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Abstract

Coffee production is an important agriculture activity which contributes significantly to the eco-
nomic growth of many countries in the world. One of the major constraints to coffee production
throughout the world is the damage caused by the coffee berry borer (CBB), Hypothenemus hampei
(Coleoptera: Scolytidae). It is the most damaging insect pest to coffee production in the world.
These insects infest coffee berries, preferably mature berries, and spend most of their life cycle
inside the berries, which make them quite difficult to control. In this work, we introduce and anal-
yse a berry age-structured model describing the infestation dynamics of coffee berries by CBB.
Using the semigroup theory in the case of Lipschitz perturbation, we show that the model has a
unique nonnegative and bounded solution. We derive an explicit formula of the basic reproduction
number, R0, using the next generation approach and the biological interpretation of this threshold
in a specific case. Numerical simulations are carried out to illustrate the theoretical results.

Keywords: Epidemiological model, plant-pest interaction, Hypothenemus hampei , semigroup
theory, stability, numerical simulations
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1. Introduction

The production of coffee plays an important role in the economic development of many coun-
tries. Native of Africa, two species of coffee, Coffea arabica and Coffea canephora (generally called
robusta) are produced on over 10 million ha in more than 80 countries located in tropical and
subtropical regions [1]. World coffee production for 2020–2021 is forecast to increase by 9.1 million
bags (90 kg/bag) compared to the previous year, reaching 176.1 million bags [2]. However, coffee
production is threatened by pests and diseases [3]. The most harmful pest is the coffee berry borer
(CBB), Hypothenemus hampei (Coleoptera: Scolytidae), which is originated from Central Africa
but now impacts most coffee-growing countries [1, 3, 4]. If no control measure is applied in the
plantation, up to 100% of the berries can be attacked [3, 5]. The infestation levels in untreated
plantations are estimated at 60% in Mexico, 60% in Colombia, 50–90% in Malaysia, 58–85% in
Jamaica, 80% in Uganda and 90% in Tanzania [6]. CBB severely reduce the coffee production and
alter its quality, thus impairing its commercial value. Economic losses are estimated at more than
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US$500 million annually, affecting a large proportion of more than 25 million rural households
involved in coffee production worldwide [7]. These insects feed and spend most of their life inside
coffee berries, preferably targeting ripe berries, although they may infest immature berries and
cause them to fall prematurely. Due to their cryptic nature, they are difficult to control [1, 4, 6, 8].

Due to the seriousness of the damages caused by CBB in coffee plantations throughout the
world, it is crucial to develop tools that help limiting CBB infestation. In this sense, mathematical
modelling is relevant to understand the coffee berries–CBB interactions. We developed two pioneer
tractable deterministic models describing the infestation dynamics of coffee berries by CBB during
a cropping season [9, 10]. These models are based on the CBB life-cycle and take into account
the coffee berry availability. They are both based on differential equations and in neither work
did we integrate the CBB marked preference for mature berries, demonstrated in several field and
laboratory studies [1, 5, 8, 11].

In this work, we develop an age-structured model describing the infestation dynamics of coffee
berries by CBB that takes into account the preference of CBB for the mature berries. The model
consists in two partial differential equations describing the age-structured dynamics of berries and
two ordinary differential equations depicting the CBB life-cycle. We study the well-posedness of
the model using the perturbation semigroup theory [12], which provides a flexible mathematical
framework for determining the existence and uniqueness of a solution to age-structured models
(see for instance [13–16] and references cited therein). Considering that the production rate of new
coffee berries is constant, we then compute the explicit expression of the basic reproduction number
R0, which determines if the CBB population can vanish or persist in the plantation. Moreover,
the biological interpretation of its expression is given.

The remaining sections of this paper are organised as follows. In Section 2, we introduce the
age-structured model describing the infestation dynamics of coffee berries by CBB. In Section 3, the
existence, uniqueness and boundedness of solutions are established. In Section 4, we compute the
explicit formula of the basic reproduction number for a constant berry production rate. Numerical
simulations are provided in Section 5 to illustrate the theoretical results and provide points for
discussion.

2. Coffee berries–CBB interaction dynamics

2.1. Biological background

The coffee berry growth is divided into several stages that are characterised by the berry colour.
After flowering, the berry successively goes through the green, yellow, red and black colours and
becomes fully mature when it is red, after 6–9 months [17]. But on the same coffee tree, there are
branches without flowers and branches with berries at all stages of maturation [8, 17]. Field and
laboratory studies indicate that factors such as berry ripeness and colour play an important role
on the susceptibility of coffee berries to CBB infestation, with a CBB preference for red and black
berries [1, 5, 8, 11]. In addition, the CBB fertility rate is higher in mature than in young berries
[18]. CBB can also attack small 2 to 3-months old green coffee berries that can be found on the
branches up till the harvest time [6, 19].

The CBB life cycle is composed of four stages: egg, larva, nymph and adult (male and female)
[1, 4]. All these stages take place inside the coffee berries, which provide food and shelter. The
duration of development from egg to adult is positively correlated with temperature and may take
28 to 34 days at 27◦C [4]. The CBB female feeds on and reproduces in the endosperm of the seed
of the coffee berry, burrowing through exocarp, mesocarp and endocarp to reach it, which may
take up to 8 hours under optimum conditions. The female lays one to three eggs per day during
approximately 20 days and remain inside the berry to take care of their offspring until they die
[4]. There is a 10:1 female-to-male sex ratio [4, 20]. The larvae, nymphs, males and young females
remain inside the coffee berry, together with the founder female. The males mate with the young
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females of their generation. A few days after fertilisation, females leave the berry to find other
preferably uninfested berries for oviposition.

2.2. Model description

To take into account the CBB preference for mature berries, a berry age-structured model
is formulated to study the infestation dynamics of coffee berries by CBB. The berry population
density is subdivided into two compartments: the healthy berry density at time t and age a denoted
by sb(t, a) and the infested berry density denoted by ib(t, a). The berry age being defined as a
“classical” age, we have da = dt. We denote by a† the maximal age of the coffee berries.

Since only fertilised females (also called colonising females) infest new hosts and considering
that males are not limiting to fertilise young females in the berries, we only represent females in
the model. At time t, we subdivide the female population into two compartments: the colonising
females denoted by y(t), which correspond to the flying females looking for new berries, and the
infesting females denoted by z(t), which correspond to the females that are laying eggs inside the
berries. Figure 1 provides a schematic and simplified summary of the interactions between coffee
berries and CBB.

Figure 1: Schematic representation of the coffee berry–CBB interaction model. Healthy coffee berries sb(t, 0) are
produced at the time-dependent rate λ(t). Colonising females y(t) infest healthy coffee berries sb(t, a) at rate
β(a)f(B, y), where B(t) represents the total number of healthy berries at time t > 0 and f(., .) the interaction
function. This induces a transfer of berry densities, from healthy to infected berries ib(t, a), and its counterpart for
CBB females, from colonising to infesting females z(t). Infesting females lay eggs inside the coffee berries, which go
through their development cycle until the emergence of new fertilised colonising females at rate φ. Colonising and
infesting CBB females undergo mortality at rates µy and µz , healthy and infested coffee berries at rates µ(a) and
ν(a).

We first introduce a berry age structure, for instance as done in [21, Section 1.7], and obtain
the following dynamics without CBB: ∂tsb(t, a) + ∂asb(t, a) = −µ(a) sb(t, a). We then extend the
baseline model found in [10]. The berry-CBB interaction term f(B, y)β(a) sb(t, a) depends on the
berry age, so the CBB ordinary differential equations become integro-differential equations. The
diagram in Figure 1 can be translated into the following mathematical age-structured system:

∂tsb(t, a) + ∂asb(t, a) = −f(B, y)β(a) sb(t, a)− µ(a) sb(t, a),
∂tib(t, a) + ∂aib(t, a) = +f(B, y)β(a) sb(t, a)− ν(a) ib(t, a),
ẏ(t) = −ε f(B, y)

∫ a†
0
β(a) sb(t, a) da− µy y(t) + φ z(t),

ż(t) = +ε f(B, y)
∫ a†

0
β(a) sb(t, a) da− µz z(t),

(1)

where B(t) =
∫ a†

0
sb(t, a)da represents the total number of healthy berries at time t. System (1) is
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supplemented by the following boundary and initial conditions:

sb(t, 0) = λ(t), ib(t, 0) = 0,

sb(0, a) = sb0(a), ib(0, a) = ib0(a), y(0) = y0, y(0) = z0.
(2)

Model (1–2) relies on several assumptions listed below.

Assumption 1.

1. Many factors such as climatic and environmental conditions influence the development of the
coffee crop. We do not explicitly represent these factors but we assume that healthy coffee
berries are produced at time-dependent rate λ(t).

2. We assume that there are enough males born in the berries to fertilise the young females.

3. In the force of infestation β(a)f(B, y), β(.) represents the age-specific infestation rate per
unit of time, while the interaction between CBB and berries is described by function f(., .)
which verifies the following hypotheses:

� Function f(., .) is a bounded, C1-Lipschitz function for both positive arguments, i.e.
there exists a positive real number M such that:

|f(B1, y1)− f(B2, y2)| ≤M (|B1 −B2|+ |y1 − y2|) , (3)

for all values (B1, y1) and (B2, y2) in R2
+.

� Moreover, f(B, 0) = 0 and function f(., .) are non decreasing in y (for B > 0). Indeed,
infestation can only occur when colonising females are present; furthermore, for a given
number of berries, the more the colonising females, the more severe the infestation.

� Finally, f(., .) is non increasing in B (for y > 0) and for all y ∈ R∗+, lim
B→+∞

Bf(B, y)

is finite. As each CBB infests at most one berry, the impact of CBB per berry decreases
with the total number of berries available, hence the former hypothesis. The latter
hypothesis means that infestation is limited by the number of colonising females. As
a consequence, lim

B→+∞
f(B, y) = 0.

These hypotheses are compatible with classical density-dependent interactions such as Holling
type II, which includes resource limitation: f(B, y) = y

1+αB . Except for the C1-Lipschitz
condition, they are also compatible with ratio-dependent interactions, that is f(B, y) = y

y+αB

used in [10], which includes a limitation on the resource per parasite. We show in Section 5.1
that they also hold for the Beddington-DeAngelis function, which includes resource limitation
and parasite competition.

4. The females are able to differentiate infested from uninfested berries and choose healthy coffee
berries. Indeed, super-parasitism is rarely observed in a plantation [5, 11]. Parameter ε is
a scaling parameter that corresponds to the number of colonising females per infested berry.
So usually, ε = 1 CBB/berry.

5. We assume that the number of colonising females emerging from the infested coffee berries
per infesting female φ is constant.

6. The age-dependent mortality rates of healthy and infested coffee berries are respectively µ(a)
and ν(a). We assume that ν(a) > µ(a) since CBB infestation leads to the premature fall
of coffee berries in the plantation [4, 17]. The parameters µy and µz represent the natural
mortality rates for colonising and infesting females respectively. We assume that an infesting
female may pursue its development if its berry falls down. In turn, even if an infesting female
dies, its berry survives.
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It is worth noticing that, if the age-dependent and time-dependent functions are chosen as
positive constants, i.e. µ(a) = µ, β(a) = β, ν(a) = ν and λ(t) = λ, then by integrating the first
two equations of system (1) on [0, a†], we obtain a nonlinear ordinary differential system similar
to the models proposed in [9, 10].

As the age-dependent variable ib(t, a) does not appear in the equations of the other variables
in system (1), one can ignore the dynamics of ib(t, a) and study the following reduced model given
for t ≥ 0 and a ∈ [0, a†]:

∂tsb(t, a) + ∂asb(t, a) = −f(B, y)β(a) sb(t, a)− µ(a) sb(t, a),
ẏ(t) = −εf(B, y)

∫ a†
0
β(a) sb(t, a) da− µy y(t) + φz(t),

ż(t) = +ε f(B, y)
∫ a†

0
β(a) sb(t, a) da− µz z(t),

sb(t, 0) = λ(t), sb(0, a) = sb0(a), y(0) = y0, z(0) = z0.

(4)

Let us denote by (L1
+(I), ‖.‖) the space of nonnegative measurable functions equipped with the

product norm and by (L∞+ (I), ‖.‖∞) the space of nonnegative and Lebesgue integrable functions
over the set I ⊂ R. We make the following realistic assumptions on the positivity and smoothness
of the parameters and functions involved in model (4).

Assumption 2. Throughout this manuscript, we assume that:

1. Parameters φ, ε, µy, µz and initial conditions y0 and z0 are nonnegative.

2. λ(.) ∈ L∞+ (0,∞), β(.) ∈ L∞+ (0, a†); boundary conditions sb0(.), ib0(.) ∈ L1
+(0, a†).

3. µ(.), ν(.) ∈ L∞+ (0, a†) such that ν(a) ≥ µ(a) and there exists a real number µ̃ > 0 satisfying :
µ(a) ≥ µ̃ for almost every a ∈ [0, a†].

3. Well-posedness

In this section, we aim at proving the existence and uniqueness of a nonnegative solution for
system (4). The preliminary step consists in finding the equivalent system with zero boundary
conditions, using the ideas of [14, 15] and writing the new model as an abstract Cauchy problem,
which is easier to handle. Then we prove the existence and uniqueness of a mild solution to this
Cauchy problem in the nonnegative cone of a Banach space, by adapting the arguments of [12].
Finally, we deduce the existence and uniqueness of a mild solution for the initial system (4).

3.1. Abstract Cauchy problem

Let us define the survival probability of healthy coffee berries until age a by π(a) = e−
∫ a
0
µ(x)dx.

For all t ≥ 0, we introduce the new functional:

Φt(.) : ξ −→ Φt(ξ) :=

{
π(ξ)λ(t− ξ) if t ≥ ξ ≥ 0,

0 otherwise.

Based on these definitions and Assumption 2, we have the following instrumental lemma which
can be easily established [14].

Lemma 1.

1. The function π(.) ∈ L1
+(0, a†) and satisfies the differential equation: π̇(a) = −µ(a)π(a).

Moreover, for all a ∈ [0, a†] and any t ≤ a, 0 ≤ π(a) ≤ e−µ̃a and π(a)
π(a−t) ≤ π(t).

2. The function t 7−→ Φt(.) is in C(R+, L
1
+(0, a†)). Moreover, for all t ≥ 0, Φt(0) = λ(t) and

Φt(.) satisfies the partial differential equation:

∂tΦt(a) + ∂aΦt(a) = −µ(a)Φt(a).
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Considering the transformation sb(t, a) 7−→ ŝ(t, a) := sb(t, a)−Φt(a), then system (4) is equiv-
alent to the following system with zero boundary conditions:

∂tŝ(t, a) + ∂aŝ(t, a) = −f(B̂, y)β(a)[ŝ(t, a) + Φt(a)]− µ ŝ(t, a)

ẏ(t) = −ε f(B̂, y)‖β(ŝ(t, .) + Φt)‖ − µy y(t) + φ z(t)

ż(t) = +ε f(B̂, y)‖β(ŝ(t, .) + Φt)‖ − µz z(t)
ŝ(t, 0) = 0, ŝ(0, a) = s0(a)− λ(0), y(0) = y0, z(0) = z0.

(5)

where:

B̂(t) =

∫ a†

0

[ŝ(t, a) + Φt(a)]da,

‖β(ŝ(t, .) + Φt)‖ =

∫ a†

0

[β(a)ŝ(t, a) + Φt(a)]da.

Let As and AI denote the differential operators defined by:

As : D(As) ⊂ L1(0, a†) −→ L1(0, a†)

Ψ 7−→ AsΨ(a) = −Ψ′(a)− µ(a)Ψ(a),

AI : D(AI) ⊂ R2 −→ R2

Ψ 7−→ AIΨ = diag(−µy,−µz)Ψ,

where: D(As) :=
{

Ψ ∈W 1,1(0, a†) : Ψ(0) = 0
}

and D(AI) = R2, with W 1,1(0, a†) denoting the
Sobolev space. Biologically speaking, the linear differential operators As and AI represent the
mortality processes related to the healthy coffee berries and females CBB respectively. Let us define
the Banach space X = L1(0, a†) × R × R equipped with the usual norm ‖.‖X . The nonnegative
cone of the Banach space X is X+ = L1

+(0, a†) × R+ × R+. Let us define the linear differential
operator A : D(A) ⊂ X −→ X where D(A) = D(As)×D(AI) such that

A := diag(As,AI). (6)

Let u(t) = (ŝ(t, .), y(t), z(t))> denotes the solution of system (5) with u(0) = (ŝ0(.), y0, z0)>. We
define a nonlinear perturbation map H : R+ ×D(A) ⊂ R+ ×X −→ X as follows:

H(t, u(t)) =

 −β(a)f(B̂, y)[ŝ(t, a) + Φt(a)]

−εf(B̂, y)‖β(ŝ(t, .) + Φt)‖+ φz(t)

εf(B̂, y)‖β(ŝ(t, .) + Φt)‖

 . (7)

Then, we can transform system (5) into the following abstract Cauchy problem in the Banach
space X : {

u̇(t) = Au(t) +H(t, u(t)) for t ≥ 0

u(0) = u0 ∈ D(A).
(8)

To prove the existence and uniqueness of a solution to the abstract Cauchy problem (8), we
begin by showing that the linear autonomous problem associated to system (8) has a unique
solution. Then we prove the existence of a unique solution for the nonautonomous and nonlinear
system (8) using the perturbation theory of linear evolution equations (see [12, 16] for more details).

3.2. The linear problem

This section is devoted to the definition of the semigroup generated by the differential operator
A and the existence and uniqueness of a solution to the linear problem associated to the system (8).
Let us define the resolvent set ρ(A) of the linear operator A as the set of all complex number ζ for
which (ζI−A) is inversible, i.e. (ζI−A)−1 is a bounded linear operator in L1(0, a†). Let ∆ denotes
the subset of the complex number defined by ∆ := {ζ ∈ R : ζ > −ω} where ω = min{µ̃, µy, µz}.

6



Lemma 2. The differential operator A is closed and the resolvent set ρ(A) ⊃ ∆. Moreover, the
family of the bounded linear operators (ζI −A)−1, called resolvent, satisfies ‖(ζI −A)−1‖ ≤ 1

ζ+ω ,
∀ζ ∈ ∆.

Proof. We start by show that the differential operator A is closed. According to [22], it is sufficient
to show that D(A) with norm ‖x‖D(A) = ‖x‖X+‖Ax‖X , ∀x ∈ D(A) is a Banach space. It is easy to
verify that ‖.‖D(A) is a norm on D(A). For show that (A, D(A)) is complete. we take (θn, yn, zn) to
be a Cauchy sequence of points of D(A). Thus θn ∈W 1,1 which is a Banach space (i.e. complete),
so θn −−−−→

n→∞
θ? in W 1,1, i.e. that θn −−−−→

n→∞
θ? and θ′n −−−−→

n→∞
θ′? in L1. Moreover, yn −−−−→

n→∞
y? ∈ R

and zn −−−−→
n→∞

z? ∈ R since R is complete. Then ‖µθn − µθ?‖ ≤ ‖µ‖∞‖θn − θ?‖ −−−−→
n→∞

0 since

‖µ‖∞ is finite. Therefore, µθn −−−−→
n→∞

µθ? in L1. We can thus see that the sequence (θn, yn, zn)

converges in D(A) to (θ?, y?, z?). In fact, ‖(θn, yn, zn)− (θ?, y?, z?)‖D(A) ≤ ‖θn− θ?‖+ ‖yn− y?|+
‖zn − z?| + ‖µ(θn − θ?) + (θ′n − θ′?)‖ + µy‖yn − y?| + µz‖zn − z?|. Thus any Cauchy sequence is
convergent and the space D(A) with its norm ‖.‖D(A) is complete. Hence the operator A is closed.

To check the estimation, Let x ∈ X with coordinates x = (ψ, x1, x2) and u = (ŝ, y, z) ∈
D(A). We consider the equation (ζI − A)u = x implies that u = (ζI − A)−1x that is ŝ(a) =∫ a

0
eζ(η−a) π(a)

π(η)Ψ(η)dη, ∀ψ ∈ L1(0, a†), y = 1
ζ+µy

and z = 1
ζ+µz

. Assuming ζ > −ω, then

the direct calculation show that we have the estimate ‖(ζI − A)−1‖ ≤ 1
ζ+ω . This achieves the

proof.

The properties of the linear operator (A, D(A)) are precised by the following proposition.

Proposition 1. The linear operator (A, D(A)) is an infinitesimal generator of a strongly positive
C0-semigroup of contraction TA(t) = diag (TAs(t), TAI (t)) such that for every t ≥ 0 and Ψ ∈
L1(0, a†):

TAs(t)Ψ(a) =


π(a)

π(a− t)
Ψ(a− t) if t ≤ a ≤ a†,

0 otherwise,
(9)

and for every (x, y) ∈ R2:

TAI (t)(x, y) = diag
(
e−µyt, e−µzt

)
(x, y) = (xe−µyt, ye−µzt). (10)

Moreover, the semigroup {TA(t)}t≥0 is exponentially stable.

Proof. From Lemma 2 and according to the Hille–Yosida Theorem [12], the linear differential oper-
ator (A, D(A)) is an infinitesimal generator of a C0-semigroup of contraction TA(t). Moreover, its
resolvent is positive on X , then the C0-semigroup of contraction TA(t) is positive [12, 16]. Hence,

performing a change of variable ξ = a− η in the resolvent equation ŝ(a) =
∫ a

0
eζ(η−a) π(a)

π(η)Ψ(η)dη,

∀Ψ ∈ L1(0, a†) and computing the exponential of the operator AI , we obtain the desired ex-
pressions for the semigroup TA(t). Finally, the estimation is a direct consequence of Lemma 1
which implies that ‖TA(t)‖ = sup{‖TAs(t)‖, ‖TAI (t)‖} ≤ max{π(t), e−µyt, e−µzt} ≤ e−ωt, with
ω = min{µ̃, µy, µz} for all t > 0. Then, the operator ‖TA(t)‖ converges towards zero when
t→ +∞. Therefore, the semigroup {TA(t)}t≥0 is positive and exponentially stable.

As a consequence of Proposition 1 and according to [12, 13], we obtain the following result
regarding the existence of a solution to the linear abstract Cauchy problem.

Theorem 1. For the given initial condition u(0) ∈ D(A), u(t) = TA(t)u0 for all t ≥ 0 is a unique
classical solution of the linear abstract Cauchy system u̇(t) = Au(t) in X .
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3.3. Existence and uniqueness of the solution for the nonlinear system

Having established the existence and uniqueness of a solution to the linear problem given by
Theorem 1, we are now interested in establishing the existence and uniqueness of a solution to
the nonlinear evolution problem (8). To do so, we opt for the Lipschitz perturbation approach
for a semigroup. The map H(., u(.)) in the abstract system (8) is considered as a perturbation
of the semigroup generated by the linear differential operator A. For every constant δ > 0, Bδ
denotes the ball of centre 0 and radius δ in space X , Bδ := {x ∈ X : ‖x‖X ≤ δ}. We show that
the nonautonomous map H(., u(.)) is a Lipschitzian perturbation of the continuous semigroup
{TA(t)}t≥0. We begin with the following lemma.

Lemma 3. The perturbation map H is a locally Lipschitz continuous function in u(.), uniformly
in t ≥ 0: for all δ > 0, there exists a constant depending on δ denoted by Mδ such that:

‖H(t, u1)−H(t, u2)‖X ≤Mδ‖u1 − u2‖X , ∀(u1, u2) ∈ (Bδ)2.

Proof. See Appendix A.

We establish the existence of the solution of system (8) in the following theorem.

Theorem 2. For any initial condition in X , there exists an interval of time [0, tmax) in which the
abstract Cauchy problem (8) has a unique mild solution.

Proof. We use a fixed point method by adapting the ideas of [12, 14, 15]. Let τ > 0 and δ̂ > 0
such that:

δ̂ := 2‖u0‖X sup
t∈[0.1]

‖TA(t)‖X , τ := min

{
1,
‖u0‖X
δ̂Mδ̂

}
, (11)

where the Mδ̂ is the local Lipschitz constant for the map H(., .) defined in Lemma 3. Let us
consider the ball defined by:

Bc
δ̂

:=
{
u ∈ C([0, τ ],X ) : ‖u(t)‖X ≤ δ̂ for all t ∈ [0, τ ]

}
.

Next, consider the nonlinear mapping:

G : C([0, τ ],X ) −→ C([0, τ ],X )

u(.) 7−→ G(u(t)) = TA(t)u0 +

∫ t

0

TA(t− ς)H(ς, u(ς))dς.

Standard boundedness techniques, as performed in [12, page 187], prove that G maps the ball Bc
δ̂

into itself and is a contraction mapping of Bc
δ̂

with Lispschitz constant 1/2. Consequently, the
Banach fixed point theorem implies that map G possesses a unique fixed point u ∈ Bc

δ̂
. This

fixed point is the desired mild solution on interval [0, τ ] of the evolution system (8). We repeat
all previous arguments, but now with initial condition u(τ) instead of u(0), τ1 = τ + γ with
γ > 0, together with space C([τ, τ1],X ) and mapping G1 defined in a similar way to G. The
same arguments applied to the latter case also show that G1 is a strict contraction with Lipschitz
constant 1/2. This gives once more a unique fixed point which extends the previous solution
on interval [0, τ1]. By proceeding successively, we can extend the solution on [0, tmax), so that
u ∈ C([0, tmax),X ) is a mild solution of system (8).

Since we have shown that the abstract Cauchy problem (8) has a unique mild solution u ∈
C([0, tmax),X ), the transformation u(t) 7−→ u(t) + (Φt(.), 0, 0) := (sb(t, .), y(t), z(t)) leads to the
existence and uniqueness of a mild solution (sb, y, z) ∈ C([0, tmax),X ) of system (4). We only
obtain a local solution, so it is important to show that this solution is actually global by showing
that the solution is bounded. This is provided by the following lemma.

8



Lemma 4. Under Assumption 2, the solution of system (4) remains nonnegative and bounded for
all time t > 0. Moreover, the domain:

Σ :=

{
(sb, y, z) ∈ X+ : ε‖sb(t, .)‖+ z ≤ ε‖λ‖∞

ξ
, y ≤ εφ‖λ‖∞

µyξ

}
,

where ξ := min{µ̂, µz}, is positively invariant under the flow of system (4).

Proof. See Appendix B.

A direct consequence of Lemma 4 is that ‖(sb(t, .), y(t), z(t))‖X is bounded for all time t > 0
in bounded intervals, which means that tmax = +∞. Therefore, we have the following result.

Corollary 1. Let Assumption 2 be satisfied. Then for every nonnegative initial condition, there
exists a unique mild solution (sb(t, .), y(t), z(t)) ∈ C([0,+∞),X+) for system (4).

Let us introduce the total CBB population w(t) = y(t) + z(t). By adding the second and third
equations of system (4), we obtain the total population dynamics ẇ(t) = −µz(1−R)z(t)−µyy(t),

where R = φ
µz

corresponds to the average number of emerging colonising females produced by

a single infesting female during its lifespan. If R < 1, the total population w(t) ≤ w(0)e−ζt

with ζ = min{µz(1 − R), µy}, so the CBB population disappears in the plantation. However, as
previously stated, with realistic parameter values R � 1.

4. Asymptotic behaviour for constant berry production

In this section, we study the existence and stability of the pest-free equilibrium point for a
constant berry production rate λ(t) = λ and determine the basic reproduction number.

System (4) always has a pest-free steady state E(a) =
(
s0
b(a), 0, 0

)
, where s0

b(a) = λπ(a),
corresponding to the equilibrium without CBB. We now compute the basic reproduction number,
R0, using the next generation operator approach [13, 23]. Linearising the system around the pest-
free steady state with x(t, a), v(t) and w(t) being the perturbations, that is x(t, a) = sb(t, a)−s0

b(a),
v(t) = y(t) and w(t) = z(t), we obtain the following linear system written in the abstract form:

ψ̇(t) = Aψ(t) +DH(E(a))(ψ(t)), ψ(0) = 0 ∈ D(A). (12)

where ψ(t) = (x(t, .), v(t), w(t))
>

, B0 =
∫ a†

0
s0
b(a)da and the linear operator DH(E(a)) : X −→ X

is defined by:

DH(E(a))(ψ(t)) =

 −fy(B0, 0)[βs0
b ]v

φw − εfy(B0, 0)‖βs0
b‖v

εfy(B0, 0)‖βs0
b‖v

 .

The next generation operator is defined by B(−A)−1, where the operator B := DH(E(a)).
Consider the vectors (z1, z2, z3)> ∈ X0 and (Φ, y, z)> ∈ X , then we have (−A)−1(z1, z2, z3)> =
(Φ, y, z)> which implies that

z1(a) = z1(0)e−
∫ a
0
µ(σ)dσ −

∫ a

0

Φ(σ)e−
∫ a
σ
µ(l)dldσ, y = − 1

µy
z2, z = − 1

µz
z3.

Therefore, we get by direct calculation:

B(−A)−1 =

 0 − 1
µy
fy(B0, 0)[βs0

b ] 0

0 − ε
µy
fy(B0, 0)‖βs0

b‖
φ
µz

0 ε
µy
fy(B0, 0)‖βs0

b‖ 0

 .

9



Based on [13, 23], the basic reproduction number is defined as the spectral radius of the next
generation operator B(−A)−1, that is:

R0 =
1

2

(
−T +

(
T 2 + 4RT

) 1
2

)
,

where T = ε
µy
f(B0, 0)‖βs0

b‖.

Remark 1.

1. Using the computation approach proposed in [24], we obtain the following basic reproduction
number:

R̃0 = R εfy(B0, 0)‖βs0
b‖

εfy(B0, 0)‖βs0
b‖+ µy

. (13)

2. We have the relation R̃0 = R0(T+R0)
T +1 . Simple calculations show that R0 < 1(= 1, > 1) is

equivalent to R̃0 < 1(= 1, > 1).

3. Threshold R0 is difficult to interpret biologically. The biological interpretation of threshold
R̃0 is more straightforward:

� The term
εfy(B0,0)‖βs0‖

εfy(B0,0)‖βs0b‖+µy
represents the average number of infesting females produced

by a colonising female.

� So R0 can be defined as the average number of new infesting females originated from a
single infesting female in the coffee plantation during its lifespan.

4. If R = φ
µz
< 1, which corresponds to unrealistic parameter values leading to the extinction of

the CBB population, then R̃0 < 1.

Before establishing some results about stability, let us recall the notion of spectrum, growth
bound and essential growth bound in spectral theory and some of their properties.

Let K be the infinitesimal generator of the strongly continuous semigroup {TK(t)}t≥0 on a
Banach space X. The spectrum of K denoted by σ(K) and the spectral bound denoted by s(B)
are defined by σ(K) = C \ ρ(K) and s(K) = sup{Reζ, ζ ∈ σ(K)} respectively. Let ω0(K) be the
growth bound of a semigroup {TK(t)}t≥0 defined by ω0(K) := lim

t→+∞
t−1 ln (‖TK(t)‖). Then it is

proved in [25] that:
ω0(K) = max{ωess(K), s(K)},

with the essential growth bound ωess(K) := lim
t→+∞

t−1 ln (α[TK ]), where α[T ] is the measure of

noncompactness of a bounded linear operator T . If C is a bounded linear operator in X, then
K+C is the infinitesimal generator of a strongly semigroup. Moreover, if C is also compact, then:

ωess(K) = ωess(K + C).

Theorem 3. If R̃0 < 1, then the pest-free steady state E(a) is locally asymptotically stable and is

unstable whenever R̃0 > 1.

Proof. According to [26], the steady state E(a) is locally asymptotically stable if ω0(A+DH(E)) < 0
and becomes unstable when ω0(B +DH(E)) > 0 and ωess(B +DH(E)) < 0.

On the one hand, the differential operator (A, D(A)) is an infinitesimal generator of a strongly
continuous semigroup {TA(t)}t≥0 in X satisfying ‖TA(t)‖ ≤ e−ωt, ∀t ≥ 0 and, on the other hand,
we see that DH(E) is finite dimensional, so DH(E) is a compact bounded operator. It follows that:

ωess(A+DH(E)) ≤ ωess(A) ≤ ω0(A) = lim
t→+∞

t−1 ln(e−ωt) = −ω.

10



We can observe that the variable x(t, a) has no impact on the dynamics of the two remaining
variables in system (12). Then it suffices to use the second and third equations of (12) to determine
the stability criterion of system (4) around the pest-free steady state. To this end, we seek solutions
with an exponential form, setting v(t) = ṽeζt and w(t) = w̃eζt, where ṽ and w̃ are real numbers
which can be estimated and ζ is either a real or a complex number. Substituting these exponential
forms in system (12), we obtain the linear homogeneous system (ζI −χ)g̃ = 0, where g̃ = (ṽ, w̃)>,
I is identity matrix and:

χ =

−εfy(B0, 0)‖βs0
b‖ − µy φ

εfy(B0, 0)‖βs0
b‖ −µz

 .

Hence, s(A+DH(E)) < 0 if and only if all roots ζ ∈ C of the characteristic equation det(ζI−χ) = 0

have a negative real part. The trace Tr(χ) = −εfy(B0, 0)‖βs0
b‖−µy−µz is negative. When R̃0 < 1,

the determinant det(χ) = εφfy(B0, 0)‖βs0
b‖
(

1

R̃0
− 1
)

is positive and it becomes negative when

R̃0 > 1. Then all the roots ζ of the characteristic equation associated with matrix χ have a negative
real part if R̃0 < 1. Therefore, if R̃0 < 1, then s(A+DH(E)) < 0 and ωess(A+DH(E)) < 0, hence

ω0(A + DH(E)) < 0. Thus, the pest-free steady state is locally asymptotically stable if R̃0 < 1.

When R̃0 > 1, then there exists at least one root ζ0 with a positive real part. This implies that
s(A + DH(E)) = Reζ0 > 0. Therefore, ω0(A + DH(E)) > 0 and it follows that E(.) is unstable.
This achieves the proof.

Theorem 3 means that the CBB population could disappear from the coffee plantation if R̃0 < 1
and if the initial CBB population is in the basin of attraction of the pest-free steady state. In this
case, it would not be necessary to control CBB.

5. Numerical results

To illustrate the theoretical results contained in previous sections, we begin by giving a brief
description of the numerical scheme used to plot the state variables of system (4). We then present
the model parameters and simulations of system (4) with constant berry production λ, as in

Section 4, for various values of the basic reproduction number R̃0 defined in equation (13).

5.1. Parameter values

In the numerical simulations, we assume that flowering occurs in the plantation throughout the
cropping season, so that we can consider a constant berry production rate λ(t) ≡ λ. Since coffee
berries become fully mature after 6–9 months [17], the maximum berry age of is set at a† = 250
days. We found no data on age-dependent mortality for uninfested berries, so we apply a constant
rate µ to all berries up to the berry maximum age a†. CBB colonising females infest healthy berries
of all ages, but with a preference for more mature berries [5, 11]. According to [19], the infestation
of berries younger than 90 days is very low. So we represent the infestation rate as a constant
function for berry ages lower than aβ and an increasing function for older ages, according to the
following function:

β(a) =

{
βmin 0 ≤ a < aβ ,

βmin + βa(1− e−kβ(a−aβ)), aβ ≤ a ≤ a†.
(14)

In the simulations below, we varied parameters βmin and βa to obtain different values of the basic
reproduction number R̃0 defined in equation (13) (see Table 1). The three functions hence obtained
are depicted in Figure 2. They have the same shape: a plateau followed by a sharp increase from
the age of 90 days, the infestation almost reaching its maximum value βmin + βa for berries aged
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Figure 2: Infestation function β, defined in equation (14) as a function of berry age, for the three parameter sets

selected in Table 1: (βmin, βa) = (3 10−4, 2.5 10−4) day−1 corresponding to R̃0 = 0.64 (red curve), (βmin, βa) =

(2.5 10−3, 9 10−4) day−1 corresponding to R̃0 = 4.2 (magenta curve) and (βmin, βa) = (4 10−3, 3.6 10−2) day−1

corresponding to R̃0 = 20.1 (blue curve). Note that a semilog scale is used.

more than 200 days. The plateau and maximum values, however, differ among the functions, both
increasing with the R̃0 value.

We consider that the CBB–berry interaction function f(., .) is modelled with a Beddington–
DeAngelis functional response [27, 28] as follows:

f(B, y) =
y

y + αB + 1
,

in order to ensure that both coffee berries and colonising females are limiting variables for the
infestation process. This function verifies Assumptions 1. Indeed, it is easy to see that f(B, 0) = 0,
∂yf(B, y) = αB+1

(y+αB+1)2 ≥ 0 which implies that the function f(., .) is a non decreasing function with

respect to argument y and that it verifies lim
B→+∞

Bf(B, y) is finite. Moreover, assumption (3) is

verified for all (B1, y1) and (B2, y2). Indeed we have

|f(B1, y1)− f(B2, y2)| = |(1 + αB1)(y1 − y2) + αy1(B2 −B1)|
(y1 + αB1 + 1)(y2 + αB2 + 1)

≤M(|y1 − y2|+ |B1 −B2|),

since we have seen in Lemma 4 that the states Bi and yi are uniformly bounded, so that constant
M ∈ R+. Then f(., .) is Lipschitz. As generally y � 1, f(., .) introduces a ratio–dependent-like
interaction between CBB and coffee berries. This function is used to smooth the ratio–dependent
interaction function proposed in [10] which is not compatible with the assumptions of f(., .) listed
in Assumptions 1.

All parameter values used in the simulations are given in Table 1.
Moreover, we use the following initial conditions. At the beginning of the cropping season,

flowering has not started yet. We also assume that there are only colonising females, as infesting
females were eliminated from the plantation when berries were picked during the preceding harvest.
So there are initially neither coffee berries nor infesting females, i.e. sb0(a) = 0 for all a ∈ [0, a†]
and z(0) = 0. The number of initial colonising females is set at y(0) = 104 females.
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Table 1: Model parameter values, based on biological data collected in the literature [17]; more information is
available in [10]. Parameters of the infestation function β(a) vary to obtain different values of the basic reproduction

number R̃0 defined in equation (13).

Symbol Description Value(s)

tf Duration of a cropping season 250 days
a† maximum age of coffee berry 250 days
λ Production rate of new coffee berries 1200 berries.day−1

µ Natural mortality rate of healthy coffee berries 0.002 day−1

ε Colonising CBB per berry (scaling factor) 1 female.berry−1

β(a) Infestation function (14): day−1

βmin minimum infestation rate {0.3, 2.5, 4} 10−3 ∗ day−1

βa age-dependent extra infestation rate {2.5, 9, 360} 10−4 ∗ day−1

kβ infestation coefficient 0.035 day−1

aβ infestation threshold age 90 days
α CBB–berry interaction constant 0.7 female.berry−1

φ Emergence rate of new colonising females 2 day−1

µy Natural mortality rate of colonising females 1/20 day−1

µz Natural mortality rate of infesting females 1/27 day−1

∗ βmin and βa values respectively lead to the following R̃0 values: {0.64, 4.2, 20.1}

5.2. Simulations

Using the parameters given in Table 1 and the initial conditions described above, we numerically
solved system (4) with the numerical scheme described in Appendix C. Results are illustrated in
Figure 3, for three set of parameters of the infestation function, leading to three contrasted values
of the basic reproduction number R̃0 defined in equation (13). Panels (a–c) represent the dynamics
of the (integrated) state variables, i.e. the colonising y in panel (a) and infesting z CBB females in
panel (b), and the total healthy coffee berries B in panel (c). Panel (d) depicts the final healthy
berries density at the end of cropping season, which gives a proxy of the yield, as berries are picked
at that time. Only healthy mature berries, i.e. older than 120 days, have a significant market
value.

As predicted, we observe that for a low CBB infestation capacity, corresponding to R̃0 = 0.64 <
1 (Figure 3, red curves), the trajectories of the model converge to the pest-free steady state and
are very close to the berry dynamics without CBB (Figure 3, panel (c), dashed black curve). The
CBB disappear from the plantation and the berry harvest is not affected (Figure 3, panel (d), red
and dashed black curves). Assuming a constant berry price of 0.025 US$ per mature healthy berry,
i.e. for healthy berries older than 120 days, the yield is 2705 US$ without CBB and 2703 US$ with
CBB in the plantation. In addition, as the season starts with no berries, which are then produced
at a constant rate, we note that there are less mature than young berries at the end of the cropping
season.

In contrast, CBB persist in the plantation when threshold R̃0 ∈ {4.2, 20.1} > 1 (Figure 3,
magenta and blue curves, respectively). These values correspond to higher and more realistic CBB
infestation capacities. In both cases, the infesting and colonising CBB (Figure 3, panels (a) and
(b)) rapidly increase after a few weeks and reach very high levels at the end of the cropping season.
Moreover, they have an impact on the harvest (Figure 3, panel (d)).

When R̃0 = 4.2 (Figure 3, magenta curves), despite the CBB population increase, the num-
ber of healthy berries and their final density remain close to the number and density observed
without CBB (dashed black curves). The CBB impact on the yield remains limited: 2347 US$
instead of 2705 US$ without CBB. Furthermore, age preference is not apparent in these simula-
tions (panel (d)) because the infestation function is still relatively low for all berries age (Figure 2,
magenta curve).
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Figure 3: (a, b, c) Simulation of system (4) and (d) Age distribution of healthy coffee berries at the end of cropping
season. Parameter values are given in Table 1. According to the values selected for the infestation function, the

values of the basic reproduction number defined in equation (13) are R̃0 = {0.64, 4.2, 20.1}, corresponding to the
red, magenta and blue curves respectively. The dashed black curve corresponds to the case without CBB. Zero
initial conditions are set, including (dashed black curve) or except for colonising CBB: y(0) = 104 females (red,
magenta and blue curves). Note that in panels (a) and (b), semilog scales are used.
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When R̃0 = 20.1 (Figure 3, blue curves), the CBB population has a notable impact on coffee
berries. When the first berries produced at the beginning of the cropping season become more
attractive to CBB, after ca. 90 days (Figure 2, blue curve), the healthy coffee berries stagnate and
then decrease. The CBB preference for mature berries is also reflected in the density of healthy
berries at the end of the cropping season (Figure 3, panel (d)), with a sharp decrease in berries
older than 90 days. As a consequence, the yield is drastically reduced: 343 US$ instead of 2705 US$
without CBB.

6. Conclusion

In this study, we formulate and analyse an original PDE model describing the infestation
dynamics of coffee berries by CBB during a cropping season. It is an extension of the model
studied in [9, 10], taking into account the important role played by the coffee berry age in the
CBB infestation process. Indeed, CBB colonising females preferably infest mature coffee berries
and we show that this preference has an impact on the coffee berry yield at harvest. The existence
and uniqueness of a solution is established via the semigroup perturbation theory. The basic
reproduction number and its biological interpretation are investigated when the production rate
is constant, which is not unrealistic as one can observe berries at different stages on coffee tree
branches in a plantation [17]. We then show that CBB vanish from the plantation when the basic
reproduction number is less than one.

However, more realistic parameter values should lead to notably higher values of the basic
reproduction number, as CBB are able to colonise a plantation. In the numerical simulations
presented to illustrate our analytical results, we varied the parameters of the infestation function,
which cannot be easily measured or estimated, leading to three contrasted values of the basic
reproduction number. The lower value, less than one, is not realistic. With the intermediate value,
the impact of CBB on the berry production is fairly limited, which is not consistent with the
patterns observed in plantations worldwide [29]. Hence, the higher value is probably closer to the
CBB capacity to infest berries and colonise a plantation.

The next step would be to introduce control methods to limit CBB infestation in the planta-
tion. As chemical pesticides are costly and have a negative impact on the environment, control
should rather be based on environmentally friendly methods, such as bio-insecticide to reduce
berry infestation, or traps to capture the colonising CBB. The ultimate goal of coffee farmers
being the production of high quality coffee at the best market price and the lowest cost, it would
be appropriate to design an optimal control problem to maximise the profit. This approach was
carried out on a simpler ODE model, without berry structure, in previous works [9, 10] and could
be extended to the model presented and analysed in this study.
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Appendix A. Proof of Lemma 3

It is easy to verify that under the Assumption 2, we have ‖Φt‖ ≤ 1
µ̃‖λ‖∞. Let δ > 0 and for

any u1 = (ŝ1, y1, z1), u2 = (ŝ2, y2, z2) ∈ Bδ, then we get the relation:

β(a)f(B̂1, y1)(ŝ1 + Φt) − β(a)f(B̂2, y2)(ŝ2 + Φt)

= β(a)(f(B̂1, y1)− f(B̂2, y2))(ŝ2 + Φt)

+ β(a)f(B̂1, y1)(ŝ1 − ŝ2). (A.1)

Using the fact that the function f(., .) is bounded and Lipschitz continuous with respect to its
arguments, a straightforward computation using relation (A.1) shows that there is a constant
K1 > 0 which depends on constants M , µ̃, ‖β‖∞, ‖λ‖∞ and δ such that:

‖βf(B̂1, y1)(ŝ1 + Φt)− βf(B̂2, y2)(ŝ2 + Φt)‖ ≤ K1 (‖ŝ1 − ŝ2‖+ |y1 − y2|) , (A.2)

Proceeding similarly, we can show that there is a positive constant K2, which also depends on
constants M , µ̃, ‖β‖∞, ‖λ‖∞ and δ, such that:

|f(B̂1, y1)‖β(ŝ1 + Φt)‖ − f(B̂2, y2)‖β(ŝ2 + Φt)‖| ≤ K2 (‖ŝ1 − ŝ2‖+ |y1 − y2|) . (A.3)

Hence, from (A.2,A.3), it follows by direct computation that there exists a Mδ > 0 depending on
K1, K2, φ and δ such that the following inequality holds: ‖H(t, u1)−H(t, u2)‖X ≤Mδ‖u1−u2‖X .
This achieves the proof.

Appendix B. Proof of Lemma 4

Let n(t, r) = µ(r) + β(r)f(B(t), y(t)) and η(t, r) = e−
∫ a
0
n(t,r)dr. The application of Volterra

formulation [26, 30] solves the sb(t, a)-equation in system (4) along the characteristic t − a =
constant as follows:

sb(t, a) =

{
sb0(a− t)e−

∫ a
a−t n(t,r)dr = sb0(a− t) η(t,a)

η(t,a−t) if a > t

λ(t− a)e−
∫ a
0
n(t,r)dr = λ(t− a)η(t, a) if a ≤ t.

It is clear that sb(t, a) remains nonnegative for nonnegative initial conditions. Moreover, since
ẏ = φz ≥ 0 when y = 0 and ż = εf(B, y)‖βsb(t, .)‖ ≥ 0 when z = 0, the state variables y(t) and
z(t) are nonnegative for nonnegative initial conditions. Then the first quadrant of R2

+ is positively
invariant and the solution of system (4) remains nonnegative at any time t > 0.

Let (sb(t, .), y(t), z(t)) ∈ X denote a solution of system (4). Adding the integral of first equation
and the third equation of system (4) yields:

d

dt
(ε‖sb(t, .)‖+ z(t)) ≤ ε‖λ‖∞ − ξ (ε‖sb(t, .)‖+ z(t)) ,

where ξ = min{µ̃, µz}. Hence, using the Gronwall inequality, we have:

ε‖sb(t, .)‖+ z(t) ≤ ε‖λ‖∞
ξ

+

(
ε‖sb0‖+ z(0)− ε‖λ‖∞

ξ

)
e−ξt. (B.1)

Thus, for all t ≥ 0:

ε‖sb(t, .)‖+ z(t) ≤ max

(
ε‖sb0‖+ z(0),

ε‖λ‖∞
ξ

)
=: D.
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The colonising female population can be bounded similarly, since:

ẏ(t) ≤ φz(t)− µyy(t) ≤ φD − µyy(t).

Thus, using the Gronwall inequality once more, we obtain:

y(t) ≤ φD

µy
+

(
y(0)− φD

µy

)
e−µyt, (B.2)

Hence, for all t ≥ 0:

y(t) ≤ max

(
y(0),

φD

µy

)
. (B.3)

Therefore, the solutions of system (4) are bounded. Furthermore, inequalities (B.1) and (B.2)
show that the set Σ is positively invariant under the flow of system (4).

Appendix C. Numerical scheme for solving model (4)

To compute the numerical solutions, we use a semi-implicit discretisation of model (4), using the
forward/backward finite difference scheme for time and age [31]. This scheme is easy to implement
and retains certain properties of the model such as positivity of the solutions. Let ∆t > 0 be
the discretisation step for the interval [0, tf ] with Nt =

tf
∆t the number of time sub–intervals and

let ∆a > 0 be the discretisation step for the interval [0, a†], with Na =
a†
∆a the number of age

sub-intervals. We discretise the interval [0, tf ] and [0, a†] at the points tn = n∆t and aj = j∆a
for 0 ≤ n ≤ Nt and 0 ≤ j ≤ Na, respectively where n and j denote the time and age index. Let
us denote by snbj , y

n, zn and βj respectively, the approximations of sb(tn, aj), y(tn), z(tn) and

β(aj). Next, we approximate the terms
∫ a†

0
sb(t, a)da and

∫ a†
0
β(a)sb(t, a)da using the trapezoidal

rule, ∆a
∑Na
j=1 sb(t, aj) and ∆a

∑Na
j=1 βjsb(t, aj) respectively. Our numerical approximation for

model (4) is given for n = 0, ..., Nt − 1 and j = 0, . . . , Na − 1 by:

sn+1
bj+1−s

n
bj+1

∆t +
snbj+1−s

n
bj

∆a = −f(∆a
Na∑
j=1

snbj , y
n)βjs

n+1
bj+1 − µs

n+1
bj+1

yn+1−yn
∆t = φzn − εf(∆a

Na∑
j=1

sn+1
bj , yn+1)βjs

n+1
bj+1 − µyyn+1

zn+1−zn
∆t = εf(∆a

Na∑
j=1

sn+1
bj , yn+1)βjs

n+1
bj+1 − µzzn+1

(C.1)

where the approximations of initial and boundary conditions are given by:

snb0 = λ, s0
bj = 0.

After some algebraic manipulation, discrete system (C.1) can be rewritten as:

sn+1
bj+1 =

(1− ∆t
∆a )snbj+1+ ∆t

∆a s
n
bj

1+∆t

[
f(∆a

Na∑
j=1

snbj ,y
n)βj+µ

] ,

χn1 = (1 + ∆tµy) (1 + α∆a
Na∑
j=1

sn+1
bj ) + ε∆t∆a

Na∑
j=1

βjs
n+1
bj − yn −∆tφzn,

χn2 = (1 + α∆a
Na∑
j=1

sn+1
bj )(yn + ∆tφzn),

yn+1 =
−χn1 +

√
(χn1 )2+4(1+∆tµy)χn2
2(1+∆tµy) ,

zn+1 =
zn+∆tεf(∆a

Na∑
j=1

sn+1
bj ,yn+1)βjs

n+1
bj+1

1+∆tµz
.

(C.2)
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Since berry age evolves at the same speed as chronological time, choosing ∆a = ∆t ensures that
the necessary CFL (Courant–Freidrichs–Lewy) stability condition, i.e. ∆t

∆a ≤ 1, holds [31, 32] and
that system (C.2) remains non negative.
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