Supplementary Material-IV (S-IV)

Figure S-IV 1. Map of Africa showing the three countries, and capture points, of origin for the mosquito collections analysed in this work (i.e. South Africa, Angola and Mozambique).

Table S-IV 1. Mosquitoes species for which genitalia (male or female) were analysed in the study. Their taxonomic placement within the Culicidae subfamily is indicated, as well as the number of specimens observed by country of collection [South Africa (ZA), Mozambique (MZ), Angola (AO)]. The total number os specimens analysed is also indicated.

	Taxo	onomic level		Country					
Tribe	Genus	Subgenus	Species epithet	ZA	MZ	AO	Total		
Aedeomyiini	Aedeomyia	Aedeomyia	africana	-	6	-	6		
Aedini	Aedes	Aedimorphus	dentatus	4	-	-	4		
			durbanensis	6	-	-	6		
			eritreae	1	-	-	1		
			fowleri	5	-	-	5		
			hirsutus	4	-	-	4		
			leesoni	1	-	-	1		
			quasiunivittatus	5	-	-	5		
		Albuginosus	capensis	1	-	-	1		
		Catageiomyia	minutus	1	-	-	1		
		Diceromyia	fascipalpis	2	-	-	2		
			furcifer	2	-	-	2		
		Fredwardsius	vittatus	22	3	-	25		
		Mucidus	mucidus	-	1	-	1		
		Neomelaniconion	circumluteolus	14	-	-	14		
			mcintoshi	38	-	-	38		
		Ochlerotatus	caballus	2	-	-	2		
		Stegomyia	aegypti	9	14	6	29		
			metallicus	1	-	-	1		
			unilineatus	23	-	-	23		
	Eretmapodites		quinquevittatus	-	1	-	1		
			subsimplicipes	-	4	-	4		
Culicini	Culex	Culex	andersoni	1	-	-	1		
			argenteopunctatus	1	-	-	1		
			decens	1	-	-	1		
			duttoni	3	1	-	4		
			perexiguus	4	2	-	6		
			pipiens	19	1	-	20		
			simpsoni	3	12	-	15		
			telesilla	18	-	-	18		
			theileri	18	-	-	18		
			trifilatus	8	-	-	8		
			tritaeniorhynchus	1	-	-	1		
			antennatus	33	1	-	34		
			neavei	22	6	-	28		
			quinquefasciatus	22	51	48	121		
			univittatus	58	1	1	60		
		Culiciomyia	cinereus	-	1	-	1		
			nebulosus	-	7	-	7		
		Eumelanomyia	inconspicuosus	4	-	-	4		

		Oculomyia	annulioris	3	8	-	11
			infula	-	1	-	1
			bitaeniorhynchus	3	2	-	5
			poicilipes	17	4	-	21
	Lutzia	Metalutzia	tigripes	4	1	9	14
Ficalbiini	Ficalbia		uniformis	1	-	-	1
	Mimomyia	Mimomyia	hispida	1	-	-	1
			mimomyiaformis	10	-	-	10
Mansoniini	Coquillettidia	Coquillettidia	chrysosoma	3	-	-	3
			fuscopennata	5	-	-	5
			metallica	-	1	-	1
	Mansonia	Mansonioides	africana	1	44	-	45
			uniformis	2	13	-	15
Uranotaeniini	Uranotaenia	Pseudoficalbia	mashonaensis	5	-	-	5
		Uranotaenia	alboabdominalis	1	-	-	1
			Total	413	186	64	663

Table S-IV 2. Mosquito species for which partial *coxI* coding sequences were amplified by PCR. Their taxonomic position within the Culicinae subfamily, mean intraspecific diversity, number of specimens analysed per country, total number specimens analysed, and specimen code, are also indicated.

	~	<u>a</u> 1		Intraespecific	-			T 1	
Tribe	Genus	Subgenus	Species epithet	Variation ($\% \pm$ DS)	ZA	MZ	AO	Total	Codes
Aedeomyiini	Aedeomyia	Aedeomyia	africana	0.1 ± 0.1	0	4	0	4	EM245, EM246, EM247, EM248
		Lepiothauma	furfurea	0.4 ± 0.2	2	1	0	3	EM257, EM258, EM259
Aedini	Aedes	Aedimorphus	quasiunivittatus	2.7 ± 0.6	4	0	0	4	EM147, EM148, EM149, EM151
			cumminsii		2	0	0	2	EM167, EM169
			dentatus	1.0 ± 0.3	7	0	0	7	EM158, EM168, EM170, EM172, EM187, EM189, EM190
			eritreae	0.2 ± 0.1	4	0	0	4	EM177, EM178, EM179, EM180
			durbanensis	0.1 ± 0.1	3	0	0	3	EM174, EM175, EM176
			fowleri	0.3 ± 0.2	2	2	0	4	EM134, EM135, EM137, EM138
			hirsutus	0.2 ± 0.2	3	0	0	3	EM199, EM234, EM237
			natronius	0.0 ± 0.0	0	2	0	2	EM224, EM225
			ochraceus		1	0	0	1	EM266
		Albuginosus	haworthi		1	0	0	1	EM262
			capensis		1	0	0	1	EM146
		Catageiomyia	argenteopunctatus	1.8 ± 0.4	4	0	0	4	EM238, EM260, EM261, EM264
			microstictus		1	0	0	1	EM 265
		Diceromyia	fascipalpis		2	0	0	2	EM161, EM162
			furcifer		1	0	0	1	EM163
		Fredwardsius	vittatus	0.7 ± 0.3	3	1	0	4	EM083, EM085, EM087, EM198
		Mucidus	mucidus		0	1	0	1	EM153
			sudanensis		2	0	0	2	EM154, EM155
		Neomelaniconion	circunluteolus	0.9 ± 0.3	4	2	0	6	EM128, EM129, EM130, EM131, EM132, EM133
			mcintoshi	0.9 ± 0.3	8	1	0	9	EM100, EM101, EM102, EM103 , EM104, EM136, EM181, EM183, EM185
			unidentatus	0.4 ± 0.3	2	0	0	2	EM344, EM345
		Ochlerotatus	caballus	0.5 ± 0.2	4	0	0	4	EM164, EM165, EM267, EM268
		Stegomyia	aegypti	0.5 ± 0.2	2	3	2	7	EM285, EM291, EM293, EM296, EM297 , EM298, EM299

			metallicus	2.1	± 0.5	3	1	0	4	EM249, EM286, EM288, EM289
			simpsoni	0.0	± 0.0	3	0	0	3	EM221, EM222, EM223
			unilineatus	1.0	± 0.3	4	0	0	4	EM077, EM078, EM079, EM082
	Eretmapod	ites	quinquevittatus	-	-	0	1	0	1	EM270
	1		subsimplicipes	0.0	± 0.0	0	3	0	3	EM254, EM255, EM256
Culicini	Culex	Culex	duttoni	0.4	± 0.3	3	1	0	4	EM139, EM140, EM141, EM145
			andersoni	0.1	± 0.1	4	0	0	4	EM031, EM191, EM192, EM195
			antennatus	0.0	± 0.0	2	3	0	5	EM060, EM061, EM062, EM063, EM064
			decens	-	-	1	0	0	1	EM074
			sp.	-	-	0	0	1	1	EM331
			neavei	2.4	± 0.6	0	6	1	7	EM016, EM028, EM029, EM030, EM041, EM046, EM328
			univittatus	0.4	± 0.1	9	0	0	9	EM012, EM013, EM017, EM021 , EM036, EM038, EM045 , EM094 , <u>EM274</u>
			perexiguus	0.2	± 0.1	6	2	0	8	EM014, EM040, EM049, EM095, EM096 , EM097, EM098, EM272
			telesilla	0.3	± 0.2	4	0	0	4	EM117, EM119, EM120, EM121
			pipiens	1.5	± 0.4	8	1	0	9	EM300, EM301, EM302, EM303, EM304, EM305, EM306, EM326, EM332
			quinquefasciatus	0.0	± 0.0	6	7	9	22	EM307, EM308, EM309, EM310, EM311, EM312, EM313, EM314, EM315, EM316, EM318, EM319, EM320, EM322, EM323, EM327, EM333, EM334, EM335, EM339, EM340, EM341
			simpsoni	0.2	± 0.1	3	3	0	6	EM024, <u>EM025, EM026, EM032, EM033,</u> EM160
			argenteopunctatus	-	-	1	0	0	1	EM159
			theileri	0.0	± 0.0	3	0	0	3	EM073, EM075, EM193
			trifilatus	0.1	± 0.1	4	0	0	4	EM090, EM091, EM092, EM093
			thalassius	-	-	1	0	0	1	EM263
			tritaeniorhynchus	0.6	± 0.3	1	1	0	2	EM157, EM269
		Culiciomyia	cinereus	-	-	0	1	0	1	EM111
			nebulosus	0.3	± 0.2	2	1	0	3	EM112, EM113, EM115
		Eumelanomyia	inconspicuosus	0.7	± 0.3	3	0	0	3	EM142, EM143, EM275

		Oculeomyia	annulioris	0.5 ± 0.1	.2	5	2	0	7	EM105, EM106, EM107, EM108, EM109, EM125, EM127
			infula			0	1	0	1	EM152
			poicilipes			1	2	0	3	EM065, EM066, EM068
			bitaeniorhynchus			1	0	0	1	EM124
	Lutzia	Metalutzia	tigripes	$0.6 \ \pm 0.$.3	2	0	2	4	EM055, EM056, EM057, EM058
Ficalbiini	Mimomyia	Mimomyia	hispida	$0.7 \pm 0.$.3	3	0	0	3	EM276, EM277 , EM278
			mimompiaformia	0.5 ± 0	r	7	0	0	7	EM144, EM226, EM230, EM231, EM232,
			mimomyiajormis	0.3 ± 0.1	.∠	/	0	0	/	EM239 , EM281
	Ficalbia		uniformis			1	0	0	1	EM252
Mansoniini	Coquillattidia	Coquillattidia	fusconannata	0.2 + 0	1	7	0	0	7	EM201, EM202, EM203, EM204, EM205,
mansomm	Coquitettiata	Coquitettiaia	Juscopennulu	0.2 ± 0.2	1	/	0	0	1	EM218, EM219
			metallica			0	1	0	1	EM253
			chrysosoma	$0.0 \ \pm 0.$.0	2	0	0	2	EM250, EM251
	Mansonia	Mansonioides	africana	0.6 ± 0.1	.2	0	5	0	5	EM001, EM008, EM010, EM011, EM211
			uniformis	0.4 ± 0.1	.2	2	1	0	3	EM206, EM209, EM210
Uranotaeniini	Uranotaenia	Pseudoficalbia	mashonaensis	$4.1 \pm 0.$.8	3	0	0	3	EM212, EM213, EM279
		Uranotaenia	alboabdominalis	$0.2 \pm \ 0.$	1	4	0	0	4	EM214, EM215, EM216, EM217
Total						172	60	15	247	

* South Africa (ZA), Mozambique (MZ), Angola (AO). Numbers and codes in bold indicate sequence association with genitalia. Codes in red refer to sequences that were not considered in the analysis, due to their size

Figure S-IV 2. a-1 and a-2) Electrophoretic profile on a 2% agarose gel of the PCR product of amplification of the ACE2 gene from *Cx. pipiens* and *Cx. quinquefasciatus*. The bands correspond to the ACE2-specific amplicons expected for *Cx. pipiens* (610 bp) and *Cx. quinquefasciatus* (274 bp). b) Agarose gel (1.5%) electrophoresis of PCR products corresponding to the CQ11 microsatellite flanking region of *Cx. pipiens*. The 250 bp and 200 bp bands corresponded to those expected for *Cx. pipiens* ecotypes *molestus* and *pipiens* respectively.

Table S-IV 3. Intraspecific and interspecific variation based on the analysis of partial *coxI* sequences amplified from *Ad. furfurea*, *Ad. africana* from Mozambique (MZ) and Malawi (MW), *Ad. africana* from Kenya (KE), *Ad. madagascarica* and *Ad. catasticta*. The indicated values have been calculated using the K2P model.

		Nº of	Intrasp	ntraspecific Interspecific variation (%)								
		sequences	variatio	n (%)		1		2		3		4
1	Ad. catasticta	1	-	-								
2	Ad. madagascarica MG	1	-	-	12.6	(± 1.8)						
3	Ad. africana KE	4	0.1 (±	0.1)	12.2	(± 1.8)	6.9	(± 1.3)				
4	Ad. africana MZ-MW	5	0.3 (±	0.2)	12.8	(± 1.8)	0.2	(± 0.1)	6.9	(± 1.3)		
5	Ad. furfurea	4	0.3 (±	0.2)	12.9	(± 1.8)	10.9	(± 1.6)	10.5	(± 1.6)	10.9	(± 1.6)

b)

Figure S-IV 3. Networks **a)** and PCOORD **b)**, analysis of 14 partial *coxI* gene amplified from *Aedeomyia* mosquitoes. The sequences obtained in this work have been designated with the "EM" code and are boldface. Reference sequences downloaded from the public databases and are shown by their respective access code (Boldsystems) or accession number (GenBank), as well as country of origin [South Africa (ZA), Madagascar (MG), Malawi (MW), Mozambique (MZ), Kenya (KE)] are also indicated.

	NT0 - 6	$\mathbf{I}_{\mathbf{r}}$		Intersp	oecifi	c variatio	on (%	ó)
	N ² of sequences	Intraspecific variation (%)		1		2		3
Ae. circumluteolus	5	1.6 (± 0.4)						
Ae. mcintoshi	15	$1.2 (\pm 0.3)$	1.3	(± 0.3)				
Ae. unidentatus	4	$0.8 \ (\pm 0.3)$	1.4	(± 0.3)	1.1	(± 0.3)		
Ae. lineatopennis	2	0.4 (± 0.3)	5.7	(± 1.0)	5.6	(± 1.0)	5.4	(± 1.0

Table S-IV 4. Intraspecific and interspecific variation based on the analysis of partial *coxI* sequences amplified from *Ae. circumluteolus, Ae. mcintoshi, Ae. unidentatus* and *Ae. lineatopennis*. The indicated values have been calculated using the K2P model.

Figure S-IV 4. Networks **a)** and PCOORD **b)**, analysis of 24 partial *coxI* nucleotide sequences from mosquitoes of the genus *Aedes*, subgenus *Neomelaniconion*, except for *Ae. lineatopennis*. The sequences obtained in this work are indicated with the "EM" code and are boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Mozambique (MZ), Kenya (KE), Senegal (SN)] are also indicated.

Table S-IV 5. Intraspecific and interspecific variation based on the analysis of partial *coxI* sequences amplified from *Ae. cumminsii* from Kenya (KE), Senegal (SN), Guinea (GN), and South Africa (ZA). The indicated values have been calculated using the K2P model.

		N° of	Intraspecific			Intersp	ecifi	c variati	%)	
		sequences	varia	ation (%)		1		2		3
1	Ae. cumminsii KE	3	1.4	(± 0.4)						
2	Ae. cumminsii SN	1	-	-	0.7	(± 0.2)				
3	Ae. cumminsii GN	1	-	-	2.3	(± 0.6)	2.1	(± 0.7)		
4	Ae. cumminsii ZA	5	1.2	(± 0.4)	7.5	(± 1.2)	7.4	(± 1.2)	8.2	(± 1.3)

٥

-1

-2

-3

-5

-4

_quasiunivittatus_ZA_MW

-3

-2

-1

Dimension 1

٥

1

Ae_pachyurus_ZA

.

3

Ae_dentatus+ dentatus group_ZA

2

Figure S-IV 5. Networks a) and PCOORD b), analysis of 18 partial coxI nucleotide sequences from mosquitoes of the genus Aedes, subgenus Aedimorphus. The sequences obtained in this work have the "EM" code and are boldface, and those with an associated genitalia photo are indicated by the horizontal arrow. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Guinea (GN), Mozambique (MZ), Malawi (MW), Kenya (KE)] are also indicated.

Figure S-IV 6. Networks a) and PCOORD b), analysis of 23 partial *cox1* nucleotide sequences from mosquitoes of the genus *Aedes*, presenting the subgenus *Stegomyia*. The sequences obtained in this work are indicated with the "EM"code, and are boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Malawi (MW), Mozambique (MZ), Pakistan (PK), Kenya (KE), Tanzania (TZ), Uganda (UG)] are also indicated.

EM_146_Ae_capensis_ZA

Figure S-IV 7. Networks a) and PCOORD b), analysis of 12 partial *coxI* nucleotide sequences from mosquitoes of the genus *Aedes*, presenting subgenera *Diceromyia* and *Albuginosus*. Sequences obtained in this work are indicated with the "EM"code, and are boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Kenya (KE)] are also indicated.

Table S-IV 6. Intraspecific and interspecific variation based on the analysis of partial *coxI* sequences amplified from *Ae. caballus* from South Africa (ZA), Iran (IR) and *Ae. juppi* from ZA. The indicated values have been calculated using the K2P model.

		NIO of acquerood	Introgram	office transition $(0/)$	Interspecific variation				
		N of sequences	Intraspe	cific variation (%)		1		2	
1	Ae. caballus ZA	4	0.5	(± 0.2)					
2	Ae. juppi ZA	2	0.2	(± 0.2)	2.8	(± 0.7)			
3	Ae. caballus IR	2	0.2	(± 0.2)	3.6	(± 0.8)	4.0	(± 0.9)	

Figure S-IV 8. Networks **a)** and PCOORD **b)**, analysis of 11 partial *cox1* nucleotide sequences from mosquitoes of the genus *Aedes*, subgenus *Ochlerotatus*. The sequences obtained in this work are indicated with the "EM" code, and are boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Belgium (BE), Spain (ES), Iran (IR)] are also indicated.

17

Figure S-IV 9. Networks a) and PCOORD b), analysis of 7 partial *coxI* nucleotide sequences from mosquitoes of the genus *Aedes*, subgenus *Mucidus*. The sequences obtained in this work are indicated with the "EM" code, and are boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Malawi (MW), Mozambique (MZ)] are also indicated.

Table S-IV 7. Intraspecific and interspecific variation of partial *coxI* sequences amplified from different *Eretmapodites* species. The indicated values have been calculated using the K2P model.

		Nº of	Intra	Intraspecific		Interspecific variation (%)										
		sequences	varia	tion (%)		1		2		3		4				
1	Er. quinquevittatus	1	-	-												
2	Er. silvestris	1	-	-	0.0	(± 0.0)										
3	Er. intermedius	3	0.2	(± 0.2)	10.7	(± 1.6)	10.7	(± 1.6)								
4	Er. subsimplicipes	3	0.0	(± 0.0)	9.3	(± 1.5)	9.3	(± 1.5)	4.4	(± 1.0)						
5	Er. chrysogaster	2	0.0	(± 0.0)	10.6	(± 1.6)	10.6	(± 1.6)	9.7	(± 1.5)	9.1	(± 1.4)				

Table S-IV 8. Intraspecific and inter-group variation based on the analysis of partial *coxI* sequences amplified from *Cx. perexiguus* from Europe (ER), Africa (AF), *Cx. neavei* and *Cx. univittatus*. The indicated values have been calculated using the K2P model.

		N ¹⁰ of company	Introgeneration (9/)	Int	erspecific variat	ion (%)
		in of sequences	Intraspectific variation (%)	1	2	3
1	Cx. perexiguus MO-ER	4	0.5 (±0.2)			
2	Cx. perexiguus AF	11	$0.3 (\pm 0.1)$	0.5 (±	0.2)	
3	Cx. neavei	6	1.8 (± 0.4)	5.0 (±	$0.9)$ 5.0 (± 0.9)	
4	Cx. univittatus	14	1.4 (± 0.3)	5.0 (±	$0.9)$ 5.1 (± 0.9)	4.9 (±0.8)

Figure S-IV 10. Networks **a**) and PCOORD **b**), analysis of 10 partial *cox1* nucleotide sequences from mosquitoes of the genus *Eretmapodites*. The sequences obtained in this work are indicated with the "EM" code, and are boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Mozambique (MZ), Ghana (GH), Guinea (GN), Kenya (KE), Uganda (UG)] are also indicated.

Fit: 99.96

Figure S-IV 11. Networks a) and PCOORD b), analysis of 35 (21 unique, 14 duplicate) partial *coxI* nucleotide sequences from *Culex* mosquitoes, presenting the Univittatus subgroup of the *Culex* subgenus. The sequences obtained in this work are indicated with the "EM" code, and boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Angola (AO), United Arab Emirates (AE), Spain (ES), Madagascar (MG), Malawi (MW), Mozambique (MZ), Pakistan (PK), Portugal (PT), Kenya (KE), Turkey (TR)] are also indicated.

Table S-IV 9. Intraspecific and interspecific variation based on the analysis of partial *coxI* sequencesamplified from *Cx. pipiens* (pip-mol hybrid), *Cx. pipiens* (*pipiens* ecotype), *Cx. pipiens* (*molestus* ecotype),*Cx. quinquefasciatus* and *Cx. Trifilatus*. The indicated values have been calculated using the K2P model."pip-mol hybrid" indicated hybrid from *pipiens* and *molestus* ecotypes.

		N° of	Intra	aspecific		(%)					
		sequences	varia	ation (%)		1		2		3	4
1	Cx. pipiens (pip-mol hybrid)	2	1.3	(± 0.5)							
2	Cx. Quinquefasciatus	12	0.2	(± 0.1)	0.9	(± 0.3)					
3	Cx. pipiens (pipiens ecotype)	1	-	-	0.6	(± 0.2)	0.2	(± 0.1)			
4	Cx. pipiens (molestus ecotype)	3	0.5	(± 0.2)	2.2	(± 0.5)	2.8	(± 0.6)	2.6	(± 0.6)	

Figure S-IV 12. Networks a) and PCOORD b), analysis of 23 partial *cox1* nucleotide sequences from *Culex* mosquitoes, presenting the Pipiens subgroup of the *Culex* subgenus. The sequences obtained in this work are indicated with the "EM" code, and boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Angola (AO), Malawi (MW), Mozambique (MZ), Thailand (TH)] are also indicated. In addition to the ecotypes of *Cx. pipiens*.

Figure S-IV 13. Networks a) and PCOORD b), analysis of 13 partial *cox1* nucleotide sequences from *Culex* mosquitoes, presenting the Theileri subgroup of the *Culex* subgenus. The sequences obtained in this work are indicated with the "EM" code, and boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Spain (ES), Malawi (MW), Pakistan (PK), Portugal (PT)] are also indicated.

24

Figure S-IV 14. Networks a) and PCOORD b), analysis of 10 partial *cox1* nucleotide sequences from *Culex* mosquitoes, presenting the Simpsoni subgroup of the *Culex* subgenus. The sequences obtained in this work are indicated with the "EM" code, and boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), United Arab Emirates (AE), Mozambique (MZ), Kenya (KE)] are also indicated.

Figure S-IV 15. Phylogenetic analysis of 47 partial *coxI* nucleotide sequences from mosquitoes of the species *Cx. bitaeniorhynchus* and *Cx. infula*. At specific branche, the number of * indicates the tree topological support revealed by the different phylogenetic reconstruction methods, assuming as relevants bootstrap and aLRT values above 75% and poster probability values above 0.80. The sequences obtained in this work are indicated with the "EM" code, and those with an associated genitalia photo are indicated by the horizontal arrows. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), China (CN), United Arab Emirates (AE), India (IN), Japan (JP), South Korea (KR), Malawi (MW), Mozambique (MZ), Pakistan (PK), Kenya (KE), Singapore (SG), Thailand (TH), Vietnam (VN)] are also indicated.

Table S-IV 10. a – Intraspecific and interspecific variation based on the analysis of partial *coxI* sequences amplified from *Cx. bitaeniorhynchus* mosquitoes from South Africa (ZA), India (IN), Japan (JP), Pakistan (PK), Thailand (TH), Korean (KR), Vienna (VN), China (CN), Arab Emirates (AE), Malawi (MW), Kenya (KE), Singapore (SG) and *Cx. infula* from ZA, IN, CN. The indicated values have been calculated using the K2P model.

	Nº of sequences	of Intraspecific Interspecific variation (%))									
		sequences	sequences	variation (%)	1	2	3	4	5	6	7	8	9	10	11	12	13
1 Cx. bitaeniorhynchus IN	5	1.1 (± 0.3)															
2 Cx. bitaeniorhynchus JP	13	0.3 (± 0.2)	$0.7 (\pm 0.2)$														
3 Cx. bitaeniorhynchus PK	4	0.1 (± 0.1)	$0.6 (\pm 0.2)$	$0.2 (\pm 0.1)$													
4 Cx. bitaeniorhynchus TH	2	0.4 (± 0.3)	$0.8 (\pm 0.2)$	$0.4 (\pm 0.2)$	$0.3 (\pm 0.2)$												
5 Cx. bitaeniorhynchus KR	3	$1.4 (\pm 0.4)$	$1.6 (\pm 0.4)$	$1.4 (\pm 0.4)$	$1.3 (\pm 0.4)$	$1.3 (\pm 0.4)$											
6 Cx. bitaeniorhynchus VN	1	-	$1.0 (\pm 0.3)$	$0.6 (\pm 0.3)$	$0.5 (\pm 0.3)$	$0.7 (\pm 0.4)$	$1.5 (\pm 0.5)$										
7 Cx. bitaeniorhynchus CN	5	$0.8 (\pm 0.3)$	$0.9 (\pm 0.2)$	$0.6 (\pm 0.2)$	$0.5 (\pm 0.1)$	$0.6 (\pm 0.2)$	$1.5 (\pm 0.4)$	$0.9 (\pm 0.3)$									
8 Cx. bitaeniorhynchus AE	1	-	$1.0 (\pm 0.3)$	$0.6 (\pm 0.3)$	$0.5 (\pm 0.3)$	$0.7 (\pm 0.4)$	$1.7 (\pm 0.5)$	$0.9 (\pm 0.5)$	$0.8 (\pm 0.3)$								
9 Cx. bitaeniorhynchus MW	2	$0.2 (\pm 0.2)$	$2.5 (\pm 0.7)$	$2.3 (\pm 0.7)$	$2.2 (\pm 0.7)$	$2.2 (\pm 0.7)$	$2.0 (\pm 0.6)$	$2.6 (\pm 0.8)$	$2.3 (\pm 0.7)$	$2.2 (\pm 0.7)$							
10 Cx. bitaeniorhynchus ZA	2	$0.0 (\pm 0.0)$	$2.4 (\pm 0.7)$	$2.2 (\pm 0.7)$	$2.1 (\pm 0.7)$	$2.0 (\pm 0.7)$	$1.9 (\pm 0.6)$	$2.5 (\pm 0.8)$	$2.2 (\pm 0.7)$	$2.0 (\pm 0.7)$	$0.1 (\pm 0.1)$						
11 Cx. bitaeniorhynchus KE	2	$0.7 (\pm 0.4)$	$2.1 (\pm 0.6)$	$1.8 (\pm 0.6)$	$1.8 (\pm 0.6)$	$1.9 (\pm 0.6)$	$2.0 (\pm 0.6)$	$2.0 (\pm 0.7)$	$1.9 (\pm 0.6)$	$1.7 (\pm 0.6)$	$1.5 (\pm 0.5)$	$1.4 (\pm 0.5)$					
12 Cx. infula MZ	1	-	$2.0 (\pm 0.6)$	$1.7 (\pm 0.6)$	$1.6 (\pm 0.6)$	$1.8 (\pm 0.6)$	$2.0 (\pm 0.6)$	$2.0 (\pm 0.7)$	$1.8 (\pm 0.6)$	$1.6 (\pm 0.6)$	$1.5 (\pm 0.6)$	$1.4 (\pm 0.6)$	$0.3 (\pm 0.2)$				
13 Cx. infula IN	1	-	$0.6 (\pm 0.2)$	$0.2 (\pm 0.1)$	$0.1 (\pm 0.1)$	$0.2 (\pm 0.2)$	$1.2 (\pm 0.4)$	$0.4 (\pm 0.3)$	$0.4 (\pm 0.1)$	$0.4 (\pm 0.3)$	$2.2 (\pm 0.7)$	$2.0 (\pm 0.7)$	$1.7 (\pm 0.6)$	$1.6 (\pm 0.6)$			
14 Cx. infula CN	1	-	$2.6 (\pm 0.7)$	$2.6~(\pm~0.7)$	$2.6~(\pm~0.7)$	$2.5~(\pm~0.7)$	$2.3 (\pm 0.6)$	$3.0~(\pm~0.8)$	$2.6~(\pm~0.7)$	$2.5 (\pm 0.8)$	$2.8 (\pm 0.8)$	$2.7 (\pm 0.8)$	$2.8 (\pm 0.8)$	$2.7 (\pm 0.8)$	$2.5 (\pm 0.7)$		
15 Cx. bitaeniorhynchus SG	3	0.1 (± 0.1)	$0.7 (\pm 0.2)$	$0.2 (\pm 0.1)$	$0.1 (\pm 0.1)$	$0.2 (\pm 0.2)$	$1.2 (\pm 0.4)$	$0.5 (\pm 0.3)$	$0.4 (\pm 0.2)$	$0.5 (\pm 0.3)$	$2.1 (\pm 0.7)$	$2.0 (\pm 0.7)$	$1.8 (\pm 0.6)$	$1.7 (\pm 0.6)$	$0.1 (\pm 0.1)$	$2.4 (\pm 0.7)$	

Table S-IV 10.b – Intraclade and interclade variation, referring to Fig. 15, S-IV; Clade 1: Cx. bitaeniorhynchus and Cx. infula -Asia; Clade 2: Cx. bitaeniorhynchus and Cx. infula - Africa and Korea; Clade 3: Cx. bitaeniorhynchus - IN and Cx. infula - CN.

	NIQ of an average	Lettre also de consistions (9/)	Interclade variation (%)					
	N° of sequences	Intractade variation (%)	Clade 1	Clade 2				
Clade 1	35	0,39 (± 0,10)						
Clade 2	9	1,29 (± 0,35)	2,00 (± 0,55)					
Clade 3	2	1,58 (± 0,57)	2,41 (± 0,64)	2,72 (± 0,67)				

Figure S-IV 16. Networks analysis of 36 partial *coxI* nucleotide sequences from mosquitoes of the species *Cx. bitaeniorhynchus* and *Cx. infula*. The sequences obtained in this work are indicated with the "EM" code, and are boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), China (CN), United Arab Emirates (AE), India (IN), Japan (JP), South Korea (KR), Malawi (MW), Mozambique (MZ), Pakistan (PK), Kenya (KE), Singapore (SG), Thailand (TH), Vietnam (VN)] are also indicated.

		Nº of	Intraspecific	Interspecific variation (%)								
	sequences		variation (%)	1	2	3	4	5	6	7		
1	Mi. hispida	3	0.7 (± 0.4)									
2	Mi. mimomyiaformis	12	$0.9 \; (\pm \; 0.3)$	10.9 (± 1.9)								
3	Mi. plumosa	1	-	12.0 (± 1.9)	11.1 (± 1.9)							
4	Fi. uniformis	1	-	13.3 (± 2.1)	12.1 (± 2.0)	12.5 (± 1.9)						
5	Mi. splendens	6	0.5 (± 0.3)	16.7 (± 2.4)	15.6 (± 2.2)	12.5 (± 2.0)	$13.0 (\pm 2.0)$					
6	Mi. mediolineata	4	$2.0 \ (\pm \ 0.6)$	14.5 (± 2.0)	14.9 (± 2.1)	13.9 (± 2.0)	16.7 (± 2.3)	13.7 (± 2.0)				
7	Mi. luzonensis	3	0.4 (± 0.3)	17.6 (± 2.4)	16.2 (± 2.4)	15.6 (± 2.3)	15.9 (± 2.3)	14.2 (± 2.1)	15.4 (± 2.2)			
8	Fi. minima	3	$0.0 \; (\pm \; 0.0)$	17.8 (± 2.4)	17.4 (± 2.5)	18.5 (± 2.5)	16.1 (± 2.4)	16.7 (± 2.3)	18.7 (± 2.4)	19.4 (± 2.6)		

Table S-IV 11.Intraspecific and interspecific variation based on the analysis of partialcoxI sequences amplified from Mimomyia and Ficalbia mosquitoes. The indicated valueshave been calculated using the K2P model.

a)

Figure S-IV 17. Networks and PCOORD, analysis of 20 partial *cox1* nucleotide sequences from mosquitoes of the *Ficalbia* and *Mimomyia* genera. The sequences obtained in this work are indicated with the "EM" code, and boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Gabon (GA), Malawi (MW), Mozambique (MZ), Kenya (KE)] are also indicated.

Figure S-IV 18. Networks and PCOORD, analysis of 25 and 20, respectively, partial *cox1* nucleotide sequences from mosquitoes of the genus *Coquillettidia*. The sequences obtained in this work are indicated with the "EM" code, and boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), Malawi (MW), Mozambique (MZ), Kenya (KE), Uganda (UG)] are also indicated.

Figure S-IV 19. Networks a) and PCOORD b), analysis of 30 partial *cox1* nucleotide sequences from mosquitoes of the genus *Mansonia*. The sequences obtained in this work are indicated with the "EM" code, and boldface. The sequences downloaded from GenBank and Boldsystems are indicated by their respective accession number and access code (respectively). Their country of origin [South Africa (ZA), China (CN), India (IN), Malawi (MW), Mozambique (MZ), Kenya (KE), Sri Lanka (LK), Thailand (TH)] are also indicated.