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Abstract

The reprocessing of tailings aims to recover residual wealth, reclaim or rehabilitate valuable land, or mitigate safety and
environmental risks. These aims all support environmental, social, and governance measures that are increasingly placed
at the centre of corporate strategy. Tailings reprocessing operations are water intensive, and typically include surge tanks
with both level and density averaging objectives to improve the efficiency of downstream water and mineral recovery.
In this study, a rigorous dynamic model is derived to describe the rate of change of both the volume and density in
these surge tanks. By simulation with industrial data it is demonstrated that the significant input disturbances typical
to tailings reprocessing circuits drive a gain inversion in the density model of the surge tank. Since conventional linear
averaging control approaches are not ideally suited to deal with gain inversion and multivariable control objectives a
nonlinear model predictive controller (NMPC) was derived and implemented on an industrial tailings reprocessing surge
tank. Results show a 5 % improvement in water recovery from the plant tailings product, and a 27 % reduction in the
standard deviation of the tailings product mass flow.

Keywords: water conservation, dynamic modelling, model predictive control, tailings

1. Introduction

Waste material from mining operations are referred to
as mine tailings. The most common method for tailings
storage, is behind dammed impoundments commonly re-
ferred to as tailings ponds or tailings dams (Kossoff et al.,
2014). The materials used in the construction of tailings
dams are often waste rock and the tailings itself with the
retaining embankment for the dam constructed at an an-
gle for structural support resulting in the dam taking on
a trapezoidal shape. In hard rock mining tailings consists
of a fine particle slurry, which when deposited in a tailings
dam the solids settles to the bottom and the water is re-
cycled back to operations. To accommodate more waste
the height of the dam is increased by extending the crest
of the embankment (Martin and McRoberts, 1999).

A tailings dam is reprocessed to recover metals or min-
erals with sufficient economic value, to reclaim valuable
land, or to mitigate safety and environmental risks. Resid-
ual high grade value in tailings deposits is a result of in-
efficiencies in past processing technologies (Falagán et al.,
2017). Or, due to a decline in available ore grades, high
grade value in tailings deposits is the result of the high
grade of the original processed ores (Alcalde et al., 2018).
In light of recent catastrophic tailings dam failures (Roche
et al., 2017; Santamarina et al., 2019), mining operations
are under increased pressure to identify tailings dams at
risk and to reprocess them. Moreover, the reprocessing
of tailings, specifically in its promotion of land reclama-

tion and as a replacement for processing of virgin ores,
and hence a prolonging of primary resource productivity,
is consistent with trends towards a circular economy model
for mining (Blomsma and Brennan, 2017; Zeng et al., 2021).

The novelty of this paper is that it considers a surge
tank control problem not investigated before. The litera-
ture on surge tank control mainly considers only flow dis-
turbance rejection and where mass flow is studied constant
density is assumed. This paper investigates the surge tank
control problem common to hydro-mining based tailings
re-processing circuits, where input density disturbances
are significant enough to drive model gain inversion. The
rigorous dynamic modelling and closed-loop simulations,
used to demonstrate model gain inversion and for con-
troller design, and the industrial implementation of a pro-
posed NMPC solution are all novel contributions. There
are no published works to compare with the proposed
NMPC solution, instead the proposed solution is compared
to a baseline industrial control strategy. Both simulated
and industrial results demonstrate improved control with
the proposed NMPC solution compared to the baseline
control strategy.

An NMPC is designed and implemented on a repro-
cessing circuit that recovers chrome from a platinum group
metals (PGM) tailings. This PGM tailings is owned and
retreated by Sibanye-Stillwater in the North West province
of South Africa.

The NMPC was developed on a section of this circuit
tasked with the dewatering of the tailings and with stabil-
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ising of its throughput mass flow. The stability of the mass
flow positively impacts downstream chrome recovery and
hence the profitability of operations, while the dewatering
ability of the circuit promotes conservation. Responsible
water usage is a key environmental, social, and governance
(ESG) measure (Lambooy, 2011) that is growing in impor-
tance, as it attracts socially responsible investment (Mu-
rad, 2017) under strict auditing criteria.

The development of the NMPC followed the general
control problem (GCP) framework for developing model-
based controllers (Craig, 1997; Craig and Henning, 2000)
outlined in Figure 1. The layout of this paper also follows
the GCP framework. In Section 2 the tailings retreatment
circuit is studied for control purposes. A rigorous dynamic
model is developed and validated in Section 3. Using this
model, a control design and analysis is performed in Sec-
tion 4, motivating for an NMPC control solution. Details
for the implemented NMPC are presented in Section 5,
and its performance is evaluated in Section 6.

2. Circuit Analysis

Figure 2 presents an overview of the circuit used to
recover chrome from the tailings dam. A bulk tailings
treatment (BTT) plant dewaters and stabilises the tail-
ings before it is fed to a chrome concentrator plant. This
concentrator plant produces chrome using spiral separa-
tors to sort the tailings into different chrome grades and a
gangue waste product using gravity separation.

To assess the feasibility of this tailings retreatment
project, and to motivate for its funding, the following fac-
tors were considered:

� The total amount of chrome in the dam estimated
from a geological survey.

� Characteristics of the tailings, such as its particle size
distribution (PSD), also estimated by a geological
survey.

� What recovery1 would be achieved by the project.
The recovery of the project would be influenced by
tailings characteristics, such as the PSD, which would
affect the efficiency of cyclones and spirals.

� What would be the operating throughput2, which
would largely be influenced by design considerations
such as the sizing of pumps, spirals, thickeners, etc.

� The expected chrome price over the life of the project.

� The operating costs over the life of the project.

1Here recovery refers to the percentage of chrome in the tailings
that would be recovered as product, with all unrecovered chrome lost
to the gangue waste.

2Here throughput refers to the rate, in tons per hour, at which
tailings would be processed by the circuit.

Using these factors an internal rate of return (IRR), an
estimate of the profitability of the project, can be deter-
mined. If the IRR for the project exceeds some minimum
acceptable rate of return the project is deemed feasible
(Bauer and Craig, 2008).

Of the listed factors influencing the IRR for the project,
recovery is by far affected the most by improving the con-
trol and operation of the circuit post its commissioning.
The total amount of chrome in the dam, the tailings char-
acteristics, and chrome price can not be influenced by the
circuit, while operating cost and throughput are largely
influenced by circuit design. The key performance indi-
cator for the chrome retreatment circuit is therefore its
recovery. During the lifetime of the project, operations
are continuously under pressure to achieve a target recov-
ery, and any improvements on this recovery is celebrated
as a realisation of the upside potential for the project.

Ultimately, the recovery of the circuit depends on the
spiral efficiencies of the chrome concentrator. The process
variables influencing spiral efficiency include feed density
and flow rate (Russell, 2020; Umadevi et al., 2021). A
key control objective for the circuit must be to supply the
chrome concentrator with consistent feed as highly variable
feed characteristics would negatively effect the efficiency of
the spiral separators.

2.1. Circuit operation

Figure 3 presents an overview of the tailings dam op-
erations. High pressure water is pumped from the BTT
plant, and used to erode the dam into a tailings slurry.
The tailings runs through naturally formed channels into
a sump. This sump contains a floating barge and a vertical
pump.

Two operators oversee key re-mining operations at the
tailings dam. The first operator manages the positioning of
a high pressure hose that targets the tailings dam face, and
tries to cut the face at a steady rate in a first attempt to
produce a consistent tailings density. The second operator
manages sump operations, agitating the sump with high
pressure water to avoid excessive settling of solids in an
attempt to improve the consistency of the tailings density
to the BTT plant. The density of the tailings to the BTT
plant is monitored by the BTT control room. Requests
for density adjustment are communicated via hand radio
to the tailings dam operators.

The flowsheet for the BTT plant is presented in Figure
4. It uses a large vibrating screen to remove vegitation
debris that unavoidably makes its way into the tailings
feed. A surge tank is then used to reduce the variability
of the tailings density and flow, followed by a hydrocy-
clone, thickener, and holding tank for dewatering and to
further reduce the variability of the tailings feed to the
downstream chrome concentrator.

The BTT plant supplies the tailings dam with the wa-
ter it requires for its operations. Any solids remaining in
the thickener overflow is recycled back to the tailings dam
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Figure 1: The general control framework for developing advanced control systems.

Tailings
Dam Smelter

Bulk Tailings
Treatment

Metallurgical and 
Chemical Grade 
Chrome

Chrome
Concentrator

Tailings Stabilisa�on
and

De-watering

Chrome 
Recovery

Gangue Waste

Figure 2: Chrome recovery circuit.

resulting in wasteful rework. Rework is not only wasteful
in increasing the per ton processing cost of operations, it
also increases water usage as some water is inevitably lost
to evaporation. The dewatering ability of the BTT plant
refers to its capacity to remove solids from the thickener
overflow, which is exclusively influenced by hydrocyclone
and thickener efficiencies.

The performance of the plant is measured on its abil-
ity to dewater the tailings fed to it and on the variabil-
ity of the tailings it supplies to the chrome concentrator.
Since the feed density to a hydrocyclone and the pressure
drop across it both affect hydrocyclone efficiency (Ntengwe
and Witika, 2011; Ghodrat et al., 2016), compounding im-
provements in both hydrocyclone and thickener efficiencies
can be achieved by reducing the variability of the surge
tank density and output flow. Consequently, the work pre-
sented here focused on improving the control of the surge

Tailings
to BTT

Tailings
Dam

Sump

Barge with
Vertical Pump

High Pressure Water
from BTT

Figure 3: Overview of the Tailings Dam operations.

tank in the BTT plant.

2.2. Surge tank control approaches

Surge tanks are processing units widely used to avoid
the propagation of incoming disturbances to downstream
processes. The controller design for surge tanks is a well
studied topic with regards to the attenuation of incom-
ing flow disturbances. Flow disturbance rejection in surge
tanks is generally described as an averaging level control
problem.

For averaging level control, the objective is to smooth
the outlet flow while ensuring the tank level is constrained
within a specified range. This control problem was studied
as a proportional-integral-derivative (PID) tuning problem
(Reyes-Lúa et al., 2018; Luyben, 2020), an optimal control
problem (Lee and Shin, 2009), a nonlinear control prob-
lem (Sanchis et al., 2011), and a robust MPC problem
(Rosander et al., 2012). In Sparbaro and Ortega (2007)
the level averaging control problem is addressed using a
mass balance approach. Crisafulli and Peirce (1999) apply
a gain scheduled feedforward controller on a surge tank in a
raw cane sugar factory to attenuate flow disturbances and
improve clarification of cane juice. Although the literature
on averaging level control mainly considers single surge
tank processes, some investigated control approaches ap-
ply to multiple tank processes (Khan and Spurgeon, 2006;
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Figure 4: Flowsheet of the BTT plant.

Table 1: A description of key surge tank and holding tank
process variables.

Surge Tank Units Description
Variables
qi m3/h Feed rate from tailings dam
ρi t/m3 Density from tailings dam
mi t/h Mass flow from tailings dam
ρ t/m3 Density in surge tank
v m3 Volume in surge tank
l % Surge tank level
qw m3/h Surge tank water addition rate
qo m3/h Feed rate from surge tank
ρo t/m3 Density from surge tank
Holding Tank Units Description
Variables
qp m3/h Plant output flow
ρp t/m3 Plant output density
mp t/h Plant output mass flow
Water Tank Units Description
Variables
qr m3/h Flow to tailings dam
ρr t/m3 Density to tailings dam
mr t/h Mass flow to tailings dam

Sbarbaro and Ortega, 2007).
The surge tank control problem addressed herein devi-

ates from the literature in that it considers not only level
averaging control, but also the stabilisation of an incom-
ing tailings feed. Here stabilisation refers to reducing the
variability in flow, density, or mass flow of the tailings.
The averaging level control literature reviewed exclusively
adjusted only the output flow from the surge tank, or mul-
tiple surge tank systems, to dampen incoming flow distur-
bances. The design of the surge tank in the BTT flowsheet

deviates from these reviewed surge tank systems, as it in-
cludes a line for controlled water addition. This water
addition line thus allows for an extra degree of freedom
to address the tailings stabilisation objective. Moreover,
the literature reviewed generally assumed a constant input
density while the control solution presented here addresses
significant input density fluctuations that result in a model
gain inversion.

2.3. Baseline surge control strategy for the BTT surge tank

An example of plant input dynamics and the baseline
surge control strategy is presented in the 10-hour long
dataset shown in Figure 5. This dataset was recorded
while the plant was under normal operation, i.e. while
the plant was not under start-up or shut-down conditions.

The input density varies at times rapidly and generally
over a large range. This is expected due to the highly
manual operation of the process at the tailing dam, as
described in Section 2.

The input flow is seemingly inversely proportional to
the input density. This is expected as the baseline con-
trol strategy did not manipulate the input flow directly
but maintained a fixed pump speed. Consequently, flow
dynamics are dominated by density fluctuations.

The baseline control strategy clearly implements steps
in water addition and output flow rate to maintain tank
level and tank density within acceptable ranges. On fur-
ther investigation, the output flow rate is not directly ad-
justed to maintain the tank level. There is a pressure
controller on the output line to keep the pressure across
the hydro-cyclone constant. The set-point to this pressure
controller is stepped to affect a change in output flow so
as to maintain the tank level within a range.
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Figure 5: Dataset obtained from the BTT surge tank while operated under the baseline surge control strategy.

3. Dynamic Modelling

3.1. Nonlinear state-space model

A nonlinear model of the surge tank was developed
to assess how effective different control strategies are at
rejecting the typical input density and flow disturbances
from the tailing dam. Figure 6 presents a simplified schematic
diagram of the surge tank with all relevant process vari-
ables labelled. The nomenclature for the key surge and
holding tank variables is shown in Table 1. The input flow
rate, water flow rate, and output flow rate are respectively
qi, qw, and qo. The tank volume, derived from a tank level
measurement, is v, and the input density, the density in
the tank, and the output density are respectively ρi, ρ,
and ρo.

Assuming perfect mixing, i.e. ρ = ρo, and conservation
of mass the rate of accumulation of mass in the surge tank
is:

dρv

dt
= ρiqi + qw − ρqo. (1)

The differential term on the left is expanded using the
chain rule:

v
dρ

dt
+ ρ

dv

dt
= ρiqi + qw − ρqo. (2)

Assuming no volume change during mixing, which is
a reasonable assumption when modelling slurry dynamics

Surge Tank

Tailings Water

iq
ρ

i

oq
ρ

Tailings

o

Screen

wtqwsq

ρ
v

Figure 6: BTT surge tank.

(Dontsov and Perice, 2014), the volume in the surge tank
will be conserved and the rate of change of volume in the
surge tank can be expressed as:

dv

dt
= qi + qw − qo. (3)

Substituting (3) into (2) gives the rate of accumulation
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of density independent of the rate of change in volume:

dρ

dt
=
qiρi − ρ(qi + qw) + qw

v
. (4)

The nonlinear model of the surge tank follows from (3)
and (4): [

v̇
ρ̇

]
=

[
qi + qw − qo

1
v (qiρi − ρ(qi + qw) + qw)

]
. (5)

In subsequent sections, the following functional form of the
nonlinear model in (5) is used:

ẋ = f(x,u,d),

y = h(x). (6)

The elements of the state vector is x =
[
v ρ

]>
, the

input is u =
[
qi qw

]>
, and the disturbance vector is d =[

ρi qo
]>

. Since the tank volume is not directly measured,
an output vector y is specified that defines a mapping
between the measurable outputs, tank level l and tank
density ρ, and x:

y =

[
l
ρ

]
=

[
100
vt

0

0 1

]
x, (7)

with vt the total volume of the surge tank.

3.2. Model validation

The model in (5) is validated using the dataset pre-
sented in Figure 5. The tank level and tank density was
initialised with the tank volume and density measured at
t = 0, and the simulated outputs ysim was obtained by
subjecting the model to the measured inputs u and distur-
bances d. The simulated and measured tank density and
level is shown in Figure 7. Table 2 presents a summary
of the model validation results, comparing the difference
between simulated and measured tank level and density
using the mean absolute error (MAE) and coefficient of
determination (R2).

Table 2: Model validation results, comparing differences
between the simulated and measured tank level and den-
sity using the mean absolute error (MAE) and coefficient
of determination (R2).

Variable MAE R2

l 2.237 % 0.796
ρ 0.009 t/m3 0.837

The model validation results show good correspondence
between the measured and simulated values. An R2 of
0.796 for the tank level suggests that approximately 80 %
of the variance is explained by the simulated level, while
an MAE of 2.237 % represents a small deviation between
the measured and simulated tank levels. Similarly, with
an R2 of 0.837 and an MAE of 0.009 t/m2 there is good
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Figure 7: Validation of the nonlinear model.

correspondence between the simulated and measured tank
density. Small deviations in the model accuracy may be
due to inaccuracies in the measurements, e.g. imperfect in-
strumentation calibration, while deviation between specif-
ically the simulated and measured tank density may be
due to imperfect mixing.

3.3. Linear approximation

A linear approximation of a system is generally useful
as it allows the application of the well developed theory
on linear systems to explore the dynamic behaviour of a
system (Skogestad and Postlethwaite, 2005). An in-depth
exploration of the dynamic behaviour of this surge tank
is not presented here, however, the interested reader is
referred to Rokebrand et al. (2020, 2021). A linear ap-
proximation for the surge tank model in (6) is described
here and used in Section 4 to motivate for the use of an
NMPC solution.

With the expression for the accumulation of volume in
(3) already linear, a linear approximation of the surge tank
requires only the Taylor series expansion of (4). Taking the
functional form:

dρ

dt
= fρ(qi, qw, qo, ρi, ρ, v), (8)

and applying a multivariate Taylor series expansion about
the nominal steady-state operating point x̄ = [q̄i, q̄w, ρ̄i, ρ̄, v̄]>,
and ignoring the higher order terms gives:
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fρ(qi, qw, qo, ρi, ρ, v) ∼= fρ(x̄) +
∂fρ
∂qi

∣∣∣∣
x̄

δqi +
∂fρ
∂qw

∣∣∣∣
x̄

δqw+

∂fρ
∂qo

∣∣∣∣
x̄

δqo +
∂fρ
∂ρi

∣∣∣∣
x̄

δρi +

∂fρ
∂ρ

∣∣∣∣
x̄

δρ +
∂fρ
∂v

∣∣∣∣
x̄

δv

∼= fρ(x̄) +
ρ̄i − ρ̄
v̄

δqi +
1− ρ̄
v̄

δqw+

q̄i
v̄
δρi −

q̄i + q̄w
v̄

δρ −

q̄iρ̄i + q̄w − (q̄i + q̄w)ρ̄

v̄2
δv.

(9)

By definition, at steady-state q̄i + q̄w − q̄o = 0 and
q̄iρ̄i + q̄w − q̄oρ̄ = 0 such that (9) reduces to:

fρ(qi, qw, qo, ρi, ρ, v) ∼= fρ(x̄) +
ρ̄i − ρ̄
v̄

δqi +
1− ρ̄
v̄

δqw +

q̄i
v̄
δρi −

q̄o
v̄
δρ.

(10)

The continuous state-space representation of a linear
system with Nx states, Nu manipulated inputs, Nd dis-
turbance inputs, and Ny outputs is:

dx(t)

dt
= Ax(t) + Bu(t) + Cd(t)

y(t) = Dx(t),

(11)

where x(k) ∈ RNx×1 is the state vector, u(k) ∈ RNu×1

is the input vector, d(k) ∈ RNd×1 is the disturbance vec-
tor, y(k) ∈ RNy×1 is the output vector, A ∈ RNx×Nx

is the state matrix, B ∈ RNu×Nu is the input matrix,
C ∈ RNd×Nd is the disturbance matrix, and D ∈ RNy×Ny

is the output matrix.
The linear model of the surge tank follows from (3),

(7), and (10):

Nx = Ny = 2, Nd = Nu = 2,

A =

[
0 0
0 − q̄ov̄

]
,B =

[
1 1

ρ̄i−ρ̄
v̄

1−ρ̄
v̄

]
,

C =

[
−1 0
0 q̄o

v̄

]
, and D =

[
100
vt

0

0 1

]
. (12)

4. Controller Design and Simulation

4.1. Model predictive control

Model predictive control (MPC) refers to a class of
advanced control algorithms that have been shown to be

effective in the process industry in dealing with multi-
variable constrained control problems (Qin and Badgwell,
2003; Meyer et al., 2019). MPC relies on a model to pre-
dict the state and output responses of a system over a
finite prediction horison Np.

At each sampling interval k the MPC solves for a set
of control moves over a control horison Nc by minimis-
ing an objective function J(.), given estimates of the ini-
tial state of the system x(k), measurements of the initial
system manipulated inputs u(k), disturbance inputs d(k),
outputs y(k), and a desired reference trajectory for the
system output yref . The measured disturbance inputs
are assumed to remain constant over the prediction ho-
rison Np. This constrained optimisation problem can be
expressed as follows:

minu(k+1|k),...,u(Nc+1|k) J (u,d(k),x(k),yref )

subject to:
x ∈ RNx×Np , xl ≤ x ≤ xh;
u ∈ RNu×Nc , ul ≤ u ≤ uh;
y ∈ RNy×Np , yl ≤ y ≤ yh;
x(k + i+ 1|k) = fk(x(k + i|k),u(k + i|k),d(k)),
y(k + i|k) = hk(x(k + i|k)),

∀ i = 1, 2, ..., Nc;
x(k + j + 1|k) = fk(x(k + j|k),u(k +Nc|k),d(k)),
y(k + j|k) = hk(x(k + j|k)),

∀ j = Nc + 1, Nc + 2, ..., Np.
(13)

The system state x is constrained to operate within
upper and lower bounds, xh and xl respectively, as are
the system inputs and outputs, u and y. Note that the
optimisation procedure solves for only Nc control vectors,
with the input vector kept constant at u(k + Nc) for the
remainder of time intervals in the prediction horison Np.

The cost function in (13) is defined as:

J(u,d(k),x(k),yref (k)) =

Np∑
i=1

‖yref (k + i)− y(k + i|k)‖2Q

+

Nc∑
i=1

‖∆u(k + i|k)‖2S

(14)

with yref ∈ RNy×Np and ∆u(k+ i|k) = u(k+ i|k)−u(k+
i− 1|k).

Here Q and S are diagonal matrices used to weight
the relative importance of the controlled and manipulated
variables respectively.

At each sampling instant k the MPC solves for Nc con-
trol vectors and implements the first control move u(k+1).
At the following instant new measurements are obtained
from the system and the optimisation procedure is re-
peated.
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4.2. Linear vs nonlinear MPC

The linear model in (12) was derived on the assumption
that higher order terms in the Taylor series expansion can
be disregarded, since close to the nominal operating point
x̄ higher order terms will be approximately zero. Pro-
cesses, of course, continuously deviate from their nominal
operating points and plant-model mismatch in the form
of inaccuracies between the true system dynamics and the
linear model predictions can not be avoided (Olivier and
Craig, 2015).

Considering that the vast majority of industrial model
predictive control solutions rely on linear models to control
nonlinear processes (Qin and Badgwell, 2003), plant-model
mismatch is often disregarded. This can be explained by
noting that it is comparatively cheap to develop linear
models, typically by assuming that the dynamic responses
of the system follow first-order-plus-time delay (FOPTD)
transients, and by fitting FOPTD models to data obtained
from step testing. Compared to a first principles approach
to obtain a nonlinear process model, a linear model ob-
tained from step tests is markedly less complicated and
time consuming.

Generally, linear approximations are at least accurate
to the direction of relationships between model inputs and
outputs. This is often considered good enough for control
since the system can be driven towards a desired operating
point. Moreover, feedback control has a linearising effect
as it keeps the plant close to an operating point (Skogestad
and Postlethwaite, 2005). Ultimately, the negative effects
of some model mismatch is likely never considered when a
linear MPC achieves noteworthy improvements compared
to a baseline control system.

A linear approximation for this surge tank model would
not be sufficient, however, since the observed deviation of
input density from the tailings dam would cause inversion
of the direction of the relationship between input flow qi
and tank density ρ. For the linear approximation of the
surge tank model the term in the input matrix B in (11)
associated with the input flow qi will always be positive.
The constant flow of water qw to maintain the screen di-
lutes the incoming tailings, and guarantees that:

ρ̄i − ρ̄
v̄

> 0. (15)

A linear MPC relying on the model in (11) would there-
fore always use qi to increase ρ. However, the re-mining
process followed at the tailings dam, described in Section
2, relies on manual operations and is exposed to various
environmental factors that results in an input density ρi
that varies over a large range. This high degree of varia-
tion often results in a scenario where the direction of the
relationship between qi and ρ would be negative, i.e. an
inversely proportional relationship where an increase in qi
would result in a decrease in ρ.

This gain inversion is demonstrated in Figure 8 for a
fictitious, although reasonably likely, steady-state operat-
ing point. The steady-state operating point considered is:
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Figure 8: Gain inversion in the relationship between input
flow qi and tank density ρ as a result of significant variance
in the instantaneous input density ρi.

q̄i = 600 m3/h, q̄w = 150 m3/h, q̄o = 750 m3/h,

ρ̄i = 1.625 t/m3, ρ̄ = 1.5 t/m3, and

v = 350 m3/h.

Figure 8 simulates three scenarios using the nonlinear
model in (5). For all three the instantaneous input flow
qi remains constant and equal to the steady-state input
flow q̄i. In the first scenario (−), representing the case
with no model mismatch, the instantaneous input density
ρi remains constant and equal to the steady-state input
density ρ̄i. In the second scenario (−−) ρi = ρ̄i + 0.1. In
the third scenario (−×), ρi = ρ̄i − 0.1.

Therefore, for the particular scenario where a controller
is tasked to maintain ρ at a target density ρtarget, with
ρi < ρ̄i and ρ < ρtarget, a linear model based controller
would increase qi, further driving ρ away from ρtarget. It is
therefore important to account for the demonstrated gain
inversion in the controller design. Therefore, an NMPC is
chosen based on the nonlinear model in (6).

The main drawback of NMPC is the computational
burden, and associated time delay in solving its non-convex
optimisation problem. Generally speaking this is not much
of a concern in the process industry, where the dynamics of
systems are relatively slow allowing for more computation-
ally intensive control approaches (Gros et al., 2020). For
nonlinear systems with faster dynamics, where the range of
operation requires nonlinearity to be accounted for, adap-
tive MPC (Adetola et al., 2009) and gain scheduled MPC
(Ilka and Veseleý, 2015; Wiid et al., 2021) can be used.

4.3. Controller simulations

The aim is to maintain the surge tank density at a tar-
get density ρtarget. This target density is likely to change
slowly over time due to changes in the nominal input den-
sity ρi, which in turn is due to slow changes in equipment
condition and tailings characteristics. A strategy for op-
erations can be to set ρtarget to the nominal tank density
ρ̄ achieved during the previous day. Note, the nominal
output flow q̄o and tank density ρ̄ sets the throughput of
the chrome recovery circuit as a whole. Hence, operations
need to maintain ρtarget within an acceptable range to de-
liver on the assumptions that motivated the business case
discussed in Section 2.
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Two controller simulations were performed. In the first
simulation the surge tank level was allowed to move freely
within upper and lower limits of 90 % and 40 % respec-
tively. In practice a lower limit is chosen to protect the
agitator assembly, which would get damaged if it was al-
lowed to operate under no load. An upper limit is chosen
to avoid overflow should there be inaccuracies in the level
measurement and/or an unmeasured input into the tank.
By allowing the tank level to move freely within these lim-
its, the NMPC can absorb short term disturbances in for
example input density ρi by reducing the input flow qi.

Because of the settling of solids in the tailings dam
sump ρi can decrease significantly. The tailings dam oper-
ators implement measures to alleviate these settling issues,
but for the duration of the low input density the controller
could decrease the input flow qi to dampen the impact on
ρ.

In the second simulation the surge tank level was main-
tained at a set point of 90 %. Note that in (4), the expres-
sion for the rate of accumulation of density, the volume
appears in the denominator. Therefore, the tank volume
acts as a buffer and maintaining the surge tank at a high
volume will provide improved disturbance rejection.

A summary of the process variable targets and con-
straints used in the simulations is presented in Table 3.
Apart for the level all targets and constraints were identi-
cal in both simulations.

Table 3: A summary of the process variable targets and
constraints used in the controller simulations.

Process Variable Target or Range Constraint
Level in simulation 1 l1 40 ≤ la ≤ 90 %
Level in simulation 2 l2 90 %
Tank density ρtarget 1.475 t/m3

Input flow qi 250 ≤ qi ≤ 500 m3/h
Total water addition qw 100 ≤ qw ≤ 400 m3/h
Input flow step size ∆qi ∆qi ≤ 150 m3/h
Water step size ∆qw ∆qw ≤ 50 m3/h

The input flow is constrained to operate within upper
and lower limits of 250 m3/h and 500 m3/h respectively.
Plant knowledge dictates that the minimum input flow
must be 250 m3/h to avoid solids settling in the input line,
which can result in the line choking. The maximum input
flow is set to the maximum observed flow in the dataset
used for model validation, as presented in Figure 5.

The input water is constrained to operate within upper
and lower limits of 100 m3/h and 400 m3/h respectively.
The minimum flow of water to the surge tank is set as
the flow required to operate the screen. The maximum
water addition is set as the maximum flow observed in the
validation dataset.

A small cost is assigned to avoid overly aggressive moves
in the input variables in order to minimise equipment wear.
By simulation on the validation dataset it can be shown
that setting both diagonal elements in S to 5 × 10−6 en-

sures that ∆qi ≤ 150 m3/h and ∆qw ≤ 50 m3/h.
The design of the NMPC can be summarised as the

constrained optimisation problem in (13) and (14) with:

Np = 20, NC = 10, yref = ρtarget,

Q = 1, and S =

[
5× 10−6 0

0 5× 10−6

]
. (16)

The model is descretised using the 4th order Runge-
Kutta method, with a step size of 1 minute. The simulated
model outputs are initialised to the measured initial con-
ditions of the system. Figure 9 presents a block diagram
of the NMPC and the plant model configuration used to
obtain the simulated results.

Figure 10 and Figure 11 present the results for simula-
tions 1 and 2 respectively. In both simulations the plant
model was subjected to the measured input flow and out-
put flow disturbances shown in Figure 5.

In both simulations the NMPC maintains the tank level
within the specified level range or at set point. The NMPC
is able to reject much of the input density disturbances,
however, it is unable to maintain the tank density ρ at the
target density ρtarget at very low input densities.

Figure 12 compares the tank density ρ measured, ob-
tained from the plant under baseline control, to the sim-
ulated tank densities, ρ simulated 1 and ρ simulated 2,
under NMPC control. The simulated NMPC performance
improves on the baseline performance in both simulations.
The standard deviation of the surge tank density in simu-
lation 1 was 54 % lower compared to the measured density,
while the standard deviation of the surge tank density for
simulation 2 was 33 % lower. Therefore, by simulation it is
shown that an NMPC control strategy that maintains the
tank level within a specified range is the superior control
strategy.

5. Controller Implementation

The NMPC simulated in the previous section was im-
plemented on the industrial plant using the GEKKO opti-
misation and machine learning library (Beal et al., 2018)
in Python. Other than the simulation study, the objective
for the NMPC implemented on the plant was to maintain
the surge tank level within 70 % and 90 %, with a target
density of 1.45 t/m3. The level range was chosen, expect-
ing that the pressure controller on the output of the tank
adjusts the pressure set point to maintain the tank level
within this range. Therefore, to avoid pressure setpoint
changes that would negatively effect cyclone efficiency, the
same level range as used during simulation was chosen for
the NMPC implemented on the plant. The target density
was chosen as the nominal output density at the time.

Consider that for the steady-state operating point pre-
sented in Section 4.2, ‖B‖ ×

∥∥B−1∥∥ = 960 >> 1. Hence
at this operating point the system is ill-conditioned, which

9
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Figure 9: Block diagram of the NMPC controller and plant model configuration used to obtain the simulated results.
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Figure 10: Simulated NMPC control of the surge tank un-
der measured input density and output flow disturbances,
with the tank level allowed to travel within a specified
range.

may result in excessively large adjustments in the manipu-
lated inputs u. To prioritise equipment health, the NMPC
was constrained to not move the input flow to the surge
tank by more than 20 m3/min and the water addition to
the surge tank by more than 50 m3/min.

Custom modules were developed on an Allen-Bradley
programmable logic controller (PLC) and a user interface
on Wonderware’s supervisory control and data acquisition
(SCADA) system. These modules allowed, for example,
switching between the baseline controller and the NMPC,
and monitored communication health using a watchdog
timer. A number of interlocks were also implemented on
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Figure 11: Simulated NMPC control of the surge tank un-
der measured input density and output flow disturbances,
with the tank level maintained at set point.

the PLC to disable the NMPC when conditions were not
suitable. A key interlock was developed for when the input
line would choke. If the surge tank was to remain under
NMPC control with an input line choke, the tank den-
sity would plummet as the NMPC would demand an ever
higher input flow of tailings to counter a dropping density
while only water was being added.

6. Results

Figure 13 presents a time series plot of 180-hours be-
fore and 60-hours after the NMPC was switched on. This
dataset records the hourly-averages of the key surge tank
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Table 4: A summary of the results, comparing the differences in mean and standard
deviation before and after the NMPC was put online.

Process Mean Accept or Reject h0 :
Variable Before, After Equal Mean (Significance)
ρi 1.548, 1.560 accept (0.266)
ρp 1.478, 1.500 reject (0.002)
qi 511.186, 524.903 accept (0.164)
qp 674.531, 674.277 reject (0.022)
mi 385.274, 423.058 reject (0.000)
mp 454.584, 472.779 reject (0.001)
Process Standard Accept or Reject h0 :
Variable Deviation Equal Standard Deviation

Before, After (Significance)
ρi 0.147, 0.145 accept (0.476)
ρp 0.058, 0.106 accept (0.117)
qi 89.762, 94.094 accept (0.453)
qp 16.833, 6.526 accept (0.284)
mi 52.472, 56.061 accept (0.310)
mp 42.146, 30.580 reject (0.015)
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Figure 12: A comparison between the measured tank den-
sity under baseline control and the simulated tank density
under NMPC control. In simulation 1 the tank level was
allowed to travel within a specified range, while in simula-
tion 2 the tank level was maintained at set point.

measures. The baseline controller maintained the level be-
tween 60 % and 90 % by stepping the pressure target on
the output line at fixed step sizes. Note, the pressure of
the output line is maintained by adjusting the output flow
rate qo. The baseline controller maintained the surge tank
density by adjusting the water addition to the tank.

The level under NMPC control has a lower variability,
i.e. a lower standard deviation. Although the output flow
has lower variability under NMPC control, there remains
some variability. Noting that the output flow from the
surge tank is adjusted by a baseline controller, i.e. is a
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Figure 13: Time series of surge tank variables before and
after the NMPC was put online.

disturbance to the NMPC, there remains an opportunity
to review the baseline control strategy to not unnecessarily
adjust this flow to compensate for density or level distur-
bances.
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Figure 14: Permutation test results for the input (top row) and output (bottom row) densities of the plant, recorded
before and after the NMPC was put online.
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Figure 15: Permutation test results for the input (top row) and output (bottom row) flows of the plant, recorded before
and after the NMPC was put online.

Table 4 presents a summary of the results using the per-
mutation method for comparing two independent groups,
as described in Wilcox (2003). For each key plant variable
a permutation test was performed to determine if there
is a statistically significant difference between its mean or
standard deviation before and after the NMPC was put
online. The null hypothesis h0 of equal mean or equal
standard deviation is rejected with 5 % confidence if the
significance value is less than 0.05.

Figures 14 to 16 present the individual permutation
tests from Table 4. For each test in these figures a pos-

itive test statistic (red) would indicate that the mean or
standard deviation has decreased after the NMPC was put
online. Alternatively, a negative test statistic would indi-
cate that the mean or standard deviation has increased
after the NMPC was put online.

Figure 14 and Table 4 show that both the mean and
standard deviation of the input density to the plant ρi is
comparable for the periods before and after the NMPC
is put online. There is no significant difference in the
standard deviation of plant output density ρp, however,
the mean plant output density has significantly increased
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Figure 16: Permutation test results for the input (top row) and output (bottom row) mass flows of the plant, recorded
before and after the NMPC was put online.

while the NMPC was online. A comparable mean plant
input density with a significantly higher plant output den-
sity can only be explained by improved dewatering ability
of the plant while the NMPC was online.

Figure 15 and Table 4 show that while there is no sig-
nificant difference in the mean input flow to the plant qi,
the mean output flow from the plant qp is significantly
lower while the NMPC was online. This lower volumetric
flow rate of tailings from the plant can also be explained
by an increase in the dewatering ability of the plant with
the NMPC online, considering that an increase in water re-
covered via the thickener overflow would imply less water
reporting to the plant output.

The concentration of solids by weight in a slurry cs is
calculated as follows:

cs = 100

(
ρs
ρsl
− ρs

1− ρs

)
, (17)

with ρs the density of the solids and ρsl the density of
the slurry. Plant operations assume a solids density of
ρs = 4.1 t/m3. By comparing the difference between the
concentration of solids in the plant output before and after
the NMPC is put online, it is possible to show that an ad-
ditional 0.063 ton water was recovered for every ton solids
produced when the NMPC was online. This amounts to
approximately 13 m3/h, or 5 % of the water contained in
the tailings product of the plant.

Both the mean mass flow into and out of the plant,
mi and mp, are significantly higher for the period when
the NMPC was online, as shown in Figure 16 and Table
4. The standard deviation of the input mass flow was
comparable, while the standard deviation for the output
mass flow significantly lower while the NMPC was online.

The variability of the mass flow from the plant is therefore
improved, with a 27 % lower standard deviation, while the
NMPC was online.

7. Conclusions

A nonlinear model predictive controller (NMPC) was
implemented on the surge tank of an industrial tailings re-
treatment circuit. This controller was developed following
a general control problem framework. First, a rigorous
nonlinear model was derived for the surge tank from first
principles, and validated using pure simulation. Then,
a control design and analysis was performed motivating
for an NMPC to be implemented on the plant. Finally
the controller was implemented using non-proprietary soft-
ware.

The results show that the variability of the mass flow
of tailings from the plant was significantly reduced under
NMPC control. The plant also delivered a higher output
density, while there were no significant difference in the in-
put density to the plant. Therefore, under NMPC control
the plant showed improved dewatering ability.
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