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Research shows that a significant number of industrial process controllers are poorly tuned. These

poorly tuned controllers persist not because there is insufficient literature on tuning methods but

rather because the research is not applied in practice due to the expense of subject matter experts and

sub-optimal process performance experienced during model identification experiments. Evidently

there is a need for auto-tuning of industrial processes controllers to optimise performance that does not

demand the attention of subject matter experts.

Auto-tuning has been considered as early as 1984 by Åström and T. Hägglund when they presented

the relay feedback method. With the advancement of computer processing capabilities alternative

approaches such as machine learning including reinforcement learning and Bayesian optimisation

have been introduced. The on-line, model free, controller agnostic, data efficient and globally optimal

characteristics of Bayesian optimisation makes it an ideal candidate for auto-tuning.

The supporting theory of Bayesian optimisation is presented and the selection of Gaussian processes,

Matérn parameter 5/2 kernel and expected improvement as surrogate model, covariance function and
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acquisition function are motivated.

Auto-tuning of multi-input multi-output (MIMO) controllers of a bulk tailing treatment (BTT) surge

tank is presented. Two controllers are selected for optimisation. The first controller is a decentralised

proportional-integral (PI) controller that controls a plant simulated using a linear model. The second

controller is a multivariable inverse PI controller that controls a plant simulated using a non-linear

process model. Objective functions are designed to promote set point tracking and disturbance rejection.

The search domain constraints are determined by intuitively expanding the search domain around the

tuning parameters of the reference controller. Results show that Bayesian optimisation is successful in

improving the performance of the set point tracking and disturbance rejection controllers for the surge

tank process.

Given the success of Bayesian optimisation on the surge tank controller, a more demanding control

application in the form of an ore milling circuit controller is presented. A decentralised PI controller

and µ-controller are selected for optimisation on the milling process. Objective functions are designed

to promote set point tracking and disturbance rejection. A robust stability analysis is conducted to

determine the constraints of the search domain. Results show that Bayesian optimisation is successful

in improving the performance of the set point tracking and disturbance rejection controllers for the ore

milling circuit.

Although the Bayesian optimisation framework can be applied to feedback controllers with real tuning

parameters in general, this research only focusses on diagonal PI controllers and multivariable inverse

controllers.

It is concluded that Bayesian optimisation can successfully auto-tune controllers for both the surge

tank and ore milling processes for improved set point tracking and disturbance rejection performance.

Objective functions can be designed to promote specific controller performance requirements. The

search domain can be expanded to improve the probability of including the optimal tuning parameters

whilst remaining within the stability margins of the controller.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Process controllers and especially proportional-integral-derivate (PID) controllers are abundant in the

industry due to their simplicity (Desborough and Miller, 2002). PID controllers are versatile and can

be implemented as single-input single-output (SISO) controllers, be part of a de-centralised multi-

input multi-output (MIMO) controllers, multivariable controllers, or perform the base level control

of advanced process controllers. Many classical tuning methods exists for tuning PID controllers

including among others Ziegler–Nichols (1942), Cohen–Coon (1953), IMC (Garcia and Morari, 1982),

SIMC (Skogestad, 2003), and AMIGO (Åström and Hägglund, 2004).

The common objective of the mentioned tuning methods is to determine the optimal parameters

for a PID controller. These methods aim to achieve desired control performance by adjusting the

controller settings based on system dynamics and response characteristics. The Ziegler–Nichols

method involves the identification two critical parameters, the ultimate gain and period, by inducing

sustained oscillations in the system. Based on these values, tuning parameters are determined for

proportional, proportional-integral, and proportional-integral-derivative controllers. The Cohen–Coon

method involves analysing the process response of a step test to determine the ultimate gain and

ultimate time constant. These values are then used to calculate controller parameters. The IMC method

focuses on achieving desired closed-loop performance by incorporating the process dynamics into the

controller design. It provides a systematic and model-based approach to controller tuning, offering

improved control performance for a wide range of systems. The SIMC (Simple IMC) tuning method

is a simplified version of the IMC approach used for tuning PID controllers. SIMC aims to provide

a quick and practical tuning solution by approximating the dynamic behaviour of the process with a
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first-order-plus-time-delay model. The AMIGO method involves determining the optimal controller

settings based on the process response to a step test. AMIGO utilises a combination of analytical

equations and iterative optimisation to find the appropriate values for the controller parameters. The

method aims to achieve desired closed-loop performance by minimizing integral error and ensuring

stability.

Despite the published tuning methods at the disposal of industry, poorly tuned controllers remain

prevalent. The research of Desborough and Miller (2002) shows that only a third of PID controllers

provide an acceptable level of performance. It is therefore reasonable to assume that industrial PID

controllers are often only tuned when installed and then just left as is. This is partly due to the fact that

the process of tuning controllers require the consultation of domain experts and sub-optimal process

performance.

It is within this contexts that the opportunity exists to address the problem of poorly tuned controllers by

auto-tuning industrial process controllers to meet specified performance criteria without the attention

of domain experts. Neumann-Brosig, Marco, Schwarzmann and Trimpe (2020) proposes an on-line

automatic controller tuning method using Bayesian optimisation. The approach combines Gaussian

process models with elementary process knowledge in the form of an active disturbance rejection

control (ADRC) structure, which incorporates a dynamic model and an observer to capture unmodeled

dynamics and disturbances. The key parameters of the ADRC are learned from experimental data

using Bayesian optimisation. This combined approach strikes a balance between physical knowledge

and data-driven learning, making it flexible and effective for a wide range of control problems. This

framework established by Neumann-Brosig et al. is repurposed to the application of auto-tuning

multivariable industrial process controllers.

Auto-tuning of industrial process controllers offers several benefits but also limitations that are worth

considering.

The benefits include:

• Improved performance: Auto-tuning algorithms can optimise controller parameters, leading to

improved control performance, faster response times, reduced overshoot, and better disturbance

rejection (Åström and Hägglund, 1984; Kofinas and Dounis, 2019).
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CHAPTER 1 INTRODUCTION

• Time and cost savings: Auto-tuning eliminates the need for subject matter experts to conduct

system identification experiments or the time and labour costs associated with trial-and-error

methods (Desborough and Miller, 2002).

Limitations include:

• Model dependence: The approach followed in this research requires a process model to be

determine the constraints of the search domain containing the optimal tuning parameters. Such

models may not always be available or may be difficult to develop.

• Sub-optimal production: Auto-tuning algorithms introduce perturbations to observe the response

of the process and evaluate the controller behaviour using different tuning parameters. Such

perturbations will result in process variations and may result in sub-optimal production for the

duration of the auto-tuning process.

• Personnel and equipment safety: Allowing auto-tuning algorithms to adjust controller tun-

ing parameters may lead to unintentional controller instability that could result in damage to

equipment or personnel injury. This may limit the application of auto-tuning algorithms to

process that are inherently safe to perturb unless the tuning parameter search space is constrained

conservatively so as not to introduce unstable perturbations.

1.1.2 Research gap

The implementation of Bayesian optimisation to auto-tune controllers has gained significant research

attention in recent years and is made possible by the advancements in computer processing capabilities.

Bayesian optimisation is used by Berkenkamp, Krause and Schoellig (2021) to auto-tune an aerial

quad-rotor vehicle, Neumann-Brosig et al. (2020) to auto-tune an active disturbance rejection controller

(ADRC), Fiducioso, Curi, Schumacher, Gwerder and Krause (2019) to auto-tune a room temperature

controller, Lucchini, Formentin, Corno, Piga and Savaresi (2020) for auto-tuning of torque vectoring of

electrical vehicles and Sorourifar, Makrygirgos, Mesbah and Paulson (2021) to auto-tune a continuously

stirred tank reactor to improve performance.

Research addressing the application of Bayesian optimisation to auto-tune MIMO controllers of

industrial processes could not be found.
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CHAPTER 1 INTRODUCTION

1.2 RESEARCH OBJECTIVE AND QUESTIONS

Bayesian optimisation requires a surrogate model, covariance function, acquisition function, fit for

purpose objective function to minimise and a constrained, multi-dimensional search domain from

which to selected candidate sampling points. With these Bayesian optimisation prerequisites in mind,

the research objectives are to:

• Motivate the selection of a surrogate model, covariance function and an acquisition function

based on prior knowledge of the objective function.

• Formulate a methodology to design objective functions to capture controller performance

requirements. The objective function must be designed in such a way that when minimised

by Bayesian optimisation the controller will be optimised to meet the desired performance

requirements.

• Motivate an approach to defining the constraints of the search domain. The search domain

must be defined to allow the inclusion of sampling points to locate the global minimum of the

objective function while minimising the probability of including sampling points that cause

controller instability and potential equipment damage.

• Establish a simulation environment to auto-tune industrial process controllers to meet the

specified performance demands.

• Benchmark the optimised controllers against the reference controllers to evaluate the performance

improvement.

Research questions include:

• Which surrogate model, covariance function and acquisition function is most suitable to model

the unknown objective function and find the global minimum?

• Can an objective function be designed to capture specific performance criteria, so that when

minimised the optimised controller will demonstrate improvement of the criteria specified?

• What measurable performance criteria can be included in the design of the objective function to

improve the set point tracking or disturbance rejection of the controller?”

• Is there a systematic approach to determine the search domain constraints that will include

the global minimum of the objective function while minimising the probability of unstable

iterations?
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CHAPTER 1 INTRODUCTION

• Can the Bayesian optimisation approach to auto-tuning captured in literature be extended to

MIMO industrial process controllers?

• How does the performance of auto-tuned controllers compare against controllers tuned with

classical tuning methods?

• Does the Bayesian optimisation approach to auto-tuning industrial process controllers show

potential for practical implementation?

1.3 APPROACH

The approach followed is:

• Research and present the recent trends in the field of autonomous controller tuning including the

relay feedback method, reinforcement learning and Bayesian optimisation.

• Study and present the theory of Bayesian optimisation.

• Motivate the choice of surrogate model, covariance function and acquisition function.

• Select the bulk tailings treatment (BTT) surge tank multivariable - and decentralised proportional-

integral (PI) controllers (Rokebrand, Burchell, Olivier and Craig, 2021) as references to auto-tune

for optimal set point tracking and disturbance rejection.

• Simulate the Bayesian optimisation of the reference controller on both linear and non-linear

BTT process models.

• Select the ore milling circuit decentralised PI controller and µ-controller (Craig and MacLeod,

1995; Coetzee, Craig and Kerrigan, 2010; Le Roux, Craig, Hulbert and Hinde, 2013) as reference

controllers to present a greater auto-tuning challenge due to the increased dimensionality and

stronger interactions between plant input and output variables.

• Simulate the Bayesian optimisation of the reference controller on the non-linear ore milling

circuit.

1.4 RESEARCH GOALS

The research goals include:

• Present the approach to design objective functions.

• Present the approach to constrain the search domain.
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• Demonstrate improved performance of the auto-tuned BTT controller.

• Demonstrate improved performance of the auto-tuned ore milling circuit controller.

1.5 RESEARCH CONTRIBUTION

Contribution to the existing body of research is made by:

• Applying Bayesian optimisation to automatically tune MIMO industrial process controllers.

• Developing a pragmatic approach to designing fit for purpose objective functions.

• Applying robust stability analyses to controllers with uncertain parameters to determine the

constraints of the search domain.

1.6 RESEARCH OUTPUTS

The following articles were produced from this work:

• J.A. van Niekerk, J.D. le Roux, and I. K. Craig. "On-line automatic controller tuning using

Bayesian optimisation - a bulk tailings treatment plant case study." IFAC-PapersOnLine 55, no.

21 (2022): 126-131.

• J.A. van Niekerk, J.D. le Roux, and I. K. Craig. "On-line automatic controller tuning for

a multivariable plant using Bayesian optimisation - an ore milling case study", submitted to:

Journal of Process Control, November 2022.

1.7 OVERVIEW OF STUDY

Chapter 2 presents the review of relevant literature and makes reference to the current state of con-

troller tuning, classical tuning methods and advancements made in the field of autonomous controller

tuning. Chapter 3 presents the problem statement of auto-tuning MIMO process controllers, provides

background to Bayesian optimisation and describes the approach to autonomous controller tuning.

Chapter 4 describes the process to design a fit for purpose objective function and implements the

Bayesian approach and optimises BTT surge tank controllers. Chapter 5 applies a robust stability

analysis to determine the search domain constraints and implements Bayesian optimisation tuning on a

more challenging ore milling circuit controller. Chapter 6 provides the concluding remarks.
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEW

This chapter describes the current state of under performing process controllers in the industry and

motivates the case for automated controller tuning. Research of established auto-tuning methods

is referenced as well as the more recent machine learning based auto-tuning techniques enabled by

the advancements made in computer processing capability. Bayesian optimisation is motivated as a

candidate for the preferred auto-tuner and related research is presented.

2.2 A LITERATURE STUDY OF CONTROLLER AUTO-TUNING

Process controllers and especially PID controllers are abundant in the industry. Although the use

of model predictive control (MPC) is widespread (Qin and Badgwell, 2003), PID is by far the most

common feedback controller due to its stability and simplicity. A survey of eleven thousand controllers

in the continuous process industry indicated that 97% of those controllers implemented the PID

algorithm (Desborough and Miller, 2002). PID controllers are also implemented extensively as part of

decentralised controllers for MIMO processes (He, Cai, Wu and He, 2005).

Numerous PID tuning methods have been researched and published. Better known methods include

Ziegler-Nichols (1942), Cohen-Coon (1953), IMC (Garcia and Morari, 1982), SIMC (Skogestad, 2003),

and AMIGO (Åström and Hägglund, 2004). Luyben (1990) describes the LACEY procedure which

implements the biggest log-modulus tuning (BLT) method to tune decentralised PID controllers of

MIMO processes with interaction between control loops. The BLT method relies on the Ziegler-

Nichols method to determine initial tuning parameters which are then detuned to achieve system

stability.
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CHAPTER 2 LITERATURE STUDY

In spite of the abundance of PID tuning methods available to the industry, Desborough and Miller

(2002) indicate that only a third of controllers provide an acceptable level of performance. This is

partly due to the fact that the process of obtaining optimal tuning parameters can be expensive as it is

time consuming to conduct system identification experiments which require the attention of domain

experts and sub-optimal process performance. Furthermore, frequent retuning may be required due

to changing process conditions and ageing equipment. It is therefore evident that a need exists to

optimally tune industrial controllers in an inexpensive manner. For that reason, this paper investigates

the use of auto-tuners to optimally tune controllers. An optimally tuned controller is a general term

that depends on the objective of the process and could for example be the quality of the product at the

expense of throughput or the setpoint tracking ability of controllers on the lower level of the control

hierarchy.

Auto-tuning is not a novel concept and has enjoyed much research since the relay feedback method

of Åström and Hägglund (1984). The relay feedback method was primarily intended to tune simple

regulators of the PID type, and due to its success has subsequently received much research attention

which has expanded its application to more complex controllers. Hang, Loh and Vasnani (1994)

extends the relay feedback auto-tuning technique to auto-tune cascade controllers. For processes with

long dead-times, Hang, Wang and Cao (1995) shows that Smith predictor controllers can be auto-tuned

by combining the relay feedback method to identify the process model and controller design. Wang,

Hang and Bi (1997) shows that multiple points on the process frequency response can be identified

using a single relay test and application of the fast Fourier transform. For processes characterised

by the first-order-plus-time-delay model, Wang, Hang and Zou (1997) uses a biased relay feedback

test to accurately identify the critical points and parameters of the model. Wang, Zou, Lee and Bi

(1997) presents a method for auto-tuning fully cross-coupled multivariable PID controllers based on

relay feedback for processes with significant interaction. Hang, Åström and Wang (2002) introduces

a further modification of the relay feedback method to identify multiple process frequency response

points by superimposing a parasitic relay to the standard relay. In addition to the critical gain and

critical period more information on process dynamics can be obtained from the same relay feedback

test using new identification techniques (Hang et al., 2002). Huang, Jeng and Luo (2005) applies a

single run of the standard relay feedback experiment to identify first- or second-order-plus-time-delay

process models. In light of the success of the relay feedback research, auto-tuners based on the method

have been commercialised. The performance of two such auto-tuners is discussed in Berner, Soltesz,

Hägglund and Åström (2018).
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CHAPTER 2 LITERATURE STUDY

Advancements made in computer processing capabilities and machine learning have provided an

alternative approach to auto-tuning controllers by introducing self-learning techniques such as rein-

forcement learning (Nian, Liu and Huang, 2020). Reinforcement learning has been used in auto-tuning

applications since the turn of the century.

Continuous action reinforcement learning automata (CARLA) were developed as one of the first

reinforcement learning auto-tuning algorithms (Howell and Best, 2000). CARLA was implemented to

auto-tune the Ford Motors Zetec engines and showed a 60% improvement over traditional methods.

By taking advantage of the on-line and model free learning properties of reinforcement learning, an

auto-tuning PID controller was developed by Wang, Cheng and Sun (2007). The reinforcement Q-

learning algorithm was used to auto-tune fuzzy PD and PI controllers of a simulated inverted pendulum

model and a CE150 helicopter model (Boubertakh, Tadjine, Glorennec and Labiod, 2010). A hybrid

Zeigler-Nichols fuzzy reinforcement learning multi-agent system was used by Kofinas and Dounis

(2019) to control the flow rate of a desalination unit. The gains of the controller were initialised using

the Zeigler-Nichols tuning method and then adapted on-line using reinforcement learning. Shipman

and Coetzee (2019) applied reinforcement learning using deep neural networks to automatically tune

a PI controller suitable for use over a wide range of plant models by changing the plant dynamics,

disturbance and measurement noise during the training process. Lawrence, Stewart, Loewen, Forbes,

Backstrom and Gopaluni (2020) expressed a PID controller as a shallow neural network in the actor of

the reinforcement learning framework. The PID gains are the weights of the actor network and are

optimised by maximizing the reward function.

Dogru, Velswamy, Ibrahim, Wu, Sundaramoorthy, Huang, Xu, Nixon and Bell (2022) applies re-

inforcement learning to tune PI controllers of a pilot scale, non-linear tank system. The approach

requires step-response models for the required operating points on the non-linear system to obtain

reference PI tuning parameters using off-line tuning rules. The parameters are constrained for safe

exploration and used as a baseline for the reinforcement learning agent. The agent is trained using the

reference PI parameters to maximise the reward observed from the off-line step test simulations. Once

the desired off-line performance criteria is achieved, the agent is deployed on the on-line system for

further training in real time while exposed to actual process dynamics. Once training is complete the

agent is capable of providing a suitable set of PI parameters for any set point given by the user.

Neumann-Brosig et al. (2020) considers the ideal auto-tuner to be on-line, model free, controller
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CHAPTER 2 LITERATURE STUDY

agnostic, data efficient and globally optimal (minimises or maximises the objective function depending

on the objective). The ideal auto-tuner must interact with the live process, sample proposed tuning

parameters, evaluate the performance of the proposal, and continue until the performance requirement

of the controller has been optimised. Process sampling must be efficient and be conducted in as few as

possible steps to minimise the expense of sub-optimal process performance and production loss during

performance evaluation.

This research investigates Bayesian optimisation as a candidate for ideal auto-tuning of industrial

processes. Bayesian optimisation is used to optimally tune a decentralised PI controller, multivariable

controller and µ-controller applied to industrial processes in simulation. The problem statement is

defined as a fit for purpose objective function to be minimised by attentively selecting tuning parameters

from a constrained search domain. Although the relay method presented by Wang, Zou, Lee and Bi

(1997) could be applied, the use of Bayesian optimisation is researched as an alternative approach.

Unlike reinforcement learning, Bayesian optimisation does not require off-line models for training and

can be applied directly to the process.

Bayesian optimisation has been demonstrated to optimise the tuning paraments of a quad-rotor

vehicle (Berkenkamp et al., 2021). Neumann-Brosig et al. (2020) used Bayesian optimisation to find

optimal tuning parameters of an active disturbance rejection controller (ADRC) for a throttle valve

without the need for a process model and achieved better performance than trial-and-error tuning

after only 10 experiments. Lucchini et al. (2020) and Sorourifar et al. (2021) respectively applied

Bayesian optimisation to tune MPCs for torque vectoring of high performance electrical vehicles and a

continuously stirred tank reactor to notably improve performance. Fiducioso et al. (2019) used safe

contextual Bayesian optimisation to optimise the PID parameters of a room temperature controller

without human intervention. The safe contextual GP-LCB algorithm developed and implemented by

Fiducioso et al. (2019) starts searching for optimal parameters withing a safe set. The safe set is a small

set around initial parameters that is considered safe. The safe set expands as the algorithm reduces

uncertainty by querying boundary points and includes points with high performance. As a comparison,

this research applies robust stability to determine the safe constraints of the search domain.

Bayesian optimisation is well suited for the optimisation of unknown (i.e. black box) objective

functions that are expensive to evaluate (Brochu, Cora and Freitas, 2010). The expense can be

expressed in any sense including computational effort, production down-time, cost of expertise or
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capital cost of evaluation. Snoek, Larochelle and Adams (2012) shows that Bayesian optimisation can

reach or surpass human expert-level tuning of hyper-parameters for machine learning algorithms. Lam,

Poloczek, Frazier and Willcox (2018) applies Bayesian optimisation to address aerospace engineering

applications where a finite budget of evaluations is available. The results of a black-box optimisation

challenge held in 2020, demonstrates the benefits of Bayesian optimisation over random search

methods for the tuning of hyper-parameters (Turner, Eriksson, McCourt, Kiili, Laaksonen, Xu and

Guyon, 2021).

2.3 CHAPTER SUMMARY

The literature study concludes that, despite the abundance of PID tuning methods available to the

process industry, a need exists to automatically tune controllers for optimal performance in a cost-

effective manner. Various relay feedback and machine learning based methods are considered and

ultimately Bayesian optimisation is selected as the research candidate because it is considered to have

the characteristics of an ideal auto-tuner, has shown to optimise controllers of various applications and

is well suited for expensive to evaluate unknown objective functions.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3 THE BAYESIAN APPROACH TO

AUTO-TUNING CONTROLLERS

3.1 CHAPTER OVERVIEW

This chapter describes the framework within which Bayesian optimisation can be used to optimally tune

a feedback controller for a dynamic MIMO plant. The feedback controllers included in this research

are decentralised PI controllers and multivariable PI controllers. The optimal tuning parameters are

found by minimising an unknown objective function that represents the performance of the controller.

An overview of Bayesian optimisation is provided, describing how the unknown objective function

is approximated by a surrogate model. The global minimum of the surrogate model is then found

by an acquisition function. The choice of Gaussian processes to model the surrogate and expected

improvement as acquisition function is motivated.

3.2 PROBLEM STATEMENT

Consider a dynamic MIMO process of an industrial plant represented by

ẋxx(t) = fff (xxx(t),uuu(t),ddd(t)) (3.1a)

y(t) = hhh(xxx(t),ddd(t)) (3.1b)

that is to be controlled by a feedback controller where xxx(t) is the process state vector, uuu(t) is the

manipulated variable vector, yyy(t) is the observed process variable vector and ddd(t) is the disturbance

vector. The process model is not known a priori.
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CHAPTER 3 THE BAYESIAN APPROACH TO AUTO-TUNING CONTROLLERS

Assume that the plant of (3.1) is controlled by a controller in a unity feedback configuration as shown

in Fig. 3.1. The controller can be represented by

uuu(t) = KKK(eee(t),α) (3.2)

were KKK represents the controllers, and eee(t) is the control error vector or the difference between the set

points rrr(t) and the observed process variables, and α represents the controller tuning parameters.

Plant

ẋxx(t)

Controller

KKK(eee(t),α)

uuu(t) yyy(t)eee(t)rrr(t)+

−

ddd(t)

Figure 3.1. Feedback controller.

The tuning parameters of the controller that would provide optimum performance are unknown and

must be sought. The tuning parameters α ∈ A are constrained in the domain A ⊆ Rd , where d

represents the dimensions of the domain. The performance of the tuning parameters are quantified in

this work by evaluating each of the observed controlled variables or manipulated variables in terms of

time domain performance indices. These performance indices for controller evaluation could typically

include the integral of the squared error (ISE), integral of the absolute error (IAE), integral of the

time multiplied squared error (ITSE), integral of the time multiplied absolute error (ITAE), rise time,

settling time, overshoot, total variation, decay ratio, etc. (Skogestad and Postlethwaite, 2007; Seborg,

Edgar, Mellichamp and Doyle, 2011; Pongfai, Su, Zhang and Assawinchaichote, 2020). These indices

are dependent on the inputs used with step changes being the most typical input variation. Definitions

of selected performance indices are provided in Table 3.1.

Where multiple performance indices are used to evaluate a controller, they must be scaled according

to the required response. The performance associated with each controlled variable is weighted and

combined to provide an objective function representing the performance of the controller as a single

scalar quantity. The objective function for a MIMO controller can be expressed as

Q =
n

∑
i=1

ωi

(
p

∑
j=1

βi jq j(ααα)))

)
, (3.3)

where Q is the objective function, n is the total number of controlled variables, ωi is the controlled

variable performance weighting, p is the total number of performance indices selected per controlled
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CHAPTER 3 THE BAYESIAN APPROACH TO AUTO-TUNING CONTROLLERS

Table 3.1. Definitions of selected performance indices.

Performance index Definition

Rise time Time it takes for the response to first reach 90% of its final value, which is

usually required to be small (Skogestad and Postlethwaite, 2007).

Settling time Settling time measures the time it takes for the error to stay below ε%,

where ε = 2 for this study with |y(t)−y f inal| ≤ ε%×|y f inal −yinitial| (Seborg

et al., 2011).

Transient time Transient time measures how quickly the transient dynamics die out i.e. for

the error to stay below ε% of emax, with |y(t)− y f inal| ≤ ε%× emax where

emax is the maximum error of |y(t)− y f inal| (MATLAB, 2022). Transient

time is suitable to measure the duration of disturbances on non-stepped

controlled variables.

Overshoot The peak value divided by the final value, which should typically be 1.2

(20%) or less (Skogestad and Postlethwaite, 2007).

Peak Peak value of |y(t)− yinit | (MATLAB, 2022).

Total variation The total up and down movement of the signal (input or output) which should

be as small as possible (Seborg et al., 2011).

Decay ratio The ratio of the second and first peaks, which should typically 0.3 or less.

Interestingly the Cohen and Coon (1953) tuning method aims to achieve a

decay ratio 0.25, referred to as quarter amplitude damping.

IAE IAE =
∫ Teval

0 |y(t)− y f inal|dt (Seborg et al., 2011), where Teval is the evalu-

ation period, which in the case of auto-tuning needs to be as short as possible

to reduce the total evaluation period of all the optimisation iterations.

ISE ISE =
∫ Teval

0 (y(t)− y f inal)
2dt (Seborg et al., 2011)

ITAE ITAE =
∫ Teval

0 t|y(t)− y f inal|dt (Seborg et al., 2011)
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CHAPTER 3 THE BAYESIAN APPROACH TO AUTO-TUNING CONTROLLERS

variable, q j is the performance index and βi j is a scaling factor to scale the contribution of each

performance index.

The form of the performance indices as functions of the tuning parameters is unknown, but can be

calculated from experiments conducted on the process (3.1). Candidate tuning parameters are identified

and selected for each experiment. The closed-loop response in reaction to the set point or disturbance

step change is observed and the performance indices q j and objective function Q are calculated. The

experiments are performed iteratively, with a new set of tuning parameters selected for each iteration,

until the global minimum of the objective function is found. The tuning of the controller can be

expressed as a function to be optimised to find the set of tuning parameters that minimises

min
α∈A

= Q(ααα), (3.4)

where ααα is a vector consisting of the all tuning parameters as determined by the structure of the

controller.

3.3 BAYESIAN OPTIMISATION

The Bayesian approach to optimisation is to first specify prior knowledge about the unknown objective

function using a probabilistic surrogate model, and then to locate the global optimum of that model

using an acquisition function (Wilson, Hutter and Deisenroth, 2018). Unlike random search and grid

search optimisation techniques where past performance is not considered to locate the global optimum

(Bergstra and Bengio, 2012), Bayesian optimisation makes decisions based on the performance of

previously sampled parameters. Such thoughtful choices of parameter selection characterises the

sample-efficient nature of Bayesian optimisation (Bull, 2011).

The surrogate model is computationally cheaper to evaluate and optimise compared to an unknown

objective function. The acquisition function evaluates the surrogate model to select the next set

of parameters to be sampled on the objective function. In this way the cheap evaluation effort of

the surrogate model is maximised while minimising the expensive evaluation effort of the objective

function.

In this work the surrogate is modelled as a Gaussian process (Rasmussen and Williams, 2006).

Gaussian processes not only provide predictions of unsampled inputs, but also the confidence of

those predictions that can be interpreted in a natural way (Ackermann, De Villiers and Cilliers, 2011).
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CHAPTER 3 THE BAYESIAN APPROACH TO AUTO-TUNING CONTROLLERS

Several acquisition functions exist that can interpret Gaussian processes and identify the next input

to be sampled. Compared to other surrogate models, Gaussian processes have a small number of

training parameters (Ažman and Kocijan, 2007). The computational complexity of Gaussian processes

increases cubically as the number of sampling points increase (Liu, Zhang and Gielen, 2013), but since

it is an objective to limit the number of expensive experiments, this limitation is not of concern in this

work.

3.4 GAUSSIAN PROCESSES

Per definition, a Gaussian process is a collection of random samples, any finite number of which have

a joint Gaussian distribution (Rasmussen and Williams, 2006). The random samples represent the

value of the objective function Q(ααα) at inputs ααα . Gaussian processes are described by their mean and

covariance function and can be written as

Q(ααα)∼ GP(m(ααα),k(ααα,ααα ′)), (3.5)

where m(ααα) is the mean function, which is normally taken to be zero for notational simplicity, and

k(ααα,ααα ′) is the covariance function of Q(ααα). The covariance function is selected to capture prior

knowledge about the shape of the objective function such as smoothness and rate of change. In contrast,

the unrealistic smoothness of the commonly used squared exponential function makes it impractical for

optimisation problems. To aid in the selection of the covariance function, Snoek et al. (2012) propose

the automatic relevance determination (ARD) Matérn parameter 5/2 kernel as the covariance function.

This function is used in this work.

To demonstrate Gaussian processes visually, consider the single-dimension regression problem in

Fig. 3.2 where the input α map to the output Q(α). Fig. 3.2 shows five random samples drawn from

the prior distribution over functions specified by a Gaussian process. The shaded region in Fig. 3.2

represents the uncertainty of the sample functions by computing the variance at each input.

Gaussian processes learn the input-output relationships from a training dataset. For the problem

statement defined in (3.3) and (3.4), the input is the tuning parameter vector ααα and the output is the

objective function value Q(ααα). Noisy observations can be modelled as

Q̂ = Q(ααα)+ ε (3.6)

where Q̂ is the observed noisy objective function. The difference between the function value and

observed value is due to additive noise assumed to have a Gaussian distribution with zero mean and
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CHAPTER 3 THE BAYESIAN APPROACH TO AUTO-TUNING CONTROLLERS

Figure 3.2. Random samples drawn from the prior distribution over the objective function.

variance σ2
n

ε ∼N(0,σ2
n ). (3.7)

The inputs and outputs can be combined to form the training dataset D= {(ααα i, Q̂i)|ni=1} of n observa-

tions. Of primary interest is the knowledge gained about the function by incorporating the training

dataset and prior distribution. The joint distribution of the observed function values and test outputs

according to the prior is  Q̂QQ

QQQ∗

∼N

0,

K(A,A)+σ2
n I K(A,A∗)

K(A∗,A) K(A∗,A∗)

 , (3.8)

where A denotes the design matrix consisting of all n inputs ααα i as column vectors. The observations

Q̂i are collected in the column vector Q̂QQ so that D= {(A, Q̂QQ)}. QQQ∗ is the objective function prediction

corresponding to test inputs A∗ and K(· , ·) denotes covariances of the datapoints.

The predictive equations are obtained by deriving the conditional distribution from the joint distribu-

tion.

QQQ∗|A, Q̂QQ,A∗ ∼N(Q̄QQ∗,cov(QQQ∗)) (3.9)
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CHAPTER 3 THE BAYESIAN APPROACH TO AUTO-TUNING CONTROLLERS

where,

Q̄QQ∗ = kkk⊤∗ [K +σ
2
n I]−1Q̂QQ (3.10a)

cov(QQQ∗)) = kkk∗∗− kkk⊤∗ [K +σ
2
n I]−1kkk∗. (3.10b)

Q̄QQ∗ is the mean prediction and the variance is the diagonal elements of cov(QQQ∗). The compact notations

are K = K(A,A), kkk∗∗ = K(A∗,A∗) and kkk∗ = K(A,A∗).

Figure 3.3. Random samples drawn from the posterior distribution conditioned at three points.

The posterior distribution of a Gaussian process combines the prior understanding of the underlying

function (i.e., the mean and covariance function) with the observed data to provide an updated

model and uncertainty estimates. It provides a full probabilistic representation of the underlying

function, capturing both the predictions and their associated uncertainties. Fig. 3.3 shows the posterior

distribution of functions, of a single dimensional regression problem, conditioned on the prior and a

dataset of three data points. Only functions that pass through the points of the dataset are considered.

The dashed line shows the mean prediction of the functions. The shaded region shows how the

uncertainty decreases as the function approach the observations. The solid lines show four sample

functions drawn from the posterior distribution.
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CHAPTER 3 THE BAYESIAN APPROACH TO AUTO-TUNING CONTROLLERS

3.5 ACQUISITION FUNCTION

In Bayesian optimisation, acquisition functions are used to search the parameter space to acquire the

next input location to be sampled based on the predictive mean and variance of the surrogate objective

function. The objective of the acquisition function is not to learn the entire unknown objective function,

but only to locate the global minimum (or maximum, depending on the objective function) within the

constraints provided (Shahriari, Swersky, Wang, Adams and De Freitas, 2015). The global minimum

refers to the best possible solution of the objective function. It is the lowest value that the objective

function can achieve among all possible solutions. The global minimum may be excluded from the

constrained search space if the constraints are selected too conservatively to eliminate, as an example,

unwanted controller behaviour.

The acquisition function balances the trade-off between exploration and exploitation. Focussing the

search to where the predictive mean is low promotes exploitation while searching where the variance

is high favours exploration (Shahriari et al., 2015).

Acquisition functions identify the next input location to be sampled by finding the point where the

acquisition function L is maximised, with (Snoek et al., 2012)

ααα∗ = argmax
ααα∈A

L(ααα|D) (3.11)

where ααα∗ is the next input location to be sampled given the training dataset D.

Acquisition functions that can interpret Gaussian processes include amongst other, expected im-

provement (EI), Gaussian process upper confidence bound, and probability of improvement (Snoek

et al., 2012). In this work EI (Mockus, 1975) is selected, as it has been shown to escape local optimums

(Emmerich, Giannakoglou and Naujoks, 2006), is better behaved than probability of improvement,

and does not require a tuning parameter such as the Gaussian process upper confidence bound (Snoek

et al., 2012).

EI is the maximum expected improvement over the current best input location and is defined as

EI(ααα) = Emax[0, Q̂(αααmin)− Q̂(ααα)] (3.12)
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CHAPTER 3 THE BAYESIAN APPROACH TO AUTO-TUNING CONTROLLERS

where αααmin is the location of the current best (minimum) posterior mean. When the posterior distribu-

tion is Gaussian, EI can be solved analytically (Jones, Schonlau and Welch, 1998) as

EI(ααα) =


(Q̂(αααmin)− Q̄QQ∗(ααα))ψ(Z)+σ(ααα)φ(Z), if σ(ααα)> 1

0, if σ(ααα) = 0
(3.13)

where

Z =
(Q̂(αααmin)− Q̄QQ∗(ααα))

σ(ααα)
. (3.14)

σ(ααα) is the predicted standard deviation at ααα , φ and ψ denote the probability density function (PDF)

and cumulative distribution function (CDF) of the normal distribution respectively. Equation (3.13) is

differentiable and can be maximised with a gradient based optimiser to obtain ααα∗.

Algorithm 1: Bayesian optimisation

1: for n = 1,2,...,pre-set value do

2: select new ααα∗ by maximizing acquisition function L

ααα∗ = argmax
ααα∈A

L(ααα|D)

3: sample process at ααα∗ to observe Q̂n

4: augment data set D= {Dn−1,(ααα∗, Q̂n)}

5: update posterior distribution

6: end for

Bayesian optimisation is a cyclic process that progresses as follows:

• The acquisition function identifies the next input location ααα∗ to be sampled.

• The process is sampled by means of an on-line experiment at ααα∗.

• The results are observed and returned to augment the training dataset D.

• The posterior distribution (surrogate model) of the objective function is updated using the

augmented dataset.

This process repeats itself until a predetermined number of cycles has been reached. Refer to Algorithm

1 for the pseudocode of the process (Shahriari et al., 2015). The global minimum is min(Q̂QQ), which is

the minimum of all the observations accumulated and not necessarily the result of the last acquisition

cycle.
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CHAPTER 3 THE BAYESIAN APPROACH TO AUTO-TUNING CONTROLLERS

Figure 3.4. Posterior distribution and EI acquisition function indicating the next input location to be

sampled with an asterix.

Fig. 3.4 shows a posterior distribution of a single dimensional regression problem conditioned on

a dataset of three data points. The attributes of the posterior distribution are combined in the EI

acquisition function and maximised to find α∗.
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CHAPTER 4 AUTO-TUNING OF SURGE TANK

CONTROLLERS

4.1 CHAPTER OVERVIEW

This chapter presents the approach followed to auto-tune MIMO controllers of a BTT surge tank. The

feasibility of the approach is first tested on a linear plant model with a decentralised PI controller. The

objective of the feasibility study is to determine if Bayesian optimisation can automatically tune and

improve the performance of a MIMO controller. Objective functions are designed to optimise set point

tracking and disturbance rejection of the controller. Once feasibility is established the approach is

applied to a more complex non-linear plant model with a multi-variable controller. The response of the

controllers are compared against benchmark controllers from Rokebrand et al. (2021).

4.2 BULK TAILINGS TREATMENT SURGE TANK

Fig. 4.1 taken from Rokebrand et al. (2021) and Burchell, le Roux and Craig (2023) illustrates the

BTT surge tank process flow. The surge tank is fed with chrome tailings from the tailings dam at a

feedrate qi and density ρi. The tailings are diluted with water at a flow rate of qw and agitated in the

surge tank to promote mixing. The tank volume is v. The control objective is to stabilise the chrome

concentrator supply density which makes use of spiral concentrators to separate chrome grades. A

stable density supply to the concentrator improves separation efficiencies. The tank output feedrate is

qo and density ρo. The tank output feedrate is kept constant at 750 m3/hr. Perfect mixing is assumed

and therefore ρo = ρ , where ρ is the density measured in the surge tank. The chrome tailings density

ρi is not constant and is the disturbance that must be rejected by the process controller. The process

variables to be controlled are the surge tank volume v and density ρ . The manipulated variables are the

water flow rate qw and tailings supply flow rate qi.
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

Figure 4.1. Bulk tailings treatment surge tank.

4.3 BULK TAILINGS TREATMENT SURGE TANK PLANT MODEL

Rokebrand et al. (2021) derives the BTT surge tank dynamic model from mass balance equations and

presents the non-linear state space model asv̇

q̇

=

 qi +qw −qo
1
v
(ρiqi +qw −ρ(qi +qw))

 (4.1)

which is of the form

ẋxx = fff (((xxx,,,uuu,,,ddd))). (4.2)

Equation 4.1 is linearised around the equilibrium point where the flow input equals the flow output and

the surge tank volume remains constant. The linearised state space equation is converted to a transfer

function matrix model of the form

yyy = GGGp(s)uuu+GGGd(s)d, (4.3)
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

presented by y1

y2

=


1
s

1
s

0.01
s+75

−0.04
s+75


u1

u2

+
 0

60
s+75

d. (4.4)

Outputs y1 and y2 correspond to v and ρ and inputs u1 and u2 correspond to qi and qw. Table 4.1

lists the nominal, minimum and maximum values of the variables. The controlled variables must be

maintained between the operational bounds given and the manipulated variables must remain within

the saturation limits.

Table 4.1. Bulk tailings treatment variable descriptions.

Variable Description Unit Min Max Nominal Value

Controlled variables

v Surge tank volume m3 3 20 10

ρ Surge tank density t/m3 1 1.5 1.4

Manipulated variables

qi Tailings supply flow rate m3/h 300 1200 600

qw Water flow rate m3/h 0 750 150

Disturbance variables

ρi Chrome tailings density t/m3 1 2 1.5

4.4 AUTO-TUNING OF THE BTT SURGE TANK DECENTRALISED PI CONTROL-

LER

4.4.1 Decentralised PI controller

The surge tank is controlled in closed-loop by controller KKKdc tuned by Rokebrand et al. (2021) using

SIMC tuning rules (Skogestad, 2003)

KKKdc =

84(s+50)
s

0

0
−1505.7(s+75)

s

 . (4.5)
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

Controller KKKdc is structured as a decentralised controller with PI controllers on the diagonal

KKKdc =

k11 0

0 k22

 . (4.6)

The PI controllers in the Laplace domain are of the form (Seborg et al., 2011)

k j j = kP j j(1+
1

τI j js
), j = 1,2 (4.7)

where kP is the proportional gain and τI is the integral time. The objective is to auto-tune controller

KKKdc by means of Bayesian optimisation to find the optimal tuning parameters kP11, τI11, kP22 and τI22.

Pre-requisites of Bayesian optimisation to meet the stated objective include defining the constraints of

the search domain and design of an objective function to capture the optimal performance requirements

of the controller. These pre-requisites are discussed in the following sections.

4.4.2 Constraints

Bayesian optimisation is a constrained regression process, and the constraints must be carefully

considered, in conjunction with the objective function, for the Bayesian optimisation process to deliver

useful results. The constraints define the search domain A⊆Rd . For the purposes of this simulation the

constraints are the ranges of the tuning parameters within which the Bayesian optimisation algorithm

must search for the optimal tuning parameters to minimize the objective function.

A benefit of the Bayesian optimisation process is that a controller can be optimally tuned without a

process model, but without a process model the selection of the constraints is not trivial. In cases where

an existing controller needs to be re-tuned due to poor performance the existing tuning parameters can

be used as a point of departure and the constraints can be selected around that point. However for a

controller to be commissioned in a newly constructed plant, such existing parameters are not available

and a pragmatic approach is required to determine a reasonable search domain.

Plant permitting an open loop step test can be conducted to determine the magnitude and direction of

the process gain as well as the time constant. Given the gains and time constants the candidate tuning

parameters can be sought using any of the known PID tuning methods such as SIMC (Skogestad, 2003).

The observations need not be very accurate since they will be used to determine the constraints and

not the optimal set of parameters. When applying methods such as SIMC, the selection of constraints

should consider that the calculated controller proportional gain will be closer to the upper boundary

than the lower boundary. The inverse will be true of the controller integral time. To curb process

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

instabilities during on-line optimisation, the search space should therefore not be symmetrical around

the nominal tuning parameters, but rather off-centre, favouring areas where parameters are not close to

an instability boundary.

To expand the search space around the nominal tuning parameters, the gain constraints are conservat-

ively selected as a factor of 2 in the direction of instability, and boldly selected as a factor of 0.2 in

the opposite direction. Selection of the integral time constraints follows the inverse approach, i.e. a

factor of 0.5 in the direction of instability and a factor of 5 in the opposite direction. It is possible that

an optimum still exists beyond the search space but as that optimum is approached, the possibility

of instability increases. For the objective functions selected, an unstable controller will not return a

measurable value, so one needs to limit the number of unstable iterations to take advantage of the

ability of the acquisition function to select the next sampling point. Selection of the constraints is

therefore a trade-off between selecting a small search space that could possibly exclude the global

minimum and a large search space that could include unstable iterations or iterations that exceed the

operational bounds. One can therefore not recklessly define a large search domain and hope that

Bayesian optimisation finds the global minimum of the objective function.

For the purposes of the simulation, the search space is defined by selecting the tuning parameters from

Rokebrand et al. (2021) and expanding the space around them as described. The constraints selected

are

kP11 ∈ [16.8,168] (4.8)

τI11 ∈ [0.01,0.1] (4.9)

kP22 ∈ [−3010,−301] (4.10)

τI22 ∈ [0.0067,0.067]. (4.11)

A safe Bayesian optimisation algorithm SafeOPT has been developed by Sui, Gotovos, Burdick and

Krause (2015) and was further expanded on by Berkenkamp et al. (2021) to address multiple safety

constraints. SafeOPT is suited for processes where exploration and exploitation by the Bayesian

optimisation algorithm could lead the equipment damage or pose a risk to personnel safety. SafeOPT

comes at the expense of additional iterations required to expand the constraints within which the

optimal parameters can be safely sought. The SafeOPT algorithm was not selected for the BTT process

since unstable controller performance will neither impact the safety of equipment nor personnel.
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

4.4.3 Objective function

The purpose of objective function QBT Ttrack1 is to auto-tune controller KKKdc for improved set point

tracking while minimising the interaction with the non-stepped controlled variable. Objective function

QBT Ttrack1 in the form of (3.3) is

QBT Ttrack1 = ω1(β11q1 +β12q2)+ω2(β23q3 +β24q4). (4.12)

For the stated purpose, settling time and peak response are selected as the performance indices.

Incorporating both settling time and peak response in the design of the objective function is expected

to reduce the overshoot that occurs after a step change and decrease the time required for the response

to settle.

QBT Ttrack1 consist of two terms. The first term represents the tank volume and the second the tank

density. QBT Ttrack1 evaluates the response of two controlled variables, therefore a single Bayesian

optimisation iteration of QBT Ttrack1 will consist of two set point step changes.

Performance index q1 is the settling time of the surge tank volume in response to a volume set point

change. Performance index q2 is the peak response of the tank volume in response to a density set point

change. Performance index q3 is the settling time of the surge tank density in response to a density set

point change. Performance index q4 is the peak response of the tank density in response to a volume

set point change. The drawback of settling time is that the evaluation period must be long enough to

allow the response of the candidate tuning parameters to settle. Should the response not settle within

the provided evaluation period, the settling time cannot be measured, the objective function cannot

quantify the performance and the result of the iteration does not contribute toward the training dataset

D, i.e. a wasted iteration.

The performance indices of QBT Ttrack1 are normalised so that their magnitudes are comparable in

contribution the objective function value. Normalisation is achieved by scaling each of the performance

indices. The performance results of controller KKKdc are used as the scaling factors of QBT Ttrack1 . To

obtain these results, setpoint step changes of both the volume and density setpoints are conducted, and

the resulting peak magnitudes and settling times are measured. To normalise or scale the magnitudes of

the performance criteria, β is selected to be the inverse of the measured performance results. Scaling

factor β11 = 1/0.094458 is the inverse of the volume settling time of controller KKKdc in response to
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

a volume set point change. β12 = 1/0.587158 is the inverse of the tank volume peak response to a

density set point change. β23 = 1/0.039192 is the inverse of the density settling time in response to

a density set point change. β24 = 1/0.006402 is the inverse of the tank density peak response to a

volume set point change.

The performance weights ω1 and ω2 are selected to penalise a particular output to promote a favourable

response. The process can tolerate slow settling times of the tank volume since there is no economic

benefit for quick settling times of the volume, however a stable density supply to the concentrator

improves separation efficiencies. For that reason ω1 = 1 and ω2 = 2.

Objective function QBT Tre ject1 in the form of (3.3) is

QBT Tre ject1 = ω1q1 +ω2q2. (4.13)

Objective function QBT Tre ject1 is designed to improve the disturbance rejection properties of KKKdc.

Transient time is selected as the performance index. Incorporating transient time in the design of

the objective function is expected to decrease the time required for the transient dynamics to decay.

Simulation results revealed that incorporating the peak response did not lead to improved performance

and was therefore omitted for the sake of simplicity. Similar to settling time, the evaluation period of

transient time must also be long enough to allow transient dynamics to decay.

QBT Tre ject1 consist of two terms representing the transient times of the tank volume and the tank density

respectively. Both terms are affected by the same disturbance input, therefore only a single step change

of the disturbance input is required per Bayesian optimisation iteration. For this reason it is expected

that the total optimisation time for QBT Tre ject1 will be less than the time required to optimise QBT Ttrack1 .

As for objective function QBT Ttrack1 , ω1 = 1 and ω2 = 2.

The transient times of the two terms are of similar magnitude, therefore QBT Tre ject1 does not require

any scaling.

The period of the iterations is determined by the choice of objective function. For the objective

functions (4.12) and (4.13), the tuning parameters cannot converge at a rate faster than the time it takes

for the process dynamics to die out and remain within the 2% tolerance region. The evaluation period

must be sufficiently long for the performance index to be measurable so that the objective function
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can return a valid scalar quantity to update the posterior distribution of the surrogate model. The

evaluation period is selected to be 36 minutes per step test for both objective functions. The simulation

demonstrated that the optimisation did not converge for evaluation periods less than 30 minutes due to

a significant number of iterations failing to settle within the allowed time.

4.4.4 Auto-tuning for improved set point tracking using objective function QBT Ttrack1

4.4.4.1 Procedure

Figure (4.2) shows the Bayesian optimisation framework used for auto-tuning (Neumann-Brosig

et al., 2020). For the feasibility tests, closed-loop tests are conducted on the linear model of (4.4) by

stepping the set points of the controller. To evaluate set point step changes, two step tests are required,

one for the volume set point and the other for the density set point, in a single Bayesian optimisation

iteration. The magnitudes of the set point step changes are selected to be 2 m3 for volume and -0.05

t/m3 for density. A negative density step is required to prevent the maximum limit of density from

being exceeded. The control errors e(t), which are the difference between the reference set points r(t)

and controlled variables y(t), are provided as input to the feedback controller KKKBT Ttrack1 .

The objective of the controller is to adjust the manipulated variables u(t) to keep the control error small

despite changes to the set points r(t). The performance of the next set of controller tuning parameters

ααα∗ selected by the acquisition function is evaluated in closed-loop operation and observed through

the objective function QBT Ttrack1n , where n is the instance of the iteration. The tuning parameters and

the observed objective function value are appended to the training dataset D. The posterior surrogate

model is updated with training set data and the acquisition function selects the next set of tuning

parameters ααα∗+1 to be evaluated in search of the objective function minimum.

4.4.4.2 Simulation

Fig. 4.3 shows the results of the tank volume set point step change using objective function QBT Ttrack1

and illustrates how Bayesian optimisation explores the search space to minimise the objective function.

Each trend in Fig. 4.3 represents a closed-loop step response of a candidate controller with tuning

parameters selected by the acquisition function. The tank volume is shown to increase to meet

the set point step change demand. The density response confirms that interaction exists between

the manipulated variables controlling the volume and the tank density. The step response of the

best performing controller KKKBT Ttrack1 that has minimised the objective function is highlighted. The

controlled variables remain within operational bounds listed in Table 4.1 during the optimisation

process.
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Figure 4.2. Bayesian optimisation framework to to auto-tune KKKBT Ttrack1 . The blue elements represent

the required adaptation of the unitary feedback controller block diagram to implement Bayesian

optimisation.
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Figure 4.3. Response of the controlled variables to a volume set point step change during Bayesian

optimisation using objective function QBT Ttrack1 .
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Figure 4.4. Response of the manipulated variables to a volume set point step change during Bayesian

optimisation using objective function QBT Ttrack1 .
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Figure 4.5. Response of the controlled variables to a density set point step change during Bayesian

optimisation using objective function QBT Ttrack1 .
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Figure 4.6. Response of the manipulated variables to a density set point step change during Bayesian

optimisation using objective function QBT Ttrack1 .

Fig. 4.4 shows how the manipulated variables respond to the volume set point step change. The

tailings supply flow immediately increases in response to the volume set point step change to increase

the tank volume. The increase of the tailings supply interacts with the tank density and causes the

density to increase. The water flow rate increases to counteract the increasing tank density. Both

manipulated variables remain within the variable constraints listed in Table 4.1 during the optimisation

process.

Fig. 4.5 shows the results of the tank density ρ set point step change using objective function QBT Ttrack1 .

The tank density is shown to decrease to meet the set point step change demand. The volume response

confirms that interaction exists between the manipulated variables controlling the density and the tank

volume.

Fig. 4.6 shows how the manipulated variables respond to the density set point step change. The water

supply flow immediately increases in response to the density set point step change to decrease the tank

density. The increase of the water supply interacts with the tank volume and causes the volume to

increase. The tailing supply flow decreases to stabilise the tank volume.
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Table 4.2 shows the results of the Bayesian optimisation simulation using QBT Ttrack1 , iterations 11

through to 20. Column QBT Ttrack1 represents the objective function value for each set of tuning

parameters applied. The no results entries are due to the controlled variable responses not settling

within evaluation period. The best result is found by iteration 20 with optimal tuning parameters as

shown in the corresponding row.

Table 4.2. Results of the Bayesian optimisation simulation to improve set point tracking using

QBT Ttrack1 , iterations 11 through 20.

Iter QBT Ttrack1 kP11 τI11 kP22 τI22

11 5.2506 167.47 0.01661 -2997 0.007359

12 no result 161.93 0.01426 -2880 0.012868

13 5.3324 162.16 0.01043 -2990 0.007564

14 5.2475 159.44 0.01333 -2915 0.009586

15 5.3335 151.06 0.01055 -3001 0.009818

16 no result 26.196 0.01313 -315 0.064597

17 5.2934 167.76 0.01679 -2977 0.008090

18 no result 22.488 0.01290 -310 0.064967

19 5.3373 167.58 0.01016 -3001 0.009227

20 5.1937 167.58 0.01305 -2990 0.007202

During simulation, the step test response was evaluated over a period of 36 minutes in order for the

process dynamics to die out. To conduct 20 Bayesian optimisation iterations as suggested in Table

4.2, with each iteration requiring two step tests would require a total of 40 step tests in practice. The

optimisation process would take no less than 24 hours to complete.

Fig. 4.7 compares the volume step change response of controllers KKKBT Ttrack1 and KKKdc. The objective

function QBT Ttrack1 was selected to improve settling time while minimising the interaction with the

non-stepped controlled variable. The volume settling time is seen to decrease from 0.094 to 0.035

hours which is an improvement of 63%. Even though the transient time of the non-stepped output is

not evaluated by the objective function, the transient time of the tank density does decrease from 0.121

hours to 0.064 hours. The interaction peak increases from 0.0064 to 0.0072 t/m3, a deterioration of

-13% (Recall that the peak is defined as the maximum value of |y(t)− yinit | as defined in Table 3.1).

Simulations show that it is possible to improve on the interaction peak by further penalising the density
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Figure 4.7. Comparison of the volume step change response of controllers KKKBT Ttrack1 and KKKdc. The

markers indicate the improvement of the set point tracking settling time, interaction peak and interaction

transient time.
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Figure 4.8. Comparison of the density step change response of controllers KKKBT Ttrack1 and KKKdc. The

markers indicate the improvement of the set point tracking settling time, interaction peak and interaction

transient time.
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term QBT Ttrack1 i.e. changing ω2 = 4. The penalty improves the interaction peak at the expense of

volume set point tracking performance. It was decided to favour set point tracking performance over

an improvement of the interaction peak, since it is the primary purpose of the objective function. A

summary of the performance criteria results is provided in Table 4.3.

Fig. 4.8 compares the density step change response of controllers KKKBT Ttrack1 and KKKdc. The density

settling time is seen to decrease from 0.039 to 0.032 hours which is an improvement of 18%. The

transient time of the tank volume decreases from 0.097 hours to 0.049 hours, and the interaction peak

reduces slightly from 0.58 to 0.54 m3, which is an improvement of 9%.

Table 4.3. Comparison of performance criteria of controllers KKKdc and KKKBT Ttrack1 .

Performance criteria Unit KKKdc KKKBT Ttrack1 Improvement (%)

Volume settling time hours 0.09445 0.03528 62.65

Density settling time hours 0.03919 0.03227 17.66

Volume peak interaction m3 0.58715 0.53695 8.55

Density peak interaction t/m3 0.00640 0.00723 -12.97

Volume step RMSE 0.37371 0.28297 24.28

Density interaction RMSE 0.00203 0.00173 14.82

Volume interaction RMSE 0.20495 0.12652 38.27

Density step RMSE 0.01016 0.00733 27.77

The Root Mean Squared Error (RMSE) calculated in Table 4.3 provides a statistical measure of

performance improvement. The results from Table 4.3 show that Bayesian optimisation has improved

the set point tracking performance of KKKBT Ttrack1 within the constraints provided using the objective

function QBT Ttrack1 . The approach implemented to auto-tune KKKBT Ttrack1 for improved set point tracking

is feasible and suitable to be implemented on a non-linear plant model and more complex multi-variable

controller.

4.4.5 Auto-tuning for improved disturbance rejection using objective function QBT Tre ject1

4.4.5.1 Procedure

Figure (4.9) shows the framework within which controller KKKBT Tre ject1 is auto-tuned for improved

disturbance rejection. For the feasibility tests, closed-loop tests are conducted on the linear model

of (4.4) by stepping the disturbance input. To evaluate disturbance step changes, a single step test

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

is required for every Bayesian optimisation iteration because there is ony one disturbance input. To

compare the results of the optimised controller performance with that of Rokebrand et al. (2021)

a disturbance step change of 0.1 t/m3 is selected. The control errors e(t), which are the difference

between the reference set points r(t) and controlled variables y(t), are provided as input to the feedback

controller KKKBT Tre ject1 .

The objective of the controller is to adjust the manipulated variables u(t) to keep the control error

small despite the disturbances d(t). The performance of the next set of controller tuning parameters

ααα∗ selected by the acquisition function is evaluated in closed-loop operation and observed through

the objective function QBT Tre ject1n , where n is the instance of the iteration. The tuning parameters and

the observed objective function value are appended to the training dataset D. The posterior surrogate

model is updated with training set data and the acquisition function selects the next set of tuning

parameters ααα∗+1 to be evaluated in search of the objective function minimum.

Figure 4.9. Bayesian optimisation framework to to auto-tune KKKBT Tre ject1 . The blue elements represent

the required adaptation of the unitary feedback controller block diagram to implement Bayesian

optimisation.

4.4.5.2 Simulation

Fig. 4.10 shows the volume and density response during the Bayesian optimisation process for a

step disturbance of 0.1 t/m3 in the Chrome tailings density. The step response of the best performing

controller KKKBT Tre ject1 evaluated using objective fuction QBT Tre ject1 , is highlighted.
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Fig. 4.11 shows how the controller manipulates the tailings supply and water flow rates to reject

the disturbance. Due to the increase of the Chrome tailings density, the surge tank density increases.

In response to the increased surge tank density, the controller increases the water flow rate which

suppresses the density disturbance, but also increases the surge tank level. The controller responds by

decreasing the tailings supply flow rate to stabilise the tank level. Both the controlled variables and

manipulated variables remain within process bounds during the optimisation process.
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Figure 4.10. Response of the controlled variables to a disturbance step change during Bayesian

optimisation using objective function QBT Tre ject1 .

Table 4.4 shows the results of the Bayesian optimisation simulation using objective function QBT Tre ject1 ,

iterations 11 through to 20. The objective function is sufficiently minimised by iteration no. 15 to

provide an acceptable margin of improvement upon the performance of the benchmark controller KKKdc.

Note that the iterations do not stop once the objective function minimum is located, but continues until

the pre-set number of iterations are complete. Objective function QBT Tre ject1 only requires a single

disturbance step test to evaluate. At 36 minutes per test, the 20 step tests would require no less than 12

hours to complete in practice. As anticipated the total optimisation time for QBT Tre ject1 is less than that

for QBT Ttrack1 .

To evaluate the performance of the controller optimised for disturbance rejection, the controller is

benchmarked against results from Rokebrand et al. (2021). Fig. 4.12 compares the disturbance
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Figure 4.11. Response of the manipulated variables to a disturbance step change during Bayesian

optimisation using objective function QBT Tre ject1 .

Table 4.4. Results of the Bayesian optimisation simulation using objective function QBT Tre ject1 ,

iterations 11 through 20.

Iter QBT Tre ject1 kP11 τI11 kP22 τI22

11 0.43986 29 0.010503 -2963 0.017718

12 0.11939 165 0.012518 -2982 0.013052

13 0.11951 144 0.010614 -2868 0.0076114

14 0.1239 167 0.021729 -2921 0.0071512

15 0.11421 158 0.011173 -3003 0.0066239

16 0.12097 159 0.01168 -2911 0.0097733

17 0.44786 34 0.010419 -303 0.010039

18 0.13112 133 0.013029 -2697 0.0069357

19 0.61284 17 0.099396 -851 0.006959

20 0.12868 138 0.014263 -3008 0.008375
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rejection response of controllers KKKBT Tre ject1 and KKKdc. Objective function QBT Tre ject1 was designed to

improve on the disturbance rejection transient time. The volume transient time is seen to reduce from

0.108 to 0.058 hours, a 46% improvement. The density transient time reduces from 0.109 to 0.056

hours, a 48% improvement. Fig. 4.12 also shows an improvement of the controlled variable peaks

induced by the disturbance, even though peak reduction was not optimised for.
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Figure 4.12. Comparison of the disturbance step change response of controllers KKKBT Tre ject1 and KKKdc.

The markers indicate the improvement of the disturbance peaks and transient times.

Table 4.5 summarises the key performance criteria of controller KKKBT Tre ject1 and KKKdc. Included in

the results are the RMSE calculations which provide a statistical comparison of performance. The

results listed in Table 4.5 confirm that Bayesian optimisation with objective function QBT Tre ject1 is

successful in auto-tuning KKKBT Tre ject1 to improve disturbance rejection performance. Auto-tuning

controller KKKBT Tre ject1 for improved disturbance rejection performance is therefore feasible and suitable

to be implemented on a non-linear plant model and more complex multi-variable controller.

4.5 AUTO-TUNING OF THE BTT SURGE TANK INVERSE CONTROLLER

4.5.1 Multivariable controller

In this section it is assumed that the surge tank is controlled in closed-loop by controller KKKinv (4.14)

which is a modified inverse controller (Rokebrand, Burchell, Olivier and Craig, 2020). The modified
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Table 4.5. Comparison of disturbance rejection criteria of controller KKKBT Tre ject1 and KKKdc.

Performance criteria Unit KKKdc KKKBT Tre ject1 Improvement (%)

Volume transient time hours 0.10806 0.05804 46.29

Density transient time hours 0.10895 0.05616 48.45

Volume disturbance peak m3 0.71712 0.47495 33.77

Density disturbance peak t/m3 0.03117 0.01890 39.36

Volume response RMSE 0.27816 0.12867 53.74

Density response RMSE 0.01053 0.00438 58.41

inverse controller is used as reference rather than the ideal inverse controller (Rokebrand et al., 2021)

because it poses a more complex optimisation problem to solve having two additional tuning parameters

to optimise. The ideal inverse controller consists of two purely proportional elements acting on the

volume error. Integral action is added to the two purely proportional elements by Rokebrand et al.

(2020) to account for gain uncertainty.

KKKinv = 100

0.8(s+41.3)
s

20(s+75)
s

0.2(s+165)
s

−20(s+75)
s

 . (4.14)

Controller KKKinv is structured as a multivariable controller with PI controllers ki j in all the controller

matrix positions

KKKinv =

k11 k12

k21 k22

 . (4.15)

Controller KKKinv is auto-tuned by finding the optimal tuning parameters for kP11, τI11, kP12, τI12, kP21,

τI21, kP22 and τI22. KKKinv has double the number of tuning parameters to optimise compared to KKKdc. It is

expected that KKKinv will require more iterations to optimise than for KKKdc due to the increased number of

tuning parameters.

4.5.2 Constraints

The constraints are determined using the same method discussed in Section 4.4.2, using the tuning

parameters of Rokebrand et al. (2020) as a point of departure.
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kP11 ∈ [16,160] (4.16)

τI11 ∈ [0.0121,0.1211] (4.17)

kP12 ∈ [400,4000] (4.18)

τI12 ∈ [0.0067,0.0667] (4.19)

kP21 ∈ [4,40] (4.20)

τI21 ∈ [0.0030,0.0303] (4.21)

kP22 ∈ [−4000,−400] (4.22)

τI22 ∈ [0.0067,0.0667]. (4.23)

4.5.3 Objective function

The purpose of objective function QBT Ttrack2 is to auto-tune controller KKKinv for improved set point

tracking while minising the interaction with the non-stepped controlled variable. Objective function

QBT Ttrack2 in the form of (3.3) is

QBT Ttrack2 = ω1(β11q1 +β12q2)+ω2(β23q3 +β24q4). (4.24)

The performance indices and weights of QBT Ttrack2 are equal to that of QBT Ttrack1 .

Even though the purpose of objective functions QBT Ttrack1 and QBT Ttrack2 are the same, QBT Ttrack2

cannot be set equal to QBT Ttrack1 for the reason that the scaling factors will not be the same. The scaling

factors of the objective functions differ due to the difference in performance characteristics, such as

settling times and interaction peaks, of controllers KKKinv and KKKdc.

The scaling factors for QBT Ttrack2 are determined as follows. Scaling factor β11 = 2/0.078455 which

is the inverse of the volume settling time of controller KKKinv in response to a volume set point change.

The value of "2" in β11 is to prioritise settling time over minimisation of the interaction peak. β12 =

1/0.13475 is the inverse of the tank volume peak response to a density set point change. β23 =

2/0.038276 is the inverse of the density settling time in response to a density set point change.

β24 = 1/0.0067734 is the inverse of the tank density peak response to a volume set point change.

Objective function QBT Tre ject2 with the purpose of improving disturbance rejection in the form of (3.3)

is

QBT Tre ject2 = ω1q1 +ω2q2. (4.25)
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The performance indices and weights of QBT Tre ject2 are equal to that of QBT Tre ject1 . Unlike the set

point tracking objective functions, the settling time of KKKinv and KKKdc are similar in magnitude. Since

the magnitudes are similar and the objective function does not consider any other performance criteria

other than settling time no scaling is required and QBT Tre ject2 = QBT Tre ject1 .

4.5.4 Auto-tuning for improved set point tracking using objective function QBT Ttrack2

4.5.4.1 Procedure

Closed-loop tests are conducted on the non-linear model of (4.1) by stepping the set points of the con-

troller. The procedure as discussed in Section 4.4.4.1 applies, except that the plant is now represented

by a non-linear model.

4.5.4.2 Simulation

Fig. 4.13 shows the results of the tank volume set point step change using objective function QBT Ttrack2

on the non-linear plant model using the multivariable inverse controller. The tank volume rises to

meet the increased volume set point. The slight dip in density response confirms that interaction exists

between the manipulated variables controlling the volume and the tank density controlled variable. The

step response of the best performing controller KKKBT Ttrack2 that has minimised the objective function is

highlighted. The controlled variables remain within operational bounds listed in Table 4.1 during the

optimisation process.

Figure 4.13. Response of the controlled variables to a volume set point step change during Bayesian

optimisation using objective function QBT Ttrack2 .
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Fig. 4.14 shows how the manipulated variables respond to the volume set point step change. In contrast

to the decentralised PI controller, where only the paired output responds immediately to the set point

step change, both the tailings supply flow and water supply flow immediately increase in response

to the volume set point step change to increase the tank volume while maintaining the density at set

point. Both manipulated variables remain within the variable constraints listed in Table 4.1 during the

optimisation process.

Figure 4.14. Response of the manipulated variables to a volume set point step change during Bayesian

optimisation using objective function QBT Ttrack2 .

Fig. 4.15 shows the results of the tank density set point step change using objective function QBT Ttrack2 .

The tank density is shown to decrease to meet the set point step change demand. The volume response

confirms that interaction exists between the manipulated variables controlling the density and the tank

volume.

Fig. 4.16 shows how the manipulated variables respond to the density set point step change. Both the

tailings and water supply flow respond immediately to the change in density set point. The tailings flow

decreases to reduce the tank density while the water flow increases to maintain the tank level.

Table 4.6 shows the results of the Bayesian optimisation simulation using QBT Ttrack2 , iterations 21

through to 30. Due to the increased number of tuning parameters to optimise, the minimisation

of QBT Ttrack2 requires substantially more iterations to converge than QBT Ttrack1 . Column QBT Ttrack2
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Figure 4.15. Response of the controlled variables to a density set point step change during Bayesian

optimisation using objective function QBT Ttrack2 .

Figure 4.16. Response of the manipulated variables to a density set point step change during Bayesian

optimisation using objective function QBT Ttrack2 .
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represents the objective function value for each set of tuning parameters applied. The best result is

found by iteration 26 with optimal tuning parameters as shown in the corresponding row.

Table 4.6. Results of the Bayesian optimisation simulation to improve set point tracking using

QBT Ttrack2 , iterations 21 through 30.

Iter QBT Ttrack2 kP11 τI11 kP12 τI12 kP21 τI21 kP22 τI22

21 13.155 120.92 0.1019 3949 0.00680 38.193 0.0049 -3821 0.0236

22 8.9497 153.3 0.1159 3443 0.00681 36.429 0.0047 -2856 0.0103

23 17.191 135.22 0.0524 2728 0.00672 37.824 0.0177 -827 0.0182

24 11.225 153.27 0.0926 3857 0.04244 10.143 0.0109 -1000 0.0072

25 8.0661 149.9 0.0244 3986 0.02693 26.24 0.0270 -3623 0.0075

26 5.852 159.45 0.0332 3975 0.00753 29.744 0.0260 -3847 0.0105

27 9.1409 158.01 0.0809 3307 0.00971 13.364 0.0270 -2038 0.0068

28 14.612 159.73 0.0527 3952 0.03112 31.819 0.0047 -1318 0.0106

29 7.8549 159.43 0.0424 2713 0.00897 37.677 0.0291 -3960 0.0092

30 7.7335 143.58 0.0310 2703 0.00777 25.993 0.0049 -3960 0.0068

During simulation, the step test response was evaluated over a period of 36 minutes in order for the

process dynamics to die out. To conduct 30 Bayesian optimisation iterations as suggested in Table

4.6, and each iteration requiring two step tests would require a total of 60 step tests in practice. The

process would take no less than 36 hours to complete.

Fig. 4.17 compares the volume step change response of the optimised controller KKKBT Ttrack2 and

reference controller KKKinv. The objective function QBT Ttrack2 was designed to improve the settling time

while minimising the interaction with the non-stepped controlled variable. The volume settling time

is seen to increase marginally from 0.0785 to 0.0786 hours which is a deterioration of -0.18%. Even

thought there is a deterioration in settling time, the RMSE of the response has improved by 23% due

to the faster rising time and smaller overshoot. Since the response of the volume controlled variable is

economically insignificant, modifications to the objective function to improve settling time was not

considered. The transient time of the tank density decreases from 0.118 hours to 0.092 hours and the

interaction peak improves from 0.0068 to 0.0014 t/m3, a 83% improvement. The interaction peak

improvement is of economic consequence since downstream separation efficiencies are improved when

the density of the supply is stable. The results are summarised in Table 4.7.
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Figure 4.17. Comparison of the volume step change response of controllers KKKBT Ttrack2 and KKKinv.

The markers indicate the improvement of the set point tracking settling time, interaction peak and

interaction transient time.

Fig. 4.18 compares the density step change response of controllers KKKBT Ttrack2 and KKKinv. The density

settling time is seen to decrease from 0.038 to 0.03 hours which is an improvement of 21%. The

transient time of the tank volume decreases from 0.084 hours to 0.059 hours, and the interaction peak

improves significantly from 0.13 to 0.04 m3, an improvement of 70%.

The Root Mean Squared Error (RMSE) listed in Table 4.7 provides a statistical comparison of the

performance of controllers KKKinv and KKKBT Ttrack2 . The performance criteria in Table 4.7 confirms that

Bayesian optimisation with objective function QBT Ttrack2 is successful in auto-tuning KKKBT Ttrack2 to

improve the set point tracking performance. With the exception of the volume settling time, all the

performance criteria show significant improvement. The marginal deterioration of the volume settling

time can be considered acceptable since it does not affect downstream processes.
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Figure 4.18. Comparison of the density step change response of controllers KKKBT Ttrack1 and KKKdc.

The markers indicate the improvement of the set point tracking settling time, interaction peak and

interaction transient time.

Table 4.7. Comparison of performance criteria of controllers KKKinv and KKKBT Ttrack2 .

Performance criteria Unit KKKinv KKKBT Ttrack2 Improvement (%)

Volume settling time hours 0.07845 0.07859 -0.179

Density settling time hours 0.03827 0.03008 21.41

Volume peak interaction m3 0.13475 0.03987 70.40

Density peak interaction t/m3 0.00677 0.00138 79.55

Volume step RMSE 0.18983 0.14573 23.23

Density interaction RMSE 0.00132 0.00023 82.65

Volume interaction RMSE 0.02406 0.00720 70.05

Density step RMSE 0.00441 0.00329 25.37
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

4.5.5 Auto-tuning for improved disturbance rejection using objective function QBT Tre ject2

4.5.5.1 Procedure

Closed-loop tests are conducted on the non-linear model of (4.1) by stepping the disturbance. The

procedure as discussed in Section 4.4.5.1 applies, except that the plant is now represented by a

non-linear model.

4.5.5.2 Simulation

Fig. 4.19 shows the volume and density response for a step disturbance of 0.1 t/m3 in the Chrome

tailings density during the Bayesian optimistation process. The step response of the controller

KKKBT Tre ject2 with tuning parameters providing the minimum value for objective function QBT Tre ject2 is

highlighted.

Fig. 4.20 shows how the controller increases the water flow rate to suppress the density disturbance

and reduces the tailing supply flow to maintain the sump level at set point. The controlled variables and

manipulated variables remain within process bounds for all the candidate tuning parameters applied

and evaluated during the optimisation process.

Figure 4.19. Response of the controlled variables to a disturbance step change during Bayesian

optimisation using objective function QBT Tre ject2 .

Table 4.8 shows the value of QBT Tre ject2 and associated tuning parameters for iterations results of the

Bayesian optimisation simulation using objective function QBT Tre ject2 , iterations 31 through to 40.
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

Figure 4.20. Response of the manipulated variables to a disturbance step change during Bayesian

optimisation using objective function QBT Tre ject2 .

The optimisation process requires 34 iterations to show an improvement on controller KKKinv. This is

significantly more than the 15 iterations required to minimise the equivalent objective function on the

non-linear model. As anticipated, the increased number of iterations is due to the larger number of

tuning parameters to be optimised. Objective function QBT Tre ject2 only requires a single disturbance

step test to evaluate. At 36 minutes per test, the 40 step tests would require no less than 24 hours to

complete in practice.

Fig. 4.21 compares the disturbance rejection response of controllers KKKBT Tre ject2 and KKKinv. The volume

transient time is seen to improve from 0.089 to 0.068 hours, a 24% improvement. The density transient

time improves from 0.078 to 0.0581 hours, a 26% improvement.

Table 4.9 summarises the key performance criteria of controller KKKBT Tre ject2 and KKKinv. Included in

the results are the RMSE calculations confirming that Bayesian optimisation with objective function

QBT Tre ject2 is successful in auto-tuning KKKBT Tre ject2 to improve disturbance rejection performance.

These improvements are significant since KKKinv being an inverse controller has an ideal integrator-type

loop with a −20dB/dec roll-off. The results show that an ideal controller can be optimised to promote

specified performance criteria captured in a fit for purpose objective function.
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

Table 4.8. Results of the Bayesian optimisation simulation using objective function QBT Tre ject2 ,

iterations 31 through 40.

Iter QBT Tre ject2 kP11 τI11 kP12 τI12 kP21 τI21 kP22 τI22

31 0.2091 130.42 0.0307 1272 0.0072 37.41 0.0056 -3757 0.0215

32 0.1602 97.701 0.0228 2504 0.0114 37.24 0.0142 -1908 0.0158

33 0.3345 148.22 0.0208 853 0.0098 20.71 0.0057 -1241 0.0423

34 0.1261 156.97 0.0144 2231 0.0092 37.01 0.0031 -2933 0.0207

35 0.1435 133.27 0.0180 3371 0.0130 29.17 0.0032 -1770 0.0116

36 0.1393 141.05 0.0152 1195 0.0113 34.12 0.0038 -3901 0.0154

37 0.3596 93.384 0.0125 1637 0.0133 39.64 0.0167 -2443 0.0382

38 0.1630 143.93 0.0187 3768 0.0092 39.72 0.0051 -2721 0.0324

39 0.1865 106.97 0.0137 2634 0.0082 35.80 0.0117 -3232 0.0261

40 0.4312 92.464 0.0174 3594 0.0281 27.99 0.0127 -3906 0.0501
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Figure 4.21. Comparison of the disturbance step change response of controllers KKKBT Tre ject2 and KKKinv.

The markers indicate the improvement of the disturbance peaks and transient times.
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

Table 4.9. Comparison of disturbance rejection criteria of controller KKKBT Tre ject2 and KKKinv.

Performance criteria Unit KKKinv KKKBT Tre ject2 Improvement (%)

Volume transient time hours 0.08910 0.06797 23.72

Density transient time hours 0.07831 0.05808 25.82

Volume disturbance peak m3 0.12577 0.07819 37.83

Density disturbance peak t/m3 0.01968 0.01685 14.39

Volume response RMSE 0.00573 0.00169 70.35

Density response RMSE 0.00098 0.00076 22.33

4.6 CONCLUSION

Fit for purpose objective functions are designed to improve set point tracking and disturbance rejection

performance respectively.

Settling time is found to be a good performance index to promote set point tracking. The advantage

of using of settling time to evaluate the performance of all the controlled variables is that provided

the settling time of the controlled variables are similar and the objective function does not implement

other performance indices, no scaling factors are required. The disadvantage of an objective function

based on settling time is that should the response not settle within the evaluation period, the settling

time cannot be measured and the objective function cannot be quantified. Without a scalar objective

function value the results cannot be appended to the training dataset D. Settling time can therefore not

be used to evaluate unstable controller responses or controllers with a steady state offset greater that

2%.

Transient time is found to be a good performance index to promote disturbance rejection. Similar to

settling time, no scaling factor is required provided that the settling time of the controlled variables are

similar and the objective function does not consider other performance indices. Transient time suffers

from the same disadvantage as settling time.

The constraints of the search domain are based on the assumption that the reference controller is tuned

to have a gain margin of two. A gain margin of two is generally accepted to provide a trade-off between

performance and robustness (Skogestad and Postlethwaite, 2007). Therefore the reference controller
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CHAPTER 4 AUTO-TUNING OF SURGE TANK CONTROLLERS

gains are divided by two and the integral times multiplied by two to approach the instability boundary

and set the constraints. The approach may not be successful if the reference controller is already

close to a stability margin, in which case the approach proposed may result in unstable iterations. An

alternative approach is considered in the next chapter.

The decentralised PI controller has four tuning parameters to optimise, while the inverse controller has

double that. It is observed that the optimisation of both set point tracking and disturbance rejection

takes longer to converge for the inverse controller than the decentralised PI controller. It is therefore

concluded that an increased number of tuning parameters to optimise will require more iterations to

converge.

Using RMSE as a common method to compare the performance of the optimised controllers and

reference controllers, Bayesian optimisation is shown to improve both the set point tracking as well as

disturbance rejection performance of the controllers.

The total optimisation period varies between 12 and 24 hours depending the controller evaluated. This

period is the absolute minimum that can be expected, since in practice time would be required to reset

after each step test to return and stabilise the process in preparation of the next step. The benefits of

the improved performance needs to be weighed against the long evaluation periods, especially if the

evaluation periods require production down-time.

For the BBT surge tank process, optimisation of the disturbance rejection controllers is far more

effective in terms of the total optimisation time since only a single step test is required. However the

simulation is based on the assumption that the disturbance can stepped in practice. If the density of

the chrome tailings can not be directly controlled, the disturbance simulations are purely theoretical.

Stepping of the controlled variable set points are not subject to the same restrictions and can be changed

on demand provided that the operational constraints of Table 4.1 are honoured.
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CHAPTER 5 AUTO-TUNING OF ORE MILLING

CIRCUIT CONTROLLERS

5.1 CHAPTER OVERVIEW

This chapter presents the approach followed to auto-tune ore milling circuit controllers. The ore milling

circuit is considered to be more challenging to control, compared to the BTT surge tank, given the

increased dimension of the plant and the stronger interaction between the manipulated and controlled

variables.

The objective is to determine if a decentralised PI controller and µ-controller can be optimised using

Bayesian optimisation. Considering that the µ-controller does not have tuning parameters, placement

of the controller poles are used to optimise the controller.

A novel implementation of robust stability analysis is used to determine the constraints of the search

domain.

5.2 ORE MILLING CIRCUIT

The process selected to evaluate the optimisation of the decentralised PI and µ-controllers is the run

of mine (ROM) ore milling circuit with three manipulated and three controlled variables. A brief

introduction of the process is provided here.

Fig. 5.1 illustrates the process flow of a milling circuit with single stage classification. The semi-

autogenous (SAG) mill is fed with ROM ore, water and steel balls. The steel balls are normally

batched by an operator but for the purposes of this study are assumed to be continuously fed. Slurry is
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CHAPTER 5 AUTO-TUNING OF ORE MILLING CIRCUIT CONTROLLERS

discharged from the mill through a discharge grate and collected in the sump where it is diluted with

sump feed water. The aperture of the discharge grate determines the particle size distribution of the

discharge slurry. The slurry is pumped to a hydrocylone for classification were the lighter particles that

are within specification overflow to the downstream process. The heavier out of specification particles

are returned via the cyclone underflow to the mill for further grinding.

Mill Feed Balls
(uMFB)

Mill Feed Ore
(uMFO)

Mill Inlet Water
uMIW

Mill Charge
(yLOAD)

Sump Fill
(ySLEV )

Sump
Feed
Water
(uSFW )

Cyclone

Particle Size (yPSE )

Cyclone Feed
Flow

(uCFF )

Figure 5.1. ROM ore milling circuit.

Table 5.1 lists the milling circuit variables of interest. The controlled variables are the fraction of the

mill filled with charge (yLOAD), the level of the slurry in the sump (ySLEV ) and the fraction of particles

in the product with a size smaller than 75 µm (yPSE). The manipulated variables are the feed rate of

ore to the mill (uMFO), feed rate of dilution water to the sump (uSFW ) and feed rate of diluted slurry to

the cyclone (uCFF ). The feed rate of water to the mill (uMIW ) can be used to extend the control range

of yPSE (Craig, Hulbert, Metzner and Moult, 1992a), but for the purposes of this study will not be used

as a manipulated variable. Instead, it will be set at a constant flow rate. The variable constraints and

steady state operational points are listed in Table 5.2. At an ore feed rate of uMFO = 100 t/h, the mill

is charged to yLOAD = 0.45 capacity and the sump level is maintained at ySLEV = 5 m3 to provide a

product with yPSE = 0.8 (Craig and MacLeod, 1995; Coetzee et al., 2010; Le Roux et al., 2013).
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CHAPTER 5 AUTO-TUNING OF ORE MILLING CIRCUIT CONTROLLERS

Table 5.1. Variable descriptions.

Variable Description

Controlled variables

ySLEV Sump level [m3]

yPSE Product particle size estimate [frac-

tion < 75 µm]

yLOAD Total charge in the mill [fraction]

Manipulated variables

uCFF Cyclone feed flow rate [m3/h]

uSFW Sump feed flow rate [m3/h]

uMFO Mill feed ore [t/h]

Table 5.2. Variable constraints and operating point.

Variable Min Max Operating Point

ySLEV 2 9.5 5

yPSE 0.6 0.9 0.8

yLOAD 0.3 0.5 0.45

uCFF 400 500 443

uSFW 0 400 267

uMFO 0 200 100

5.3 AUTO-TUNING OF THE ORE MILLING CIRCUIT DECENTRALISED PI CONTROL-

LER

5.3.1 Optimisation of set point tracking

Consider the scenario where the milling circuit is controlled by decentralised PI controllers tuned

using the SIMC method (Skogestad, 2003) during a desktop study prior to commissioning. The SIMC

method requires a linear model to design the controllers. Such a linear model (5.1) is derived from

the non-linear model from Coetzee et al. (2010) and Le Roux et al. (2013) and is presented in the

form

yyy = GGGp(s)uuu+GGGd(s)d (5.1)
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CHAPTER 5 AUTO-TUNING OF ORE MILLING CIRCUIT CONTROLLERS

where

yyy =
[
ySLEV ,yPSE ,yLOAD

]T
(5.2)

uuu =
[
uCFF ,uSFW ,uMFO

]T
. (5.3)

The plant transfer function is

GGGp(s) =


gp11 gp12 gp13

gp21 gp22 gp23

gp31 gp32 gp33

 (5.4)

where

gp11 =
−0.29

s
(5.5a)

gp12 =
0.42

s
(5.5b)

gp13 = 0 (5.5c)

gp21 =
−0.00035(1−0.63s)

(1+0.54s)
e−0.011s (5.5d)

gp22 =
0.0055

1+0.24s
e−0.011s (5.5e)

gp23 =
−0.0043
1+0.58s

e−0.065s (5.5f)

gp31 =
0.0028(1+0.876s)

(1+3.868s)
e−0.0115s (5.5g)

gp32 = 0 (5.5h)

gp33 =
0.01

s
. (5.5i)

The disturbance transfer function is

GGGd(s) =



−0.24
(1+0.54s)

e−0.014s

1.86×10−3

(1+14.9s)
e−0.438s

0.58
(1+1.41s)

e−0.089s


(5.6)

where the disturbance d = η f , the hardness of the ore expressed in terms of power per ton of fines

produced η f [kWh/t].

The steady state relative gain array (RGA) (Bristol, 1966) suggest input-output pairings of uCFF -ySLEV ,

uSFW -yPSE , and uMFO-yLOAD for decentralised control. With the absence of second order terms in
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CHAPTER 5 AUTO-TUNING OF ORE MILLING CIRCUIT CONTROLLERS

the transfer function, derivative action can be omitted, and the decentralised controller KKKα can be

structured with only PI controllers kii on the diagonal.

KKKα =


k11 0 0

0 k22 0

0 0 k33.

 (5.7)

The PI controllers in Laplace domain are of the form (Seborg et al., 2011)

k j j = kP j j(1+
1

τI j js
), j = 1,2 (5.8)

where kP is the proportional gain and τI is the integral time constant measured in hours. By applying

the SIMC tuning rules of first-order and integrating processes, to an assumed diagonal plant, the PI

controller parameters are calculated to be

kP11 =−22.9885, τI11 = 0.6 (5.9a)

kP22 = 206.8074, τI22 = 0.24 (5.9b)

kP33 = 500, τI33 = 0.8. (5.9c)

Consider that post commissioning, as part of production performance evaluation, closed-loop set point

step tests are conducted on the full model of (5.4) using the controller KKKα defined by (5.7) through

(5.9) to gauge the performance. The results captured in Figs. 5.7 and 5.8 show that the response of

yPSE is overdamped with a settling time of 1.47 hours. The response of yLOAD is underdamped with

a peak overshoot of approximately 14% and a settling time of 2.09 hours. The performance may

be considered inadequate when plant-model mismatch, equipment replacement or deterioration of

equipment performance are taken into account. Improving the set point tracking ability of the controller

is required to benefit the supervisory layer of a production or economic optimiser (Craig, Hulbert,

Metzner and Moult, 1992b; Le Roux and Craig, 2019). To this end, Bayesian Optimisation is applied

as a model free, on-line and automated tuner to retune the controller for improved set point tracking.

To implement Bayesian Optimisation, constraints must be set and a suitable objective function selected

as discussed in the following sections.

5.3.1.1 Constraints

Bayesian optimisation is a constrained regression process, and the constraints must be considered with

care. The constraints determine the domain within which the Bayesian optimisation algorithm must
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CHAPTER 5 AUTO-TUNING OF ORE MILLING CIRCUIT CONTROLLERS

search for the optimal tuning parameters to minimize the objective function. The search domain must

be sufficiently large to include the optimum, but also restricted to prevent unstable iterations.

To expand the search space around the tuning parameters of the known controller KKKα , a robust

stability analysis (Skogestad and Postlethwaite, 2007; MATLAB, 2022) is conducted on an initial

set of constraints to determine how much uncertainty over and above the initial constraints can be

tolerated. The initial gain constraints are cautiously selected as a factor of 2 in the direction of

instability, and boldly selected as a factor of 0.2 in the opposite direction. Selection of the initial

integral time constraints follows the opposite approach, i.e. a factor of 0.5 in the direction of instability

and a factor of 5 in the opposite direction. The Robust Control Toolbox of MATLAB provides the

stability margins for the uncertain system incorporating controllers with uncertain tuning parameters.

The robust stability analysis provides the maximum parameter uncertainty that can be tolerated before

the worst-case uncertainty yields instability. The maximum parameter uncertainty determines the

constraints of the search domain, which are

kP11 ∈ [−52.69,−0.539] (5.10a)

τI11 ∈ [0.262,25.55] (5.10b)

kP22 ∈ [4.413,473.2] (5.10c)

τI22 ∈ [0.105,10.22] (5.10d)

kP33 ∈ [11.71,1146] (5.10e)

τI33 ∈ [0.349,34.07]. (5.10f)

By expanding the search domain to the threshold of instability as given in (5.10), the probability

of including the optimal tuning parameters to find the global minimum of the objective function is

increased.

Fig. 5.2 shows the robust stability µ plot with the tuning parameter search domain constrained as per

(5.10). Since µ < 1 for all frequencies, it confirms that the closed-loop transfer function of GGGp and KKKα ,

with the parameter ranges of (5.10), will remain stable during Bayesian optimisation. In addition, the
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Figure 5.2. Robust stability structured singular value (µ) plot with tuning parameters constrained as

per (5.10).

µ values are just below 1 over the frequency range of interest, as they should be given that parameter

ranges of (5.10) represent the closed-loop system at the threshold of instability.

5.3.2 Objective function for set point tracking

The objective function selected to retune controller KKKα for improved set point tracking, presented in

the form of (3.3), is

Qtrack = ω1β11q1 +ω2β22q2. (5.11)

Qtrack consists of two terms. The first term represents evaluation of yPSE and the second the evaluation

of yLOAD. Each term requires a step test to evaluate and therefore each Bayesian optimisation iteration

will consist of two step tests, e.g., yPSE is stepped and observed before yLOAD is stepped and observed.

The performance weights ω1 and ω2 are selected to penalise a particular output to promote a favourable

response. Both outputs are considered to be of equal importance and therefore the weights are chosen

as ω1 = ω2 = 1.

The sump acts as a buffer to absorb disturbances and a regulatory controller should aim the keep the

sump from overflowing or running dry. Improvement of the sump level set point tracking performance
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will carry the overhead of an additional step test with no economic benefit. Evaluation of the sump

level performance is therefore excluded from the set point tracking objective function.

Performance index q1 is the ITAE of yPSE and q2 is the ITAE of yLOAD in response to a set point step

change. Using ITAE as the performance index has the benefit that the objective function value can be

calculated without having to wait for all the transient dynamics to die out, which reduces the evaluation

period of each iteration. A further beneficial property of ITAE is that it penalises both the absolute

error as well as the persistence of the error making it useful for set point tracking evaluation. Figs. 5.7

and 5.8 show that the transient dynamics of KKKα have mostly decayed after 2 hours which is therefore

selected as the evaluation period.

Settling time (time taken for the error to stay within 2% of |y f inal − yinitial|) was also evaluated as a

candidate performance index. Using settling time as performance index has the benefit that no scaling

factor is required since both responses will be measured against the same time scale with comparable

magnitudes. The drawback of settling time is that the evaluation period must be long enough to allow

the response of the candidate tuning parameters to settle. Should the response not settle within the

provided evaluation period, the settling time cannot be measured, the objective function cannot quantify

the performance and the result of the iteration does not contribute toward the training dataset D, i.e.,

it is a wasted iteration. Due to the large integral time and small proportional gain parameter values

included in the search space, the response of the slower controllers takes more than 20 hours to settle.

Evaluation periods of 20 hours per step tests are impractical if step tests result sub-optimal process

performance while there are other options to consider such as ITAE.

The inconvenience of using ITAE is that the terms are not similar in magnitude and need to be scaled.

The scaling factors used in (5.11) are β11 =
1

0.9137 and β22 =
1

0.7498 . The scaling factors are the inverse

ITAE values in response to set point step changes of controller KKKα integrated over a 2 hour period

which requires a step test to calculate.

5.3.3 Optimisation of disturbance rejection

Consider the scenario where the milling circuit feed is sourced from ore stockpiles with different

physical properties such as hardness and size distribution. The varying physical properties manifest

as disturbances which may lead to solids hold-up in the mill, fluctuations in the circulating load and

inconsistent product particle sizes (Galán, Barton and Romagnoli, 2002). Karageorgos, Genovese and
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Baas (2006) describes the general trend towards a reduction of surge capacity and the need to maintain

stability regardless of disturbances.

Hardness and size distribution are known to be correlated, i.e., the harder the ore the coarser the feed.

Therefore the only disturbance considered is ore hardness (Galán et al., 2002).

Bayesian optimisation is applied to retune controller KKKα for improved disturbance rejection. The

search domain constraints remain the same as for set point tracking but a fit for purpose objective

function is required.

5.3.4 Objective function for disturbance rejection

The objective function selected to retune controller KKKα for improved disturbance rejection, presented

in the form of (3.3), is

Qre ject = ω1β11q1 +ω2β22q2 +ω3β33q3. (5.12)

Qre ject consists of three terms representing ySLEV , yPSE and yLOAD respectively. The weights are

selected to be ω1 = ω2 = ω3 = 1 since the disturbance rejection of all three outputs are considered to

be of equal importance.

Performance index q1 is the ITAE of the sump level, q2 is the ITAE of the yPSE , and q3 is the ITAE of

yLOAD in response to an ore hardness step change. Performance indices q1, q2 and q3 are calculated

from a single step test per iteration, which reduces the integration period compared to an objective

function requiring multiple step tests.

The ITAE scaling factors in (5.12) are β11 =
1

12353 , β22 =
1

380 and β33 =
1

511 . The scaling factors are

the inverse ITAE values in response to a disturbance step change of controller KKKα integrated over an 8

hour period.

5.4 RESULTS

Closed-loop step tests are conducted on the MIMO plant model by stepping set points or disturbances.

For the case of evaluating set point step changes, the objective function requires two step tests. For the

case of disturbance step changes, a single step is sufficient for each Bayesian optimisation iteration

since the objective function is constructed for a single disturbance input.
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Figure 5.3. Response of the controlled variables to a yPSE set point step change during Bayesian

optimisation using objective function Qtrack.

5.4.1 Set point tracking

Figs. 5.3 and 5.4 show how the controlled variables and manipulated variables respond to a yPSE set

point step change and how Bayesian optimisation explores the search space by applying candidate

tuning parameters to minimise the objective function. The best iteration is highlighted and represents

the response of controller KKKtrack. KKKtrack is the best result of optimising KKKα in (5.7) by minimising

Qtrack in (5.11). The yPSE set point is stepped from a fraction of 0.8 to 0.9. Control of yPSE is paired

with uSFW and therefore uSFW immediately increases in response to the increased yPSE demand. ySLEV

rises due to the increased uSFW and as a result uCFF increases to prevent the sump from overflowing.

Interaction between uCFF and yLOAD causes yLOAD to surge. uMFO is throttled to recover from the

increased yLOAD and returns yLOAD to the operating point. During the iteration process the controlled

and manipulated variables all remain within operational bounds by limiting the size of the set point

step change and constraining the search domain to robust stability margins.

Figs. 5.5 and 5.6 show how the controlled variables and manipulated variables respond to a set point

step change in yLOAD. The yLOAD set point is stepped from a fraction of 0.45 to 0.5. Control of yLOAD is

paired with uMFO and therefore uMFO immediately increases in response to the increased demand in
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Figure 5.4. Response of the manipulated variables to a yPSE set point step change during Bayesian

optimisation using objective function Qtrack.

yLOAD. yPSE decreases due to the increased uMFO and as a result the uSFW increases to return yPSE to

the set point. The increased uSFW causes ySLEV to rise, and uCFF is increased to prevent the sump from

overflowing. During the iteration process the controlled and manipulated variables all remain within

operational bounds.

Figs. 5.7 and 5.8 show the response of yPSE and yLOAD to step changes and compares the tracking

performance of controller KKKα and the controller retuned using Bayesian optimisation KKKtrack. Objective

function (5.11), selected to improve set point tracking, can be seen to improve the yPSE settling time

from 1.47 to 0.32 hours. The yLOAD settling time is reduced from 2.09 to 0.22 hours and the peak

amplitude reduced from a fraction of 0.507 to 0.5. Table 5.3 lists the ITAE value reduction which

is the basis of objective function (5.11). It provides a statistical evaluation comparing the root mean

square error (RMSE), and compares the settling time of the controllers. The ITAE and RMSE values

are calculated over a 2 hour period.

Table 5.4 shows the results of iterations 6 through to 15 of the Bayesian optimisation simulation using

objective function (5.11). Column Qtrack represents the objective function value for each set of tuning

parameters evaluated. During simulation, the step test response is evaluated over a period of 2 hours.
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Table 5.3. Comparison of set point tracking properties of controllers KKKtrack and KKKα . The improvement

that controller KKKtrack offers is indicated as a percentage.

Performance KKKtrack KKKα Impr. (%)

yPSE ITAE 0.2097 0.9137 77.1

yLOAD ITAE 0.1225 0.7498 83.7

yPSE RMSE 0.0302 0.044 31.5

yLOAD RMSE 0.0153 0.0213 28.0

yPSE SettlingTime 0.32 1.47 86.7

yLOAD SettlingTime 0.22 2.09 89.5

Table 5.4. Results of Bayesian optimisation simulation using objective function (5.11), iterations 6

through 15.

Iteration Qtrack

6 7.7665

7 0.88053

8 0.51078

9 6.7141

10 0.66516

11 2.1642

12 0.49216

13 0.39279

14 1.0471

15 0.55844
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With each Bayesian iteration requiring two step tests, the 15 iterations as suggested in Table 5.4 will

require no less than 60 hours to complete in practice. The best result is found by iteration 13. The

results achieved as shown in Figs. 5.7 and 5.8 are satisfactory and conducting further iterations in

search of the global minimum at an overhead of 4 hours per iteration does not warrant any further

increase in performance.

The tuning parameters corresponding to the best iteration are

kP11 =−50.772, τI11 = 2.7411 (5.13a)

kP22 = 466.81, τI22 = 0.15388 (5.13b)

kP33 = 1144.2, τI33 = 21.105. (5.13c)
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Figure 5.5. Response of the controlled variables to a yLOAD set point step change during Bayesian

optimisation using objective function Qtrack.
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Figure 5.6. Response of the manipulated variables to a yLOAD set point step change during Bayesian

optimisation using objective function Qtrack.
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Figure 5.7. Comparison of the set point tracking performance of controllers KKKtrack and KKKα in response

to a yPSE set point step change. The markers indicate the settling time of the responses.
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Figure 5.8. Comparison of the set point tracking performance of controllers KKKtrack and KKKα in response

to a yLOAD set point step change. The markers indicate the settling time of the responses.
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5.4.2 Disturbance rejection

Figs. 5.9 and 5.10 show how the controlled variables and manipulated variables respond to a 2.5%

reduction in ore hardness and how Bayesian optimisation explores the search space by applying

candidate tuning parameters to minimise the objective function. KKKre ject is the best result of optimising

KKKα in (5.7) by minimising Qre ject in (5.12). The reduction in ore hardness causes an increase of yPSE

and reduction of ySLEV and yLOAD. The controller reacts by increasing the uSFW and uCFF . uMFO drops

to counter the effect of reduced ore hardness before returning to the initial feed rate. The manipulated

variables do not saturate during the optimisation process. The sump is shown to run dry during one of

the iterations. Should this occur in practice, the sump slurry pump will trip due to the low sump level,

and the optimisation interation will abort. uCFF is close to the maximum limit indicating that the plant

and decentralised PI controller will not be able to cater for ore hardness disturbances much greater

than 2.5% before uCFF saturates and the sump overflows.

Figure 5.9. Response of the controlled variables to an ore hardness step change during Bayesian

optimisation using objective function Qre ject .

Fig. 5.11 compares the disturbance response of KKKre ject and KKKα to a step change in the feed ore hardness.

The objective function performance criteria were selected to minimise the ITAE of the response and

as a beneficial consequence the absolute error and the persistence of the error too. The ITAE values

of the controlled variable responses are listed in Table 5.5 and shows how Bayesian optimisation

brought about the reduction of 42.7%, 59.5% and 9.85% for the ITAE values of ySLEV , yPSE and yLOAD
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Figure 5.10. Response of the manipulated variables to an ore hardness step change during Bayesian

optimisation using objective function Qre ject .

respectively. The yLOAD ITAE shows a significantly smaller improvement compared to the ySLEV and

yPSE ITAE improvement. The peak disturbance of ySLEV , yPSE and yLOAD improved by 36%, 22.7%

and 30.1% respectively. The ITAE and RMSE values are calculated over an 8 hour period.

While the ITAE and peak performance criteria showed good improvement, the comparatively poor

performance of yLOAD could be improved by adjustment to the objective function to penalise the yLOAD

ITAE. Simulation showed that doubling the yLOAD performance weight and rescaling the objective

function with ITAE values from Table 5.5 led to a significant improvement in the yLOAD ITAE at the

expense of the yPSE ITAE. A consistent yPSE has shown to result in better downstream product recovery

and therefore improving yLOAD disturbance rejection in favour of yPSE disturbance rejection was not

pursued.

From Fig. 5.11 it is evident that the transients due to disturbances take much longer to decay compared

to the set point step changes of Figs. 5.7 and 5.8. The transient times (time it takes for the error to

stay within to 2% of the peak error) for ySLEV , yPSE and yLOAD are 8.4, 6.7 and 7.0 hours respectively.

Transient time differs from settling time in that transient time is a function of the maximum error

caused by the disturbance while settling time is a function of the output change (|y f inal − yinitial|) in
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Figure 5.11. Comparison of the disturbance rejection performance of controllers KKKre ject and KKKα

in response to an ore hardness step change. The markers indicate the peak disturbance error of the

responses.

Table 5.5. Comparison of disturbance rejection properties of controllers KKKre ject and KKKα . The improve-

ment that controller KKKre ject offers is indicated as a percentage.

Performance KKKre ject KKKα Impr. (%)

ySLEV ITAE 7083.2 12353 42.7

yPSE ITAE 154.1 380.7 59.5

yLOAD ITAE 461.4 511.7 9.85

ySLEV RMSE 0.1151 0.2001 42.5

yPSE RMSE 0.0038 0.0073 47.1

yLOAD RMSE 0.0094 0.0108 13.0

ySLEV Peak 0.331 0.517 36.0

yPSE Peak 0.023 0.030 22.7

yLOAD Peak 0.028 0.040 30.1
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response to a set point step change.

Simulations show that evaluation periods of up to 24 hours are required for the objective function

to provide a useful training dataset D making transient time an unsuitable performance index for

disturbance rejection.

Table 5.6 shows the results of iterations 6 through to 15 of the Bayesian optimisation simulation using

objective function (5.12). During simulation, the step test response was evaluated over a period of 4

hours to calculate the ITAE. From Fig. 5.11 it can be seen that the disturbance peaks have decayed

after 4 hours. With each Bayesian optimisation iteration only requiring a single step, the 15 iterations

as suggested in Table 5.6 would require no less than 60 hours to complete in practice. The best result

is found by iteration 13. Note that the iterations do not stop once the global minimum is located but

continues until the pre-set number of 15 iterations are complete.

Table 5.6. Results of Bayesian optimisation simulation using objective function (5.12), iterations 6

through 15.

Iteration Qre ject

6 0.048967

7 0.087028

8 0.035282

9 0.13597

10 0.022599

11 0.056741

12 0.013134

13 0.017427

14 0.43977

15 0.084509

The tuning parameters corresponding to the best iteration are

kP11 =−45.607, τI11 = 0.68394 (5.14a)

kP22 = 247.97, τI22 = 0.11517 (5.14b)

kP33 = 956.8, τI33 = 32.947. (5.14c)
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5.5 AUTO-TUNING OF THE ORE MILLING CIRCUIT µ-CONTROLLER

5.5.1 Plant Model

Bayesian optimisation has been shown to successfully auto-tune decentralised PI and inverse controllers

for improved performance. The controllers auto-tuned thus far all had PI controllers embedded on the

elements in the controller matrix. This section investigates if the more complex µ-controller structure

can benefit from Bayesian optimisation. A µ-controller consist of multi-order polynomial transfer

functions on all the elements within the controller matrix structure.

Figure 5.1 represents ore milling process, but a different plant model is selected to construct the

µ-controller. The transfer function model (5.15) as presented in the appendix of Craig and MacLeod

(1996) is used. This model is selected since the uncertainty descriptions, uncertainty weights and

performance weights have been selected and motivated by Craig and MacLeod (1996). It is not the

focus of this research to argue the uncertainty descriptions, uncertainty weights and performance

weights to synthesise the µ-controller but rather to investigate if Bayesian optimisation can improve a

µ-controller’s performance parameter of choice.

The transfer function model of the ore milling circuit in the form of yyy = GGG(s)uuu, determined from

multiple step tests conducted by Craig and MacLeod (1996) is


yPSE

yLOAD

ySLEV

=



0.14
175s+1

e−40s −0.082
1766s+1

e−620s −0.0575
167s+1

e−40s

0
2.21×10−5

s
0

0.00253
s

0
−0.00299

s




uSFW

uMFS

uCFF

 . (5.15)

5.5.2 Controller

Using the uncertainty descriptions, uncertainty weights, performance weights, and control weights

from Craig and MacLeod (1996), a µ-controller is synthesised using the Matlab robust control toolbox.

To reduce the computational effort of the implemented controller and remain within the dimensional

limits of Bayesian optimisation, the order of the µ-controller, referred to as KKKµ67, is reduced from

67 to 10, the lowest order at which the robust performance µ-curve peak is < 1.0. By keeping the

robust performance µ-curve < 1.0 the closed-loop performance of the controller will meet the specified
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Figure 5.12. Robust stability and robust performance structured singular value plots of the KKKµ67 and

KKKµ controller. The plots of KKKµ67 are trended as dashed lines, while the plots of KKKµ are solid lines.

performance criteria given the uncertain process model. The reduced order µ-controller in transfer

function form is represented by

KKKµ =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 (5.16)

where each matrix entry has the form

ki j =
βi j12s9 + · · ·+βi j1s+βi j0

s10 +ai j12s9 · · ·+ai j1s+ai j0
, i, j = 1,2,3. (5.17)

Fig. 5.12 compares the structured singular values µ for robust performance and robust stability of

KKKµ67 and reduced order controller KKKµ of (5.16). As a result of the model reduction, it can be seen that

the robust performance deteriorates from a peak µ of 0.69 to 0.89, while the robust stability remains

essentially unchanged . KKKµ will therefore remain robustly stable but will not be able to achieve the

same level of performance as KKKµ67 for the modelled uncertainty.
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Figure 5.13. Comparison of the set point tracking performance of controllers KKKµ67 and KKKµ in response

to a yPSE set point step change.

Figs. 5.13 and 5.14 compare the responses of controller KKKµ67 and the reduced order controller Kµ to

yPSE and yLOAD set point step changes, to determine if the reduced model has degraded the set point

tracking performance. Note that the plant has been scaled for controller synthesis and Figs. 5.13 and

5.14 present the scaled controlled variables.

From the yPSE set point step change response in Fig. 5.13, it can be seen that the responses of yPSE and

yLOAD of KKKµ compare well to that of KKKµ67, but KKKµ is not able to suppress the interaction with ySLEV as

successfully as KKKµ67.

From the yLOAD set point step change response in Fig. 5.14 it can be seen that the responses of yPSE

and yLOAD of KKKµ compare well to that of KKKµ67. Once again controller KKKµ does not manage to suppress

the interaction with ySLEV as well as KKKµ67.

Set point tracking of ySLEV has no economic benefit and is not considered. The interaction with ySLEV

can be tolerated as long as the sump does not run dry or overflow.
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Figure 5.14. Comparison of the set point tracking performance of controllers KKKµ67 and KKKµ in response

to a yLOAD set point step change.

5.5.3 Optimisation of set point tracking

To optimise the performance of controller KKKµ for set point tracking, KKKµ is converted from the transfer

function form of (5.16) and (5.17) to the state space form

ẋxx(t) = AAAxxx(t)+BBBeee(t) (5.18a)

uuu(t) =CCCxxx(t)+DDDeee(t) (5.18b)

where xxx(t) is the controller state vector, uuu(t) is the controller output or manipulated variable vector, eee(t)

is the control error vector which is the difference between the set points and the controlled variables.

Matrix AAA is the state matrix, BBB is the input matrix, CCC is the output matrix and DDD is the feed through

matrix.

The stability of the controller is solely determined by AAA, the BBB, CCC and DDD matrices have no effect (Seborg

et al., 2011) and is therefore selected for optimisation to improve the set point tracking of KKKµ .

The order of KKKµ has been reduced to 10, therefore AAA is a 10-by-10 matrix and could contain up to a

100 element to optimise. Given the practical limitations of Bayesian optimisation to process a large

number of parameters (Moriconi, Deisenroth and Sesh Kumar, 2020), AAA is diagonalised to reduce the
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number of matrix elements to 10.

The eigenvalues of a diagonal matrix is equal to the diagonal elements of the matrix (Skogestad and

Postlethwaite, 2007). The controller is stable if the eigenvalues of the matrix AAA have negative real

parts, that is, lie in the open left-half plane (Skogestad and Postlethwaite, 2007). The eigenvalues of

AAA are equivalent to the poles of the transfer function and therefore adjusting the eigenvalues of AAA is

equivalent to changing the positions of the controller poles. The controller KKKµ will be optimised by

identifying the optimal pole positions for improved set point tracking.

5.5.4 Constraints

The diagonal matrix elements of the state matrix AAA, and poles of controller KKKµ , are

AAA = diag(a1,a2, . . . ,a10). (5.19)

where

a1 =−0.286 (5.20a)

a2 =−0.0474 (5.20b)

a3 =−0.0394 (5.20c)

a4 =−0.00543 (5.20d)

a5 =−0.00382 (5.20e)

a6 =−0.00071 (5.20f)

a7 =−0.00025 (5.20g)

a8 =−0.000115 (5.20h)

a9 =−5.31×10−05 (5.20i)

a10 =−2.75×10−05. (5.20j)

The constraint must be selected large enough to include optimal pole positions, but small enough

to exclude unstable pole positions. Unlike the PI tuning parameters where intuition can guide the

selection of constraints, there is no intuitive approach for constraining the search domain of the poles,

apart from keeping them in the left-half plane. To expand the search space around the poles of the

controller KKKµ , a robust stability analysis (Skogestad and Postlethwaite, 2007; MATLAB, 2022) is

conducted on an initial set of constraints to determine how much uncertainty over and above the initial

constraints can be tolerated. The initial constraints are simply selected as ±5% of the pole value (5.20).
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The Robust Control Toolbox of MATLAB provides the stability margins for the uncertain system

incorporating KKKµ with uncertain pole positions. The robust stability analysis provides the maximum

pole position uncertainty that can be tolerated before the worst-case uncertainty yields instability. The

maximum pole position uncertainty determines the constraints of the search domain which are

a1 ∈ [−0.301,−0.272] (5.21a)

a2 ∈ [−0.0497,−0.045] (5.21b)

a3 ∈ [−0.0413,−0.0374] (5.21c)

a4 ∈ [−0.0057,−0.00516] (5.21d)

a5 ∈ [−0.00401,−0.00363] (5.21e)

a6 ∈ [−0.000746,−0.000675] (5.21f)

a7 ∈ [−0.000263,−0.000238] (5.21g)

a8 ∈ [−0.000121,−0.000109] (5.21h)

a9 ∈ [−5.57×10−05,−5.04×10−05] (5.21i)

a10 ∈ [−2.88×10−05,−2.61×10−05]. (5.21j)

By expanding the search domain to the threshold of instability as given in (5.21), the probability

of including the optimal pole positions to find the global minimum of the objective function is

increased.

Fig. (5.15) shows the robust stability µ plot with the pole position search domain constrained as per

(5.21). Since µ < 1 for all frequencies, it confirms that the closed-loop transfer function of GGG and KKKµ

will remain stable during Bayesian optimisation.

5.5.5 Objective function

The objective of the optimisation is to improve the set point tracking performance of the controller KKKµ .

Improving the set point tracking ability of the controller could be required to benefit the supervisory

layer of a production or economic optimiser (Craig et al., 1992b). To meet the auto-tuning objective,

the poles of KKKµ must be optimally placed such that the settling time is reduced after a set point

change.
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Figure 5.15. Robust stability structured singular value (µ) plot with poles constrained as per (5.21).

The purpose of objective function Qµtrack is to auto-tune controller KKKµ for improved set point tracking.

Objective function Qµtrack in the form of (3.3) is

Qµtrack = ω1β11q1 +ω2β22q2. (5.22)

Objective function Qµtrack consist of two terms. The first term represents the tracking performance

of yPSE and the second term that of yLOAD. Each term requires a step test to evaluate, therefore each

Bayesian optimisation iteration will require two step tests. Both outputs are considered to be of equal

importance therefore ω1 = ω1 = 1.

The performance index q1 is the ITAE of yPSE and q2 is the ITAE of yLOAD. Using the ITAE criteria

as performance index has the benefit that the objective function value can be calculated regardless of

whether or not the response settles during the evaluation period. From Figs. 5.13 and 5.14 it can be

seen that after 8000 seconds (2.2 hours), the set point responses and interactions have mostly settled

and is therefore selected as the evaluation period.

During simulation it was found that using settling time as a performance index was not feasible. With an

evaluation period of 4.4 hours, as many as 20 consecutive iterations did not settle within the evaluation
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time. As a result, none of these iterations contributed to the training dataset D. Increasing the evaluation

period is an option but was discarded as this would significantly increase the optimisation duration

which is unpractical given that alternative performance criteria such as ITAE are available.

The ITAE values of yPSE and yLOAD are significantly different, and must be scaled to ensure that they

contribute equally to the objective function value. The scaling factors used in (5.22) are β11 =
1

29717

and β22 =
1

48760 . These scaling factors are the inverse ITAE values in response to set point step changes

of KKKµ integrated over a period of 8000 seconds.

5.5.6 Auto-tuning for improved set point tracking using Qµtrack

5.5.6.1 Procedure

The procedure followed is suitable for simulation, but to implement the procedure in practice will

require the unscaling of the controller.

Closed-loop step tests are conducted on the scaled linear plant by stepping the set points of yPSE and

yLOAD with a unitary value. Two step tests are required for each Bayesian optimisation iteration because

the objective function evaluates both the yPSE and yLOAD outputs. The acquisition function will adjust

the positions of the poles before each iteration with the objective of minimising the objective function

value.

5.5.6.2 Simulation

Figs. 5.16 and 5.17 show the results of the set point step changes and the interaction with the non-

stepped outputs. The figures show how Bayesian optimisation explores different pole positions with

the intention of minimising the objective function Qµtrack. The step response of the best performing

controller KKKµtrack is highlighted. Fig. 5.17 shows that during one the iterations, ySLEV deviates by

more that 50% from set point indicating that the sump will overflow if the sump set point is at the

nominal set point of 50%.

Figs. 5.18 and 5.19 compares the set point step response of controllers KKKµ and KKKµtrack. Controller KKKµ

is the reduced order controller and KKKµtrack is the controller optimised for improved set point tracking

using Bayesian optimisation.

Fig. 5.18 shows the response to a yPSE set point step change. There is a slight improvement in the yPSE

settling time from 1017 to 993 seconds, which is a 2% improvement. The minor improvement comes
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Figure 5.16. Response of the controlled variables to a yPSE set point step change during Bayesian

optimisation using objective function Qµtrack.
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Figure 5.17. Response of the controlled variables to a yLOAD set point step change during Bayesian

optimisation using objective function Qµtrack.
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at the expense of a larger interaction peak with yLOAD. The interaction with ySLEV is negligible as the

sump will not run dry or overflow if the sump set point is maintained at 50%.

Fig. 5.19 shows the response to a yLOAD set point step change. There is a significant improvement in

the yLOAD settling time from 61478 to 27234 seconds, which is a 56% improvement. The interaction

peak with yPSE is also slightly improved. The improved yLOAD set point tracking comes at the expense

of significant interaction with ySLEV .
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Figure 5.18. Comparison of the set point tracking performance of controllers KKKµ and KKKµtrack in

response to a yPSE set point step change.

To determine how the optimisation has influenced the robust performance and stability of the controller,

Fig. 5.20 compares the structured singular value plots of KKKµ to that of KKKµtrack. The robust stability of

the two controllers is similar but the robust performance of KKKµtrack deteriorates from 0.89 to 1.1 and

therefore no longer meets the performance requirements for all the modelled uncertainties.

Table 5.7 summarises the key performance criteria of controllers KKKµ and KKKµtrack. Included in the results

are the RMSE calculations. The results confirm that yLOAD set point tracking has improved, but there

is only minimal improvement on the set point tracking of yPSE . Even though Bayesian optimisation

does not show much improvement on yPSE , the results do shown that Bayesian optimisation can be

applied to controllers with a more complex structure than a matrix of PI controllers. It is also possible
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Figure 5.19. Comparison of the set point tracking performance of controllers KKKµ and KKKµtrack in

response to a yLOAD set point step change.
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Figure 5.20. Comparison of controllers KKKµ and KKKµtrack µ-plots. The µ-plots of KKKµ are represented as

dashed lines, while the µ-plots of KKKµtrack are represented as solid lines.
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that there is little opportunity to improve the performance of a µ-synthesised controller before the

controller becomes unstable.

Table 5.7. Comparison of the set point tracking properties of controllers KKKµ and KKKµtrack. The

improvement that KKKµtrack offers is indicated as a percentage.

Performance criteria Unit KKKµ KKKµtrack Improvement (%)

yPSE settling time seconds 993.59 1017.8 2.38

yLOAD settling time seconds 27234 61478 55.7

yPSE ITAE 28815 29717 3.03

yLOAD ITAE 32645 48760 33.05

yPSE RMSE 0.22147 0.22215 0.31

yLOAD RMSE 0.30088 0.31871 5.59

Table 5.8 shows the results of iterations 6 through to 15 of the Bayesian optimisation simulation using

objective function (5.22). During simulation, the step test response was evaluated over a period of 2.2

hours to calculate the ITAE. With each Bayesian optimisation iteration only requiring two steps, the

15 iterations as suggested in Table 5.8 would require no less than 66 hours to complete in practice. The

best result is found by iteration 10.

5.6 CONCLUSION

The Bayesian optimisation process can be applied to both diagonal and µ-synthesised controllers of an

ore milling circuit. While the optimisation of the µ-synthesised controller showed little improvement,

there was significant performance improvement over the diagonal controller.

Objective functions can be designed to improve the set point tracking and disturbance rejection

performance of an ore milling circuit controller.

The ITAE performance index is found to be suitable for both set point tracking and disturbance rejection.

Using the ITAE criteria as performance index has the benefit that the objective function value can be

calculated without having to wait for the response of each iteration to settle. Using settling time as a

performance index for set point tracking and transient time as a performance index for disturbance

rejection is found to be impractical due the long evaluation periods of up to 24 hours waiting for
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Table 5.8. Results of Bayesian optimisation simulation using objective function Qµtrack, iterations 6

through 15.

Iteration Qµtrack

6 1.9382

7 1.7269

8 1.783

9 1.9244

10 1.6391

11 1.6549

12 1.6612

13 1.7342

14 1.784

15 1.6658

transient dynamics to die out. For processes with large time constants, such as the milling circuit, the

ITAE based objective function can be of significant benefit, reducing sub-optimal process performance

while optimisation is in progress. The inconvenience of using the ITAE is that scaling is required to

normalise the contribution of each controlled value, so that each controlled variable contributes equally

to the calculated value of the objective function. Calculating the scaling factors requires the overhead

of an additional step test.

The constraints of the search domain are calculated by conducting a robust stability analysis. The

outcome of the analysis is a range from which samples can be selected that will not result in unstable

closed-loop control. The results were confirmed by plotting the robust stability structured singular

value over the frequency range of interest and observing that µ < 1 for all frequencies. This approach

maximises the constraints of the search domain without introducing parameters that would destabilise

closed-loop control. The larger the search domain the better the probability of including the optimal

tuning parameters.

Using RMSE as a statistical method to compare the performance of the optimised controllers and

reference controllers, Bayesian optimisation is shown to improve both set point tracking as well as
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disturbance rejection performance of the diagonal controllers. The improvement of the µ-synthesised

controller is not as noteworthy as that of the diagonal controllers possibly as a result of the µ-synthesised

controller already being optimised to meet the performance weights as specified in Craig and MacLeod

(1996).

The total optimisation period is 60 hours for the diagonal controller and 66 hours for the µ-synthesised

controller. Even though Bayesian optimisation has been shown to be capable of improving performance,

one needs to consider the feasibility of the long evaluation periods, especially if the evaluation periods

result in sub-optimal process performance. Ideally the optimisation process must be automated to

step the set points around a point of equilibrium (i.e. positive step change followed by a negative

step change) in which case the procedure can be conducted without the supervision of an operator to

reset the process after each test. The steps will have to be small enough to remain within the linear

region of the process and not disrupt the downstream process but also large enough to rise above the

measurement noise.
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CHAPTER 6 CONCLUSION

Despite the abundance of researched and published controller tuning methods, the majority of indus-

trial process controllers are poorly tuned. This state of circumstances could be due to the lack of

expertise, expense of system identification experiments, expense of domain experts, changing process

conditions, and ageing equipment. It is evident that automatic process controller tuners can have a

substantial benefit to industry by improving the set point tracking or disturbance rejection performance

of controllers.

Considering the need for auto-tuning, this research demonstrates that Bayesian optimisation is a

data efficient, model free, on-line tuning method that can optimally tune controllers for industrial

processes such as the BTT surge tank and ore milling circuit. The Gaussian process surrogate model,

based on the Matérn parameter 5/2 covariance function, minimised using the expected improvement

acquisition function is shown to be suitable choices for the Bayesian optimisation of industrial process

controllers.

Objective functions can be designed to promote either set point tracking or disturbance rejection of

controllers. Objective functions can be based on multiple performance criteria, scaled to contribute

equally to the objective function value, or weighted to promote the performance of a favoured process

variable over another.

The constraints of the search domain can be determined analytically, by conducting a robust stability

analysis on the closed-loop system consisting of a controller with uncertain tuning parameters. This

methods expands the search domain to the threshold of instability thereby improving the probability

of including the optimal parameters while excluding unstable parameters. The use of robust stability
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analysis requires a process model on which to conduct the analysis. If such a model is not available from

literature, a linear model can be approximated by conducting system identification experiments.

Using the RMSE to statistically evaluate the improvement that Bayesian optimisation offers, results

demonstrate that decentralised PI and inverse multivariable controllers can be optimised on the

industrial processes presented. The improvement of the µ-controller is marginal, but the results do

demonstrate that Bayesian optimisation can be used to search for optimal pole positions.

Based on the auto-tuning results, Bayesian optimisation is well suited for the auto-tuning of industrial

PI controllers in a decentralised or inverse multivariable controller structure. The optimisation of

processes with smaller time constants than the BTT surge tank and ore milling circuit is expected to

perform event better, since the smaller time constants will result in shorter iteration periods and faster

conversion rates. BO can be used to auto-tune controllers during commissioning or during operation

when poor controller performance is observed as a result of changing process conditions and ageing

equipment.

Opportunities for future work in the field of Bayesian optimisation of process controllers include:

• Minimising the impact that auto-tuning has on sub-optimal production performance and the

resulting loss of revenue.

• Applying Bayesian optimisation to model predictive controllers.

• Comparing the performance of Bayesian optimisation to the multivariable relay method presented

by Wang, Zou, Lee and Bi (1997).

Provided that future work can minimise sub-optimal process performance during optimisation, Bayesian

optimisation shows potential to automatically tune industrial process controllers.
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