvaded

Treur River but increased their niche width in invaded sections of

the Blyde River to include greater proportions of algae and other

aquatic invertebrates such as Diptera, Hemiptera and Odonata. The

niche shift by A. uranoscopus and E. treurensis between invaded and

uninvaded river sections may be linked to differences in access to

food resources rather than food availability as there were no clear

differences in food resources (aquatic invertebrates) available to

fishes based on the invasion status. There were however significant

differences in fish composition and abundance among sites.

Indigenous fish species such as E. treurensis occurred at high

densities at uninvaded sites relative to invaded sites. It is

therefore likely that intraspecific competition for food resources

might have constricted the niche width of indigenous fishes at

uninvaded sites and conversely, niche expansion occurred at

invaded sites because of increased access to food resources that

may have been otherwise depleted or monopolised by competitors

(Bolnick et al., 2010). This notion is supported by other comparative

studies that have observed increases in invertebrate diversity in areas

invaded by O. mykiss that might be due to O. mykiss invasions

reducing the abundance of indigenous fish and thereby reducing

predation pressure on aquatic invertebrates, with knock-on effect on

the structure of these assemblages. For example, in the upper Breede

catchment, O. mykiss were characterised as weaker regulators of

invertebrate abundance than the indigenous river minnows which

they replace (Shelton et al., 2015b, 2017). Similar observations were

found in mountain headwater streams in eastern Zimbabwe where

there was a higher abundance of some invertebrate taxa in areas

invaded by trout which could be linked to decreased predation

pressure from indigenous invertebrates and fish that occurred in

lower abundance in invaded areas (Kadye et al., 2013).

Although not observed in this study, O. mykiss has also been

observed to selectively consume small river minnows (McIntosh

et al., 2010; Shelton et al., 2015a). The processes of competition

and predation by alien fish are often linked and interact to

determine net effects in invaded systems (e.g., Eby et al., 2006;

David et al., 2017). It is, therefore, possible that the decline in

populations of indigenous fishes in the upper Blyde River

catchment might have been through a combination of

predation and competition from O. mykiss invasions. The

trophic niche concept has been used to assess the impacts of

alien species on community structure and function but its use can

be hindered by several limitations some of which were evident in

this study. These include a lack of long-term monitoring studies

to track trends. The sites sampled in this study have been invaded

for over a century and there are no monitoring studies that have

been done to measure long-term trends in community absolute

abundance, predator demands and community compensation

mechanisms. Therefore the observed trophic interrelationships

may represent a point-in-time snapshot of foodweb dynamics

that may shift over time. Second, there are difficulties in

determining the food utilised by fish species from sites that

are in a continuum along a river profile as upstream river

segments often affect nutrient dynamics in downstream

segments. In this study, to minimise spatial dependencies of

food webs along a river continuum, an isotopic baseline

correction was done to allow for comparisons of trophic

interactions among fish communities along spatial gradients

(see Olsson et al., 2009; Jackson and Britton, 2014). Third, the

number of individuals varied significantly among sites, where a

species could be abundant at one site but rare at other sites. To

avoid data dependency problems among sites, sampling effort
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was standardised and sites were pooled together based on the

invasion status (presence or absence of O. mykiss) and location.

However, some sites had low sample sizes and the confidence

level in some of the estimates of food web matrices could be

improved by increasing the sample sizes. Despite these caveats,

this study demonstrated that there are spatial differences in

trophic functional diversity among the fish communities in

the upper Blyde River catchment that are correlated to O.

mykiss invasions. Fish communities in uninvaded areas had

greater trophic redundancy than fish communities in invaded

areas. These spatial differences in trophic functional diversity are

likely a result of O. mykiss invasion through competition for

resources with indigenous fishes. We posit O. mykiss invasions

have reduced the abundance of indigenous fishes and thereby

reducing predation pressure on aquatic invertebrates, with a

knock-on effect on the trophic interrelationships among fish

assemblages. This is consistent with observations elsewhere that

have noted that O. mykiss invasions can influence the diet and

trophic niches of indigenous fish by altering the structure and

dynamics of food webs through various mechanisms such as

predation and competition.
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