
An Assertion-Guided Derivation of a Circle Drawing

Algorithm

Derrick G. Kourie and Bruce W. Watson
Department of Computer Science, University of Pretoria

Pretoria 0002, South Africa
dkourie@cs.up.ac.za and bwatson@cs.up.ac.za

Abstract

A raster-based algorithm for drawing circles is de-
rived by using the so-called assertion-guided ap-
proach to program construction. The initially de-
rived form is slightly different from published ones.
It can, however, be transformed into the second-
order midpoint circle-drawing algorithm. Because
of the rigour of the approach, the correctness of the
derived algorithm is assured. The approach also
naturally brings boundary issues to the fore that
might not otherwise be obvious and that appear to
have been overlooked in published circle-drawing
algorithms.

1 Assertion-guided program
development

Assertion-guided program development is the term
given by Meyer [1] to a well-known style of design-
ing algorithms. Perhaps the best-known text on
the subject is that of Gries [2] (see also [3] — the
notation used here will follow that text).

The method centers on the design of loops. It is
based on weakest preconditions and loop invariants.
In overview, the following steps are recommended
when designing a loop.

1. Determine the goal (or post-condition), G, of
the loop.

2. Determine a loop invariant, L, and a loop con-
dition, C, such that

L ∧ ¬C ⇒ G

3. Initialize the loop’s variables so that L holds
before the loop.

4. Determine the body of the loop which pre-
serves L and which simultaneously drives the
loop’s variables, during each successive itera-
tion, towards a state such that ¬C holds.

5. Where the body consists of a conditional
guarded command, as will be the case below,
consider each guarded statement of the form
B → S separately. In each case, construct
S in such a way that L holds after S has
been executed. Using the weakest precondi-
tion calculus, find wp(S, L). Choose B such
that C ∧ B ∧ L⇒ wp(S, L).

Use of this assertion-guided approach to develop
raster graphics algorithms is not unique. For exam-
ple, Gutknecht [4] shows how the approach leads to
the well-known Bresenham algorithm for drawing a
straight line on a rastered plane. Following reason-
ing very similar to his, a raster graphics algorithm
for drawing a circle is developed below. The algo-
rithm turns out to be slightly different from the one
developed by Bresenham [5] and also from modi-
fications of Bresenham’s circle algorithm given in
standard texts such as Foley et. al. [6]. The re-
sulting algorithm is as efficient as its rivals, and
can be transformed into them. The development
process focuses attention on subtle boundary con-
ditions that might be violated when using brute
force development methods.



2 Problem statement and out-
line of solution

The problem to be addressed is the following:

Draw 1/8th of a circle which has a positive
integer, r, as radius and which is centered
at (0, 0). It is to be drawn on a rastered
plain, implying that all co-ordinates (x, y)
are integer-valued. The first point is to be
drawn at (0, r) and the algorithm should
end just before x > y. This guarantees
that no more than 1/8th of the circle is
drawn.

Assume that draw(x, y) colours the pixel (x, y). If
a complete circle was required, draw(x, y) could be
designed to colour 7 additional points on the circle’s
circumference. These points are easily determined
from the point (x, y) using symmetry arguments.
However, special consideration should be given to
ensure that certain symmetry points such as (x, x)
and (0, y) are not coloured twice.

The algorithm thus involves a loop which has the
following informally-stated post-condition G:

For each x-coordinate, xi, in the
range x0, . . . , xn+1, the appropriate y-
coordinate, yi, has been found such that
for i = 0 . . . n, xi ≤ yi and xn+1 > yn+1.
Each of the points in the range x0, . . . , xn

have been drawn.

Noting that the x-coordinates will be integers from
0 to some positive integer, the goal suggests the
following rough loop invariant (which will later be
refined) L(x):

For each x-coordinate, i, in the range
0, . . . , x, the appropriate y-coordinate, yi,
has been found, where i ≤ yi for i =
0 . . . x− 1 and where the points (i, yi) for
i = 0 . . . x− 1 have been drawn.

The condition of the loop, C, must now be such
that ¬C ∨ L(x) ⇒ G. Clearly, this will hold if
¬C ≡ (x > y), leading to a loop condition C ≡
(x ≤ y).

The general flow of control for the algorithm will
be to: colour a pixel; increment x; determine y
appropriately; and then repeat the cycle while the

loop’s condition holds. Furthermore, in each iter-
ation y, will either retain its previous value, or it
will be decrement by 1, depending on some yet to
be determined conditions. Calling these conditions
B1 and B2 respectively, the algorithm has the form
given in outline below.

Algorithm 2.1:

Initialize variables so that L(x) holds
{ invariant: L(x) }
do x ≤ y →

draw(x, y);
if B1 →

x := x + 1;
leave y

[] B2 →
x := x + 1;
decrement y

f i
od
{ G }

2

3 Refining the loop invariant

Reference to “the appropriate y co-ordinate” in
L(x) above is not specific enough to be useful. In
order to more precisely specify what an appropri-
ate y co-ordinate is, consider the real-valued y co-
ordinate (call it yr) such that, for a given integer
value of x, the point (x, yr) lies precisely on the
circumference of the circle. Thus y2

r = r2 − x2.
The approximated (integer) value of yr, denoted

by y, is the rounding of yr, meaning that when yr is
exactly midway, or more than midway between two
integer values, y is its rounded up value; otherwise
y is the rounded down value. Formally,

y − 1/2 ≤ yr < y + 1/2

We can derive a more usable form of this statement
(in such a derivation, each line is separated by a
‘hint’ indicating why the subsequent line follows
from the precedent one)

y − 1/2 ≤ yr < y + 1/2
≡ “ y2

r = r2 − x2 ”

y − 1/2 ≤
√

r2 − x2 < y + 1/2



≡ “ squaring ”
y2 − y + 1/4 ≤ r2 − x2 < y2 + y + 1/4

≡ “ subtracting y2 + 1/4 ”
−y ≤ r2 − x2 − y2 − 1/4 < y

≡ “ mult. by 4; eliminate fraction ”
−4y ≤ 4(r2 − x2 − y2)− 1 < 4y

This can now be used to refine the loop invariant
L(x) as follows:

For each x-coordinate, i, in the range
0, . . . , x, a y-coordinate, yi, has been
found that complies with H(i, yi, d);
where i ≤ yi for i = 0 . . . x− 1; where the
points (i, yi) for i = 0 . . . x − 1 have been
drawn; and where H(x, y, d) ≡ (−4y ≤
d < 4y) ∧ (d = 4(r2 − x2 − y2)− 1)

The refined invariant thus introduces a new integer
variable, d, into the algorithm, which has to be up-
dated in each iteration to ensure that the invariant
continues to hold at the end of the loop.

Since the prime concern will be with the pred-
icate H(x, y, d) in the loop invariant, we shall
henceforth refer to this predicate, and regard the
informally-stated other parts of L(x) as implicit.

4 Initialization

The obvious way in which to ensure initial compli-
ance with the L(x) is to prepare to draw a pixel at
x = 0 and y = r, and to initialize the variable d so
that H(0, r, d) holds. Since H(0, r, d) ≡ (−r ≤ d <
r) ∧ (d = 4(r2 − 02 − r2)− 1), d should be initial-
ized to −1. Note, too, that since by assumption r
is positive, the first conjunct of H(0, r, d) holds.

The algorithm thus has the following form:

Algorithm 4.1:

x, y, d := 0, r,−1;
{ invariant: H(x, y, d) }
do x ≤ y →

draw(x, y);
if B1 →

x := x + 1;
determine d;
leave y

[] B2 →
x := x + 1;

determine d;
decrement y

f i
od
{ G }

2

5 Determining first guarded
command

Let d′ be the new value of d after executing the first
guarded command. Since H(x + 1, y, d′) must hold
after this command, it follows that:

d′

= “ definition of H; x′ is x + 1 ”
4(r2 − (x + 1)2 − y2)− 1

= “ arithmetic ”
4(r2 − (x2 + 2x + 1)− y2)− 1

= “ arithmetic ”
4(r2 − x2 − (2x + 1)− y2)− 1

= “ arithmetic ”
4(r2 − x2 − y2)− 1− 4(2x + 1)

= “ H(x, y, d)⇒ d = 4(r2 − x2 − y2)− 1 ”
d− 4(2x + 1)

The command thus has the form:

B1 → x, d := x + 1, d− 4(2x + 1)

Now note that after the first guard, H(x, y, d)
must hold. We need to determine the weakest pre-
condition

wp(“x, d := x + 1, d− 4(2x + 1)”, H(x, y, d))

and then find B1 such that this weakest precondi-
tion is implied by H(x, y, d) ∧ B1 ∧ (x ≤ y). Ap-
plying the well-known rules (see [2]) of the weakest
precondition calculus we obtain:

wp(“x, d := x + 1, d− 4(2x + 1)”, H(x, y, d))
≡ “ substitution according to wp rules ”

H((x + 1), y, (d− 4(2x + 1)))
≡ “ definition of H ”

(−4y ≤ (d− 4(2x + 1)) < 4y) ∧



(d− 4(2x + 1) = 4(r2 − (x + 1)2 − y2)− 1))
≡ “ simplification ”

(−4y ≤ (d− 4(2x + 1)) < 4y) ∧
(d = 4(r2 − x2 − y2)− 1))

Clearly, the second conjunct of H(x, y, d) implies
the second conjunct of this weakest precondition.
(They are, if fact, identical.) Also, H(x, y, d) ⇒
(d − 4(2x + 1)) < 4y) (since x ≥ 0 and d < 4y in
H(x, y, d)).

Consequently, the following choice for B1 is ap-
propriate:

−4y ≤ d− 4(2x + 1)

equivalently

d ≥ 4(2x− y + 1)

6 Determining the second
guarded command

Proceeding as before, let d′ be the new value of d af-
ter executing the second guarded command. Since
H(x + 1, y− 1, d′) should hold after this command,
it follows that:

d′

= “ definition of H ”
4(r2 − (x + 1)2 − (y − 1)2)− 1

= “ arithmetic with (x + 1)2 ”
4(r2 − x2 − (2x + 1)− (y − 1)2)− 1

= “ arithmetic with (y − 1)2 ”
4(r2 − x2 − (2x + 1)− y2 + (2y − 1))− 1

= “ arithmetic ”
4(r2 − x2 − (2x + 1)− y2 + (2y − 1))
− 1− 4(2x + 1− 2y + 1)

= “ H(x, y, d)⇒ d = 4(r2 − x2 − y2)− 1 ”
d− 4(2x + 1− 2y + 1)

= “ simplification ”
d− 8(x− y + 1)

The guarded command thus has the form:

B2 → x, y, d := x + 1, y − 1, d− 8(x− y + 1)

(Note that H(x, y, d) must hold after the second
guarded command.) We need to determine the

weakest precondition to this assignment, x, y, d :=
. . ., and then find B2 such that this weakest pre-
condition follows from H(x, y, d) ∧ B2 ∧ (x ≤ y).

But

wp(“x, y, d := x + 1, y − 1, d− 8(x− y + 1)”,

H(x, y, d))
≡ “ substitution according to wp rules ”

H((x + 1), (y + 1), (d− 8(x− y + 1)))
≡ “ definition of H ”

(−4(y − 1) ≤ (d− 8(x− y + 1)) < 4(y − 1))
∧ (d− 8(x− y + 1) =
4(r2 − (x + 1)2 − (y − 1)2)− 1))

≡ “ simplification ”
(−4(y − 1) ≤ (d− 8(x− y + 1)) < 4(y − 1))
∧ (d = 4(r2 − x2 − y2)− 1))

Again, it trivially follows that H(x, y, d) implies the
second conjunct of the weakest precondition.

Following a similar line of reasoning to the
derivation of the first guard, symmetry would sug-
gest that

H(x, y, d) ∧ (x ≤ y)⇒ (−4(y−1) ≤ (d−8(x−y+1))
(1)

If this were the case, then in order to ensure that
H(x, y, d) ∧ B2 ∧ (x ≤ y) ⇒ the weakest precon-
dition, B2 could be chosen as (d− 8(x− y + 1)) <
4(y − 1)). We can further simplify this

(d− 8(x− y + 1)) < 4(y − 1))
≡ “ simplification ”

d < 4y − 4 + 8x− 8y + 8
≡ “ simplification ”

d < 8x− 4y + 4
≡ “ simplification ”

d < 4(2x− y + 1)

Although this neatly yields the second guard to
be the complement of the first, (1) cannot be proved
to hold. Nevertheless, provisionally assume that it
does holds. The implications of this assumption
will be explored more fully below.

From all of the foregoing, and subject to the
assumption that (1) holds, the following circle-
drawing algorithm has been derived:



Algorithm 6.1:

x, y, d := 0, r,−1;
{ invariant: H(x, y, d) }
do x ≤ y →

draw(x, y);
if d ≥ 4(2x− y + 1)→

x, d := x + 1, d− 4(2x + 1)
[] d < 4(2x− y + 1)→

x, y, d := x + 1, y − 1, d− 8(x− y + 1)
f i

od
{ G }

2

7 Exploration of assumption

Before considering ways in which the algorithm
might be transformed and optimized to bring it
closer to classical algorithms, it is instructive to
examine the assumption (1) in greater detail. Con-
sider the consequent of (1) more closely: (−4(y −
1) ≤ (d− 8(x− y + 1)) ≡ −4y ≤ d + 8(y − x)− 12.

But (−4y ≤ d) ∧ 8(y − x) − 12 ≥ 0 ⇒ −4y ≤
d + 8(y − x)− 12. Therefore H(x, y, d) ∧ (y − x) ≥
1.5⇒ (−4(y − 1) ≤ (d− 8(x− y + 1)).

Thus, assumption (1) only holds if it is guaran-
teed that, from an integer arithmetic point of view,
x is at least two units smaller than y, i.e. x = y−2.
But the loop condition provides for the possibili-
ties x = y − 1 or x = y as well, and there is no
certainty that the first guard will be chosen when
this occurs. Note that if the second guard was to
be chosen at this juncture, x would be incremented,
y would be decremented, and a point (x, y) would
generated, where x = y + 1 if x = y − 1 held be-
fore the command, or where x = y + 2 if x = y
held before the command. The loop’s condition
now no longer holds, so no additional point would
have be drawn. This complies with the original
brief of drawing only 1/8th of a circle segment.

Notwithstanding the fact that in both the above
boundary conditions the loop would correctly ter-
minate without drawing unrequired points, the the-
ory implies that H(x, y, d) will no longer hold after
the second guarded command has been executed.
It seems therefore that the loop could terminate
in a state in which the loop invariant no longer

holds, suggesting that something has gone wrong!
The solution to the dilemma lies in seeing that,
in retrospect, the invariant was badly phrased to
be more strict than is necessary: H(x, y, d) need
only hold for points that are actually to be drawn.
A more accurate statement of the invariant would
thus explicitly require that: x ≤ y ⇒ H(x, y, d). It
can easily be verified that applying the theory to a
weakest precondition based on this post-condition
would lead to the same guard and to the assurance
of the revised invariant holding at the end of the
loop.

Of course, this raises the question as to why no
similar problem was experienced in developing the
first guard. The answer lies in the fact that, even
in the boundary case where the guarded command
was executed with x = y, the subsequent values
for x and d are — coincidentally — such that they
continue to satisfy H(x, y, d), even though x > y
after the command has been executed.

These boundary issues are sometimes ignored in
published algorithms. For example, in Foley et.
al. [6] the loops have as condition y > x and are
designed to first compute the next point, and then
to draw that point. Where an iteration in such a
loop starts with x = y − 1 it will turn out that
by decrementing y and incrementing x a point is
incorrectly drawn where x = y + 1.

8 Transformations to a sim-
pler algorithm

Although the assertion-based approach has derived
an algorithm that is fully correct, it is clearly less
efficient than others in the literature: it involves
relatively complicated guards to be tested, as well
as several more operations per guard body than re-
quired by its rivals. However, it is intriguing to
note in passing that the algorithm can be imple-
mented using shift operations instead of multipli-
cation. A series of elementary transformations will
now be presented that results in an algorithm that
is as simple as its rivals. A further set of transfor-
mations shows that the simplified algorithm is, in
fact, a variation of the midpoint circle algorithm
derived by using second order differences.

The first transformations are directed at remov-
ing multiplication operations (even though it is



recognised that all of them can be implemented as
shift operations). This is done at the cost of adding
a few more assignments and variables.

As a first step, let t be a new variable which is
invariantly related to x and y by the equality

t = 4(2x− y + 1)

Note that this term appears in both guards. Thus
the term in the body of the first guard, 4(2x + 1),
is t + 4y and the term in the body of the second,
8(x− y + 1) is t+ 4(y + 1). Furthermore, the initial
value of t is 4(1 − r). Finally, to ensure that its
invariance relation to x and y is retained after each
guard’s body has been executed, the new value of
t, say t′, is determined as follows in respect of the
first guard:

t′

= “ Substitution for x in t ”
4(2(x + 1)− y + 1)

= “ Arithmetic ”
t + 8

Similarly, in respect of the second guard:

t′

= “ Substitution for x and y in t ”
4(2(x + 1)− (y − 1) + 1)

= “ Arithmetic ”
t + 12

Substitution then leads to a transformed algorithm:

Algorithm 8.1:

x, y, d, t := 0, r,−1, 4(1− r);
{ invariant: H(x, y, d) }
do x ≤ y →

draw(x, y);
if d ≥ t→

x, d, t := x + 1, d− t− 4y, t + 8
[] d < t→

x, y, d, t :=
x + 1, y − 1, d− t + 4(y − 1), t + 12

f i
od
{ G }

2

This does not quite achieve the goal of elim-
inating all multiplications, but it is considerably
simpler than before. Note that, while on the one
hand, all variables are integers, the importance of
t and d does not lie in their absolute values, but
rather in their values relative to one another: the
difference between these two variables controls the
flow of logic by indicating which guard is to be se-
lected at each iteration. Suppose, then, that t and d
are provisionally replaced by new real-valued vari-
ables, where these new variables invariantly have
one quarter of the value of the former integer vari-
ables in each iteration. The algorithm then changes
as follows (retaining the identifier names t and d for
the new real variables):

Algorithm 8.2:

x, y, d, t := 0, r,−0.25, (1− r);
{ invariant: H(x, y, d) }
do x ≤ y →

draw(x, y);
if d ≥ t→

x, d, t := x + 1, d− t− y, t + 2
[] d < t→

x, y, d, t :=
x + 1, y − 1, d− t + (y − 1), t + 3

f i
od
{ G }

2

The advantage of this form is that multiplica-
tion operations have been eliminated. This is done
at the expense of introducing real-valued variables.
However, inspection shows that t starts off as an in-
teger (assuming, of course, an integer radius) and
continues to be integer-value after each iteration.
It is therefore natural to enquire whether the role
played by d can be filled by some integer variable.

Note that d starts off as (−1 + 0.75) and changes
from this value by an integer amount in each itera-
tion. Thus at any stage of the algorithm, d always
has a value D+0.75 where D is some integer. Con-
sider, then, the effect of replacing the real-valued
variable d by a rounded down integer-valued vari-
able d in the algorithm, where d is initialized to
−1.

• Whenever the first guard is selected in the real-
valued algorithm the corresponding guard is



selected in the integer-valued algorithm. This
follows by noting that first guard is selected in
the real-valued algorithm when d = t+k+0.75
for some non-negative integer, k. At the corre-
sponding point in the integer-valued algorithm
d = t + k, so that in the most marginal case,
where k = 0, the guard is selected as an equal-
ity.

• By a similar argument, the second guard is se-
lected in the real-valued algorithm when d =
t−k+0.75 for some positive integer, k. At the
corresponding point in the integer-valued algo-
rithm d = t− k, so that in the most marginal
case, where k = 1, the integer d is strictly less
than t, and the second guard will also be se-
lected.

This yields the following integer-valued algo-
rithm:

Algorithm 8.3:

x, y, d, t := 0, r,−1, (1− r);
{ invariant: H(x, y, d) }
do x ≤ y →

draw(x, y);
if d ≥ t→

d, t := d− t− y, t + 2
[] d < t→

y, d, t := y − 1, d− t + y − 1, t + 3
f i;
x := x + 1

od
{ G }

2

9 Comparative results

The algorithm now no longer contains multiplica-
tions, and involves four addition or subtraction op-
erations per iteration whenever the first guard is
selected, and six such operations when the second
guard is selected. By implementing the assign-
ments sequentially, the number of operations in the
second case can be reduced to five, if y is updated
before d. In respect of the number and type of
integer operations, the algorithm is therefore iden-
tical to the midpoint circle algorithm using second

second-order differences presented by Foley et. al.
[6, page 87, figure 3.18].

This latter algorithm is given below for com-
parative purposes. It has been adapted from C
code to the syntax used here, and variables have
been renamed to effect a resemblance to the above
algorithm. However, although already shown to
be incorrect, points at which draw(x, y) has been
invoked as well as the loop condition have been
retained. Furthermore, there is no direct corre-
spondence to the assertion-based algorithm, and
meanings attributable to variables in one algorithm
should not be construed to mean something similar
in the other.

Algorithm 9.1:

x, y, p, d, t := 0, r, (1− r), 3,−2 ∗ r + 5;
draw(x, y);
{ invariant: H(x, y, d) }
do x < y →

if p < 0→
p, d, t := p + d, d + 2, t + 2

[] p ≥ 0→
p, y, d, t := p + t, y − 1, d + 2, t + 4

f i;
x := x + 1;
draw(x, y)

od
{ G }

2

Algorithm 8.3 can be transformed to Algo-
rithm 9.1 by introducing a few new variables. Be-
gin by noting that the guards in Algorithm 8.3 can
be transformed to guards similar to those in Algo-
rithm 9.1 by introducing a variable, p = t− d− 1.
Note that initially, p = r− 2. Also p < 0 whenever
d ≥ t and p ≥ 0 whenever d < t. In order to com-
pute p for the next iteration, the new values of d
and t that apply in each respective guarded com-
mand have to be used. Thus, in the first guarded
command pnew = (t + 2)− (d− t− y)− 1 = pold +
(t+y+2). Similarly, in the second guard command,
pnew = (t+3)−(d−t+y−1)−1 = pold +(t−y+4).
This leads to the transformed algorithm:

Algorithm 9.2:

x, y, p, d, t := 0, r, r − 2,−1, (1− r);



{ invariant: H(x, y, d) }
do x ≤ y →

draw(x, y);
if p < 0→

p, d, t :=
p + (t + y + 2), d− t− y, t + 2

[] p ≥ 0→
p, y, d, t :=
p + (t− y + 4), y − 1, d− t + y − 1,
t + 3

f i;
x := x + 1;

od
{ G }

2

Note that d no longer plays any role in Algo-
rithm 9.2 and may be removed. Further compari-
son of Algorithm 9.2 with Algorithm 9.1 suggests
that new variables, say dd and tt, might be intro-
duced where dd = t + y + 2 and tt = t− y + 4. dd
should be initialized to (1−r)+r+2 = 3, and tt to
(1−r)−r+4 = −2∗r+5. These values correspond
to the initial values of d and t in Algorithm 9.1.

Furthermore, new values for dd and tt to be used
in the next iteration can be computed in each guard
body as follows. In the first guard body, ddnew =
(t + 2) + y + 2 = ddold + 2 and ttnew = (t + 2) −
y + 4 = ttold + 2. Similarly, in the second guard
body, ddnew = (t + 3) + (y− 1) + 2 = ddold + 2 and
ttnew = (t + 3)− (y − 1) + 4 = ttold + 4. Thus t is
also not needed to compute any useful value in the
new algorithm.

Algorithm 9.3:

x, y, p, dd, tt := 0, r, r − 2, 3,−2 ∗ r + 5;
{ invariant: H(x, y, d) }
do x ≤ y →

draw(x, y);
if p < 0→

p, dd, tt := p + dd, dd + 2, tt + 2
[] p ≥ 0→

p, y, dd, tt := p + tt, y − 1, dd + 2, tt + 4
f i;
x := x + 1;

od
{ G }

2

Barring the incorrect flow of logic in Algo-
rithm 9.1, Algorithm 9.3 clearly differs from Al-
gorithm 9.1 in variable names only.

10 Conclusion

The assertion-guided approach to deriving a circle-
drawing algorithm naturally highlighted the fact
that draw(x, y) should be called at the start of the
loop and that the loop condition should be x ≤ y.
While the use of x < y coupled with an invoca-
tion of draw(x, y) at the end of the loop might be
a small error in the published solutions, it could be
a significant one under certain circumstances.

Sproull [7] addressed the line-drawing problem
by starting with an “obviously correct” algorithm
based on simple geometry, and, by a series of
transformations, derived the well-known Bresen-
ham line-drawing algorithm. Citing Sproull’s work,
Foley et. al. [6] state that: “No equivalent of that
derivation for circles or ellipses has yet appeared.”
Sproull claimed that: “These transformations as-
sure us that the more efficient but more complex
algorithms are correct, because they have been de-
rived from correct transformations from a correct
algorithm.” The claim in this research is that
something similar has been achieved in respect of
circle-drawing algorithms. Although admittedly
not starting by making an appeal to simple geom-
etry, the base-line algorithm is “obviously correct”
in the sense of having been derived by a formal
procedure. The fact that transforming the base-
line algorithm to a version of Algorithm 9.1 throws
up inaccuracies in published version, highlights the
power and precision of the assertion-guided soft-
ware development methodology.

References

[1] B. Meyer, Introduction to the Theory of Pro-
gramming Languages, Addison-Wesley, 1990.

[2] D. Gries, The Science of Computer Program-
ming, 2nd Edition, Springer-Verlag, 1980.

[3] E. W. Dijkstra, A Discipline of Programming,
Prentice Hall, 1976.



[4] J. Gutknecht, Programming is teachable or how
to leave rabbits in the hat, South African Com-
puter Journal (3) (1990) 1–4.

[5] J. Bresenham, A linear algorithm for incremen-
tal digital display of circular arcs, Communica-
tions of the ACM 20 (2) (1977) 100–106.

[6] J. Foley, A. van Dam, S. Feiner, J. Hughes,
Computer Graphics: Principles and Practice,
second, in c Edition, Addison-Wesley, 1995.

[7] R. Sproull, Using programming transformations
to derive line-drawing algorithms, ACM Trans-
actions on Graphics 1 (4) (1982) 259–273.

To Derrick:
A very happy birthday to you. I hope you are suit-
ably surprised at being a co-author of this paper
in your own ‘Festschrift’. This was the first pa-
per which you invited me to co-author — a sig-
nificant honour for me. It was exactly this sort
of correctness-by-construction algorithmics that at-
tracted me to Pretoria, though you were active in
this approach long before my first visit to the com-
puter science department in 1994. Your unwaver-
ing commitment to such algorithm(ic)s remains a
source of inspiration for me, and I wish you many
more years of great (and correctly constructed) al-
gorithms. Even more, you have been an outstand-
ing source of inspiration, friend and mentor — and
I wish you many more years in those roles too!


